
Learning the Parameters of Probabilistic Logic
Programs from Interpretations

Bernd Gutmann, Ingo Thon, and Luc De Raedt

Department of Computer Science, Katholieke Universiteit Leuven
Celestijnenlaan 200A, POBox 2402, 3001 Heverlee, Belgium

{firstname.lastname}@cs.kuleuven.be

Abstract. ProbLog is a recently introduced probabilistic extension of
the logic programming language Prolog, in which facts can be annotated
with the probability that they hold. The advantage of this probabilistic
language is that it naturally expresses a generative process over inter-
pretations using a declarative model. Interpretations are relational de-
scriptions or possible worlds. This paper introduces a novel parameter
estimation algorithm LFI-ProbLog for learning ProbLog programs from
partial interpretations. The algorithm is essentially a Soft-EM algorithm.
It constructs a propositional logic formula for each interpretation that
is used to estimate the marginals of the probabilistic parameters. The
LFI-ProbLog algorithm has been experimentally evaluated on a number
of data sets that justifies the approach and shows its effectiveness.

1 Introduction

Statistical relational learning [12] and probabilistic logic learning [5,7] have con-
tributed various representations and learning schemes. Popular approaches in-
clude BLPs [15], ICL [18], Markov Logic [19], PRISM [22], PRMs [11], and
ProbLog [6,13]. These approaches differ not only in the underlying representa-
tions but also in the learning settings they employ.

For learning knowledge-based model construction approaches (KBMC), such
as Markov Logic, PRMs, and BLPs, one normally uses relational state descrip-
tions as training examples. This setting is also known as learning from inter-
pretations. For training probabilistic programming languages one typically uses
learning from entailment [7,8]. PRISM and ProbLog, for instance, are probabilis-
tic logic programming languages that are based on Sato’s distribution seman-
tics [21]. They use training examples in form of labeled facts where the labels
are either the truth values of these facts or target probabilities.

In the learning from entailment setting, one usually starts from observations
for a single target predicate. In the learning from interpretations setting, how-
ever, the observations specify the value for some of the random variables in a
state-description. Probabilistic grammars and graphical models are illustrative
examples for each setting. Probabilistic grammars are trained on examples in the
form of sentences. Each training example states that a particular sentence was
derived or not, but it does not explain how it was derived. In contrast, Bayesian

networks are typically trained on partial or complete state descriptions, which
specify the value for some random variables in the network. This also implies
that training examples for Bayesian networks can contain much more informa-
tion. These differences in learning settings also explain why the KBMC and PLP
approaches have been applied on different kinds of data sets and applications.
Entity resolution and link prediction are examples for domains where KBMC has
been successfully applied. This paper aims at bridging the gap between these two
types of approaches to learning. We study how the parameters of ProbLog pro-
grams can be learned from partial interpretations. The key contribution of the
paper is a novel algorithm, called LFI-ProbLog, that is used for learning ProbLog
programs from partial interpretations. We thoroughly evaluated the algorithm
on various standard benchmark problems. LFI-ProbLog is freely available as part
of the ProbLog system at http://dtai.cs.kuleuven.be/problog/ and within
YAP Prolog.

The paper is organized as follows: In Section 2, we review logic programming
concepts as well as the probabilistic programming language ProbLog. Section 3
formalizes the problem of learning the parameters of ProbLog programs from
interpretations. Section 4 introduces LFI-ProbLog. We report on experimental
results in Section 5. Before concluding, we discuss related work in Section 6.

2 Probabilistic Logic Programming Concepts

We start by reviewing the main concepts underlying ProbLog.

An atom is an expression of the form q(t1, . . . , tk) where q is a predicate
of arity k and the ti terms. A term is a variable, a constant, or a functor ap-
plied to terms. Definite clauses are universally quantified expressions of the form
h :- b1, . . . , bn where h and the bi are atoms. A fact is a clause without a body. A
substitution θ is an expression of the form {V1/t1, . . . , Vm/tm} where the Vi are
different variables and the ti are terms. Applying a substitution θ to an expres-
sion e yields the instantiated expression eθ where all variables Vi in e are being
simultaneously replaced by their corresponding terms ti in θ. An expression is
called ground, if it does not contain variables. The semantics of a set of definite
clauses is given by its least Herbrand model, the set of all ground facts entailed
by the theory. A set of definite clauses is called tight if the dependency graph if
acyclic. An h atom depends on an atom b, if b occurs in a clause with head h.

A ProbLog theory (or program) T consists of a set of labeled facts F and
a set of definite clauses BK that express the background knowledge. As the
semantics of ProbLog is based on the distribution semantics, we require that
every atom fulfills the finite support condition. This means that the SLD-tree
for each ground atom is finite. The facts pn :: fn in F are annotated with
the probability pn that fnθ is true for all substitutions θ grounding fn. The
resulting facts fnθ are called atomic choices [18] and represent the elementary
random events; they are assumed to be mutually independent. Each non-ground
probabilistic fact represents a kind of template for random variables. Given a

http://dtai.cs.kuleuven.be/problog/

finite1 number of possible substitutions {θn,1, . . . θn,Kn} for each probabilistic
fact pn :: fn, a ProbLog program T = {p1 :: f1, · · · , pN :: fN} ∪ BK defines a
probability distribution over total choices L (the random events), where L ⊆
LT = {f1θ1,1, . . . f1θ1,K1 , . . . , fNθN,1, . . . , fNθN,KN }.

P(L|T) =
∏

fnθn,k∈L
pn
∏

fnθn,k∈LT \L
(1− pn).

The following ProbLog theory states that there is a burglary with probability
0.1, an earthquake with probability 0.2 and if either of them occurs the alarm
will go off. If the alarm goes off, a person X will be notified and will therefore
call with the probability of al(X), that is, 0.7.

F = {0.1 :: burglary, 0.2 :: earthquake, 0.7 :: al(X)}
BK = {person(mary). , person(john). , alarm :- burglary; earthquake. ,

calls(X) :- person(X), alarm, al(X).}

The set of atomic choices in this program is {al(mary), al(john), burglary,
and earthquake} and each total choice is a subset of this set. Each total choice
L combined with the background knowledge BK defines a Prolog program. Con-
sequently, the probability distribution at the level of atomic choices also in-
duces a probability distribution over possible definite clause programs of the
form L ∪ BK. Furthermore, each such program has a unique least Herbrand in-
terpretation, which is the set of all the ground facts that are entailed by the
program representing a possible world, e.g., for the total choiceburglary the
interpretation {burglary, alarm, person(john), person(mary)} the probability
distribution at the level of total choices also induces a probability distribution
at the level of possible worlds. The probability Pw(I) of this interpretation is
0.1× (1− 0.2)× (1− 0.7)2. We define the success probability of a query q as

Ps(q|T) =
∑

L⊆LT
L∪BK|=q

P(L|T) =
∑

L⊆LT
δ(q,BK ∪ L) · P(L|T) (1)

where δ(q,BK ∪ L) = 1 if there exists a θ such that BK ∪ L |= qθ, and 0 other-
wise. It can be shown that the success probability corresponds to the probability
that the query is true in a randomly selected possible world (according to Pw).
The success probability Ps(calls(john)|T) is 0.196. Observe that ProbLog pro-
grams do not represent a generative model at the level of the individual facts
or predicates. Indeed, it is not the case that the sum of the probabilities of the
facts for a given predicate (here calls/1) must equal 1:

Ps(calls(X)|T) 6= Ps(calls(john)|T) + Ps(calls(mary)|T) 6= 1 .

So, the predicates do not encode a probability distribution over their instances.
This differs from probabilistic grammars and their extensions such as stochastic

1 Throughout the paper, we shall assume that F is finite, see [21] for the infinite case.

logic programs [4], where each predicate or non-terminal defines a probability dis-
tribution over its instances, which enables these approaches to sample instances
from a specific target predicate. Such approaches realize a generative process at
the level of individual predicates. Samples taken from a single predicate can then
be used as examples for learning the probability distribution governing the pred-
icate. In the literature this setting is known as learning from entailment. Sato
and Kameya’s well-known learning algorithm for PRISM [22] also assumes that
there is a generative process at the level of a single predicate and it is therefore
not applicable to learning from interpretations.

While the ProbLog semantics does not encode a generative process at the
level of individual predicates, it does encode one at the level of interpretations.
This process has been described above; it basically follows from the fact that
each total choice generates a unique possible world through its least Herbrand
interpretation. Therefore, it is much more natural to learn from interpretations
in ProbLog; this is akin to typical KBMC approaches.

A partial interpretation I specifies for some (but not all) atoms the truth
value. We represent partial interpretations as I = (I+, I−) where I+ contains
all true atoms and I− all false atoms. The probability of a partial interpretation
is the sum of the probabilities of all possible worlds consistent with the known
atoms. This is the success probability of the query (

∧
aj∈I+ aj) ∧ (

∧
aj∈I− ¬aj).

The probability of the following partial interpretation in the Alarm domain

I+ = {person(mary), person(john), burglary, alarm, al(john), calls(john)}
I− = {calls(mary), al(mary)}

is Pw((I+, I−)) =
(
0.1× 0.7

)
×
(
(1− 0.7)

)
×
(
(0.2 + (1− 0.2))

)
.

3 Learning from Interpretations

Learning from (possibly partial) interpretations is a common setting in statis-
tical relational learning that has not yet been studied in its full generality for
probabilistic programming languages. In a generative setting, one is typically
interested in the maximum likelihood parameters given the training data. This
can be formalized as follows.

Definition 1 (Max-Likelihood Parameter Estimation). Given a ProbLog
program T (p) containing the probabilistic facts F with unknown parameters
p = 〈p1, ..., pN 〉 and background knowledge BK, and a set of (possibly partial)
interpretations D = {I1, . . . , IM} (the training examples). Find maximum like-
lihood probabilities p̂ = 〈p̂1, . . . , p̂N 〉 such that

p̂ = arg max
p

P (D|T (p)) = arg max
p

∏M

m=1
Pw(Im|T (p))

Thus, we are given a ProbLog program and a set of partial interpretations and
the goal is to find the maximum likelihood parameters. One has to consider

two cases when computing p̂. For complete interpretations where everything is
observable, one can obtain p̂ by counting (cf. Sect. 3.1). In the more complex
case of partial interpretations, one has to use an approach that is capable of
handling partial observability (cf. Sect. 3.2).

3.1 Full Observability

It is clear that in the fully-observable case the maximum likelihood estimators
p̂n for the probabilistic facts pn :: fn can be obtained by counting the number
of true ground instances in every interpretation, that is,

p̂n =
1

Zn

∑M

m=1

∑Km
n

k=1
δmn,k where δmn,k :=

{
1 if fnθ

m
n,k ∈ Im

0 else
(2)

and θmn,k is the k-th possible ground substitution for the fact fn in the interpre-
tation Im and Km

n is the number of such substitutions. The sum is normalized

by Zn =
∑M
m=1K

m
n , the total number of ground instances of the fact fn in all

training examples. If Zn is zero, i.e., no ground instance of fn is used, p̂n is
undefined and one must not update pn.

Before moving on to the partial observable case, let us consider the issue
of determining the possible substitutions θmn,k for a fact pn :: fn and an inter-
pretation Im. To resolve this, we assume that the facts fn are typed and that
each interpretation Im contains an explicit definition of the different types in
the form of fully-observable unary predicates. In the alarm example, the predi-
cate person/1 can be regarded as the type of the (first) argument of al(X) and
calls(X). This predicate can differ between interpretations. One person, i.e., can
have john and mary as neighbors, another one ann, bob and eve.

3.2 Partial Observability

In many applications the training examples are partially observed. In the alarm
example, we may receive a phone call but we may not know whether an earth-
quake has in fact occurred. In the partial observable case – similar to Bayesian
networks – a closed-form solution of the maximum likelihood parameters is in-
feasible. Instead, one has to replace in (2) the term δmn,k by ET [δmn,k|Im], i.e., the
conditional expectation given the interpretation under the current model T ,

p̂n =
1

Zn

∑M

m=1

∑Km
n

k=1
ET [δmn,k|Im] . (3)

As in the fully observable case, the domains are assumed to be given. Before
describing the Soft-EM algorithm for finding p̂n, we illustrate one of its cru-
cial properties using the alarm example. Assume that our partial interpretation
is I+ = {person(mary), person(john), alarm} and I− = ∅. It is clear that
for calculating the marginal probability of all probabilistic facts – these are
the expected counts – only the atoms in {burglary, earthquake, al(john),
al(mary)} ∪ I are relevant. This is due to the fact that the remaining atoms

{calls(john), calls(mary)} cannot be used in any proof for the facts observed
in the interpretations. We call atoms, which are relevant for the distribution
of the ground atom x, the dependency set of x. It is defined as depT (x) :=
{f ground fact | a ground SLD-proof in T for x contains f}. Our goal is to re-
strict the probability calculation to the dependent atoms only. Hence we general-
ize this set to partial interpretations I as follows depT (I) :=

⋃
x∈(I+∪I−) depT (x)

and introduce the notion of a restricted ProbLog theory.

Definition 2. Let T = F ∪ BK be a ProbLog theory and I = (I+, I−) a partial
interpretation. Then we define T r(I) = Fr(I) ∪ BKr(I), the interpretation-
restricted ProbLog theory, as follows. Fr(I) = LT ∩ depT (I) and BKr(I) is
obtained by computing all ground instances of clauses in BK in which all atoms
appear in depT (I).

For the partial interpretation I = ({burglary, alarm},∅), for instance, BKr(I)
is {alarm :- burglary, alarm :- earthquake} and the restricted set of facts
Fr(I) is {0.1 :: burglary, 0.2 :: earthquake}.

The restricted theory T r(I) cannot be larger than T . More important, it is
always finite since we assume the finite support property and the evidence being a
finite conjunction of ground atoms. In many cases it will be much smaller, which
allows for learning in domains where the original theory does not fit in memory.
It can be shown using the independence of probabilistic facts in ProbLog, that
the conditional probability of a ground instance of fn given I calculated in the
theory T is equivalent to the probability calculated in T r(I), that is,

ET [δmn,k|Im] =

{
ET r(Im)[δ

m
n,k|Im] if fn ∈ depT (Im)

pn otherwise
(4)

We exploit this property in the following section when developing the Soft-EM
algorithm for finding the maximum likelihood parameters p̂ defined in (3).

4 The LFI-ProbLog algorithm

The algorithm starts by constructing a Binary Decision Diagram (BDD) [2] for
every training example Im (cf. Sect. 4.1), which is then used to compute the ex-
pected counts E[δmn,k|Im] (cf. Sect. 4.3). A BDD is a compact graphical represen-
tation of a Boolean formula. In our case, the Boolean formula (or, equivalently,
the BDD) represents the conditions under which the partial interpretation will
be generated by the ProbLog program and the variables in the formula are the
ground atoms in depT (Im). Basically, any truth assignment to these facts that
satisfies the Boolean formula (or the BDD) will result in the partial interpreta-
tion. Given a fixed variable order, a Boolean function f can be represented as
a full Boolean decision tree where each node N on the ith level is labeled with
the ith variable and has two children called low l(N) and high h(N). Each path
from the root to a leaf represents a complete variable assignment. If variable
x is assigned 0 (1), the branch to the low (high) child is taken. Each leaf is

1.) Calculate Dependencies:

depT (alarm) = {alarm, earthquake, burglary}
depT (calls(john)) = {burlary, earthquake

al(john), person(john), calls(john), alarm}

2.) Restricted theory:

0.1 :: burglary. person(john).

0.2 :: earthquake. alarm :- burglary.

0.7 :: al(john). alarm :- earthquake.

calls(john) :- person(john), alarm, al(john).

3.) Clark’s completion:

person(john)↔ true

alarm↔ (burglary ∨ earthquake)

calls(john)↔ person(john) ∧ alarm ∧ al(john)

4.) Propagated evidence:
(burglary ∨ earthquake)∧
¬al(john)

5.) Build and evaluate BDD
0.7 :: al(john)
α0.2, β = 1

0.2 :: earthquake

α = 0.28,
β = 0.3

alarm

(determ.)
α = 0.1,β =

0.24,

0.1 :: burglary

α = 0.1,β =
0.24

alarm

(determ.)
α = 1,
β = 0.06

1 O

Fig. 1. The different steps of the LFI-ProbLog algorithm for the training example I+ =
{alarm}, I− = {calls(john)}. Normally the alarm node in the BDD is propagated
away in Step 4, but it is kept here for illustrative purposes. The nodes are labeled with
their probability and the up- and downward probabilities.

labeled with the value of f given the variable assignment represented by the cor-
responding path from the root. We use 1 to denote true and O to denote false.
Starting from such a tree, one obtains a BDD by merging isomorphic subgraphs
and deleting redundant nodes until no further reduction is possible. A node is
redundant if and only if the subgraphs rooted at its children are isomorphic. In
Fig. 1, dashed edges indicate 0’s and lead to low children, solid ones indicate 1’s
and lead to high children.

4.1 Computing the BDD for an interpretation

The LFI-ProbLog algorithm generates the BDD that encodes a partial interpre-
tation I. Due to the usage of Clark’s completion in Step 3 the algorithm requires
a tight ProbLog program as input. Clark’s completion allows one to propagate
values from the head to the bodies of clauses and vice versa. It states that the
head is true if and only if at least one of its bodies is true, which captures the
least Herbrand model semantics of tight definite clause programs. The algorithm
works as follows (c.f. Fig 1):

1. Compute depT (I). This is the set of ground atoms that may have an influence
on the truth value of the atoms with known truth value in the partial in-
terpretation I. This is realized by applying the definition of depT (I) directly
using a tabled meta-interpreter in Prolog. We use tabling to store subgoals
and avoid recomputation.

2. Use depT (I) to compute BKr(I), the background theory BK restricted to the
interpretation I (cf. Definition 2 and (4)).

3. Compute clark(BKr(I)), which denotes Clark’s completion of BKr(I); it
is computed by replacing all clauses with the same head h :- body1, ...,
h :- bodyn by the corresponding formula h↔ body1 ∨ . . . ∨ bodyn.

4. Simplify clark(BKr(I)) by propagating known values for the atoms in I.
This step eliminates ground atoms with known truth value in I. That is,
we simply fill out their value in the theory clark(BKr(I)), and then we
propagate these values until no further propagation is possible. This is akin
to the first steps of the Davis-Putnam algorithm.

5. Construct the BDDI , which compactly represents the Boolean formula con-
sisting of the resulting set of clauses. This BDDI is used by the Algorithm 1
outlined in Section 4.3 to compute the expected counts.

In Step 4 of the algorithm, atoms fn with known truth values vn are removed
from the formula and in turn from the BDD. This has to be taken into account
both when calculating the probability of the interpretation and the expected
counts of these variables. The probability of the partial interpretation I given
the ProbLog program T (p) can be calculated as:

Pw(I|T (p)) = P (BDDI) ·
∏

fn known in I
P (fn = vn) (5)

where vn is the value of fn in I and P (BDDi) is the probability of the BDD as
defined in the following subsection. The probability calculation is implemented
using (5). For ease of notation, however, we shall act as if BDDI included the
variables corresponding to random facts with known truth value in I.

In addition, for computing the expected counts, we also need to consider the
nodes and atoms that have been removed from the Boolean formula when the
BDD has been computed in a compressed form. See for example in Fig. 1 (5) the
probabilistic fact burglary. It only occurs on the left path to the 1-terminal,
but it is with probability 0.1 also true on the right path. Therefore, we treat
missing atoms at a particular level as if they were there and simply go to the
next node independent of whether the missing atom has the value true or false.

4.2 Automated theory splitting

For large ground theories the naively constructed BDDs are too big to fit in
memory. BDD tools use heuristics to find a variable order that minimizes size of
the BDD. The runtime of this step is exponential in the size of the input, which
is prohibitive for parameter learning. We propose an algorithm that identifies
independent parts of the grounded theory clark(BKr(I)) (the output of Step 4).
The key observation is, that the BDD for the Boolean formula A ∧ B can be
decomposed into two BDDs, one for BDD for A and one for B respectively, if
A and B do not share a common variable. Since each variable is contained in
at most one BDD, the expected counts of variables can be computed as the
union of the expected count calculation on both BDDs. In order to use the

automatic theory splitting, one has to replace step 5 of the BDD construction
(cf. Section 4.1) with the following algorithm. The idea is to identify sets of
independent formulae in a theory by mapping the theory onto a graph as follows.

1. Add one node per clause in clark(BKr(I)).
2. Add an edge between two nodes if the corresponding clauses share an atom.
3. Identify the connected components in the resulting graph.
4. Build for each of the connected components one BDD representing the con-

junction of the clauses in the component.

The resulting set of BDDs are used by the algorithm outlined in the next section
to compute the expected counts.

4.3 Calculate Expected Counts

One can calculate the expected counts E[δmn,k|Im] by a dynamic programming
approach on the BDD. The algorithm is akin to the forward/backward algorithm
for HMMs or the inside/outside probability of PCFGs. We use pN as the proba-
bility that the node N will be left using the branch to the high-child and 1− pN
otherwise. For a node N corresponding to a probabilistic fact fi this probability
is pN = pi and pN = 1 otherwise. We use the indicator function πN = 1 to test
whether a node N is deterministic. For every node N in the BDD we compute:

1. The upward probability α(N) represents the probability that the logical for-
mula encoded by the sub-BDD rooted at N is true. For instance, in Fig. 1 (5),
the upward probability of the leftmost node for alarm represents the prob-
ability that the formula alarm ∧ burglary is true.

2. The downward probability β(N) represents the probability of reaching the
current node N on a random walk starting at the root, where at deterministic
nodes both paths are followed in parallel. If all random walkers take the same
decisions at the remaining nodes it is guaranteed that only one reaches the
1-terminal. This is due to the fact that the values of all deterministic nodes
are fixed given the values for all probabilistic facts. For instance, in Fig. 1 (5),
the downward probability of the left alarm node is equal to the probability
of ¬earthquake ∧ ¬al(john), which is (1− 0.2) · (1− 0.7).

Due to their definition, summing values of α and β at any level n in the BDD
yields the BDD probability, that is, P (BDD) =

∑
N node at level n α(N)β(N).

Each path from the root to the 1-terminal corresponds to an assignment of
values to the variables that satisfies the Boolean formula underlying the BDD.
The probability that such a path passes through the node N can be computed
as α(N) · β(N) · (P (BDD))−1. The upward and downward probabilities are
computed using the following formulae (cf. Fig. 2):

α(O) = 0 α(1) = 1 β(Root) = 1

α(N) = α(h(N)) · pπNN + α(l(N)) · (1− pN)πN

β(N) =
∑

N=h(M)
β(M) · pπMM +

∑
N=l(M)

β(M) · (1− pM)πM

N

T1 T2

α(N) = α(T1) · pπNN + α(T0) · (1− pN)πN

α(T1) α(T2) N

T1 T2

β(N) =
∑
β(pa(N))

pπNN · β(N)
(1− pN)πn ·

β(N)

Fig. 2. Propagation step of the upward probability (left) and for the downward proba-
bility (right). The indicator function πN is 1 if N is a probabilistic node and 0 otherwise.

Algorithm 1 Calculating α and β. The nodes l(h) and h(n) are the low and
high child of the node n respectively.

function Alpha(BDD node n)
If n is the 1 then return 1
If n is the O then return 0
if n probabilistic fact then

return pn ·Alpha(h(n))
+(1−pn)·Alpha(l(n))

return Alpha(h(n))+
quadAlpha(l(n))

function Beta(BDD node n)
q := priority queue using the BDD’s order
enqueue(q, n)
Beta := array of 0’s of length size(BDD)
Beta[root(n)]:= 1
while q not empty do

n := dequeue(q)
Beta[h(n)]+ = Beta[n] · pπnn
Beta[l(n)]+ = Beta[n] · (1− pn)πn

enqueue(q, h(n)) if not yet in q
enqueue(q, l(n)) if not yet in q

where πN is 0 for nodes representing deterministic nodes and 1 otherwise. Due
to the definition of α and β, the probability of the BDD is returned both at the
root and at the 1-terminal, that is, P (BDD) = α(Root) = β(1). Given these
values, one can compute the expected counts E[δmn,k|Im] as

E[δmn,k|Im] =
∑

N represents fm
β(N) · pN · α(h(N)) · (P (BDD))−1 .

One computes the downward probability α from the root to the leaves and the
upward probability β from the leaves to the root. Intermediate results are stored
and reused when nodes are revisited. Both parts are sketched in Algorithm 1.

5 Experiments

We implemented LFI-ProbLog in YAP Prolog and use SimpleCUDD for the
BDD operations. We used two datasets to evaluate LFI-ProbLog. The WebKB
benchmark serves as test case to compare with state-of-the-art systems. The
Smokers dataset is used to test the algorithm in terms of the learned model,
that is, how close are the parameters to the original ones. The experiments were
run on an Intel Core 2 Quad machine (2.83 GHz) with 8GB RAM.

5.1 WebKB

The goal of this experiment is to answer the following questions:

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

Ar
ea

 U
nd

er
 R

O
C

 C
ur

ve
Time [sec]

LFI-ProbLog [0.0001-0.0003]
LFI-ProbLog [0.1-0.3]
LFI-ProbLog [0.1-0.9]

MLNs
-5000

-4500

-4000

-3500

-3000

-2500

-2000

-1500

-1000

 0 5 10 15 20

LL
H

 T
es

t S
et

Iteration

LFI-ProbLog [0.0001-0.0003]
LFI-ProbLog [0.1-0.3]
LFI-ProbLog [0.1-0.9]

Fig. 3. Area under the ROC curve against the learning time (left) and test set log
likelihood for each iteration of the EM algorithm (right) for WebKB.

Q1 Is LFI-ProbLog competitive with existing state-of-the-art frameworks?
Q2 Is LFI-ProbLog insensitive to the initial probabilities?
Q3 Is the theory splitting algorithm capable of handling large data sets?

In this experiment, we used the WebKB [3] dataset. It contains four folds, each
describing the link structure of pages from one of the following universities:
Cornell, Texas, Washington, and Wisconsin. WebKB is a collective classification
task, that is, one wants to predict the class of a page depending on the classes
of the pages that link to it and depending on the words being used in the
text. To allow for an objective comparison with Markov Logic networks and
the results of Domingos and Lowd [9], we used their slightly altered version of
WebKB. In their setting each page is assigned exactly one of the classes “course”,
“faculty”, “other”, “researchproject”, “staff”, or “student”. Furthermore, the
class “person”, present in the original version, has been removed. We use the
following model that contains one non-ground probabilistic fact for each pair of
Class and Word. To account for the link structure, it contains one non-ground
probabilistic fact for each pair of Class1 and Class2.

P :: pfWoCla(Page,Class,Word).

P :: pfLiCla(Page1, Page2,Class1,Class2).

The probabilities P are unknown and have to be learned by LFI-ProbLog. As
there are 6 classes and 771 words, our model has 6×771+6×6 = 4662 parameters.
In order to combine the probabilistic facts and predict the class of a page we
add the following background knowledge.

cl(Pa, C) :- hasWord(Pa, Word), pfWoCla(Pa, Word, C).

cl(Pa, C) :- linksTo(Pa2, Pa), pfLiCla(Pa2, Pa, C2, C), cl(Pa2, C2).

We performed a 4-fold cross validation, that is, we trained the model on three
universities and then tested it on the fourth one. We repeated this for all four
universities and averaged the results. We measured the area under the precision-
recall curve (AUC-PR), the area under the ROC curve (AUC-ROC), the log
likelihood (LLH), and the accuracy after each iteration of the EM algorithm.
Our model does not express that each page has exactly one class. To account
for this, we normalize the probabilities per page. Figure 3 (left) shows the AUC-
ROC plotted against the average training time. The initialization phase, that is

running steps 1-4 of LFI-ProbLog, takes ≈ 330 seconds, and each iteration of the
EM algorithm takes ≈ 62 seconds. We initialized the probabilities of the model
randomly with values sampled from the uniform distribution between 0.1 and
0.9, which is shown as the graph for LFI-ProbLog [0.1-0.9]. After 10 iterations
(≈ 800 s) the AUC-ROC is 0.950± 0.002, the AUC-PR is 0.828± 0.006, and the
accuracy is 0.769± 0.010.

We compared LFI-ProbLog with Alchemy [9] and LeProbLog [13]. Alchemy
is an implementation of Markov Logic networks. We use the model suggested by
Domingos and Lowd [9] that uses the same features as our model, and we train
it according to their setup.2. The learning curve for AUC-ROC is shown in Fig-
ure 3 (left). After 943 seconds Alchemy achieves an AUC-ROC of 0.923± 0.016,
an AUC-PR of 0.788± 0.036, and an accuracy of 0.746± 0.032. LeProbLog is a
regression-based parameter learning algorithm for ProbLog. The training data
has to be provided in the form of queries annotated with the target probability.
It is not possible to learn from interpretations. For WebKB, however, one can
map one interpretation to several training examples P (class(URL,Class) = P
per page where P is 1 if the class of URL is Class and else 0. This is possi-
ble, due to the existence of a target predicate. We used the standard settings
of LeProblog and limit the runtime to 24 hours. Within this limit, the algo-
rithm performed 35 iteration of gradient descent. The final model obtained an
AUC-PR of 0.419 ± 0.014, an AUC-ROC of 0.738 ± 0.014, and an accuracy of
0.396± 0.020. These results affirmatively answer Q1.

We tested how sensitive LFI-ProbLog is for the initial fact probabilities by
repeating the experiment with values sampled uniformly between 0.1 and 0.3
and sampled uniformly between 0.0001 and 0.0003 respectively. As the graphs
in Figure 3 indicate, the convergence is initially slower and the initial LLH values
differ. This is due to the fact that the ground truth probabilities are small, and
if the initial fact probabilities are small too, one obtains a better initial LLH. All
settings converge to the same results, in terms of AUC and LLH. This suggests
that LFI-ProbLog is insensitive to the start values (cf. Q2).

The BDDs for the WebKB dataset are too large to fit in memory and the
automatic variable reordering is unable to construct the BDD in a reasonable
amount of time. We used two different approaches to resolve this. In the first
approach, we manually split each training example, that is, the grounded theory
together with the known class for each page, into several training examples. The
results shown in Figure 3 are based on this manual split. In the second approach,
we used the automatic splitting algorithm presented in Section 4.2. The resulting
BDDs are identical to the manual split setting, and the subsequent runs of the
EM algorithm converge to the same results. Hence when plotting against the it-
eration, the graphs are identical. The resulting ground theory is much larger and
the initialization phase therefore takes 247 minutes. However, this is mainly due
to the overhead for indexing, database access and garbage collection in the un-
derlying Prolog system. Grounding and Clark’s completion take only 6 seconds

2 Daniel Lowd provided us with the original scripts for the experiment setup. We
report on the evaluation based on the rerun of the experiment.

 0

 5

 10

 15

 20

 40 60 80 100 120 140 160 180 200

KL
 D

iv
er

ge
nc

e

training examples

0 %
10 %
20 %
30 %
40 %
50 %

 0

 5

 10

 15

 20

 40 60 80 100 120 140 160 180 200

training examples

0 %
10 %
20 %
30 %
40 %
50 %

 0

 5

 10

 15

 20

 40 60 80 100 120 140 160 180 200

training examples

0 %
10 %
20 %
30 %
40 %
50 %

Fig. 4. Result for KL-divergence in the smokers domain. The plots are for left to right
3, 4, 5 smokers. Different graphs correspond to different amounts of missing data.

each, the term simplification step takes roughly 246 minutes, and the final split-
ting algorithm runs in 40 seconds. As we did not optimize the implementation
of the term simplification, we see a big potential for improvement, for instance
by tabling intermediate simplification steps. This affirmatively answers Q3.

5.2 Smokers

We set up an experiment on an instance of the Smokers dataset (cf. [9]) to
answer the question

Q4 Is LFI-Problog able to recover the parameters of the original model with a
reasonable amount of data?

Missing or incorrect values are two different types of noise that can occur in
real-world data. While incorrect values can be compensated by additional data,
missing values cause local maxima in the likelihood function. In turn, they cause
the learning algorithm to yield parameters different from the ones used to gener-
ate the data. LFI-ProbLog computes the maximum likelihood parameters given
some evidence. Hence the algorithm should be capable of recovering the param-
eters used to generate a set of interpretations. We analyze how the amount of
required training data increases as the size of the model increases. Furthermore,
we test for the influence of missing values on the results. We assess the quality
of the learned model, that is, the difference to the original model parameters
by computing the Kullback Leibler (KL) divergence. ProbLog allows for an effi-
cient computation of this measure due to the independence of the probabilistic
facts. In this experiment, we use a variant of the “Smokers” model which can be
represented in ProbLog as follows:

p si :: smokes i(X, Y) // person influenced by a smoking friend

p sp :: smokes p(X) // person starts smoking without external reason

p cs :: cancer s(X). // cancer is caused by smoking

p cp :: cancer(X). // cancer without external reason

smokes(X) :- friend(X, Y), smokes(Y), smokes i(X, Y)); smokes p(X).

cancer(X) :- smokes(X), cancer s(X)); cancer p(X).

Due to space restrictions, we omit the details on how to represent this such
that the program is tight. We set the number of persons to 3,4 and 5 respec-
tively and sampled from the resulting models up to 200 interpretations each.
From these datasets we derived new instances by randomly removing 10− 50%
of the atoms. The size of an interpretation grows quadratically with the num-
ber of persons. The model, as described above, has an implicit parameter tying
between ground instances of non-ground facts. Hence the number of model pa-
rameters does not change with the number of persons. To measure the influence
of the model size, we therefore trained grounded versions of the model, where
the grounding depends on the number of persons. For each dataset we ran LFI-
ProbLog for 50 iterations of EM. Manual inspection showed that the probabilities
stabilized after a few, typically 10, iterations. Figure 4 shows the KL divergence
for 3, 4 and 5 persons respectively. The closer the KL divergence is to 0, the
closer the learned model is to the original parameters. As the graphs show, the
learned parameters approach the parameters of the original model as the number
of training examples grows. Furthermore, the amount of missing values has little
influence on the distance between the true and the learned parameters. Hence
LFI-Problog is capable of recovering the original parameters and it is robust
against missing values. This affirmatively answers Q4.

6 Related Work

Most of the existing parameter learning approaches for ProbLog [6], PRISM [22],
and SLPs [17] are based on learning from entailment. For ProbLog, there exists a
learning algorithm based on regression where each training example is a ground
fact together with the target probability [13]. In contrast to LFI-ProbLog, this
approach does not assume an underlying generative process; neither at the level
of predicates nor at the level of interpretations. Sato and Kameya have con-
tributed various interesting and advanced learning algorithms that have been
incorporated in PRISM. Ishihata et al. [14] consider a parameter learning set-
ting based on Binary Decision Diagrams (BDDs) [2]. In contrast to our work,
they assume the BDDs to be given, whereas LFI-ProbLog, constructs them in
an intelligent way from evidence and a ProbLog theory. Ishihata et al. suggest
that their approach can be used to perform learning from entailment for PRISM
programs. This approach has been recently adopted for learning CP-Logic pro-
grams (cf. [1]). The BDDs constructed by LFI-ProbLog are a compact represen-
tation of all possible worlds that are consistent with the evidence. LFI-ProbLog
estimates the marginals of the probabilistic facts in a dynamic programming
manner on the BDDs. While this step is inspired by [14], we tailored it to-
wards the specifics of LFI-ProbLog, that is, we allow deterministic nodes to be
present in the BDDs. This extension is crucial, as the removal of deterministic
nodes can results in an exponential growth of the Boolean formulae underlying
the BDD construction. Riguzzi [20] uses a transformation of ground ProbLog
programs to Bayesian networks in order to learn ProbLog programs from inter-
pretations. Such a transformation is also employed in the learning approaches

for CP-logic [24,16]. Thon et al. [23] studied how CPT-L, a sequential variant
of CP-Logic, can be learned from sequences of interpretations. CPT-L is closely
related to LFI-ProbLog. However, CPT-L is targeted towards the sequential as-
pect of the theory, whereas we consider a more general settings with arbitrary
theories. Thon et al. assume full observability, which allows them to split the
sequence into separate transitions. They build one BDD per transition, which
is much easier to construct than one large BDD per sequence. Our splitting al-
gorithm is capable of exploiting arbitrary independence. LFI-ProbLog can also
be related to knowledge-based model construction approaches in statistical rela-
tional learning such as BLPs, PRMs and MLNs [19]. While the setting explored
in this paper is standard for the aforementioned formalisms, our approach has
significant representational and algorithmic differences from the algorithms used
in those formalisms. In BLPS, PRMs and CP-logic, each training example is
typically used to construct a ground Bayesian network on which a standard
learning algorithm is applied. Although the representation generated by Clark’s
completion is quite close to the representation of Markov Logic, there are subtle
differences. While Markov Logic uses weights on clauses, we use probabilities
attached to single facts.

7 Conclusions

We have introduced a novel parameter learning algorithm from interpretations
for the probabilistic logic programming language ProbLog. This has been mo-
tivated by the differences in the learning settings and applications of typical
knowledge-based model construction approaches and probabilistic logic program-
ming approaches. The LFI-ProbLog algorithm tightly couples logical inference
with a probabilistic EM algorithm at the level of BDDs. Possible directions of
future work include using d-DNNF representations instead of BDDs [10] and a
transformation to Boolean formulae that does not require tight programs.

Acknowledgments

Bernd Gutmann is supported by the Research Foundation-Flanders (FWO-
Vlaanderen). This work is supported by the GOA project 2008/08 Probabilistic
Logic Learning and by the European Community under contract number FP7-
248258-First-MM. We thank Vı̀tor Santos Costa and Paulo Moura for their help
with YAP Prolog.

References

1. Bellodi, E., Riguzzi, F.: EM over binary decision diagrams for probabilistic logic
programs. Tech. Rep. CS-2011-01, Università di Ferrara, Italy (2011)

2. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Computers 35(8), 677–691 (1986)

3. Craven, M., Slattery, S.: Relational learning with statistical predicate invention:
Better models for hypertext. Machine Learning 43(1/2), 97–119 (2001)

4. Cussens, J.: Parameter estimation in stochastic logic programs. Machine Learning
44(3), 245–271 (2001)

5. De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. (eds.): Probabilistic Induc-
tive Logic Programming — Theory and Applications, Lecture Notes in Artificial
Intelligence, vol. 4911. Springer (2008)

6. De Raedt, L., Kimmig, A., Toivonen, H.: Problog: A probabilistic Prolog and its
application in link discovery. In: Veloso, M. (ed.) IJCAI. pp. 2462–2467 (2007)

7. De Raedt, L.: Logical and Relational Learning. Springer (2008)
8. De Raedt, L., Kersting, K.: Probabilistic inductive logic programming. In: Algo-

rithmic Learning Theory. pp. 19–36. No. 3244 in LNCS, Springer (2004)
9. Domingos, P., Lowd, D.: Markov Logic: An Interface Layer for Artificial Intelli-

gence. Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan
& Claypool Publishers (2009)

10. Fierens, D., Van den Broeck, G., Thon, I., Gutmann, B., De Raedt, L.: Inference
in probabilistic logic programs using weighted cnf’s. In: The 27th Conference on
Uncertainty in Artificial Intelligence (UAI 2011) (2011), to appear

11. Getoor, L., Friedman, N., Koller, D., Pfeffer, A.: Learning probabilistic relational
models. In: Džeroski, S., Lavrač, N. (eds.) Relational Data Mining, pp. 307–335.
Springer (2001)

12. Getoor, L., Taskar, B. (eds.): An Introduction to Statistical Relational Learning.
MIT Press (2007)

13. Gutmann, B., Kimmig, A., De Raedt, L., Kersting, K.: Parameter learning in
probabilistic databases: A least squares approach. In: Daelemans, W., Goethals,
B., Morik, K. (eds.) ECML 2008. LNCS, vol. 5211, pp. 473–488. Springer (2008)

14. Ishihata, M., Kameya, Y., Sato, T., Minato, S.: Propositionalizing the EM algo-
rithm by BDDs. In: ILP (2008)

15. Kersting, K., Raedt, L.D.: Bayesian logic programming: theory and tool. In: Getoor
and Taskar [12]

16. Meert, W., Struyf, J., Blockeel, H.: Learning ground cp-logic theories by leveraging
bayesian network learning techniques. Fundam. Inform. 89(1), 131–160 (2008)

17. Muggleton, S.: Stochastic logic programs. In: De Raedt, L. (ed.) Advances in In-
ductive Logic Programming. Frontiers in Artificial Intelligence and Applications,
vol. 32. IOS Press (1996)

18. Poole, D.: The independent choice logic and beyond. In: De Raedt et al. [5]
19. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62, 107–

136 (2006)
20. Riguzzi, F.: Learning ground problog programs from interpretations. In: Proceed-

ings of the 6th Workshop on Multi-Relational Data Mining (MRDM07) (2007)
21. Sato, T.: A statistical learning method for logic programs with distribution se-

mantics. In: Sterling, L. (ed.) Proceedings of the 12th International Conference on
Logic Programming. pp. 715–729. MIT Press (1995)

22. Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical
modeling. Journal of Artificial Intelligence Research 15, 391–454 (2001)

23. Thon, I., Landwehr, N., De Raedt, L.: A simple model for sequences of rela-
tional state descriptions. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML.
LNCS, vol. 5211, pp. 506–521. Springer (2008)

24. Vennekens, J., Denecker, M., Bruynooghe, M.: Representing causal information
about a probabilistic process. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa,
A. (eds.) JELIA. LNCS, vol. 4160, pp. 452–464. Springer (2006)

	Learning the Parameters of Probabilistic Logic Programs from Interpretations

