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Abstract

In all levels of society, a lot of effort is put in the optimal use of resources as e.g.
energy, labor and time. Resource optimization is also important in the control of
mechatronic systems. For these applications, typically either the required time or
the energy consumption to perform an action is minimized. This thesis develops
controllers which aim to minimize the time required to perform a point-to-point
motion, i.e. the settling time of the system. These controllers are developed
within the model predictive control framework (mpc). In this framework, the
system input is determined by solving on-line, during every sampling period, an
optimization problem. This on-line optimization allows to take systems constraints
like actuator saturation, directly into account. The time-optimal controllers have
been developed for mechatronic systems with sampling periods in the order of
milliseconds. Hence, the fast solution of these problems is an important design
parameter. The main contributions of this research are as follows. First, the
minimization of settling time has been formulated as an optimization problem
within the mpc framework. Then, the structure of these optimization problems has
been analyzed and exploited such that these problems can now be formulated with
enough variables to be applicable for relevant mechatronic applications while still
being solvable within a few milliseconds. All developed time-optimal controllers
have been validated experimentally on representative mechatronic systems as linear
motors and an overhead crane. This experimental validation shows that with the
developed controllers sampling periods of a few milliseconds are attainable and that
the settling time can be reduced considerably in comparison with linear controllers
and traditional mpc controllers.

Within this global framework of minimizing settling time, three controllers have
been designed. First, a time-optimal feedforward controller has been developed.
This controllers generates a reference trajectory which minimizes the settling time
for point-to-point motions. This feedforward controller has been developed as a
more performant alternative to linear prefilters. Then, a time-optimal feedback
controller has been developed. The introduction of feedback allows to reject
disturbances and to remove steady state errors. Last, a control scheme which
combines the time-optimal controllers with linear feedback controllers, has been
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proposed. This scheme allows to fulfill the benchmark requirements of an industrial
linear motor, i.e. not only a small settling time but also an absolute settling
accuracy in the submicrometer range.



Korte inhoud

In de huidige maatschappij staat het optimaal aanwenden van productiemiddelen
zoals energie, arbeid en tijd vaak centraal. Dit optimale gebruik van middelen is
ook belangrijk bij de controle van mechatronische systemen waar typisch ofwel de
tijd ofwel het energieverbruik voor een taak geminimaliseerd wordt. Deze thesis
ontwikkelt regelaars die de tijd minimaliseren om een punt-tot-punt beweging uit
te voeren, dit wil zeggen een verkorting van de insteltijd van het systeem. In
tegenstelling tot bestaande lineaire regelsystemen gebeurt de minimalisatie van de
insteltijd in deze thesis voor willekeurige punt-tot-punt bewegingen en niet enkel
voor één voorafbepaalde stap. Deze tijdsoptimale regelaars zijn ontworpen binnen
het modelgebaseerde-regelaarraamwerk (mpc). Binnen het mpc raamwerk wordt
het ingangssignaal bepaald door tijdens elke bemonsteringsperiode, zijnde de tijd
tussen het aanleggen van twee ingangssignalen, een optimalisatieprobleem op te
lossen. Het optimaliseren van het ingangssignaal binnen elke bemonsteringsperiode
laat toe om expliciet de beperkingen van het systeem, zoals actuatorsaturatie, in
rekening te brengen. De tijdsoptimale regelaars zijn ontworpen voor mechatronische
systemen met bemonsteringsperioden van enkele milliseconden. Daarom is de
snelle oplosbaarheid van de optimalisatieproblemen een belangrijke factor bij het
ontwerp van deze regelaars. De belangrijkste bijdragen van dit doctoraat zijn
als volgt. Als eerste is het minimaliseren van de insteltijd gedefinieerd als een
optimalisatieprobleem binnen het mpc raamwerk. Vervolgens is de structuur van
deze optimalisatieproblemen geanalyseerd en geëxploiteerd zodat deze problemen
nu geformuleerd kunnen worden met een voldoende groot aantal variabelen om
toepasbaar te zijn voor relevante mechatronische problemen en desalniettemin
oplosbaar zijn binnen enkele milliseconden. Alle ontwikkelde regelaars zijn ook
experimenteel gevalideerd op representatieve mechatronische testopstellingen zoals
lineaire motoren en een portaalkraan. Deze experimentele validatie toont aan
dat met de ontwikkelde regelaars bemonsteringsperiodes van enkele milliseconden
haalbaar zijn en dat de insteltijd zeer sterk verminderd kan worden ten opzichte
van lineaire regelaars en traditionele mpc regelaars.

Binnen dit globale kader van het minimaliseren van de insteltijd zijn drie regelaars
ontworpen. Eerst is een voorwaarts gekoppelde regelaar ontworpen die een
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referentietraject genereert dat de insteltijd minimaliseert voor punt-tot-punt
bewegingen. Deze regelaar is ontworpen als een performanter alternatief voor
bestaande voorwaarts gekoppelde regelaars. Vervolgens is een tijdsoptimale
terugkoppelregelaar ontworpen. Het introduceren van terugkoppeling laat toe om
storingen en statische fouten te compenseren. In een laatste stap is een regelschema
voorgesteld dat tijdsoptimale regelaars combineert met lineaire regelaars. Dit
regelschema laat toe om aan de vereisten van een industriële lineaire motor te
voldoen, namelijk een kleine insteltijd gecombineerd met een instelnauwkeurigheid
in het submicrometergebied.



Nomenclature

Within this thesis, the following nomenclature is used:

• real-time optimization: solution of the optimization problem within one
sampling period

• embedded optimization: solution of the optimization problem on an embedded
controller

• on-line optimization: solution of the optimization problem in real-time on an
embedded controller

• off-line optimization: solution of the optimization problem before motion and
hence without constraints on the required computational time

• feasible solution: solution of the optimization problem while respecting all
inequality and equality constraints is possible
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List of symbols

Abbreviations

EI : extra insensitive
FIR : finite impulse response
FRF : frequency response function
KKT : Karush-Kuhn-Tucker
LMI : linear matrix inequality
LTI : linear time invariant
MIMO : multiple-input multiple-output
MPC : model predictive control
PID : proportional integral derivative
QP : quadratic problem
SI : specified insensitivity
SISO : single-input single-output
TOMPC : time optimal model predictive control
ZV : zero vibration
ZVD : zero vibration derivative

Symbols

•k : value of • at time step k in the prediction horizon
•l : value of • at time step l in real time
•? : optimized value of •
•A : values of • in the active set
•I : value of • in the inactive set
∆u : differential system input
u : system input
x : system state
y : system output
s : dummy variables
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xii List of symbols

uref : reference input
xref : reference state
yref : reference output
f(x, u) : system dynamics function
g(x, u) : system output function
h(x, u) : system constraints function
A : discrete time state matrix
B : discrete time input matrix
C : discrete time output matrix
D : discrete time feedthrough matrix
N : prediction horizon length in feasibility problem
Nmin : minimal prediction horizon length in feasibility problem
Nmax : maximal prediction horizon length in feasibility problem
K : prediction horizon length in mixed integer problem
n : number of system states
nu : number of system inputs
ny : number of system outputs
ζ : damping constant
λ : lagrange multiplier
Co : controllability matrix
X : feasible set
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Chapter 1

Introduction

This doctoral thesis discusses the design, implementation and experimental
validation of time-optimal controllers for point-to-point motion of lti mechatronic
systems. These controllers are developed within the model predictive control (mpc)
framework. This chapter motivates the research discussed in this thesis. First,
Section 1.1 situates the controller design within the general context of control
of mechatronic systems and gives an overview of the current state-of-the-art of
linear approaches to obtain near time-optimal motion for the considered class
of mechatronic systems. Second, Section 1.2 presents the concept of mpc and
discusses current research on the application of mpc to mechatronic systems. Third,
Section 1.3 states the problem formulation and hypotheses of this doctoral thesis.
The chapter ends with a chapter-by-chapter overview and a summary of the main
contributions in Section 1.4.

1.1 Control of mechatronic systems

1.1.1 General control of mechatronic systems

Mechatronic systems [Buur, 1990, Tomizuka, 2002] are systems which integrate
actuators, sensors, controls and mechanical design. By integrating all these aspects
during the system design, much higher control performance can be obtained than
if all these aspects are considered as add-ons to each other. This definition of
mechatronic systems encompasses a broad range of systems like robots, linear
motors, planes, cars, . . . By externalizing nonlinear dynamics as e.g. friction, many
of these systems can be represented by linear time invariant (lti) models, i.e. by
system models with constant linear system dynamics. For these systems, typically

1



2 INTRODUCTION

three kinds of control problems can be defined. First, there are tracking control
problems which follow a given trajectory in state space and time coordinates under
a given criterion as accurately as possible. Second, there are control problems where
a trajectory in state space coordinates has to be followed and the corresponding
time frame is not specified. These controllers can be optimized with respect to
e.g. the required path following time, energy consumption or accuracy. Third,
there are regulation control problems which have as an objective to arrive at
or stay around a given reference position without specifying constraints on the
underlying trajectories. This regulating controller can be optimized with respect
to e.g. settling time, overshoot and energy consumption. This thesis focuses on
the regulation control problem for lti systems with the objective to minimize the
settling time, i.e. the system has to settle as fast as possible at the desired setpoint
while respecting the system constraints. In order to obtain true time-optimal
control, system constraints must be active, i.e. the system will work at its input or
output limits.

Most lti mechatronic systems are currently still controlled using linear feedback
controllers such as traditional pid controllers tuned by e.g heuristic Ziegler-Nichols
rules [Ziegler and Nichols, 1942, Franklin et al., 2001] or more advanced model-based
controllers, like e.g. H∞ robust controllers [Zhou et al., 1995] or internal model
controllers [Morari and Zafiriou, 1989]. The main disadvantage of these linear
controllers is that they can not account easily for constraints on inputs, outputs
and states or only by introducing a lot of conservativeness [Scherer et al., 1997].
For numerous applications, these controllers are perfectly suited and they can be
well-tuned. However, for regulation problems where minimization of the settling
time is requested within stringent input constraints, they do not perform well.
In order to obtain near time-optimal control, numerous linear approaches exist;
namely prefilters which filter the reference step in order to cancel the vibrations
induced on the eigenfrequencies of the system, and trajectory generators which
replace the reference step by a smoother reference trajectory which induces less
residual vibrations. Therefore the following sections give an overview of prefilters
(Section 1.1.2) and trajectory generators (Section 1.1.3).

1.1.2 Prefilters

Basic input shaping

Input shaping [Smith, 1957, Singer, 1989, Singer and Seering, 1990, Singhose et al.,
1994] is a prefilter technique which transforms a reference step into a reference
trajectory such that the system reaches the desired setpoint without residual
vibrations, i.e. once the system arrives at the setpoint there are no vibrations
around this setpoint, thereby reducing the settling time. The original input shaping
prefilter is a continuous time filter which convolves the requested step input with
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a finite-impulse-response (fir) filter, see Fig. 1.1, where the amplitude fk and
the position tk of the impulses are determined analytically based on the vibration
equation of a second order system. The impulses are chosen such that they
compensate the dominant second order poles of the system, i.e. they are a solution
of the following set of equations:

K∑
k=0

fke−ζωn(tK−tk) sin(tkωn
√

1− ζ2) = 0, (1.1a)

K∑
k=0

fke−ζωn(tK−tk) cos(tkωn
√

1− ζ2) = 0, (1.1b)

where ωn is the eigenfrequency and ζ is the damping constant of the system. It
can be shown that these prefilters are comparable to notch filters [Murphy and
Watanabe, 1992]. In order to obtain the shortest possible settling time, the length
of the prefilter is minimized, i.e. the position tK of the last impulse of the fir filter
is placed as early as possible. In the original input shaping prefilter design only
positive impulses fk are allowed, thereby guaranteeing input constraint satisfaction
if the unfiltered reference step satisfies the input constraints [Singer and Seering,
1990]. However, this basic approach is sensitive to model-plant mismatch and has
the disadvantage of a rather long filter length.

Extensions to decrease settling time

In order to decrease the settling time of input shapers, most extensions to the
original input shaping prefilter allow not only positive but also negative impulses fk
[Singhose et al., 1997]. This reduces the filter length significantly, i.e. the position of
the last impulse tK , and hence the settling time. However in contrast to the original
input shaping design with only positive impulses, input constraint satisfaction
is not longer guaranteed for all step references which do not saturate without
prefiltering. Also, the robustness of the input shaping prefilter decreases further in
comparison with the original input shaping prefilter with only positive impulses.
Therefore, the effect of saturation and other non-linearities is analyzed and it is
shown how these effects can be mitigated [Sorensen and Singhose, 2007, Sorensen
et al., 2008] by limiting the drivable region or by preconditioning the reference
signals. This introduces conservativeness as also non-saturating references are
preconditioned. Other extensions improve the total settling time by incorporating
knowledge about the reference step [Baumgart and Pao, 2007, Robertson and
Erwin, 2007] which is by definition only optimal for one specific trajectory however.
Kenison and Singhose [2002] improve the total system performance as they design
the closed-loop controller taking into account that an input shaping filter which
filters the step input is added to the closed-loop system .
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Time

Unshaped reference ∗ =

Time

Shaped reference

0

1

Figure 1.1: General idea of inputshaping. An unshaped reference step is convolved
with a fir filter in order to obtain a shaped reference which is applied to the
system. This results in an output behavior (grey line) with typically a higher rise
time but much lower settling time than the unshaped response (black line).

Extensions for higher order systems

Input shaping is originally developed for second-order systems. Higher order modes
can however also contribute significantly to residual vibrations. Therefore, research
has been conducted on the extension of input shaping to higher order systems
[Singhose et al., 1997, La-orpacharapan and Pao, 2004, 2005]. One approach
convolves multiple low order input shaping filters which each solve problem (1.1)
for one vibration mode. However, this approach introduces large filter delays as
the length of the total prefilter equals the sum of the length of the original filters
minus the number of filters. Other approaches based on the original input shaping
prefilters, solve the extended analytical problem (1.1) for all modes simultaneously,
thereby reducing the length of the total prefilter and hence the settling time.
However, the resulting optimization problems grow increasingly complex and are
non-convex [Boyd and Vandeberghe, 2004]. Sungyung et al. [1999], Van den Broeck
et al. [2008] reformulate the input shaping problem for discrete time systems based
on the dynamic equations of the system: xk+1 = Axk +Buk. This reformulation
casts the determination of the optimal impulses of the fir filter into a linear
optimization problem which guarantees a fast solution. The problem formulation
which characterizes this technique is independent of the order of the system.
Moreover, constraints on the inputs and outputs of the system can be included
easily within the linear optimization framework. Singh [2010] also presents a
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numeric approach which allows to minimize the settling time.

Extensions for robustness

The basic input shaping prefilters are very sensitive with respect to the value of
the eigenfrequency of the system, i.e. if the real eigenfrequency of the system
differs even only moderately from the nominal eigenfrequency used in the prefilter
design, the system still exhibits large residual vibrations if the system damping ζ
is small, despite the prefiltering of the reference signal. Robustness with respect
to parameter uncertainty is for input shapers typically expressed by sensitivity
curves. These curves show the residual vibration of a system on a filtered reference
step in function of a normalized parameter, i.e. the actual value of the parameter
divided by the nominal identified value of the parameter. For input shapers, this
sensitivity is typically expressed as a function of the system eigenfrequency. In
the original zero vibration (zv) prefilter design, the sensitivity curve is zero for
the nominal eigenfrequency. However, this sensitivity curve increases fast if the
eigenfrequency differs from the nominal value, see Fig. 1.2. To introduce robustness,
this sensitivity curve should have low values over a wide range of eigenfrequencies.
This robustness can be introduced by imposing extra constraints locally or globally
on the sensitivity curve. Locally, the prefilter design can not only constrain the
value of the sensitivity curve for the nominal system but also the derivatives of
this curve, thereby effectively pushing down the sensitivity curve locally. This
technique is implemented in e.g. the zero vibration derivative (zvd) prefilter
[Singer and Seering, 1990]. Other basic robust approaches called extra insensitive
(ei) filters, obtain robustness by imposing global constraints on the sensitivity
curve. These ei prefilters require a limited residual vibration for multiple points on
the sensitivity curve but do not impose zero vibration for the nominal system as
they assume that the real value of the system parameters is never exactly known
[Singhose et al., 1994]. Fig. 1.2 shows the sensitivity curve for the three basic
input shaping approaches; i.e. zv (black solid line), zvd (grey solid line) and ei
(black dashed line). The ei approach tends to have a broader insensitivity range
than the zvd approach [Vaughan et al., 2008a,b]. Van den Broeck et al. [2008]
introduce robustness in their linear programming framework, analogous to the ei
approach, by minimizing the residual vibrations on a step reference not only for the
nominal system but for multiple systems with different system parameter values.
Another robust approach, called the specified insensitivity (si) method, allows
to impose a desired insensitivity [Singhose et al., 1996]. This si filter generates
the highest robustness for a given filter length. Moreover, this design approach
can also generate asymmetric sensitivity curves. A disadvantage of si filters is
that no closed form expression exists. Further extensions of robust prefilters
include knowledge on the distribution of the uncertainty, thereby minimizing the
expected residual vibrations [Pao and Lau, 2000]. A disadvantage of all robust
input shapers is their increase in filter length and correspondingly the settling



6 INTRODUCTION

0.8 0.9 1 1.1 1.20

10

20

30

Normalized eigenfrequency ω
ωn

R
es

id
ua

lv
ib

ra
tio

n
[%

]

Figure 1.2: Sensitivity curve for three different input shaping approaches showing
the robustness with respect to uncertainty on the system eigenfrequency. This is
shown for the zv (black solid line), zvd (grey solid line) and ei (black dashed line)
approach.

time of the controlled system. A different approach therefore uses short non-robust
filters which are adapted to the filter frequency which is identified during motion.
These adaptive prefilters are developed both for repetitive [Park and Chang, 2001]
and non-repetitive trajectories [Cutforth and Pao, 2004]. Their disadvantage is
however their higher complexity, which requires more expensive hardware.

1.1.3 Trajectory generation

Off-line trajectory generation

As the application of pure reference steps to a system induces a lot of residual
vibrations as illustrated in Fig. 1.1, these steps are often replaced by smoother
reference trajectories which induce less or no residual vibrations because of their
smoothness. It should be noted that the goal of the control design is to regulate
the system at a given reference position. Hence, the underlying trajectory is
not important, which allows design freedom on these trajectories. Therefore, the
trajectory generators replace the reference step by a reference trajectory which has
the same end point value but which is smoothened by imposing constraints on its
derivatives. One very basic reference trajectory approach uses trapezoidal velocity
profiles to smoothen the step reference, i.e. the reference trajectory accelerates
linearly until the maximum velocity is reached and at the end of motion decelerates
linearly until the velocity reaches zero. As these profiles yield infinite jerk, they
still induce high residual vibrations [Kyriakopoulos and Saridis, 1994, Lin et al.,
2002]. Therefore, slightly more advanced approaches called S-curves [Lewin, 1994]
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apply higher order polynomial trajectories; e.g. a ramp reference profile is imposed
on the acceleration instead of on the velocity. The resulting residual vibrations can
be minimized by selecting an optimal ramp-up time for the acceleration based on
the assumption that the system can be represented by a two-mass-spring system
[Meckl et al., 1998]. Instead of using symmetrical trajectories, also asymmetrical
trajectories with faster acceleration and slower deceleration can be used to decrease
settling time [Tsay and Lin, 2005]. Beazel and Meckl [2005], Chatlatanagulchai,
Beazel, and Meckl [2006] use reference trajectories based on sine base functions
which are tuned to the eigenfrequency of the system, instead of polynomial functions,
thereby generating more robust reference trajectories for nonlinear systems with
changing resonances. The former techniques limit only velocity, acceleration, and
possibly higher derivatives of the reference trajectory. They can not take into
account input constraints directly. Moreover, minimization of the settling time is
only approximated by using smoother trajectories, which because of this smoothness
introduce less vibrations and overshoot. Note that more advanced off-line design
approaches allow to impose input constraints and can generate true time-optimal
trajectories. Henrion and Lasserre [2006] design a reference trajectory which is
defined as one polynomial. The coefficients of this polynomial are optimized by
solving a linear matrix inequality (lmi). By increasing the degree of the polynomial,
constraints on inputs and outputs can be imposed. Other approaches based on
the combination of multiple cubic splines [Kwakernaak and Smit, 1968], guarantee
smoothness by design. Demeulenaere, Pipeleers, De Caigny, Swevers, De Schutter,
and Vandenberghe [2009b], Demeulenaere, De Caigny, Pipeleers, De Schutter, and
Swevers [2009a] extend the approach of Kwakernaak and Smit [1968] to allow higher
orders of smoothness. By solving a series of linear problems, these approaches find
the time-optimal trajectory while taking system constraints into account.

On-line trajectory generation

With an increase in affordable computation power, the basic S-curve reference
trajectories are now often computed on-line [Nguyen et al., 2008]. These approaches
generally take constraints on velocity and acceleration into account [Zheng et al.,
2009]. Rew, Ha, and Kim [2009] generate on-line asymmetric S-curves to further
decrease the settling time. More advanced controllers also put constraints on
higher derivatives of the motion trajectory and can take into account part of the
system dynamics [Macfarlane and Croft, 2003, Lambrechts et al., 2005]. For pure
double integrators, also approximate time-optimal controllers can be obtained
(pto) [Workman et al., 1987a,b, Workman and Franklin, 1988, Zanasi et al., 2000].
This approach has been extended to third order systems by Pao and Franklin [1993]
and Zanasi and Morselli [2003]. A disadvantage of all these approaches is that
they can not take input constraints into account directly. Moreover, minimization
of settling time is not directly imposed; these approaches are usually based on
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smoothness of the reference trajectory and can at most guarantee time-optimality
for simple low order systems such as a series of pure integrators.

1.1.4 General advantages and disadvantages of input shaping
and trajectory generation

Trajectory generators and input shapers are powerful tools to reshape reference steps
into reference trajectories which in comparison with a pure step reference, induce
less residual vibrations at the end of motion. A big advantage of these techniques
is their low on-line computational complexity, allowing an implementation on
cheap hardware. They are successfully applied to applications in high precision
positioning stages [Li et al., 2009, Amthor et al., 2010], machining applications
[Olabi et al., 2010], wafer stages [DeRoover and Sperling, 1997], satellites [Tuttle
and Seering, 1997], milling machines [Fortgang et al., 2005, Marquez et al., 2006],
dc-dc converters [Yousefzadeh et al., 2008], coordinate measuring machines [Jones
and Ulsoy, 1999] and cranes [Sorensen et al., 2007, Huey et al., 2008, Vaughan and
Singhose, 2009, Vaughan et al., 2010]. These methods can be divided into two groups
depending on whether the reference step is transformed during motion or before
motion. The approaches which transform the reference step during motion are
usefull for applications where steps over a wide range have to be processed and time-
optimality is less an issue. However, they are conservative with respect to settling
time for reference steps which differ from the worst-case, where the worst-case is
usually defined as the largest possible displacement. Moreover, often combinations
of reference steps exist which will violate the system constraints. Trajectory
generators which generate reference trajectories before motion, can guarantee
constraint satisfaction and time-optimality for all reference steps. However, as this
reference trajectory has to be computed beforehand, they are only efficient if a
limited set of known references is imposed. If these systems have to react on new
reference steps, a new reference trajectory has to be computed. This introduces a
delay between the step request and the start of system control action. This delay
can easily be as large as the time required for performing the reference step.

Hence, for applications which require time-optimal control over a wide range of
unknown reference steps, these approaches are not suitable. For these applications
control approaches which compute on-line an optimal system reference and which
can account for actuator constraints, are required. This however comes with the
cost of more expensive hardware.
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1.2 Model predictive control

The controllers in this thesis are developed within the mpc framework. Therefore,
Section 1.2.1 and Section 1.2.2 give a short general introduction to mpc. Section
1.2.3 and Section 1.2.4 discuss current applications of mpc in the field of
mechatronics together with time-optimal control techniques.

1.2.1 General idea of model predictive control

mpc is an advanced control technique that originated in the sixties and gained
popularity in the eighties [Richalet et al., 1978, García et al., 1989]. The mpc
control approach is described in the excellent textbook [Maciejowski, 2000] and
paper [Rawlings, 2000]. An mpc controller computes the optimal system input
on-line by solving an optimization problem and taking into account the system
constraints. The mpc controller first measures or estimates the current state of
the system x̄l. Then, the mpc controller determines the optimal open-loop system
input uk over a given horizon N , taking into account the system limitations. When
the optimal input is determined, the first part of this optimal input u0 is applied
to the system. The next sampling time, the whole procedure is repeated, thereby
introducing system feedback. Figure 1.3 illustrates the mpc-idea.

setpoint xref
futurepast

prediction horizon N
l l+1 l+N

input ūl u0 predicted input uk

system state x̄l

predicted state xk

Figure 1.3: General idea of mpc. At each time step l, the state x̄l of the system is
measured or estimated. Then, the optimal input is computed such that an objective
function is optimized over the prediction horizon N . Finally, the first input u0 is
applied to the system.

Traditionally, the following optimization problem is to be solved at every sampling
time:
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V ?A(x̄l, N) = min
x,u

N−1∑
k=0
‖uk − uref‖2R + ‖xk − xref‖2Q + E(xN ) (1.2a)

s.t. x0 = x̄l, (1.2b)

xk+1 = f(xk, uk), (1.2c)

0 6 g(xk, uk), k ∈ [0, N − 1], (1.2d)

xN ∈ T, (1.2e)

where xk, uk are the optimization variables over the prediction horizon N . They
respectively represent the system states x and the system inputs u at time step k in
the prediction horizon. x̄l is the measured or estimated system state at time l. The
optimization uses a system model to predict the system behavior for a sequence
of control variables (1.2b)–(1.2c) and accounts for bounds on inputs, outputs and
internal states by inequality constraints (1.2d). The input is optimized considering
the Euclidean norm of the deviation of the system input uk and system state xk
from their references uref and xref (1.2a). These deviations are weighted with the
positive definite matrices R and Q respectively. Often an extra terminal state
weight (1.2a) or terminal state constraint (1.2e) is added to compensate for the
finiteness of the horizon N . As the mpc controller has to solve optimization problem
(1.2) every sampling time, mpc first became popular in the process and chemical
industry [Qin and Badgwell, 1996, 2003], where sampling periods in the order of
seconds or minutes allow more computation time. The required computation time
strongly depends on the problem size and hence on the length of the horizon N ,
the number of system states, inputs and outputs and the number of constraints.
Since the eighties various topics on mpc have been analyzed, both theoretically and
practically, see e.g. [Morari and Lee, 1999, Mayne et al., 2000] and the textbook
[Rawlings and Mayne, 2009]. The first analysis on mpc was mostly theoretical and
focused on stability and robustness issues. Therefore, these topics are covered in
Section 1.2.2. Gradually, research focus shifted to also take into account faster
solvability of the optimization problems. Research dedicated to the solution of
mpc problems in real-time for fast applications and the application of mpc to
mechatronic systems are discussed in 1.2.3.



MODEL PREDICTIVE CONTROL 11

1.2.2 Developments in MPC

Stability

The concept of mpc originated from industrial applications under various names as
e.g. dynamic matrix control [Cutler and Ramaker, 1980] and generalized predictive
control [Clarke et al., 1987, Bitmead et al., 1990]. Therefore, early academic
research examined how and why mpc controllers perform well and how stability
can be guaranteed, see e.g. [Keerthi and Gilbert, 1988, Rawlings and Muske, 1993,
Scokaert and Rawlings, 1998, Chen and Allgöwer, 1998a,b, Mayne et al., 2000,
Limon et al., 2003]. These approaches to introduce stability are mostly based
on introducing a terminal constraint and/or a weight on the terminal state. The
terminal constraint forces the system to enter a set where a local controller is able to
stabilize the system. The weight on the terminal state introduces an approximation
of the infinite horizon cost or more specifically a control Lyapunov function [Mayne
et al., 2000].

Robustness

An mpc controller which is designed for the nominal identified system often already
has inherent robustness properties [Marruedo et al., 2002]. Since this inherent
robustness is not always sufficient, research also focuses on the robustness of mpc
controllers. Various approaches based on min-max problems already exist for
systems with limited disturbances [Lee and Yu, 1997, Scokaert and Mayne, 1998].
To decrease the prohibitive computational cost of solving the corresponding min-
max optimization problem, these min-max problems are approximated based on
control strategies using feedback policies [Langson et al., 2004, Ramirez et al., 2006].
E.g. Kothare, Balakrishnan, and Morari [1996] reformulate the min-max problem
as an lmi optimization problem. Alamo, Ramirez, de la Peña, and Camacho [2007]
introduce an approximation resulting in a quadratic program (qp) solvable in
real-time for industrial applications. Goulart et al. [2006, 2008] show that a robust
mpc controller based on full state feedback, can be obtained by the solution at
every sampling time of only one convex qp of which the structure can be exploited
to speed up the computation.

Offset-free control

Muske and Badgwell [2002], Pannocchia and Rawlings [2003] and Pannocchia
[2004] on the other hand discuss how exact setpoint tracking is obtained in the
presence of disturbances. They introduce a disturbance model and show under
which conditions of observability and controllability these approaches deliver off-set
free tracking. One of their conditions is that the number of additional disturbance
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states has to be equal to the number of measured outputs. Hence, for systems with
many measured outputs, the dimensions of the internal model and correspondingly
the computational load increase significantly. Maeder, Borrelli, and Morari [2009]
show how the state estimator can be designed such that the number of disturbance
states can be reduced to the number of desired tracking outputs. It should be
noted that offset-free control often also can be obtained by defining optimization
problem (1.2) in terms of variation of the input ∆u instead of the input u [Morari
and Lee, 1999].

1.2.3 MPC for fast applications

Thanks to the increase in computation power and the development of more advanced
algorithms, mpc is nowadays starting to become applicable to faster applications
such as e.g. motor engines with sampling times in the millisecond range. However,
their application is not yet widespread. To solve the optimization problems in these
small sampling periods, the problem structure needs to be exploited maximally.

Explicit Model Predictive Control

A very successfull approach to solve mpc problems in real-time for fast applications
is explicit model predictive control [Pistikopoulos et al., 2000, Bemporad et al.,
2002a,b]. Explicit mpc controllers are originally developed for linear systems.
They exploit the property that the solution of the mpc optimization problem is
a continuous piecewise affine function of the state on polytopic, so called critical,
regions [Klatte, 1979, Zafiriou, 1990], i.e. locally the optimal control law is given
by: u? = Kx+ b. In the controller design, all computational effort is performed
beforehand and the optimal controller for each critical region is stored. On-line,
the current state is estimated and the corresponding optimal control law looked
up in the memory. The basic algorithm is adapted by Borrelli et al. [2003] to
obtain a more efficient off-line computation of the local controllers. Tondel et al.
[2003] developed an explicit mpc controller which searches the optimal solution
in real-time more efficiently. This approach has been applied successfully to e.g.
pwm converters [Mariethoz and Morari, 2009], diesel engines [Ortner and del Re,
2007] and automatic cruise control [Naus et al., 2010]. Also, Johansen [2004] uses
an explicit approximating controller for the embedded control of nonlinear systems,
a technique which is further extended to incorporate robustness [Grancharova
and Johansen, 2009]. The main disadvantage of these controllers, however, is
their limitation to applications with a low-dimensional state space and horizons
because of the exponential increase in complexity and storage requirements. Jones
and Morari [2010] alleviate this problem partly by making a trade-off between
suboptimality and complexity. Zeilinger, Jones, and Morari [2011] on the other
hand use the explicit controllers as an hotstart method for on-line mpc methods as
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presented in the next subsection. Canale, Fagiano, and Milanese [2009] reduce the
on-line load by computing on-line only an approximated solution instead of the
optimal solution.

Efficient numerical algorithms for fast MPC

To overcome the limitations of explicit mpc, fast mpc approaches solve the
underlying optimization problem (1.2) on-line, and they exploit the system structure
and problem similarities in the sequence of mpc problems maximally. An advantage
of these methods is that they allow larger horizons and higher dimensionsal systems.
However, a disadvantage of these systems is that less or no guarantees can be given
on the required computation time. A first set of methods solve optimization problem
(1.2) using active set methods. These methods are typically more performant for
high dimensional systems with relatively short prediction horizons. Ferreau, Bock,
and Diehl [2008] solve a condensed version of (1.2). Using the solution of the
previous time sample, they hotstart the solution procedure. This increases the
solution speed which allows sampling times in the range of tens of milliseconds
[Ferreau et al., 2007]. Wills, Bates, Fleming, Ninness, and Moheimani [2005] also
solve the mpc optimization problem on-line using an active set solver. They obtain
sampling frequencies up to 25 kilohertz. A second set of methods solve optimization
problem (1.2) by using an interior point solver. These methods are typically more
performant for low dimensional systems with long prediction horizons. E.g. Wang
and Boyd [2010] solve the uncondensed version of optimization problem (1.2) by
using an interior point solver. Shahzad, Kerrigan, and Constantinides [2010] present
a method which also solves the mpc problem with an interior point solver, however
by better conditioning the problem, the rate of convergence and hence solution
speed is increased.

Other approaches to further increase the on-line computation speed, exploit the
fact that at every time sample, an optimization problem with the same structure
has to be solved. Mattingley and Boyd [2009] present a code generator which
generates off-line an optimized optimization procedure for convex problems. The
hereby generated code maximally exploits the underlying problem structure for
solution of qp’s by an interior point solver. However, the currently attainable
problem dimensions are still limited. Houska, Ferreau, and Diehl [2010] extend
this idea by generating code not only for the qp-solver but also for system
integration and condensing, thereby generating optimized code for solving nonlinear
mpc optimization problems. Earlier, Seguchi and Ohtsuka [2003], Ohtsuka
[2004] developed an automatic code generator AutoGenU which solves nonlinear
optimization problems using the gmres algorithm. Moreover, nowadays research
is also dedicated to exploit parallelism and the hardware structure optimally to
increase the computational speed [Jerez et al., 2010, Wills et al., 2010].
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Application of MPC to mechatronic systems

mpc is extensively used for applications with slow system dynamics in e.g. the
process industry [Qin and Badgwell, 2003]. Nowadays mpc is also applied to
mechatronic systems. However, the number of real mechatronic mpc applications is
still very limited. Moreover, these applications are characterized by either sampling
times in at least tens of milliseconds or by problems with limited dimensions. Alamir
and Murilo [2008] use an mpc controller to control a double inverted pendulum.
This controller considers only three possible inputs, thereby limiting the on-line load
considerably. Also, the control structure is exploited for one specific application
and can not be transferred to other applications. Miller, Kolmanovsky, Gilbert, and
Washabaugh [2000], Casavola, Mosca, and Papini [2004] and Susanu and Dumur
[2006] use a low load version of true predictive controllers, the reference governor
[Gilbert et al., 1995, Bemporad et al., 1997, Bemporad, 1998], for applications as
an electrostatically shaped membrane, inverted pendulum and milling machine.
These controllers reshape a reference trajectory for a closed-loop system such that
the internal controller does not saturate its actuators. The advantage of these
techniques is that stability can easily be proven as they are based on traditional
proofs of linear systems. However, they introduce conservativeness as the input
is not controlled directly. Ferreau, Ortner, Langthaler, del Re, and Diehl [2007],
Ortner and del Re [2007] implement an mpc controller on a diesel engine with a
sampling time of fifty milliseconds, with an on-line and explicit approach. For this
application they consider non-linear models. However, the considered optimization
problems have a very short horizon in order to keep the problem solvable in real-
time. Hence, this introduces conservativeness. Wills, Bates, Fleming, Ninness,
and Moheimani [2005, 2008] implement an mpc controller on a flexible beam for
vibrationcontrol. Their controller runs at a sampling frequency of five kilohertz
but has only twelve decision variables. Coen, Saeys, Missotten, and Baerdemaeker
[2008] use an mpc controller based on an active set method for the cruise control
of a combined harvester, taking into account constraints on the input, rounds per
minute and velocity of the harvester. This controller runs at a sampling frequency
of twenty hertz and has ten decision variables. Naus, Ploeg, Van de Molengraft,
Heemels, and Steinbuch [2010] implement an adaptive cruise control for trucks
and cars where they also take into account safety and drivers comfort. Their mpc
controller is based on the explicit mpc approach. Also Corona and De Schutter
[2008] implement an adaptive cruise control through mpc using both an on-line
Cplex solver and an explicit approach. This controller runs at a sampling frequency
of one hertz.

For all these mechatronic systems, mpc is applied successfully. However, the
considered applications allow only a very limited number of decision variables and
sampling times above ten milliseconds. Moreover, minimization of settling time
is never explicitly targeted in these control problems. The approach developed
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in this thesis allows to decrease the length of the sampling periods down to four
milliseconds and allows to increase the number of decision variables up to forty-five.

1.2.4 Time optimal MPC approaches

In the field of optimal control [Pontryagin et al., 1962, Bryson and Ho, 1969],
time-optimality has been an active topic of research. Zadeh [1962] presents how
time-optimal problems can be formulated as a feasibility search based on linear
problems (lp). Bashein [1971] decreases the required computation time by using
an improved simplex algorithm, a technique which is employed by e.g. Scott [1986].
Kim and Engell [1994] propose a method to increase the computational speed
further by starting the feasibility search with an optimal guess. These methods
have been used to generate feedforward signals for e.g. unmanned aerial vehicles
[Kim and Tilbury, 2001], flexible joints [Consolini and Piazzi, 2009] and high-rise
elevators [Schlemmer and Agrawal, 2002]. The presented optimization approaches
are too slow for real-time application however, and hence use of these approaches
in a feedback configuration is not possible.

Zhao, Diehl, Longman, Bock, and Schlöder [2004] on the other hand develop a
controller for robots with time-optimality as their objective; they work in continuous
time and use a rescaling of time with discretized controls for their numerical solution
instead of a feasibility search, making convergence proofs difficult. Similarly,
Kirches, Sager, Bock, and Schloeder [2010] present a time-optimal control problem
for automobiles with gearshifting. For these applications, solution times in the
range of seconds are attainable. The properties of time-optimal control laws have
also been analyzed theoretically [Kostyukova and Kostina, 2003, Maurer et al.,
2005, Kostyukova and Kostina, 2009]. True time-optimal approaches related to
mpc also exist for robot path-tracking problems. These methods minimize the
time required to track a given trajectory in spatial coordinates [Verscheure et al.,
2009a,b].

Other methods obtain time-optimal control by dividing the state-space into critical
regions. Desoer and Wing [1961] developed one of the first approaches which was
due to the representation of these critical regions difficult to implement however.
Workman et al. [1987b] present a time-optimal feedback controller for double
integrators. This method divides the state-space into two regions where the
system actuators provide either maximal or minimal input. In order to account
for measurement noise and small disturbances, they introduce a zone around the
setpoint where a local, less agressive controller takes over the control action. This
controller has been used succesfully for e.g. hard disk drives [Zhou et al., 2001].
Keerthi and Gilbert [1987] extend this method to higher order systems. Moreover,
they allow not only control constraints but also state constraints. In order to
account for disturbances, Mayne and Schroeder [1997] extend this method to a
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controller that settles in a minimal time in a region around the desired setpoint.
Analogously, Grieder and Morari [2003], Besselmann, Lofberg, and Morari [2009]
discuss an explicit mpc approach which drives the controlled system to an invariant
feasible set in a minimal number of steps as a means of complexity reduction of the
explicit mpc search space. These controllers are developed for a linear system and
a linear parameter varying system respectively. They define for their application
the invariant feasible set as a set where a linear controller respects all system and
input constraints and keeps the controlled system state inside this set. However,
they do not impose constraints on the settling behavior inside this invariant set.
Note that for all these applications, the reachable state space is limited due to
complexity reasons.

1.2.5 General review on model predictive control for mecha-
tronic applications

mpc is an advanced control technique which can take the system constraints
directly into account by the on-line solution of an optimization problem. This
control technique is originally developed for systems in the process and chemical
industry. These systems are typically characterized by slow system dynamics and
hence allow lower sampling rates and more time to solve the optimization problem.
Since the introduction of mpc , much research has been dedicated to theoretical
issues regarding mpc control such as stability and robustness. It is only since the
last decade that the research focus has been shifted towards the development of
more efficient and faster algorithms to solve the mpc optimal control problem in
real-time. However, the practical application of mpc to mechatronic systems with
sampling frequencies above hundred hertz is still mostly nonexistent. Moreover,
the number of decision variables is typically limited to around five to ten. Also,
time-optimal control, i.e. explicitly minimizing the settling time of the system as
an objective function, is not yet extensively tackled within the mpc framework.

1.3 Motivation

This section motivates and poses the main concept of this thesis: time-optimal
system motion by means of controllers developed within the mpc framework.

For many mechatronic applications as e.g. overhead cranes, wafersteppers, pick-
and-place machines, production machines, . . . , minimization of settling time is the
most important control objective. By reducing the movement time, the throughput
and hence rendability of these systems can be increased. In the linear control
community much work has been performed on the development of controllers
which are near optimal with respect to the settling time. However, in order to
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generate controllers which are optimal with respect to settling time for any possible
reference step, the system constraints have to be taken into account explicitly. A
disadvantage of the linear controllers is that they generally cannot account for
these constraints. Therefore, they are often either too conservative or they violate
the actuator constraints for time critical applications.

mpc on the other hand is a control approach which determines the optimal system
input by the solution of an optimization problem each sampling time. In this
optimization problem, the system constraints can be taken into account explicitly.
However, so far these controllers are mostly developed for and applied to non-linear
systems with slow dynamics in e.g. the process industry. For these applications,
long sampling periods in the seconds or minute range are sufficient and hence more
time is available for the solution of the mpc optimization problem. Nowadays, mpc
algorithms are also being developed for systems with fast system dynamics. In
order to reduce the on-line computational load, the attainable horizons are still
limited however. Moreover, time-optimality has not yet been studied extensively
and the application of these controllers to realistic mechatronic setups is nearly
inexistent.

Hence, this analysis of the current state-of-the-art leads to the following design
hypotheses for the application of time-optimal controllers to mechatronic systems:

First, is it possible to formulate time-optimality within the mpc framework, i.e. is it
possible to develop controllers which realize time-optimal behavior for all reference
steps without being too conservative or without violating system constraints?

Second, is it possible to formulate the resulting optimal control problem such that
it is computationally feasible, i.e. can the underlying control problem structure
be exploited such that this problem can be solved for systems with sampling
frequencies up to the kilohertz range?

Third, is it possible to formulate the mpc problems with long enough prediction
horizons and sufficient decision variables such that they are practically relevant for
mechatronic systems, i.e. can their values be increased by a factor three to five in
comparison with the current-state-of-the-art for fast normal mpc applications?

Fourth, is it possible to prove that the developed controllers are behaving as desired,
i.e. can it be proven that these controllers converge to the desired setpoint?

Fifth, is is possible to show that these controllers are practically relevant, i.e. can
the time-optimal controllers be experimentally validated on relevant mechatronic
test setups?

The theoretical developments in this thesis are based on perfect system knowledge
and assume that no disturbances are present and hence full state knowledge
is available. For practical implementation however, the system is subject to
disturbances and the sensors introduce measurement noise. Therefore, for the
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practical implementation, state estimators are added to the system to estimate the
system state. These estimators are however not taken into account in the controller
design.

1.4 Chapter-by-chapter overview and contributions

1.4.1 Chapter-by-chapter overview

First, Chapter 2 describes the development and experimental validation of a time-
optimal open-loop controller called predictive prefilter. The predictive prefilter
generates time-optimal reference trajectories for point-to-point motions by solving
an optimization problem on-line. This predictive prefilter has been designed as
a more performant replacement of traditional prefilters. The chapter describes
how time-optimality is formulated within the mpc framework. Also, it is shown
how robustness can be introduced in the predictive prefilter framework. The
chapter ends with an experimental validation on a mass-spring-damper system of
the predictive prefilter. Also, the predictive prefilter’s performance is compared
with linear control approaches.

Second, Chapter 3 describes the development and experimental validation of a
closed-loop time-optimal controller called time-optimal mpc (tompc). The tompc
controller generates a feedback signal which minimizes the settling time by solving
a series of feasibility problems. The chapter gives a theoretical analysis of the
tompc controller. The chapter describes how the optimization problem structure
is exploited in order to make this feasibility search possible in real-time. Moreover,
this chapter presents how the attainable range of the controller can be increased
without compromising on the computational load. The chapter ends with an
experimental validation of the tompc controller on a linear motor drive and on an
overhead crane.

Third, Chapter 4 describes the application of time-optimal controllers on an
industrial linear motor setup. For this industrial setup, not only time-optimality
is desired but also a very high positioning accuracy in the submicrometer range.
This high accuracy can not be obtained with tompc only due to its relative low
sampling frequency. Therefore, this chapter presents two control schemes which
combine tompc with linear feedback. Also, the chapter presents a numerical and
experimental validation of both control schemes and compares their performance
with industrial benchmark requirements.

Finally, Chapter 5 concludes the thesis by summarizing the main developments
and indicating the most relevant theoretical and practical extensions for future
work.
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1.4.2 Main contributions

The main goal of this PhD thesis is to develop time-optimal mpc based controllers
for mechatronic systems. In comparison with linear controllers, mpc controllers
have the advantage that they can take system constraints into account directly.
Therefore, mpc controllers are better suited than linear controllers to minimize
settling time as this requires an activation of a maximum number of constraints.
The central contributions in the development of these controllers are fourfold. (i)
Time optimality has been defined in the mpc framework. (ii) The mpc optimization
problem has been formulated such that they can be solved in real-time, i.e. sampling
frequencies up to 250 hertz have been obtained. (iii) The problem formulation
allows to use prediction horizons that are long enough for realistic motion control
applications. (iv) All developed controllers have been implemented on embedded
hardware and have been validated experimentally on realistic mechatronic systems.
Also, a C++ implementation of a time-optimal controller has been made publicly
available on-line. Within this general setting, three controllers have been developed;
an open loop controller which generates time-optimal reference trajectories, a closed
loop controller which generates time-optimal feedback signals and a controller
which combines time-optimality with industrial requirements on submicrometer
positioning accuracy.

First, the PhD thesis develops an open-loop controller, called predictive prefilter,
which transforms a reference step into a reference trajectory. This reference
trajectory minimizes the settling time for point-to-point motions while taking
into account the actuator constraints. In order to solve the open-loop controller
optimization problem in real-time, the time-optimal optimization problem is
approximated by one linear optimization problem with an exponential weighting of
the absolute output error. Also, the developed open-loop controller framework is
extended to incorporate robustness with respect to model-plant mismatch. The
developed controller has been implemented in C++ on embedded hardware. This
open-loop controller has been succesfully validated numerically and experimentally
on a mass-spring-damper system. These validations show that the reformulated
optimization problem underlying this controller can be solved in less than ten
milliseconds on embedded hardware.

Second, the predictive prefilter concept is extended to incorporate feedback such
that disturbances can be accounted for. This closed loop controller is called time
optimal mpc (tompc). The time-optimal optimization problem has been adapted
to take into account the sensitiveness with respect to measurement noise. A proof
of convergence to the desired setpoint of the tompc controller has been presented.
By exploiting the structure of the optimization problem, it is possible to solve this
problem in real-time. The tompc controller has been implemented in C++ on
embedded hardware. This code is made publicly available on-line as open-source.
The tompc controller has been validated experimentally on an overhead crane and
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a linear motor at sampling rates up to 250 hertz and with up to forty-five decision
variables. Both time-optimal point-to-point motion experiments and disturbance
rejection experiments have been performed succesfully.

Finally, the time-optimal controller approach has been adapted for and implemented
on an industrial linear motor test set-up. For this application, not only time-
optimality is required, but also a settling accuracy in the submicrometer range.
In order to obtain this very high positioning accuracy, sampling times in the
kilohertz range are required. Therefore, the time-optimal control scheme has been
combined with a linear feedback controller. Convergence of the combined controller
scheme has been proven theoretically. All benchmark requirements on settling
time and settling accuracy have been met succesfully in experiment. Moreover, it
has been shown experimentally that the control scheme is robust with respect to
model-plant mismatch. The main drawback of this control scheme is the switch
between the tompc controller and the linear controller which can cause constraint
violation. Therefore, also a second control scheme which combines time-optimality
with high-accuracy positioning has been presented. This control scheme has been
validated numerically.



Chapter 2

Predictive prefilter

This chapter describes the development of a prefilter within the mpc framework.
The developed prefilter generates a reference trajectory which minimizes the settling
time for an lti system while respecting the system constraints. First, this chapter
motivates the design of the predictive prefilter and shows how time-optimality has
been formulated in the mpc framework in Section 2.1. Section 2.2 and Section
2.3 show how this optimization problem can be solved in real-time. Section 2.4
discusses how robustness can be introduced in this framework. Section 2.5 validates
the prefilter on a mass-spring-damper system both by simulation and experiments
and compares the designed prefilter with linear prefilter approaches. This chapter
is based on [Van den Broeck et al., 2010].

2.1 The predictive prefilter

The predictive prefilter is a prefilter that minimizes the settling time for point-
to-point motions taking into account system constraints. A prefilter is a system
that transforms a reference signal into a system input signal without incorporating
feedback, as illustrated in Fig. 2.1. A prefilter is typically used for two types of
applications. First, for applications where sensor feedback is not desired. Multiple
reasons exist not to include extra sensors into the system: their cost, the physical
impossibility to include the sensors, the speed of response of the sensors, stability
issues, . . . Second, prefilters are often used in combination with feedback controllers
in a two degree of freedom control structure where the feedback controller is used
to reject disturbances and the prefilter for optimal reference tracking. This second
case is equivalent to the first case if the closed-loop system is defined as the total
system.

21
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Prefilter System
r u y

Figure 2.1: General idea of a prefilter. The prefilter filters the reference r into an
input u for the system resulting in output y.

For many applications as e.g. cranes, pick-and-place machines, . . . , point-to-point
motions have to be performed as fast as possible, without stating requirements on
the intermediate trajectory. Currently, there are two possible approaches. A first
approach filters the reference step with a linear prefilter. However, these prefilters
are only time-optimal for one worst case reference step and are too conservative
or violate constraints for all other steps. The worst case reference step is for
these applications usually defined as the largest possible reference step. A second
approach computes optimized reference trajectories off-line. Hence, if the reference
step is not known beforehand, the computation of the optimal trajectory introduces
a delay between the step request and the actual start of control. This delay can
easily be larger than the actual movement time. Moreover, this second approach
can not cope with reference changes during motion. Hence, for applications where
time-optimality is important and the reference steps are not known beforehand, a
new type of prefilter is required which obtains time-optimal reference trajectories
for all reference steps and which respects the system constraints. A prefilter which
satisfies these requirements is developed in this chapter.

This section starts with the formulation of a time-optimal prefilter within the
mpc framework. This prefilter is based on the input shaping design developed
in [Van den Broeck et al., 2008]. The section continues with a short proof on
the time-optimality of this design. The predictive prefilter has been developed in
discrete-time and hence is based on a discrete-time presentation of the system.

2.1.1 Formulation of time-optimal problems in an MPC frame-
work

The goal of the optimal control design in this thesis is to design a controller which
minimizes the settling time. Conceptually, this can be formulated as the following
mixed integer optimization problem P (x̄l, yref,l) which has to be solved at every
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sampling time step l:

min
x,u,y,K

K (2.1a)

subject to: x0 = x̄l, (2.1b)

xk+1 = f(xk, uk), (2.1c)

yk = h(xk, uk), (2.1d)

0 ≤ g(xk, uk) for k = 0 . . .K, (2.1e)

xK = f(xK , uK), (2.1f)

yK ≡ yref,l. (2.1g)

In this problem formulation, K is the prediction horizon length and xk, uk, yk are
the system state, system input and system output at time step k in the prediction
horizon respectively. Constraints (2.1c)–(2.1d) describe the system dynamics which
for a given input completely determine the system behavior if the initial state is
known. This initial state is obtained by system simulation and the simulated value
is imposed by the value x̄l in constraint (2.1b). Constraint (2.1e) represents all
constraints on the inputs, outputs and states. These constraints allow to take the
input constraints of the system into account during optimization. Constraints (2.1f)–
(2.1g) are new in comparison with traditional mpc problem (1.2). They impose
that the system has to arrive without residual vibrations at the desired setpoint
yref at time K. Constraint (2.1f) imposes that the system is in an equilibrium
position at time step K, and (2.1g) that the equilibrium is at the correct position.
The mpc controller minimizes as an objective function the time K required to
arrive at this desired state (2.1a). By solving this optimization problem at every
sampling time, a controller is designed that generates a reference trajectory which
minimizes the settling time of the system.

2.1.2 Design of the predictive prefilter

If the considered system is linear and the imposed constraints on inputs, outputs
and states are linear, problem (2.1) reduces to a special variant of a mixed integer
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linear problem:

min
x,u,y,K

K (2.2a)

subject to: x0 = x̄l, (2.2b)

xk+1 = Axk +Buk, (2.2c)

yk = Cxk +Duk, (2.2d)

f ≤ Hxk +Guk for k = 0 . . .K, (2.2e)

xK = AxK +BuK , (2.2f)

yK ≡ yref,l, (2.2g)

where A,B,C and D represent the system dynamics matrices. The endpoint-
constraints (2.2f)–(2.2g) can be replaced by at least two equivalent formulations:

• A single constraint on the end-state:

xK = x̄, (2.3)

possibly in combination with a constraint on the last input(s) to avoid a
non-unique solution:

uK = ū, (2.4)
where x̄ and ū correspond to the equilibrium state and equilibrium input of
the system in the required end-point position respectively. They are computed
beforehand by solving a set of equality constraints similar to (2.2f)–(2.2g).

• Constraints only on the output, and not on the state:

yk = yref,l, k = K, . . . ,K + n− 1, (2.5)

with n the number of states in the system model. This equivalence can, under
some mild conditions, easily be proven for linear systems as has been shown
in Section 3.2.2.

Optimization problem (2.2) can hence either be solved directly by a mixed integer
solver, by an approximate solver (see Section 2.2) or by a sequence of linear
feasibility problems (see Chapter 3).

2.1.3 Time optimality

Theorem 1. For any single reference step input, the predictive prefilter generates
the fastest possible reference trajectory.
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Proof. The solution of problem P (x̄l, yref,l) for a single reference step results in
a time-optimal trajectory, i.e. the shortest possible move-time considering the
system constraints. Because the optimizer and state predictor use the same system
model, the principle of optimality of subarcs [Bellman, 1957] applies. Hence, the
optimal input trajectory obtained in the first discrete time step will stay optimal
throughout the whole motion.

Corollary 1. If the system is subject to a setpoint change, the predictive prefilter
will be at least as fast as a linear prefilter.

When a conventional linear prefilter is compared with the predictive prefilter, there
are two possible scenarios:

• The linear prefilter is designed for this reference trajectory and hence is
time-optimal; i.e. no prefilter can be faster without violating constraints.
Because of its construction, the predictive prefilter will be as fast as this
linear prefilter

• The linear prefilter is not designed for this reference trajectory and hence
is not time-optimal; i.e. the prefilter will either not activate the constraints
or will violate these constraints. The predictive prefilter will avoid both by
construction. It will activate the constraints when possible, but will never
violate them. Hence, the predictive prefilter generates a faster reference
trajectory.

2.2 Solution strategy: L1 penalty

The first solution approach developed within this thesis does not solve directly
optimization problem (2.2) but solves a slightly different problem. By using a
weighted sum of l∞-norms of the tracking error:

min
N∑
k=0
‖yk − yref‖∞ck, c > 1, (2.6)

instead of the objective function (2.2a) and endpoint constraints (2.2f)–(2.2g),
similar output results can be obtained. These similar outputs can be obtained by
solving at every sampling time only one linear optimization problem with a fixed
prediction horizon length N instead of solving the mixed integer problem. The



26 PREDICTIVE PREFILTER

resulting linear optimization problem is given by:

min
x,u,y,s

N∑
k=0

skc
k, c > 1, (2.7a)

subject to: x0 = x̄l, (2.7b)

xk+1 = Axk +Buk, (2.7c)

yk = Cxk +Duk, (2.7d)

−sk ≤ y[i]
k − y

[i]
ref ≤ sk for all outputs i (2.7e)

f ≤ Hxk +Guk for k = 0 . . . N, (2.7f)

where sk are dummy variables necessary to cast the l∞ norm into an lp. The
combination of the sum of l∞-norms and an exponential weighting results in an
efficient removal of the small residuals, i.e. the residual vibrations. To that end
and to get meaningful results, the different outputs have to be scaled to the same
range. By using an exponential weighting ck with c > 1, the normal exponential
decay of the residual vibrations due to damping is compensated for, and hence
the time-optimal behavior is enforced at the computational cost of only one linear
optimization problem instead of multiple feasibility problems. This result is in
analogy with [T.-W. Yoon and Clarke, 1993]. T.-W. Yoon and Clarke [1993] state
that with an exponential weighting of the absolute output error the modulus of
the closed loop discrete poles can be made arbitrarily small for unconstrained
systems. This reformulation should be handled with care though. As presented
in [Wang, 2001], optimal control problems become very bad conditioned if c is
too large and the prediction horizon length is long. They even show that in order
to keep well conditioned optimization problems, c should have a value smaller
than one, which would off course destroy the time-optimal output behavior. This
effectively limits the range of attainable prediction horizons. For the real-time
solution, it is also important that the considered time-horizon is not too long as
the computation time of the solution algorithms scales at least linearly but usually
worse with the horizon length. In order to make a good choice of the prediction
horizon, first a classical input shaper can be designed and the length of this classical
input shaping prefilter can be used as length of the prefilter. A comparable choice
is to formulate optimization problem (2.7) with an optimization horizon length
equal to half a period of the slowest eigenfrequency of the system. Note that
with formulation (2.7) the system does not have to reach the desired setpoint at
the end of the horizon N . This allows to keep the prediction horizon relatively small.

This solution strategy has been compared with a true time-optimal controller for
the test case presented in the Section 2.5. These controllers have been compared
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for a large variety of desired displacements and they resulted in almost identical
solutions, with a maximum relative output difference of 0.4%.

2.3 Implementation

Optimization problem (2.7) is solved with an active set strategy. In order to use
this strategy, the optimization problem has first been condensed, i.e. the system
states x and the equality constraints describing the system dynamics (2.7c)–(2.7d)
are eliminated from the optimization problem and the optimization problem is
defined only in the initial state x0 and inputs u. Moreover, the problem is also
redefined in ∆u. After condensing, the output is given by:

Y = Yxx0 + Yuup + Y∆u∆U, (2.8)

where up is the input at the previous time step l−1 and ∆U is the vector containing
all future ∆ inputs. The matrices Yx, Yu and Y∆u are defined as:

Yx =


C
CA
CA2

...
CAN

 , Yu =


D

D + CB
D + CB + CAB

...
D + CB + CAB + . . .+ CAN−1B

(2.9)

Y∆u =


D 0 . . . 0

D + CB D . . . 0
D + CB + CAB D + CB . . . 0

...
...

. . . 0
D + CB + . . .+ CAN−1B D + CB + . . .+ CAN−2B . . . D

 ,(2.10)

with A, B, C and D the discrete system dynamics matrices and N the fixed horizon
length.

The resulting condensed optimization problem is solved by the on-line active
set solver qpoases [Ferreau et al., 2008]. Therefore and because the technique
developed in Chapter 3 relies heavily on the principles underlying active set solvers,
this paragraph gives a short introduction to active set methods (see also e.g. [Gill
et al., 1984, Bartlett and Biegler, 2006]). They are a general method for solving
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convex quadratic optimization problems:

min
w

wTHw + gTw (2.11a)

s.t. Aw ≤ b, (2.11b)

with w the vector of optimization variables, (2.11a) the objective function, (2.11b)
the constraints under which the objective function is optimized and H a positive
definite matrix. Introducing dual variables λ, the Karush-Kuhn-Tucker (kkt)
conditions for optimality can be formulated as stated in [Nocedal and Wright,
2006]:

Hx? + g −A′Aλ?A = 0, (2.12a)

AAx
? = bA, (2.12b)

AIx
? ≤ bI (2.12c)

λA ≥ 0, (2.12d)

λI = 0. (2.12e)

where the active set A is the set of all active inequality-constraints, i.e. the
inequalities which constrain the solution and hence become equalities in the
optimum of the optimization problem. AA and bA indicate respectively the rows
of A and elements of b corresponding to these active constraints. AI and bI
are analogously the rows of A and elements of b corresponding to the inactive
constraints.

In order to solve optimization problem (2.11), an active set method makes a guess of
the active set in the optimum, and based on this active set, optimizes subsequently
the corresponding equality constrained qp by solving the following problem:[

H ATA
AA 0

] [
x
−λA

]
= −

[
g
bA

]
. (2.13)

The solution of optimization problem (2.13) requires a matrix inversion of the
lefthand side matrix which is implemented using matrix factorization. The resulting
optimal solution of equality constrained problem (2.13) can have two possible
outcomes:

• The kkt-conditions (2.12) for the full optimization problem (2.11) are not
satisfied and hence a constraint has to be added to or removed from the
active set.

• The kkt-conditions (2.12) for the full optimization problem (2.11) are
satisfied and hence the optimal solution x? is found.
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Active set methods solve optimization problem (2.11) by adding and removing
constraints to/from the active set AA until the solution of (2.13) satisfies the
kkt-conditions (2.12). They are fast and efficient since these operations of adding
and removing constraints do not change the matrix AA and its factorization much,
such that subsequent problems (2.13) can be solved efficiently.

Assuming that both the model-plant mismatch and the disturbances are limited,
the mpc optimization problem to be solved at every time step l does not differ
much from the problem at the previous time step l − 1. Moreover, if all qp
matrices stay constant and only the gradient and constraint vectors change, the
solution procedure can be hotstarted from the solution at the previous time step
by reusing its factorization and performing a linear homotopy towards the new
optimal solution. This technique is implemented in the on-line active set solver
qpoases [Ferreau, 2007].

2.4 Robustness

Because the system dynamics are never perfectly known, the basic predictive
prefilter framework is extended to include robustness with respect to model-plant
mismatch. In analogy with the Extra Insensitive input shaping prefilter [Singhose
et al., 1994], robustness is introduced by solving optimization problem (2.7) not
only for the nominal system but for a set of J systems. Hence, the resulting
optimization problem takes the l∞ norm over the outputs of these J systems
instead of only the nominal system:

min
x,u,y,s

N∑
k=0

skc
k, c > 1, (2.14a)

subject to: x0 = x̄l, (2.14b)

xk+1,j = Ajxk,j +Bjuk, (2.14c)

yk,j = Cjxk,j +Djuk, (2.14d)

−sk ≤ y[i]
k,j − y

[i]
ref ≤ sk for all outputs i (2.14e)

f ≤ Hjxk,j +Giuk,j for k = 0 . . . N and j = 0 . . . J, (2.14f)

where Aj ,Bj Cj and Dj are the system dynamics matrices for the J perturbed
systems. These perturbed systems do not need to have the same dimensions. The
perturbed systems must be chosen based on the expected model uncertainty. First
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an analysis of the expected system uncertainty range has to be made. Then, the
number of systems J and the parameters of these systems can be determined such
that they span the system uncertainty range as good as possible. As a sensitivity
curve analogous to Fig. 1.2 is expected, these extra systems are best chosen to
have parameters which are in the middle of the expected uncertainty range. This
robustness approach is illustrated in Paragraph 2.5.4. It should be noted that
although the introduction of these extra system dynamics does not increase the
number of condensed decision variables, it does increase the number of constraints
and therefore increases the computational load. Therefore, the number of systems J
which can be added is limited. Although this approach does not give a guaranteed
limit on the residual vibrations, in practice a good reduction is obtained.

2.5 Validation

This section discusses the numerical and experimental validation of the developed
predictive prefilter. First the experimental test setup is presented in Paragraph
2.5.1. The numerical validation in Paragraph 2.5.2 and 2.5.3 is based on a linear
model of this test setup and clearly shows the advantages of the predictive prefilter
in comparison with linear prefilters as input shaping. Paragraph 2.5.4 presents the
experimental validation of the developed prefilter both for the nominal and robust
case.

2.5.1 Test setup

Both for the numerical and experimental validation the same test setup has been
used. This test setup can be considered as a two-dof mass-spring-damper system.
Fig. 2.2 shows a picture and a schematic drawing of the setup.

The system is excited with a hydraulic piston. The position of this piston is
indicated by p(t), which is measured by an lvdt position sensor. This piston
operates at a maximum pressure of 140 bar and is controlled through a 2/4 valve
using a 214 rad/s bandwidth pid position controller. The reference of this position
controller is the system input [V], where 1V corresponds to a desired displacement
of 10 cm. The position of the upper mass x1(t) [cm] has been chosen as the system
output. This system can be modeled by a fifth-order continuous-time state space
model. The parameters from this model are determined based on frequency response
function measurements that are obtained from a multisine excitation of the system
with a frequency content between 0.1Hz and 10Hz [Pintelon and Schoukens, 2001].
In order to apply the developed framework, this model is transformed to discrete
time with a sample period Ts = 10ms. The identified model contains two pairs of
complex conjugated poles originating from the two flexible modes of this system,
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Figure 2.2: Picture and schematic drawing of the mass-spring-damper test setup.

and one real pole that is introduced by the band limited piston position controller.
The poles and their damping are summarized in Table 2.1. This table shows that
the complex conjugated pole pairs are only very lightly damped. Therefore an
uncontrolled or badly controlled actuation of this system results in long lasting
residual vibrations and hence a high settling time. The system model contains
no zeros and has a dc gain of 10 cm/V. As the fastest pole lies at 34Hz and the
vibration poles are even slower, a sampling rate of 100Hz is sufficient. The input of
this system is limited to 1V, and the output is limited to a displacement of 10 cm.
These constraints on the input and output determine after condensing and with a
slight abuse of notation the matrix G and vector f in expression (2.7f) as:

f =


ymin − Yxx0 − Yuup
−ymax + Yxx0 + Yuup

umin − up
−umax + up

 , G =


Y∆u
−Y∆u
LN
−LN

 , (2.15)

with LN a lower triangular matrix of ones of dimension N by N and umax, umin,
ymax and ymin the upper and lower bounds on respectively the input and the output
of the system. In the development of the predictive prefilter, it is assumed that
the system starts at rest, i.e. the starting state is the zero state.
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Table 2.1: Poles of the fifth order system
frequency [rad/s] damping [-]
ω0 = 2.6205× 2π ζ0 = 0.157%
ω1 = 7.7926× 2π ζ1 = 0.293%

1 real pole at 34× 2π /

2.5.2 Benchmark test

First, the predictive prefilter has been compared numerically with a classical
prefilter for a benchmark problem. The classical prefilter is designed for a maximal
reference step of 10 cm. The application of this reference step without preshaping
results in an overshoot of 98% and a 5%-settling time of 2 s. The classical prefilter
has been designed following the linear optimization procedure developed in [Van den
Broeck et al., 2008]. In this procedure, negative impulses are allowed as in the
predictive prefilter in order to make a fair comparison on settling time. In the linear
prefilter design input constraints are imposed such that no saturation takes place
for the maximal reference step of 10 cm. Fig. 2.3 shows this reference (black dashed
line) and the system output, obtained after applying the prefiltered reference both
with a classical input shaping prefilter (grey solid line) and a predictive prefilter
(black solid line). This figure shows that the predictive prefilter can reproduce the
classical input shaping prefilters for the maximal allowable reference step. Fig. 2.4
shows this more clearly by showing the outputs of the input shaping prefilter (grey
solid line) and the predictive prefilter (black solid line), which are the inputs of
the system, for this reference. The small difference between these filter outputs
can be attributed to the fact that some small optimization freedom is left at the
time-optimal solution as the real optimal settling time can only be approximated
from above in a discrete time setting.

2.5.3 Validation and comparison with traditional prefilters by
simulation

This paragraph shows the advantages of the predictive prefilter compared to a
linear prefilter when references which are different from the maximal reference step
are requested. In a first test the desired setpoint change is not a maximal step, but
a sequence of smaller steps. Fig. 2.5 shows the desired setpoints for the system
(black dashed line) and the resulting output behavior obtained after filtering these
steps with a classic input shaping prefilter (grey solid line) and a predictive prefilter
(black solid line). This figure clearly shows the superior behavior of the predictive
prefilter. Reductions of the settling time up to 30% have been obtained. Fig.
2.6 shows the respective inputs of the system, i.e. with input shaping (grey solid
line) and predictive prefiltering (black solid line). This shows that the reduction
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Figure 2.3: Output of the system with a classical input shaping prefilter (grey solid
line) and a predictive prefilter (black solid line), for a full step reference (black
dashed line). Note that both lines coincide.
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Figure 2.4: Input of the system with a classical input shaping prefilter (grey solid
line) and a predictive prefilter (black solid line) for a worst case scenario reference
step.

in settling time is due to the more efficient use of the available input range. The
classic prefilter scales its input for the maximal step with the desired step, while
the predictive prefilter makes full use of the available actuator possibilities. This
allows faster reaction times and hence shorter settling times.

The next example illustrates the superior settling time performance more clearly.
Fig. 2.7 shows the system output behavior if a new reference set point is requested
before the previous step is fully executed. Both the output with the predictive
prefilter (black solid line) and with a classical input shaping prefilter (grey solid
line) are shown for a reference trajectory of three steps (black dashed line).
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Figure 2.5: Output of the system with a classical input shaping prefilter (grey solid
line) and a predictive prefilter (black solid line). The reference is not one big step,
but a series of smaller steps (black dashed line).
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Figure 2.6: Input of the system with a classical input shaping prefilter (grey solid
line) and a predictive prefilter (black solid line) for a series of step references
different from the worst case scenario reference step.

Fig. 2.8 presents a last simulation example which shows the better performance of
the new prefilter. This example requests a reference trajectory (black dashed line)
with a step up from 0 cm to 10 cm at time 0 s followed by a step down to 3 cm at
time 0.1 s. A traditional input shaping prefilter with negative impulses generates
a filtered signal which saturates the actuators of the system. This results in an
unexpected system behavior with lots of residual vibrations (grey solid line). The
predictive prefilter (black solid line) can take the system constraints into account
when determining the ideal input in real-time. Therefore, this prefilter generates
a reference which does not saturate the system actuators, and hence is also for
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Figure 2.7: Output of the system with a classical input shaping prefilter (grey solid
line) and a predictive prefilter (black solid line). The reference is a series of three
steps (black dashed line), where a new setpoint is requested before the previous
setpoint is attained.
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Figure 2.8: Output of the system with a classical input shaping prefilter (grey solid
line) and a predictive prefilter (black solid line). The reference is a series of two
steps (black dashed line), where the second step is reversed compared with the first
step.

this case more efficient. Note that if the classical input shaping prefilter would be
designed with only positive impulses, this saturation does not occur. However, the
settling time for the experiments shown in Figs. 2.3, 2.5 and 2.7 would be much
higher and hence the superiority of the predictive prefilter for these cases would
even be bigger.
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2.5.4 Validation and comparison with traditional prefilters by
experiment

After extensive numerical validation, the predictive prefilter design also has been
validated experimentally. The considered test setup is the mass-spring-damper
setup presented in Paragraph 2.5.1. The prefilter is implemented in Simulink and
runs on a dSPACE DS1103 controller board containing a 1GHz processor with
90MB ram.

The considered optimization problem for the experiments is formulated with a
horizon of K = 15 time steps and c = 2 in objective function (2.7a). The input
is limited to ±1V. In addition, an input slew rate constraint of 10V/s has been
imposed because of oil flow limitations of the hydraulic setup. This constraint of
10V/s has been determined based on the technical specifications of the hydraulic
system and has been verified experimentally. An additional overshoot constraint
of 5% is imposed. Hence, the resulting optimization problem (2.7) contains for
this application 30 variables (15 decision variables and 15 dummy variables for
the infinity norm) and 180 constraints (30 for the input, 30 for the slew rate of
the input, 30 for the l∞ norm, 30 for the overshoot and 30 dummy constraints on
the dummy variables which are required for the implementation). The algorithm
presented in Section 2.3 is implemented in C++ in S-functions within the Simulink
environment. The required maximal and mean cpu time for the solution of each
optimization problem on the dSPACE platform is respectively 2.9ms and 0.5ms.
The maximal computation time of 2.9ms is required when a new reference step is
requested. This maximal cpu time is still safely below the 10ms sampling time,
making real-time application of the method clearly possible.

Fig. 2.9 shows the system response, i.e. the position x1(t), when a step reference
(black dashed line) is applied filtered both with the designed predictive prefilter
(black solid line) and with a traditional input shaping prefilter (grey solid line). The
traditional input shaping prefilter has been recomputed to take into account the
slew rate constraints. This experiment confirms the 30% settling time reduction
obtained by numerical validation. The small peaks on the position signal are
measurement noise. Fig. 2.10 shows the system input generated by filtering the
reference step with the predictive prefilter. The difference between this input profile
and the profile observed in Figs. 2.4 and 2.6 is due to the slew rate constraints
which are the true limiting factor during movement.

A second experiment validates the robust prefilter on a perturbed system. The
perturbed system is generated by reducing the first eigenfrequency of the nominal
system with 20%. Fig. 2.11 shows the output in simulation of the nominal system
(black solid line) and of the perturbed system (grey solid line) when a reference
step (black dashed line) is applied through a non-robust prefilter to the plant.
This figure clearly shows the necessity of robustness for these levels of model-plant
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Figure 2.9: Experimental validation of the predictive input shaping prefilter design:
reference motion (black dashed line), and system response obtained by prefiltering
with a classical input shaping prefilter (grey solid line) and with the predictive
prefilter (black solid line).

0 0.5 1 1.5 2

0.1

0.2

0.3

0.4

0.5

Time [s]

In
p
u
t
[V

]

Figure 2.10: Optimal experimental input to the system computed by the predictive
prefilter.

mismatch.

In order to reduce the sensitiveness to model-plant mismatch also a robust prefilter
has been developed. First, masses are added to m1 of the setup (see Fig. 2.2) such
that the first eigenfrequency of the system is reduced by 20%. In the design of the
robust predictive prefilter, it was known that a relatively large system uncertainty
was expected. Therefore, a robust prefilter has been developed based on J = 3
systems. The two extra systems in optimization problem (2.14a) have a change in
eigenfrequency of 10%. Fig. 2.12 shows the experimental behavior (black solid line)
of the perturbed test setup. Fig. 2.13 shows the corresponding system input. These
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Figure 2.11: Output of a perturbed system (grey solid line) and the nominal system
(black solid line) for a reference step (black dashed line) filtered with a non-robust
prefilter.

figures show that the resulting robust response is still free of residual vibrations,
however at the cost of an increase in settling time of 0.32 s in comparison with
the non-robust prefilter approach. As the maximum computation time for this
robust implementation is 7.6ms, which is safely below the sampling time of 10ms,
this implementation was also implementable on the embedded hardware. Table 3.1
gives an overview of the mean and maximum computation times for the non-robust
and robust implementation (if J = 3 systems are considered). This shows that the
maximal computation time for both implementations is well below the sampling
period of 10ms. If the number of systems J in the robust implementation is
increased further, the computation time increases. Numerical experiments show
that considering J = 5 system yields a maximum computation time of 8ms. Hence,
the resulting prefilter would still be computationally feasible for system which
have a sampling period of 10ms. It should be noted that for the considered active
set solution approach, the computation time mainly depends on the number of
system inputs and outputs, and is almost independent of the number of system
states. The number of constraints on the other hand does have a big influence on
the computational load. For the considered case study here, the number of inputs
is equal to one and the number of outputs is equal to the number of systems J
considered in the robust implementation.

2.6 Conclusion

The predictive prefilter discussed in this chapter generates a time-optimal point-
to-point motion reference trajectory for an lti system by solving in real-time
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Figure 2.12: Robust design experiment: a reference step (black dashed line) is
applied to a perturbed system with a 20% change in eigenfrequency. This reference
is robustly prefiltered and the resulting response (black solid line) is still free of
vibrations.
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Figure 2.13: Optimal experimental input to the system computed by the robust
predictive prefilter.

an optimization problem taking into account system constraints. The predictive
prefilter realizes a non-linear mapping between the sequence of setpoints and the
generated reference inputs. This is the main difference with classical prefilters
which are lti systems. The real-time optimization approach yields time-optimal
reference inputs for any point-to-point motion while respecting system constraints
and it can cope with setpoint changes during motion. These advantages comes at
the cost of more expensive real-time control hardware however.

The main contributions of this chapter are as follows. First time-optimality has been
defined within the mpc framework and it has been proven that the prefilter defined
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Table 2.2: Required on-line computation time for the robust and non-robust
predictive prefilter. A maximal computation time of 10ms is allowable because of
sampling period constraints.

problem max comp. time [ms] mean comp. time [ms]
non robust 2.9 0.5
robust 7.6 1.7

within this framework generates reference trajectories that minimize the settling
time given the system model and system constraints. Then, robustness with respect
to model-plant mismatch is introduced into this framework. In order to reduce
the computational load, the true time-optimal optimization problem has been
approximated by a linear optimization problem which minimizes an exponential
weighting of the output error. An advantage of this formulation is that only one
optimization problem has to be solved every sampling time. A disadvantage of this
approach is the very bad condition of the resulting optimization problem due to
this exponential weighting which prohibits the use of long optimization horizons.
The developed controller has been implemented in C++ . The controller has been
validated both numerically and experimentally on a mass-spring-damper system.
The simulations show that in comparison with traditional linear prefilters, gains
of 30% in settling time can be achieved easily. The experiments show that the
developed controller can be implemented on embedded hardware and still satisfies
the real-time requirements, i.e. the underlying optimization problems can be solved
in ten milliseconds or less. Moreover it has been shown experimentally that the
robustified predictive prefilter can cope with model-plant mismatch.



Chapter 3

Time optimal MPC

This chapter discusses the development of a closed-loop mpc controller which
minimizes the settling time on a reference step. First, Section 3.1 motivates
the development of a full feedback time-optimal mpc (tompc) controller. This
section continues by showing how the tompc optimization problem can be exactly
reformulated within the mpc framework. Second, Section 3.2 discusses how the
structure of the reformulated optimization problem underlying the controller can be
exploited to make a solution in real-time feasible for mechatronic systems. Finally,
Section 3.3 shows the experimental validation of the developed control strategy
on a linear motor drive and an overhead crane. This section also compares the
performance of the tompc controller with linear controllers and traditional mpc
controllers. This chapter is based on [Van den Broeck et al., 2011].

3.1 Time optimal MPC controller design

In the previous chapter, an open-loop time-optimal controller for mechatronic
systems has been developed. This controller can either be applied to an open-loop
system as validated in the previous chapter or as a reference generator to a closed-
loop system. A disadvantage of the open-loop controller is that disturbances can
either not be accounted for when no extra feedback controller is applied or that
the prefilter can still generate a reference trajectory which saturates the system
actuators due to the effect of unknown disturbances and modeling errors. This
saturation can be avoided for limited disturbances, however at a cost of introducing
conservativeness [Gilbert and Kolmanovsky, 1999, 2002]. Therefore, a closed-loop
controller which directly controls the system inputs has been developed. In the
design of this closed-loop controller, the sensitivity to measurement noise close to

41
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the setpoint has been taken into account as a high sensitivity and fast reaction on
a reference step is highly desired but this aggressive reaction is undesired on sensor
measurement noise.

3.1.1 TOMPC problem formulation

In Section 2.1.1, optimization problem (2.1) shows how time-optimality can be
described within the mpc framework. In the previous chapter, this optimization
problem is solved approximately with an exponentially weighted l1 norm based
objective function. This chapter solves the problem exactly by a feasibility search.
To account for measurement noise, the optimization problem which is solved at
every sampling time is extended to:

min
x,u,y,K

K (3.1a)

subject to: x0 = x̄l, (3.1b)

xk+1 = f(xk, uk), (3.1c)

yk = h(xk, uk), (3.1d)

0 ≤ g(xk, uk) for k = 0 . . .K, (3.1e)

xK = f(xK , uK), (3.1f)

yK ≡ yref,l, (3.1g)

K ≥ Nmin, (3.1h)

where xk, uk and yk are the system states, system input and system output at time
k in the prediction horizon. Constraints (3.1c)–(3.1d) impose the system dynamics
and (3.1e) imposes the constraints on inputs, outputs and states. Constraints
(3.1f)–(3.1g) require the system to be at rest at the desired setpoint at the end
of the optimization horizon K. Constraint (3.1b) defines the initial state of the
optimization problem which for the closed loop control problem is determined by
on-line state measurement or state estimation. Constraint (3.1h) puts a lower limit
on the optimization horizon K. This allows to increase insensitivity to measurement
noise close to the setpoint, i.e. if the system is at most Nmin steps away from the
setpoint, the controller does not want to minimize K further and only requires
the system to arrive in Nmin steps at the setpoint. Hence, the controller has
optimization freedom left to react less aggressively on measurement noise. This
constraint transforms the time-optimal solution slightly. However, as shown in
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Section 3.1.3, the corresponding degradation in settling time is negligible if chosen
correctly. In order to solve this mixed integer optimization problem, the tompc
controller is designed as follows by a two level optimization problem.

‘Problem A’: First, a standard mpc optimization problem is defined as ‘Problem
A’, and denoted by PA(x̄l, N), to stress its dependence on the initial value x̄l and
the horizon length N :

V ?A(x̄l, N) = min
x0, . . . , xN

u0, . . . , uN−1

N−1∑
k=0
‖uk − uref‖2R + ‖xk − xref‖2Q, (3.2a)

s.t. x0 = x̄l, (3.2b)

xk+1 = f(xk, uk), (3.2c)

g(xk, uk) > 0 k ∈ [0, N − 1], (3.2d)

xN = xref, (3.2e)

where endpoint constraint (3.2e) requires the system to be at the reference state at
the end of the prediction horizon N . The matrices Q and R in objective function V ?A
(3.2a) are required to be positive definite. This objective function V ?A is extended
to V ?A =∞ if PA(x̄l, N) is infeasible. The physical meaning of infeasibility of PA
is that the system can not settle at the reference point xref in N time steps while
respecting all constraints. This allows to define an admissible set X(N):

X(N) =

 {x̄l|PA(x̄l, N) is feasible}

{x̄l|V ?A(x̄l, N) is finite}.
(3.3)

Hence, X(N) is the set of system states from which the setpoint can be reached in
at most N time steps, while respecting the system dynamics (3.2c) and all system
constraints (3.2d).

‘Problem B’: Second, the mixed integer optimization problem ‘Problem B’, which
is denoted by PB(x̄l), is defined as follows:

V ?B(x̄l) = min
N∈N

N (3.4a)

s.t. N ≥ Nmin, (3.4b)

N ≤ Nmax, (3.4c)

x̄l ∈ X(N), (3.4d)
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where N is the required settling time, Nmin is a minimal bound on N and Nmax is
the maximal optimization horizon. Note that the level sets of V ?B in x̄l space are
plateaus of height N :

V ?B(x̄l) =



∞ if V ?A(x̄l, Nmax) =∞

N if V ?A(x̄l, N) <∞ & V ?A(x̄l, N − 1) =∞

& N ≥ Nmin & N ≤ Nmax

Nmin if V ?A(x̄l, Nmin) <∞

(3.5)

Fig. 3.1 illustrates the level sets for a system with two states.

xref
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B(x̄l) = Nmax
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B(x̄l) = Nmin + 1

(d) V ?
B(x̄l) = Nmin

Figure 3.1: Visualization of level sets of V ?B in x̄l space

At each time step, problem PB which minimizes the settling time N is optimized.
As problem PA is underlying PB, also a traditional mpc problem with endpoint
constraints is optimized if optimization freedom is left, i.e. if N = Nmin or
if multiple time optimal solutions exist. This two-layer optimization problem
therefore produces the desired functionality: the system approaches the setpoint
as fast as possible while respecting the constraints on inputs and states, and close
to the setpoint the system reacts as traditional mpc with endpoint constraints
on measurement noise and disturbances. The choice of the weights Q and R
in (3.2) can therefore be tuned to obtain the desired regulating behavior in the
neighborhood of the setpoint.

3.1.2 Proof of asymptotic convergence

In order to have a useful tompc controller, it is important to have a guaranteed
convergence towards the desired settling point, even when Nmin is different from 0:

Lemma 1. If for some N ∈ N holds x̄l ∈ X(N), then also x̄l ∈ X(N + 1).
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Proof. Because x̄l ∈ X(N), a feasible solution (x̃l, ũl) of PA(x̄l, N) exists 1. Then,
by construction and by endpoint constraint (3.2e), ([x̃lT , xTref ]T , [ũlT , uTref ]T ) satisfies
all constraints of PA(x̄l, N + 1) and is hence a feasible solution, which implies that
x̄l ∈ X(N + 1).

Lemma 2. If (x̃l, ũl) = (x0, x1, . . . , xN , u0, u1, . . . , uN−1) solves PA(x̄l, N), with
x0 = x̄l, then (x1, . . . , xN , u1, . . . , uN−1) solves PA(x1, N − 1).

Proof. This lemma is a corollary of Bellman’s principle of optimality of subarcs
[Bellman, 1957].

Lemma 3. For an unperturbed system without model-plant mismatch and assuming
uncorrupted plant measurements, feasibility at time l = 0 guarantees feasibility at
each time l > 0.

Proof. By assumption, a feasible solution of PA(x̄0, N) exists at l = 0, which is
denoted by S0 = (x̃0, ũ0). The closed loop control action at the first time step
is hence the first element of ũ0, indicated as ũ0

0. At time l = 1, a new tompc
optimization problem is formulated with initial state x̄1, where x̄1 = x̃0

1 because of
the assumption of no model-plant mismatch and no disturbances. Hence, if N >
Nmin, a feasible solution of PA(x̄1, N − 1) exists because of Lemma 2. If N = Nmin,
then because of endpoint constraint (3.2e), ([x̃0T

(1...N), x
T
ref]T , [ũ0T

(1...N−1), u
T
ref]T ) is a

feasible point of PA(x̄1, Nmin). The lemma follows by induction.

Theorem 2. For each x̄0 ∈ X(Nmax), tompc generates a closed-loop response for
an undisturbed system without model-plant mismatch, asymptotically attracted by
xref, with Nmin ≥ 1; i.e. x̄l → xref when l→∞.

Proof. First, consider x̄l /∈ X(Nmin + 1). It is clear from Lemma 3, that if a feasible
solution with V ?B(x̄l) = N exists at time step l, there exists a feasible solution at
time step l + 1 with V ?B(x̄l) = N − 1. Hence, every time step, the system will be
driven closer to X(Nmin). Second, consider x̄l ∈ X(Nmin). The tompc reduces
then to a traditional mpc with endpoint constraints. It can easily be proven that
this local controller is therefore asymptotically attracted to xref, see e.g. [Keerthi
and Gilbert, 1988].

3.1.3 Choice of Nmin

The formulation of the tompc optimization problem requires the choice of Nmin.
By introducing this parameter, the ‘true’ time-optimal behavior is not obtained

1(x̃l, ũl) indicates a feasible solution set (x0, . . . , xN , u0, . . . , uN−1) of PA(x̄l, N). x̃l
i and ũl

i
indicate the i − 1th element of these sets
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anymore. However, in order to guarantee unconstrained solvability, N will normally
always be bigger than n/nu with n the number of system states and nu the number
of system inputs [Kailath, 1980]. In order to make the controller less sensitive
to measurement noise and to avoid too aggressive behavior when the setpoint is
reached, a higher value of Nmin is recommended, e.g. two to three times larger.
However, Nmin should not be chosen too high, as this would destroy the time-
optimal behavior. Note also that the minimum number of steps is only attainable
for unconstrained controllable linear systems. Fig. 3.2 illustrates the degradation of
the 1%-settling time as a function of Nmin for the second order system of Chapter
4. This figure illustrates that if the value of Nmin is well chosen, the degradation
in settling time is limited. The noise insensitivity is clearly illustrated in Section
3.3 on the linear motor drive.
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Figure 3.2: The 1% settling time expressed as number of sample times for the
second order system presented in Chapter 4 as a function of the lower bound on
the settling time Nmin.

It should be noted that time-optimal behavior can be approximated in a traditional
mpc optimization problem by tuning the weights Q and R very aggressively, i.e.
the weight on the output error Q much larger than on the input cost R. However,
even by putting R = 0, the same behavior can not be obtained. Other approaches
based on l1 norm objective functions as in Chapter 2 can better approximate a time-
optimal controller. However, these controller would also react very aggressively on
noise, a property which can be avoided by the lower bound on the feasibility search.
A disadvantage of the formulation developed in this chapter is the employment of
endpoint constraints which require the controller to see the setpoint at the end of
the prediction horizon.
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3.2 Real-time Implementation

This section discusses the real-time implementation of the two level tompc
optimization problem defined in Section 3.1.1. First, the tompc optimization
problem is further analyzed. Then, it is explained how the structure of the problem
is exploited in order to yield a tompc implementation that is sufficiently efficient
for mechatronic applications. Finally, it is discussed how the feasibility region of
the controller can be extended, without compromising on the computational speed.

3.2.1 Problem formulation

In general, optimization problem (3.2) is a non-convex problem. However, if the
system dynamics (3.2c) and all constraints (3.2d) are linear, as is the case for the
considered class of lti mechatronic systems, this problem reduces to a convex QP:

V ?A(x̄l, N) = min
x0, . . . , xNmax−1

u0, . . . , uNmax

Nmax−1∑
k=0

‖uk − uref‖2R + ‖xk − xref‖2Q, (3.6a)

s.t. x0 = x̄l, (3.6b)

xk+1 = Axk +Buk, (3.6c)

e 6 Hxk +Guk k ∈ [0, Nmax − 1], (3.6d)

xk = xref k = N, (3.6e)

uk = uref k ∈ [N,Nmax − 1]. (3.6f)

Note that in this formulation, extra input variables (uN , . . . , uNmax−1) and state
variables (xN+1, . . . , xNmax) are added. Also, an extra constraint (3.6f) on the
extra input variables is added in order to keep this optimization problem (3.6)
equivalent to optimization problem (3.2). As this results in optimization problems
of constant size during the feasibility search, this allows the use of on-line active set
methods as discussed in Section 2.3. Henceforth, the thesis will implement, exploit
the problem structure and validate this type of controller for an lti system. It
should be noted that this kind of controller can be applied for non-linear systems
as well and the asymptotic convergence proof will still be valid. The solution in
real-time will then be even more challenging however. For this linear system, the
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defining equation for the reference state is:

xref = Axref +Buref, (3.7a)

yref = Cxref. (3.7b)

Depending on the value of x̄l, two different optimization problems are to be solved.
If x̄l ∈ X(Nmin), the total optimization problem reduces to a regular mpc problem
with endpoint constraints, which is under the above assumptions a qp. This qp
can be solved efficiently using an on-line active set method as qpoases [Ferreau,
2007–2009]. If x̄l /∈ X(Nmin) the resulting optimization problem PB(x̄l) is a mixed
integer problem in one integer variable N . This mixed integer problem can be
solved by a series of feasibility problems PA(x̄l, N), i.e. a series of qps thanks
to the property of quasi-convexity, see Lemma 1, of problem PB. Algorithm 1
summarizes this procedure.

Algorithm 1 Optimization procedure
input: x̄l
output: u? or error ‘infeasible problem’
start with initial guess for N
solve QP problem PA(x̄l, N) (3.6)
if PA(x̄l, N) feasible then
while PA(x̄l, N) was feasible do
store u? = u0(x̄l, N)
N = N − 1
if N ≥ Nmin then

solve qp-problem PA(x̄l, N)
else
break

end if
end while

else
while PA(x̄l, N) was infeasible do
N = N + 1
if N ≤ Nmax then

solve qp-problem PA(x̄l, N)
else
error ‘infeasible problem’
break

end if
end while
store u? = u0(x̄, N)

end if
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3.2.2 Efficient reformulations

The following two paragraphs discuss how to speed up the solution method. First,
by hotstarting the active set method on a given time step based on the solution
from the previous time step, which is an application of the techniques developed in
[Ferreau et al., 2008]. Second, by reformulating endpoint constraints (3.6e)–(3.6f)
to optimize N with a minimum number of active set changes.

Transition over time using an online active set strategy

When the controller propagates from time step l to l + 1, two different scenarios
are possible:

• The setpoint does not change: Because the system state does not change
much during one time step, neither will the optimal solution S. Hence, the
number of active set changes compared with this previous solution is limited.
By hotstarting the active set method from this previous solution Sl, the new
solution Sl+1 can be found efficiently. As an (almost) maximum number
of constraints will be active in the optimal solution if N > Nmin, an other
effective hotstart strategy does not start from the previous solution, but
initializes the homotopy with a shifted solution. The initial solution guess
has the previous optimal value of N reduced by one. This second strategy is
implemented in the controllers used in Section 3.3 to validate tompc on the
linear motor drive and overhead crane.

• The setpoint changes: Because the desired setpoint changes, the number
of active set changes compared with the previous solution Sl can be high.
Hence, the optimization will not reuse the previous solution. However, this
problem can be hotstarted by making an educated guess of the optimal value
of N based on simulations which are performed beforehand. These optimal
guesses of N for a set of reference step lengths are stored in a table which is
available for the tompc algorithm. When a new reference step is applied,
the closest upper approximation is selected from the table as an initial guess
for N .

Optimization of N with a minimum number of active set changes

Once N = Nmin, the qp-solver only has to solve one regular qp (3.6). However, if
N > Nmin, a series of optimization problems has to be solved within one sampling
time step, until the optimal value N? is found. In these optimization problems,
N is increased or decreased by one, each time resulting in at least 2n+ nu active
set changes as the deactivation of constraint (3.6e) for k = N requires n active
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set changes, the subsequent activation of (3.6e) for k = N ± 1 requires another n
active set changes, and the deactivation or activation of constraint (3.6f) requires
analogously nu active set changes. Therefore a different approach is proposed
resulting in less active set changes for each transition from k = N to k = N ± 1.
First, one single output which yields an observable state space model is introduced.
This output can be the controlled output, as in Section 3.3 for the overhead crane
and linear motor, but this is not strictly necessary. If more outputs would be
needed to obtain observability, a straightforward modification of the approach
described below has to be applied. Second, (3.6) is extended by introducing extra
variables (uNmax , . . . , uNmax+n−2) and (xNmax+1, . . . , xNmax+n−1) and constraints
(3.6e)–(3.6f) are replaced by:

yN+k = yref for k = 0, . . . , n− 1, (3.8a)

uN+k = uref for k = 0, . . . , Nmax −N − 1, (3.8b)

where yref = Cxref is the output corresponding to the steady state xref. Note that
although the number of variables has been increased, all optimization problems
during the feasibility search still have the same size. Lemma 4 proves that these
sets of constraints are equivalent.

Lemma 4. If the observability matrix Co:

Co =
[
CT ATCT . . . (An−1)TCT

]T (3.9)

is of full rank, constraints (3.8) are equivalent with (3.6e)–(3.6f).

Proof. (3.6e)–(3.6f) ⇒ (3.8): trivial.
(3.8) ⇒ (3.6e)–(3.6f): All constraints on u for the extended horizon are the same.
Because of the system dynamics (3.6c), it is known:

xN+1 = AxN +BuN (3.10a)

= AxN +Buref (3.10b)

= A(xN − xref) + xref (3.10c)

⇔ xN+1 − xref = A(xN − xref), (3.10d)

where (3.10a) is equivalent to (3.10b) because of constraint (3.8b) and (3.10b) is
equivalent to (3.10c) by definition of xref (3.7). By induction, this can be extended
to:

xN+k − xref = Ak(xN − xref) (3.11)
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Hence, (3.11) allows to rewrite (3.8a) into:

C(xN − xref) = 0 (3.12a)

CA(xN − xref) = 0 (3.12b)

...

CAN+n−1(xN − xref) = 0, (3.12c)

which is equivalent to:[
C ′ A′C ′ (A2)′C . . . (An−1)′C ′

]′ (xN − xref) = 0. (3.13)

Hence, if the observability matrix (3.9) is invertible, this equation has only one
solution, and xN ≡ xref .

The advantage of formulation (3.8) in comparison with constraints (3.6e)–(3.6f) is
that only 2 + nu instead of 2n+ nu constraints have to be added to or removed
from the active set when the value of N increases or decreases by one, which
improves the numerical efficiency considerably. For example, for the first test case
considered in Section 3.3 and a reference step of 10 cm, the worst case computation
time (which typically occurs at the time sample when a new reference step is
applied) reduces with a factor 4 by using formulation (3.8). In addition to this
measure to reduce the computation time, the similarity between two consecutive
problems can be exploited. Since the value of N changes by one in the series of
optimization problems, the optimal solution of each problem has 2 + nu known
active set changes, which can be imposed directly and simultaneously [Ferreau,
2007–2009]. E.g. if N is reduced to N − 1, the following active set changes can
be imposed: fix uN−1 = uref, fix yN−1 = yref and relax yN+n−1. By imposing
these active set changes directly, and starting from the corresponding active set,
the optimization procedure is accelerated further, resulting in an extra reduction
of 40% of the worst case computation time for the same test case considered
above. In comparison to an interior point solver as e.g. Mosek [ApS, 2008], the
worst case computation time is 10 times smaller. Table 3.1 shows the relative
comparison of worst case computation times in Matlab, for the considered case
using Mosek and the three discussed alternative implementations of tompc using
qpoases as a solver. Fig. 3.3 shows how this computation time evolves when
subsequent optimization problems are solved, starting with a new reference step at
time 0 s. This figure shows both the traditional effects of hotstarting and the gain
in computation time thanks to the techniques developed in this section when new
reference steps are requested.

Combination of the above measures to speed up the solution yields that the
optimization problem underlying the tompc can be solved in real-time at 200Hz
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and 60Hz for respectively the linear drive system and the overhead crane as
discussed in Section 3.3 and 250Hz for the industrial test case considered in
Chapter 4. It should be noted that mpc based on active set numerical solution
methods have been applied with sampling frequencies in the kHz-range [Wills et al.,
2005]. The sampling frequencies obtained with tompc are considerably lower.
This is (i) because in the cases considered in this thesis, the number of decision
variables and constraints is respectively approximately 4 and 10 times higher than
in the case considered in [Wills et al., 2005], and (ii) because tompc has to solve
a sequence of feasibility problems in order to obtain time-optimal behavior while
Wills et al. [2005] minimizes the traditional quadratic objective function by the
solution of one optimization problem.
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Figure 3.3: Required computation time in simulation in Matlab for the linear motor
drive when a new reference step is requested at time 0 s for solution with Mosek
(dashed grey line), qpoases based on (3.6e)–(3.6f) (dashed black line), qpoases
based on (3.8a)–(3.8b) (solid grey line) and qpoases based on (3.8a)–(3.8b) with
shifting (solid black line).

Table 3.1: Relative comparison of worst case computation times in Matlab for the
linear motor drive system discussed in Section 3.3 for a reference step of 10 cm,
using four different solution methods.

method maximal computation time [-]
Mosek 10.17

qpoases based on (3.6e)–(3.6f) 8.25
qpoases based on (3.8a)–(3.8b) 1.83
qpoases based on (3.8a)–(3.8b) 1with directly imposed active set changes



VALIDATION 53

3.2.3 Efficient extension of the prediction horizon

A disadvantage of the above described tompc algorithm, is the dependence of the
largest possible reference step on the value of Nmax because endpoint constraints
(3.6e) and (3.6f) must be satisfied for N ≤ Nmax, that is, the system must be able
to reach this largest possible reference position in no more than Nmax time steps
without violating the system constraints (3.6d). Nmax itself determines the size of
the optimization problem and hence the worst case computation time of the tompc
solution method. This worst case computation time is limited by the sampling
period. Hence, the sampling period limits the largest possible reference step, which
can be small for systems that require high sampling frequencies. One measure which
partially alleviates this problems is using an open end of optimization problem
PB, i.e. when N = Nmax the system is not required to be at rest at the desired
setpoint. This prevents infeasibility of the total tompc optimization problem if the
reference step is too large. In order to alleviate the step limitation more correctly,
non-equidistant time steps or time gridding is applied. Time gridding allows to
consider larger horizons without increasing the total number of discretization points
Nmax and hence the number of optimization variables. In the first part of the
horizon up to typically Nmin, the time step corresponds to the sampling period.
Thereafter, the time steps are gradually increased up to ten times the sampling
time. For the overhead crane test setup of Section 3.3.2, this allows to increase the
prediction horizon by a factor of 4, extending the attainable range to its maximum
of 70 cm.

It should be noted that the rigorous asymptotic convergence results presented in
Section 3.1.2 do not hold strictly when a non-equidistant grid is used. However,
the practical closed-loop performance is nearly identical as when a fine equidistant
grid is used for the same horizon length, while the computation time is significantly
reduced.

An implemented version of the developed tompc controller in C++ is available at
http://www.kuleuven.be/optec/internal/software/44-general/139-TOMPC.
The manual of this package is presented in Appendix A.

3.3 Validation

This section validates the tompc concept on two realistic mechatronic test setups.
The two setups available at kuleuven are respectively a linear motor drive and an
overhead crane. The goal of this validation is to show that the developed tompc
controllers are solvable in real-time on embedded hardware and that by using these
controllers, time-optimal control can be obtained. Robustness with respect to
model-plant mismatch has not been tested explicitly as the controllers developed in

http://www.kuleuven.be/optec/internal/software/44-general/139-TOMPC
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this chapter are closed loop controllers and not open loop controllers as in Chapter
2. First, in Section 3.3.1, the linear motor drive setup is presented, followed by
an experimental validation of tompc and a comparison with both mpc and linear
controllers. Section 3.3.2 discusses the application of tompc to an overhead crane,
showing the capabilities of the tompc control technique to control a higher order
system with a very lowly damped mode. Also, the disturbance rejection capabilities
of the controller are illustrated.

3.3.1 Linear motor drive

The setup

The considered test setup is the linear motor (type LSE10G1010 of Baumuller)
shown in Fig. 3.4. This type of motor is typically used in e.g. pick-and-place
machines. The control input to the system is the current applied to the motor [A],
and the output is the position of the linear drive [m] measured with a linear encoder
with a resolution of 2nm. The system input is limited to ±17A due to peak current
limitations, and the input slew rate is limited to ±2A/ms because of limitations
of the internal current controller. The system controllers are embedded on a
SpeedGoat real-time target machine [Speedgoat, 2010] which contains a 2.13GHz
processor with 1GB ram. The tompc controllers are implemented through C++

functions in the xpc-target environment of Simulink. A discrete-time third order
state space model with a sampling period of Ts = 0.005 s is identified for this system,
based on frequency response function (frf) measurements that are obtained from
multisine excitations with a frequency content between 0.01Hz and 15Hz [Pintelon
and Schoukens, 2001]. This systems contains one integrator pole. Figure 3.5 shows
the measured frf (black solid line) and the frf of the identified discrete model
(grey solid line).

Figure 3.4: Picture of the linear motor drive test-setup in the pma-lab at kuleuven.
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Figure 3.5: Measured (black solid line) and identified (grey solid line) frf of the
linear drive system.

Controller setup

The tompc and mpc controllers are implemented taking the input constraints
described above into account, and in addition constraints on the overshoot and
undershoot are imposed as they are necessary for the settling time constraints. The
tompc controller is designed with a prediction horizon Nmax = 45 and weights
Q = 4m−1 and R = 5A−1. The underlying optimization problem PA contains 272
constraints (3.6d) (92 for overshoot and undershoot, and 90 for respectively the
input u and the slew rate of the input ∆u). It should be noted that the aggressive
time optimal behavior is obtained by the shrinking horizon N and not by the choice
of the weights Q and R. Hence, these weights can be selected by considering sensor
noise sensitivity and disturbance regulation only, e.g. according to general tuning
rules [Franklin et al., 2001], taking into account the range of the different variables,
which can be normalized by applying a proper scaling. This is not the case for the
traditional mpc controller, where Q and R also determine the response speed. The
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traditional mpc is tuned very aggressively by trial-and-error, with a much higher
weight on the output error than the input cost, in order to obtain approximately
time-optimal behavior (a Q-R ratio of 400 000A/m). Since only the motor position
is measurable, the state variables are determined using a state estimator. This state
estimator is designed using pole placement, and has a bandwidth of approximately
85Hz.

Comparison with linear controller

First a set of simulations is performed to illustrate the advantage of tompc with
respect to linear feedback control, the currently dominant control approach for
these systems. A desired point-to-point motion of 10 cm is considered. To make
a fair comparison, the linear controller is combined with a reference trajectory
instead of a step. A polynomial spline reference trajectory is optimized with
respect to the time-duration of the motion for a displacement of 10 cm taking
into account the requested constraints, using the convex framework developed
in [Demeulenaere et al., 2009a]. This framework simultaneously optimizes the
feedforward signal that yields perfect reference tracking. Fig. 3.6 compares the
tompc output results (black solid line) and linear controller output results (grey
solid line) for the point-to-point reference motion of 10 cm (black dashed line).
Fig. 3.7 shows the corresponding control signals. The following conclusions can
be drawn: tompc and the linear feedback controller in combination with the
optimized feedforward yield comparable results. The small difference is due to the
fact that the optimized feedforward is a spline that is continuous up to the first
derivative, a condition not enforced upon the tompc control signal, and due to
the choice of Nmin > n. The advantage of tompc with respect to linear feedback
control becomes clear if different point-to-point motions are considered. By solving
the optimization problem on-line, tompc will yield time-optimal behavior for any
desired displacement and this without any delay between the step request and
the start of control. This is in contrast with the linear controller which in order
to achieve time-optimality requires a new off-line computation in order to obtain
an optimized reference trajectory and corresponding feedforward for each new
displacement. This off-line optimization causes a delay between the step request
and the start of control which can easily be as long as the performed step. Another
linear approach is to scale the reference trajectory and feedforward which is optimal
for one particular reference step for all requested steps. However, this introduces
conservativeness for references which are smaller than the design reference step.
Moreover, for step references which are bigger than the design reference step, the
system actuators will saturate and unpredictable system behavior will occur. Fig.
3.8 illustrates this for a desired displacement of 5 cm by comparing the system
output obtained by control with the tompc controller (black solid line) and with
the linear controller combined with the reference trajectory and feedforward signal
(grey solid line), optimized for the 10 cm displacement but scaled down to 5 cm.
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The settling time obtained with the tompc controller is considerably lower than the
settling time obtained with the linear controller since the tompc controller uses the
whole input range while the linear controller uses only 50%, a direct consequence
of the linear reference input scaling (see Fig. 3.9). If the same reference input is
scaled up to a displacement larger than 10 cm, the actuators will saturate, yielding
unpredictable, often oscillatory or unstable, behavior.
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Figure 3.6: Simulated system motion for a desired displacement of 10 cm (black
dashed line), obtained by using a tompc controller (black solid line) and by using
a linear feedback controller combined with an optimized reference trajectory and
feedforward (grey solid line).
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Figure 3.7: Simulated control signal for a desired displacement of 10 cm, obtained
by using a tompc controller (black solid line) and by using a linear feedback
controller combined with an optimized reference trajectory and feedforward (grey
solid line).
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Figure 3.8: Simulated system motion for a desired displacement of 5 cm (black
dashed line), obtained by using a tompc controller (black solid line) and by
using a linear feedback controller combined with a scaled reference trajectory and
feedforward (grey solid line).
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Figure 3.9: Simulated control signal for a desired displacement of 5 cm, obtained
by using a tompc controller (black solid line) and by using a linear feedback
controller combined with a scaled reference trajectory and feedforward (grey solid
line).

Experimental validation and comparison with MPC on a linear motor drive

tompc and mpc are compared and validated experimentally on the linear motor
drive system. Three sets of experiments have been performed. In a first set of
experiments, tompc has been compared with traditional mpc for several different



VALIDATION 59

displacements. The resulting 1% settling-times are summarized in Table 3.2.
Fig. 3.10 shows the output motion for a reference step of 10 cm (black dashed line).
Although the rise time obtained with mpc (grey solid line) is even slightly lower
than with tompc (black solid line), the settling time with tompc is considerably
reduced. This is more clearly shown in Fig. 3.11, which presents the output
error relative to the applied step on a logarithmic scale. The remaining output
error is due to model-plant mismatch and non-linear disturbances like cogging and
friction. This static error can be eliminated by introducing disturbance states, see
e.g. [Pannocchia and Rawlings, 2003], which is similar to introducing integrating
action in linear controllers. Fig. 3.12 shows the corresponding inputs to the system.
Comparable inputs are applied during the first part of motion. However when
the system settles, tompc (black solid line) generates a different control input for
the system actuators than traditional mpc (grey solid line). This similar behavior
during the first part of the motion (up to 0.13 s) is because both controllers hit the
input constraints during acceleration and deceleration (because of respectively the
endpoint constraint and high Q-R-ratio). When this is not the case, the controllers
behave differently.

Table 3.2: The 1% settling time for different steps using tompc and mpc
step [cm] tompc [s] mpc [s]

1 0.12 0.16
5 0.16 0.22
10 0.18 0.25
15 0.22 0.30
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Figure 3.10: Linear drive system: Drive system motion obtained with tompc
(black solid line) and mpc (grey solid line) for a reference step of 10 cm (black
dashed line)
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Figure 3.11: Linear drive system: Relative output error obtained by control with
tompc (black line) and mpc (grey line) for a reference step of 10 cm
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Figure 3.12: Linear drive system: Control input signal obtained by control with
tompc (black line) and mpc (grey line) for a reference step of 10 cm

A second set of experiments shows the importance of the choice of Nmin. Due to the
feedback of measurement noise and disturbances, tompc behaves too aggressively
if Nmin is chosen too small because the too short horizon will enforce deadbeat
reactions whereas a longer horizon enables a relaxed response. Fig. 3.13 illustrates
this by showing the input applied to the actuators of the system for two different
choices of the minimal bound on the settling time Nmin, namely Nmin = 8 (black
line) and Nmin = 6 (grey line). When a step is requested to the system at time 0 s,
both controllers request the same system input and hence yield the same rise and
settling time. However, close to the setpoint from time 0.2 s the controller with
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Nmin = 8 is much less sensitive. This effect of measurement noise and disturbances
can also be reduced by decreasing the bandwidth of the state estimator, however
this only reduces the effect and can not eliminate it.
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Figure 3.13: Linear drive system: Control input applied to the system by using a
tompc controller with Nmin = 8 (black line) and Nmin = 6 (grey line).

A third experiment shows that although this controller is designed for completing
steps with minimal settling time, it can accept a new reference step before the
previous step is completed. Fig. 3.14 shows the system output (black solid line)
if two steps of respectively 5 cm and 7 cm are requested (black dashed line). Fig.
3.15 shows the corresponding system input. By comparing this figure with Fig.
3.13, it can be seen that when the second reference step is requested, the input
reaches its maximal value again in order to fully accelerate instead of requesting
the minimal value to decelerate.

3.3.2 Overhead Crane

Test setup

The second test setup on which the tompc controller has been validated is the
overhead crane with fixed cable length shown in Fig. 3.16. Fig. 3.17 shows a
schematic representation of this system. The actuator of the system is a velocity
controlled dc-motor that drives a trolley through a rack and pinion. The position
of the trolley x is measured using an angular encoder mounted on the dc-motor
axle, yielding a position measurement resolution of 3 µm. The swing angle θ is
measured using a rotative encoder mounted on the axle to which the cable is
attached, yielding an angular resolution of 0.0009°. The input to this system is a
voltage u, which is a reference applied to the 25Hz bandwidth internal velocity



62 TIME OPTIMAL MPC

0 0.1 0.2 0.3 0.4 0.5

0

0.05

0.10

0.15

Time [s]

P
o
si
ti
o
n
[m

]

Figure 3.14: Linear drive system: Drive system motion (full line) obtained when
a reference trajectory of two steps is requested (dashed line). The second step is
requested before the first one is completed.
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Figure 3.15: Linear drive system: Control input obtained when a reference trajectory
of two steps is requested and the second step is requested before the first one is
completed.

loop. The input is limited to ±1V and the input slew rate is limited to ±6V/s
due to limitations of the motor current amplifier. The maximal range of the trolley
is 70 cm. The length of the cable is fixed to 450mm. The system controllers
are embedded on a dSPACE board DS1103 which contains a 1GHz processor
with 90MB ram. The controllers are implemented through C++ functions in the
real-time-target environment of Simulink. The system controllers are applied at a
sampling frequency of 60Hz.
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Figure 3.16: The overhead crane in the pma-lab at kuleuven.

The relation between the input u and the position of the trolley x is modeled by a
first order model for the internal velocity loop in combination with an integrator
relating velocity to position:

X(s)
U(s) = K

s(τs+ 1) . (3.14)

The relation between the position of the trolley x and swing angle θ can for small
values of θ be modeled as [Fliess et al., 1994]:

θ(s)
X(s) = s2

Ls2 + g
, (3.15)

with L the length of the cable and g the gravitational acceleration. These models
(3.14)–(3.15) have been combined and discretized, to yield following discrete time
models which relate the input u to the position of the upper mass x and the swing
angle θ:

X(z)
U(z) = b0z

(z − 1)(z − a0) , (3.16a)

θ(z)
U(z) = β0z(z − 1)

(z2 + α1z + α2)(z − a0) . (3.16b)

The parameters of models (3.16a)–(3.16b) have been identified using a nonlinear
least square frequency domain identification approach based on frf measurements
that are obtained from multisine excitations with a frequency content between
0.05Hz and 5Hz [Pintelon and Schoukens, 2001]. Fig. 3.18 and Fig. 3.19 show
the results of this identification, that is, a good fit between the measured frf’s
(black line) and the frf’s of the two identified models (grey line). The estimated
resonance frequency is 0.74Hz which corresponds to the theoretical value 1

2π
√

g
L
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Figure 3.17: Schematic representation of the overhead crane

with L = 450mm. The damping of the estimated resonance frequency is ζ = 0.00168
which is extremely low.

The two identified models have been combined into a fourth order state space
model of which the system dynamics matrices are given by:

A =


0.996 0.00435 0 0

1 0 0 0
0.0438 −0.0438 1.99 −0.9997

0 0 1 0

 , B =


−826.1

0
35.99

0

 ,

C =

 −0.0122 0 0 0
0 0 0.036 0

−0.0122 0 0.2827 0

 , D =

 0
0
0

 ,
(3.17)

where the first two states represent the position of the trolley in encodersteps at
time steps l and l− 1 and the last two states represent the swing angle of the mass
in encodersteps at time steps l and l − 1. The first output of the system is the
position of the trolley x and the second output is the swing angle θ. The third
output is the position of the load y = x+ Lθ π

180 in mm. This expression is valid
assuming small values of θ.

State estimation

As direct measurement of the system model states results in a much too noisy state
estimation, first a Luenberger observer [Luenberg] is designed. For the estimation
of the states, the measurements of both the position of the trolley x and the swing
angle θ are used. To explicitly take into account the higher uncertainty on the
swing angle, the state estimator for the crane is developed using a Kalman filter
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Figure 3.18: Measured frf (black line) and frf of the identified model (grey line)
relating the input u to the position of the trolley x

[Kalman, 1960] instead of by pole placement, the technique applied for the design
of the linear motor state estimator in Section 3.3.1. The best control results are
obtained by using a state observer which has a process noise of 1 encoderstep, and
measurement noise of respectively 1 encoderstep on the position of the trolley and
10000 encodersteps on the swing angle. The extra state introduced in the next
section has a process noise of 100V. This results in a bandwidth of 0.95Hz. Higher
observer bandwidths yield a too nervous or even unstable behavior. This maximal
observer bandwidth is comparable to the maximum attainable stable bandwidth
of a pure linear controller with state estimation for this setup. Note that for the
linear motor drive application in Section 3.3.1 a much higher observer bandwidth
and therefore a faster reaction on disturbances can be obtained.
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Figure 3.19: Measured frf (black line) and frf of the identified model (grey line)
relating the input u to the swing angle θ.

TOMPC controller

For the overhead crane, a tompc controller has been developed taking into account
the above mentioned constraints on input and input slew rate. As the solution of
optimization problem (3.4) requires a large computation time, the control input is
only available near the end of every sample period, and this introduces an additional
sample delay. This is in contrast with a pure linear controller where the input
is nearly immediately available after state estimation as the computation of the
optimal input then often only requires a matrix vector multiplication. To account
for this delay, the state space model is extended with one delay state, resulting in
the following new state space matrices:

A′ =
[
A B
0 0

]
, B′ =

[
0
1

]
,

C ′ =
[
C(3) D(3)

]
, D′ = 0,
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where C(3) and D(3) denote the third row of C and D in (3.17) respectively, since
the output considered in endpoint constraint (3.8a) of the tompc implementation,
is the position of the lower mass. Based on this fifth order model, the tompc
controller has been implemented. Fig. 3.20 and 3.21 show the response of the
system with tompc on a reference step of 10cm. Fig. 3.22 shows the corresponding
input to the system. The constraints on the input amplitude are not reached. The
input slew rate however, shown in Fig. 3.23, reaches the slew rate constraints
during almost the whole duration of the motion. This shows that the system is
working at its limits and hence indicates that the controller steers the system as
fast as possible to the desired endpoint.
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Figure 3.20: Position of the trolley (black line) controlled by a tompc controller
for a reference step of 10 cm (grey line).
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Figure 3.21: Swing angle of the tompc controlled system for a reference step of
10 cm.
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Figure 3.22: Input applied to the overhead crane for a requested step of 10 cm
controlled by a tompc controller.
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Figure 3.23: Differential input applied to the overhead crane for a requested step
of 10 cm controlled by a tompc controller.

A second set of experiments illustrates the tompc controller disturbance rejection
capabilities. Fig. 3.24 shows the position of the trolley x and Fig. 3.25 the swing
angle θ when an external disturbance is applied to the lower mass. From time 1.2 s
till 1.5 s, as indicated by the grey zone in Fig. 3.25, the lower mass is manually
moved out of its equilibrium position θ = 0° and is released at time 1.5 s. The
controller reacts to this disturbance, and steers the system in minimal time back to
its desired zero position. Fig. 3.27 illustrates the time-optimality of the reaction
to disturbances by showing the input slew rate, which is again hitting continuously
the slew rate constraints. The relative slow reaction is due to the low estimator
bandwidth and hence it takes a long time before the tompc controller knows
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the disturbance and can react to it. Note also that the imposed disturbance is
approximately 20° and therefore exceeds the linear applicability range of state
space model (3.17) showing the inherent robustness of this closed loop controller
approach.
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Figure 3.24: Position of the trolley (black line) controlled around the zero position
(grey line) by a tompc controller when a disturbance is applied.
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Figure 3.25: Swing angle of the tompc controlled system when a disturbance
is applied. In the grey zone, the system is manually moved out of its reference
position.

Time optimal behavior can also be attained using an optimized reference trajectory
(e.g. [Demeulenaere et al., 2009a]) as a feedforward for a linear controller. However
with the linear controller approach, time-optimality can only be obtained if for
each possible reference step a new reference trajectory optimization is performed,
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Figure 3.26: Input applied to the overhead crane controlled by a tompc controller
when a disturbance is applied.
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Figure 3.27: Differential input applied to the overhead crane controlled by a tompc
controller when a disturbance is applied.

whereas the presented tompc obtains this behavior for all possible references. This
is illustrated in the following figures. Figs. 3.28, 3.29 and 3.30 show respectively
the position of the trolley x, the swing angle θ and the input u for several reference
steps ranging from 20cm to 50cm. Fig. 3.30 and more clearly Fig. 3.31 show that
the controller is continuously hitting the input constraints during motion, showing
its time-optimality for all reference steps.
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Figure 3.28: Position of the trolley (black line) controlled by a tompc controller
for a series of reference steps (grey line).
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Figure 3.29: Swing angle of the tompc controlled system for a series of reference
steps.

3.4 Conclusions

This chapter discusses the design and experimental validation of a special type
of mpc, called ‘time optimal mpc’ (tompc). A tompc controller is a closed
loop controller which minimizes the settling time for point-to-point motions while
respecting the system constraints. The tompc controller extends the idea of
the predictive prefilter to include system feedback in order to be able to reject
disturbances.
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Figure 3.30: Input applied to the overhead crane controlled by a tompc controller
for a series of reference steps.
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Figure 3.31: Differential input applied to the overhead crane controlled by a tompc
controller for a series of reference steps.

The main contributions of this chapter are as follows. First, the mixed integer time-
optimal optimization problem has been reformulated as a two-level optimization
problem which can be solved by a series of feasibility problems. These feasibility
problems have been formulated as a traditional mpc problem with a quadratic
objective function, system constraints and an endpoint constraint which forces
the system to be at rest at the end of the prediction horizon. It is shown that
this time-optimal controller is nominally converging towards the desired setpoint.
Moreover, by adding an extra parameter to the optimization problem a trade-off
between time-optimality and sensitivity to measurement noise is obtained. Through
a careful formulation of the optimization problem and implementation of the active



CONCLUSIONS 73

set numerical solution method, the maximal solution time has been decreased by a
factor of ten. Also, by the use of blocking in the prediction horizon, the attainable
range of the controller could be increased by a factor four without compromising
the computational speed. As a result, sampling rates up to 200Hz are achieved
for system models with orders up to five and prediction horizons up to forty-five
time steps. The tompc controller has been validated experimentally on a linear
motor drive. For this application, the tompc controller is compared both with a
linear and an mpc controller. The advantage of the tompc controller compared to
a normal mpc controller is that true time-optimal behavior is obtained, yielding
a reduction of at least 25% of the settling time on this test setup. In order to
obtain time-optimal behavior with a linear controller, the linear controller has to be
combined with an optimized feedforward trajectory that is optimized before each
point-to-point motion introducing an additional delay. Finally, the disturbance
rejection capabilities of tompc have been demonstrated experimentally on an
overhead crane. An open source C++ implementation of the tompc controller has
been made publicly available on-line.





Chapter 4

Industrial application:
combining TOMPC with high
positioning accuracy

This chapter discusses the adaptation for and implementation of tompc on an
industrial linear motor drive system. First, Section 4.1 presents the industrial
setting and the benchmark requirements for the time-optimal control design. Second,
Section 4.2 presents an adapted tompc control scheme such that the imposed
benchmark requirements can be satisfied. This section validates also the designed
controller experimentally both for the imposed benchmark requirements and for
robustness. Finally, Section 4.3 presents a second time-optimal control scheme.
This control scheme alleviates some of the problems observed while implementing
the time-optimal control design of Section 4.2.

4.1 Problem statement

The developed time-optimal controller has been validated on and adapted for an
industrial test setup during a one-week research stay at etel [ETEL S.A., 2010].
etel is a Swiss motor manufacturer which produces linear and torque motors.
They develop also total motion systems for their clients. For their customers’
applications, the cost of a more expensive computer to optimize the system input
is often negligible if this allows to increase the throughput and therefore the
rendability of e.g. wafersteppers. The setup on which the time-optimal controller
is validated at etel is a linear motor with air bearings as shown in Fig. 4.1. This

75
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is a typical subpart for waferstepper control systems. The input of this system is a
reference current i to an internal current loop [A]. The nominal current limitation
is 5.5A and peak currents up to 20A are attainable. The output of this system
is the position of the sliding mass x [m] which is measured by encoders with a
resolution of 0.24nm. This system can be modelled as:

X(z)
I(z) = α

z2 − 2z + 1 = α

(z − 1)2 . (4.1)

The parameter α of this system model is identified based on frf measurements
that are obtained from a full multisine excitation with a frequency content between
1.5Hz and 25Hz at a sampling frequency of 2000Hz [Pintelon and Schoukens,
2001]. Fig. 4.2 shows the measured (black line) and identified frf (grey line).

Figure 4.1: Experimental test setup of a linear motor with airbearings.

For this test setup, a benchmark control problem that is typcial for waferstepper
applications is defined. This benchmark problem requires the system to make a
step of 25mm with a maximal settling time of 300ms. For this system, settling
time is defined as the time required for arriving at and staying within a band of
100 nm around the desired endposition. Fig. 4.3 illustrates these requirements.

The current etel control strategy is to use a pid controller in combination with an
S-curve reference trajectory. This control framework is implemented on the etel
proprietary dsc control system. In order to obtain the desired levels of accuracy,
the pid controller needs a sampling frequency of at least a few kilohertz. Due to
the agressive nature of the pid controller and in order to avoid actuator saturation,
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Figure 4.2: Measured frf (black) and frf of the identified model (grey) from the
current input [A] to the position of the slider [m].

only very small reference steps of a few micrometer can be fed to the pid controller.
Therefore, an S-curve smoothens the reference step such that the pid controller does
not saturate. The S-curve is computed on-line taking into account constraints on
velocity, acceleration and jerk of the reference trajectory. Actuator constraints can
however not be taken into account. Application of this control framework results in
a controller which satisfies the requirements of the benchmark problem. However,
the actuator constraints are not active in this solution. Hence, true time-optimality
is not yet obtained and the settling time can still be reduced further. In order to
apply more sophisticated controllers, this basic control system can be extended
by controllers implemented through C++ functions in Simulink and running on
a Speedgoat platform. This setup introduces an extra sample delay. If the etel
controller is implemented within this control scheme setting, it can only reach an
accuracy of 3 µm after 300ms. Therefore, for a fair comparison a relaxed version of
the benchmark settling requirement is defined; i.e. arriving at and staying within a
band of 3 µm around the desired setpoint.



78 INDUSTRIAL APPLICATION: COMBINING TOMPC WITH HIGH POSITIONING ACCURACY

Position

Time [ms]

2
5
m
m

1
0
0
n
m

300ms

Figure 4.3: Graphical representation of the benchmark requirements on a 25mm
reference step for the linear motor test setup at etel.

4.2 TOMPC with high positioning accuracy

This section describes and validates the adapted time-optimal control scheme. First,
the new control scheme which allows to combine short settling times with high
positioning accuracy, is presented. Then, the implementation and experimental
validation of the control scheme is discussed.

4.2.1 New control scheme for the time optimal controller

The benchmark control problem requires not only that the controlled system has a
very low settling time. Also a very high positioning accuracy is desired. In order
to obtain the specified positioning accuracy, the controller requires a sampling
frequency in the order of kilohertz. As such a high sampling frequency is not
attainable with the tompc controller, a switching control scheme as shown in Fig.
4.4 is proposed. This scheme is analogous to [Mayne and Schroeder, 1997]. In
this control scheme, the tompc controller is implemented as a feedback controller
running at a sampling frequency of 250Hz. This tompc controller is active during
most of the movement. However, in a region X0 close to the setpoint where the
high positioning accuracy is required, the tompc controller is switched off and a
local feedback controller running at a sampling frequency of 12 kHz is switched on.
This results in control algorithm 2.
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Figure 4.4: Switching control scheme to obtain time-optimal control for the linear
motor drive G. The time-optimal controller (tompc) runs at 250Hz and is active
during the system movement. Close to the setpoint, the linear controller running
at 12 kHz takes over the control action.

Algorithm 2 Optimization procedure for high-accuracy time-optimal control.
input: x̄l
parameter: X0
output: u? or error ‘infeasible problem’
start with initial guess for N
if x ∈ X0 then
apply local linear control

else
apply time-optimal control algorithm 1

end if

4.2.2 Proof of asymptotic convergence and constraint satisfac-
tion

In the linear optimization problem setting, the input and state constraints can
typically be expressed as polyhedral constraints u ∈ U and x ∈ X. In order to have
a usefull switching time-optimal controller, it is important to have a guaranteed
convergence towards the desired settling point and to ensure that the system
constraints are respected, i.e. the system input u ∈ U and the system state x ∈ X.
The following proof assumes that the system is driven towards the desired setpoint
zero. This is no constraint on the applicability of the proof as this zero reference
position can always be obtained by a shift in variables.

Assumption 1. A locally converging controller uk = Klocalxk exists.

Assumption 2. A local region X0 ⊂ X exists such that if xk ∈ X0, uk = Klocalxk ∈
U, and xk+1 = Axk +Buk ∈ X0.

Theorem 3. For each x0 = x̄l ∈ X(Nmax), control algorithm 2 generates a closed-
loop response for an undisturbed system without model-plant mismatch, which
is asymptotically attracted by xref; i.e. x̄l → xref when l → ∞. Moreover, the
controller always satisfies the system constraints and input constraints.

Proof.
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• If the initial state x0 ∈ X0; The system is controlled by the local controller
Klocal. By assumption 2, this controller is converging to the desired setpoint,
and by construction of X0, the system and input constraints are always
satisfied.

• If the initial state x0 ∈ X/X0; The system is initially controlled by the
tompc controller described in algorithm 1. This controller respects the
system constraints, and under the assumption of no model-plant mismatch is
converging towards the desired setpoint as proven in Theorem 2. Therefore,
the system state will be driven towards X0. In this region the local linear
controller is converging and respects the system constraints as shown in the
first part of proof.

If no state feedback controller but a dynamic output feedback controller is employed,
the proof is still valid if the system state x is extended to also include the internal
states of the feedback controller. However, this approach might restrict severely the
local region X0. Another approach which can be employed when dynamic output
feedback is used, is to transform this controller to an equivalent state feedback
controller. This transformation is possible if the order of the controller is smaller
than the order of the system, see eg. [Hartley and Maciejowski, 2009]. Note however
that although this proof guarantees constraint satisfaction, the set X0 can be too
small to be attainable by tompc in a practical implementation due to disturbances,
measurement noise and model-plant mismatch. For these applications either a
larger switching region X′0 can defined which results in constraint violation or the
linear controller can be detuned to increase X0 which results in a lower postioning
accuracy.

4.2.3 Experimental validation

Validation

The tompc controller is developed with 25 decision variables in order to keep the
on-line optimization possible at the sampling frequency of 250Hz. The prediction
horizon is extended by implementing the blocking technique as presented in Section
3.2.3. The internal state estimator is designed by pole placement with poles placed
at 100Hz. To introduce enough insensitivity with respect to measurement noise,
the value of Nmin is chosen equal to four. The local linear controller provided
by etel is a pid controller. The corresponding local region X0 is very small. In
practice, it is not guaranteed that the system will reach this local region X0 due
to the relatively low sampling frequency of the tompc controller of 250Hz and
model-plant mismatch. Therefore the switching between the tompc controller
and the pid controller takes place when the system is within a band of output
accuracy of 50 µm. This band has been chosen by trial-and-error as being the
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smallest band which can be guaranteed that to be reached. This control scheme
has been implemented in Simulink and runs on the Speedgoat platform. In this
implementation, the necessary sampling frequency transformations are included
by ‘rate transition blocks’ in order to keep all operations at different sampling
frequencies synchronized as shown in Fig. 4.5.

reference

real world

LINEARDRIVE [position]

[position]

[input]

[error]

[error]TOMPC controller

TOMPC

Speed estimator

LINEAR CONTROLLER

0

|u|

Figure 4.5: Implementation of the tompc controller at etel in Simulink. Necessary
frequency transformations are included to keep all controllers synchronised.
Depending on the absolute output error, the system is driven by the tompc
or pid controller.

A first test verifies whether the adapted control scheme satisfies the benchmark
problem requirements. Fig. 4.6 shows the position of the linear motor drive (black
solid line) if at time 0.1 s a reference step of 25mm is requested (grey solid line). Fig.
4.7 shows the corresponding absolute output error (black solid line) on a logarithmic
scale. This figure also shows the two benchmark accuracies of respectively 3 µm
(grey solid line) and 100nm (grey dashed line). This figure illustrates clearly that
the implemented control strategy satisfies easily the benchmark requirement of a
settling time of 300ms with a settling accuracy of 3 µm. Moreover, also the original
requirement of a settling accuracy of 100nm after 300ms is satisfied.
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Figure 4.6: Position of the linear motor drive (black solid line) and the reference
trajectory (grey solid line) for a reference step of 25mm at time 0.1 s.
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Figure 4.7: Absolute output error of the position of the linear motor on a logarithmic
scale (black solid line) for a reference step of 25mm at time 0.1 s. The benchmark
accuracies to be obtained after 0.3 s of movement are respectively 3 µm (grey solid
line) and 100nm (grey dashed line).

If a controller is developed for a serial production, it is important to have an off-
the-shelf controller which is stable and preferably also performs well with respect
to the design requirements. Therefore, in a second experiment, it has been verified
whether the designed controller is robust with respect to model-plant mismatch.
For this experiment, three controllers have been developed; one based on the
nominal plant dynamics, one based on the dynamics of a plant with an assumed
mass which is 10% heavier than the nominal mass and one based on the dynamics
of a plant with an assumed mass which is 10% lighter than the nominal mass.
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These three controllers have been implemented in Simulink and they have been
used to control the original system. Fig. 4.8 shows the resulting output behavior
for the controller developed with the nominal model (black dashed line), the lighter
model (black solid line) and the heavier model (black dotted line). Also, the
two benchmark accuracy lines of respectively 3 µm (grey solid line) and 100 nm
(grey dashed line) are presented. This shows clearly that the resulting controllers
still satisfy the benchmark requirements even for the considered high levels of
model-plant mismatch, which would almost never occur for high-end products.
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Figure 4.8: Absolute output error of the position of the linear motor on a logarithmic
scale for a reference step of 25mm at time 0.1 s. The errors are given for the nominal
controller (black dashed line) and for controllers designed for a system which is
respectively 10% lighter (black solid line) and 10% heavier (black dotted line)
than the nominal system. The benchmark errors are respectively 3 µm (grey solid
line) and 100nm (grey dashed line).

Discussion

In comparison with the current control approach used at etel, the advantage of the
developed tompc based control scheme is that time-optimal behavior is explicitly
imposed and not indirectly by a smoothened reference trajectory. Moreover, input
constraints can be dealt with directly. Therefore, the system can really be driven
towards its nominal constraints and true time-optimality is obtained.

A disadvantage of this adapted control scheme is the switching between the tompc
controller and the local pid controller, especially as this occurs at an error level
where the pid controller still saturates. The resulting system input exceeds the
nominal current constraint during a relatively long period and even exceeds the
peak current limit of 20A during a very brief period at 0.24 s as illustrated in Fig.
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4.9. This figure shows the control input corresponding to the output shown in Fig.
4.6. This undesirable input behavior is tackled by a second adapted control scheme.
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Figure 4.9: Control input current of the linear motor actuators when a step reference
of 25mm is requested at time 0.1 s and the switching between tompc and pid
control occurs at time 0.24 s.

4.3 TOMPC with high positioning accuracy: scheme
2

If the local set X0 is too small to be practically relevant, the problems of input
saturation of the switching control scheme as presented in Section 4.2 can not
be avoided. One approach to circumvent this problem is to design a different
local controller with a bigger linear control zone X0. These linear controllers have
typically a lower gain and bandwidth, which for some applications is not desirable.
For these applications, a second control scheme is proposed.

As this control scheme still has to satisfy the requirements on settling accuracy and
minimization of settling time, both the linear controller and the tompc concept
are kept in the new scheme. In order to avoid saturation of the linear controller,
this controller has to be fed with limited step references. Therefore, a second
control scheme as shown in Fig. 4.10 is proposed. In this scheme, the tompc
controller running at 250Hz is a pure feedforward controller which generates a
feedforward signal uff. This feedforward signal is obtained by algorithm 1 where
the initial system state at every time-sample is provided by system simulation.
The pid controller is only active and hence provides feedback action ufb if there
is a difference e between the actual output y and the simulated output ỹ. This
simulated output is obtained by a system simulator G̃. This system simulator
runs at the same sampling frequency as the linear controller, i.e. 12 kHz for the
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PID

TOMPC + G +

G̃

r uff
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e-y

ỹ

Figure 4.10: Adapted control scheme developed at kuleuven. The time optimal
controller runs at 250Hz. The pid controller and the simulator G̃ run both at
12 kHz.

considered control application, and not at the sampling frequency of the tompc
controller. As the tompc controller runs at a relatively low sampling frequency,
using its simulated system output as a reference ỹ for the linear controller, would
result in steps on the output error e that are too big and which would saturate
this linear controller. Fig. 4.11 illustrates this by showing the total input signal
(grey line) and feedforward input (black line) if the simulator G̃ runs at the same
frequency as the tompc controller.

Note that the desired control objective of control scheme in Fig. 4.10 is to track
the reference position r with system G, i.e. a zero off-set steady state error (r − y)
is desired. In order to obtain this, it is of the utmost importance that the internal
model of the tompc controller and the simulator G̃ are consistent, i.e. they have
the same dc gain. Also, as the tompc controller does not receive sensor feedback
and hence does not get noise corrupted state estimates, the value of Nmin can and
should be reduced.
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Figure 4.11: Total control input (uff + ufb) (grey solid line) and feedforward input
(uff) (black solid line) for a reference step of 25mm imposed at time 0.1 s, obtained
using the control scheme of Fig. 4.10 when the system simulator G̃ runs at 250Hz.
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The adapted control scheme and the control scheme presented in Section 4.2
are validated and compared numerically using a model of the considered linear
motor system. The model representing the system and the model used in the
tompc scheme are the same except for the gain which differs 5%. Also, an output
disturbance of 10 µm and measurement noise of 10nm have been added to the
system.

Fig. 4.12 shows the simulated system output for a reference step of 25mm (grey
solid line) for both control schemes. Both output behaviors are comparable. Fig.
4.13 illustrates this in more detail by showing the logarithmic value of the absolute
output error for the two control schemes. This figure illustrates that the new
control scheme (black solid line) obtains the same absolute accuracy as the control
scheme developed in Section 4.2 (black dashed line) if the simulator and tompc
model are consistent. Moreover, a comparable settling time is obtained. Fig. 4.14
shows that the total input (grey solid line), i.e. the sum of the feedforward input
and feedback input obtained with the feedforward control scheme, does not saturate
and does not differ much from the feedforward (black solid line) for these levels
of model-plant mismatch, measurement noise and disturbances. This in contrast
with the simulated input obtained by using the scheme as presented in Section 4.2
which is given in Fig. 4.15.

A disadvantage of this second control scheme is that the tompc does not determine
directly the control input. Therefore, contraint satisfaction is not guaranteed.
However, this can be mitigated in the following ways. First, if the feedforward
control signal is limited to the system’s nominal input constraints, these constraints
can be temporarily exceeded up to the peak currents. Therefore, if the expected
model-plant mismatch and disturbances are limited and this buffer is expected
to be sufficient, the feedforward can use all input up to the nominal constraints.
Second, if the input constraints are tight, the effects of input saturation can be
mitigated by imposing artificially lower constraints during optimization and thereby
creating an input buffer zone. Third, if limits on the disturbances are known, these
can be incorporated in the optimization procedure. Note however that the last
two approaches introduce conservativeness and therefore limit the time-optimal
behavior in comparison with a tompc controller.

4.4 Conclusion

This chapter discusses the application of time-optimal control on an industrial linear
motor setup with benchmark requirements with respect to positioning accuracy
and settling time that correspond to the control of waferstepper applications. In
order to obtain the required positioning accuracy, a linear controller running at
a sampling frequency in the kilohertz range is required. Therefore, two adapted
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Figure 4.12: Simulated output of the linear motor drive using the control scheme
developed at etel (black dashed line) and the adapted control scheme (black solid
line) and the reference trajectory (grey solid line) for a reference step of 25mm at
time 0.1 s.
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Figure 4.13: Absolute simulated output error of the position of the linear motor on
a logarithmic scale both with the control scheme developed at etel (black dashed
line) and the feedforward control scheme (black solid line) for a reference step of
25mm at time 0.1 s. The original benchmark errors are shown for completeness
and are put at respectively 3 µm (grey solid line) and 100 nm (grey dashed line).

control schemes have been presented in order combine time-optimality with this
linear controller.

The main contributions of this chapter are as follows. A first control scheme
which switches between a tompc controller running at a relative low sampling
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Figure 4.14: Simulated total input (grey solid line) and simulated feedforward input
(black solid line) for a reference step of 25mm requested at time 0.1 s obtained
with the feedforward control scheme where the system model G̃ runs at 12 kHz.

0 0.2 0.4 0.6 0.8
−20

−10

0

10

20

Time [s]

In
p
u
t
[A

]

Figure 4.15: Simulated total input for a reference step of 25mm requested at time
0.1 s obtained with the switching control scheme.

frequency and a linear feedback controller running at a high sampling frequency,
has been presented. It has been proven that this control scheme is nominally
converging and that this controller always satisfies the system constraints. This
controller has been validated experimentally during a one week research stay at
etel. These experiments show that the developed control scheme satisfies all
benchmark requirements. Also, experiments show that this control scheme is robust
with respect to model-plant mismatch. However, these experiments also show that
the conditions which guarantee constraint satisfaction are too restrictive such that
in an actual implementation input violation can occur. Therefore, a second control
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scheme has been proposed. In this control scheme, the time-optimal controller
generates a feedforward signal that is supplied to a system simulator that runs at
the same high sampling frequency as the linear controller, generating a reference
signal for the feedback scheme. Feedback in this control scheme is provided by
a linear controller which acts on the difference between the system output and
the simulated output. Although this scheme can not guarantee input constraints
satisfaction, it has been shown numerically that the nominal input constraints are
better respected.





Chapter 5

Conclusions and future work

5.1 Conclusions

Within this thesis, time-optimal controllers have been developed for mechatronic
systems within the mpc framework. The time-optimal mpc controllers realize
a minimization of the settling time for any given step reference by solving a
constrained optimization problem. This allows to take into account system
constraints as e.g. actuator limitations. One of the main challenges in this approach
is solving the optimization problem within a few milliseconds such that sampling
frequencies in the range of 100 hertz and more are feasible. These controllers are
developed for applications which do not perform repetitive tasks but for which
minimization of settling time is nevertheless crucial.

In the design of mpc based time-optimal controllers, the following main results
have been obtained. First, the time-optimal problem has been defined within
the mpc framework. Then, the underlying optimization problem structure has
been exploited by incorporating system knowledge to speed-up the solution of
the optimization problem. This allows sampling frequencies up to 250 hertz and
optimization problems with up to 45 decision variables. Moreover, it has been
proven that these controllers are converging towards the desired setpoint. Last, all
controllers have been validated experimentally on representative mechatronic test
setups like linear motors and an overhead crane. Hence, all hypotheses stated in
Section 1.3 have been met.

Within this general framework, three time-optimal mpc controllers have been
developed.

First, the predictive prefilter has been developed as a more performant replacement
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for traditional linear prefilters. In comparison with these prefilters, time-optimality
can be obtained for any possible reference step while respecting the system
constraints. The real-time implementation is obtained by approximating the
time-optimal problem by one linear optimization problem. Also, robustness with
respect to model-plant mismatch is introduced in the framework. This controller
has been validated on a mass-spring-damper system with a sampling frequency of
100 hertz.

Second, the time-optimal prefilter is extended to include system feedback in order to
be able to reject disturbances. This closed-loop controller solves the mixed-integer
time-optimal optimization problem by a feasibility search. In this feasibility search,
the problem structure and all a priori knowledge on the solution is exploited. The
developed controllers have been validated experimentally on a linear motor drive
and an overhead crane which have sampling frequencies of 200 hertz and 60 hertz
respectively. Also, the C++ implementation of the controller is made publicly
available on-line.

Third, the time-optimal feedback controller is adapted for an industrial linear
motor. For this application, not only time-optimality is important, but also a very
high absolute positioning accuracy. In order to obtain this accuracy, sampling
frequencies in the kilohertz range are required. Therefore, a control scheme
is proposed which combines the time-optimal controller with a linear feedback
controller. This control scheme has been validated experimentally and satisfies the
industrial benchmark requirements on both settling time and settling accuracy.
Moreover, the controller proves to be robust with respect to model-plant mismatch.
However, input constraint satisfaction when the linear controller is employed should
be analyzed further.

Hence, in this thesis three time-optimal control approaches have been developed as
an alternative to current linear control strategies and normal mpc controllers. An
advantage of the developed controllers in comparison with linear control strategies
is the on-line computation of the controller which allows constraint satisfaction
and time-optimality for all reference steps and this without introducing a delay
between a step request and the start of control action. However, this is at a cost of
more expensive real-time hardware. In comparison with normal mpc approaches,
the advantage is that true time-optimality can be enforced. Moreover, a first step
has been made towards the actual implementation of the developed time-optimal
controllers on an industrial setup.

5.2 Recommendations for future work

For many industrial mechatronic applications, time-optimality is a critical issue and
this thesis is a first step towards time-optimal mpc controllers. However, there are
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still several restrictions and shortcomings before they can be actually implemented.
Therefore, further research should focus on future application of the developed
time-optimal control techniques on real-world setups. This research can be divided
into two categories: theoretical and practical extensions.

Theoretical extensions

One very important theoretical extension is a further decrease in required
computational time. In this thesis, sampling frequencies up to 250 hertz are
obtained. However, a further increase by a factor of ten makes the real application
of the time-optimal controllers more probable. In order to this, it should be
analyzed how the problem structure can be exploited further. Also, other solution
techniques for the underlying optimization problem can be analyzed to see how
their properties can be exploited to speed up the optimization algorithm. Especially
an analysis of uncondensed qp-solvers [Kirches et al., 2011], seems relevant for the
considered optimization problems.

In the current development of the time-optimal controllers, knowledge of the system
state has been assumed. However, for practical application of these controllers,
the state has to be estimated. The bandwidth of the state estimators does have
an influence on the total control performance. Therefore, state estimation should
also be analyzed more thoroughly and possibly be incorporated into the total
time-optimal optimization problem.

Next, the robustness with respect to model-plant mismatch has not yet been
analyzed theoretically. It seems essential to analyze systematically what the
corresponding degradation in performance is. Also, stability under model-plant
mismatch is an unexplored area of research. Moreover, incorporating model
uncertainty in the time-optimal feedback control framework seems necessary.

Analogously, the inclusion of strict output constraints without creating infeasible
problems has to be analyzed. Output and state constraints are usually introduced in
mpc problems as soft constraints to avoid infeasibility of the optimization problems,
i.e. these constraints can be violated if this is necessary to keep the problems
feasible. However, by construction of the total time-optimal optimization problem,
soft constraints can not be imposed to the system as they will be neglected in the
feasibility search. Therefore, the combination of strict output constraints and input
constraints is nearly impossible in the current framework.

Another area for future theoretical research is to analyze further how the controller
can combine the relative slow sampling times necessary to compute the time-optimal
controller with a feedback controller running at high sampling frequencies necessary
for the high absolute accuracy. Two approaches which combine these requirements
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are presented in Chapter 4. However, a more thorough analysis of these methods
concerning constraint satisfaction is necessary.

Moreover, an extension of the developed techniques to non-linear systems is for the
practical application of the control law an important issue. A first step towards
this goal might be the extension of tompc to mildly non-linear systems which can
be represented by lpv models.

Note that although the time-optimal controllers only have been validated on siso
systems, the current control setups are conceptually perfectly transferrable to mimo
systems.

Practical extensions

Second, the application of time-optimal mpc controllers to industrial systems is
still an almost completely unexplored field. The developed time-optimal controllers
are an interesting approach for systems which perform non-repetitive tasks and
require time-optimality for any possible reference step. However, for many of
these applications, the developed mpc controllers might have to be tuned further
such that they can serve these applications optimally. Moreover, by applying the
controller to real applications, industrial requirements can be analyzed and the
further development of the controllers can be directed to meet these requirements.

As presented in Chapter 4, a promising application for tompc are linear motors
which serve in waferstepper applications. For these applications with relatively
long movement times in comparison to the processing time, a reduction in settling
time can contribute significantly to the total production time and hence increase
the total system throughput and rendability. For these applications, a further
analysis of high-accuracy time-optimal control is crucial.

For all machining operations where a load has to be transported from point-to-point,
time-optimal controllers seem an interesting control technique. This especially in
the rapidly changing production environments where series of products become
smaller and pure repetitive tasks hence become less ubiquitous.

Another interesting application area for time-optimal control are pick-and-place
machines. If these machines are used in production environments where the
requested displacement references are not known beforehand, they can decrease
the settling time substantially in comparison with linear approaches. However,
depending on the transportable load, non-linear or more robust control approaches
have to be developed in order to account for the change in system mass and hence
system dynamics.

Time-optimal controllers might also be employed in automated warehouses. In
these warehouses, products have to be transported from point-to-point and
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minimization of the total transportation time is required. On a higher level,
optimal transportation strategies have been developed for these applications. The
lower level controllers that realize the transportation strategies have to the author’s
knowledge not yet been taken into account.

Likewise, for overhead cranes time-optimal controllers can be interesting. Currently,
these systems are often controlled by input shapers in order to reduce residual
oscillatory vibrations and settling time. However, to allow hoisting, non-linear
adaptations to the control law are crucial.





Appendix A

Implementation of the
TOMPC controller

This appendix presents the manual of the TOMPC controller.

TOMPC manual

Manual of the TOMPC package for time optimal control
through MPC

Lieboud Van den Broeck May 8, 2011

1. Introduction
This package contains the C++ implementation of a method which minimizes
the settling time of (mechatronic) systems on a step reference. This controller
is developed within the MPC framework and called time optimal MPC
(TOMPC). This package contains a C++ function which implements the
TOMPC controller, a matlab function which defines all variables necessary
for control and a Simulink scheme which simulates the controller. This
package contains also part of the source code of the package qpOASES
which implements the underlying active set QP-solver. The design and
implementation of the time optimal controller are in more detail described in
[1].

2. Installation

• Download the package TOMPC
• Unpack the package
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• In Matlab, browse to the TOMPC path
• Run make.m
• Run a simulation test. This simulation example minimizes the settling

time of a second order system subject to constraints on the input and
slew rate of the input.
– Run tompcpreparation.m
– Open tompcsimulate.mdl
– Run tompcsimulate.mdl

3. How to use
First, the control problem has to be set up. All TOMPC variables have to be
defined in the matlab m-file tompcpresentation.m. Also, the horizon length,
sampling time and number of system states have to be defined in the C++

file tompc.cpp.
Second, the tompc.cpp has to be compiled by running the file make.m. If the
sampling time, number of system states and horizon length are kept constant,
this compilation has to be done only once.
Third, run the file tompcpreparation.m to define all variables and constraints
in the matlab workspace. Also, the system dynamics matrices are condensed.
Fourth, run the controller in simulink, tompcsimulate.mdl.

4. Implementation on external hardware
The developed TOPMC controller has been implemented successfully on a
dSpace board DS1103 through the real-time target toolbox in Simulink for
the optimal control of an overhead crane [2]. An extra C++ compiler for
dSPACE has to be added though in order to be able to compile this controller.
The controller has also been implemented on a Speedgoat target machine
through the xpc-target toolbox in Simulink for the optimal control of a linear
motor [3].
For these implementations, the following links to the external code has to be
added:

• In “configuration parameters → real-time workshop → customcode →
include directories”; add the path to the headerfiles of qpOASES.

• In “configuration parameters → real-time workshop → customcode →
source files”; add all source files of qpOASES
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