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There has been a general belief in school effectiveness research that schools have a larger impact on their 

students‟ growth than on their students‟ outcomes at a certain point in time. This belief emanates mainly from the 

research results in which the school effect on student initial status for mathematics has been found to be about three 

times less than the school effect on learning rates or students‟ progress over time. Several studies have prompted growth 

in student outcomes over time to gain great acceptance among many educational effectiveness researchers as the most 

appropriate criterion for assessing school effectiveness. The investigation of such changes in students‟ outcomes has 

dramatically boosted the number of longitudinal studies in educational effectiveness research in the last two decades. In 

addition to this, researchers now understand that cross-sectional designs underestimate the impact of schools and that 

these designs do not provide the proper framework for studies on school effectiveness. 

 

The use of repeated measures data make multilevel growth curve models an invaluable statistical tool in 

educational research. This is because a multilevel growth curve model estimates changes in student outcomes more 

accurately by taking into account the hierarchical nature of the data. Befitting results are not only appealing to 

researchers but also to policy makers and parents who both want a meticulous education for their citizens and children 

respectively. 

 

The main aim of this dissertation is to improve the statistical methods applied by educational effectiveness 

researchers in order to have more credible results. In this context, school effect estimates from traditional methods and 

the proposed methods of this dissertation are compared to argue persuasively for the need for more advanced techniques 

when using growth curve models. Such techniques will not only be applicable to educational effectiveness research in 

but to educational research as a whole and all other research fields interested in growth curve modelling. The school 

effect estimates on student status and student growth are used for different types of student outcomes like well-being, 

mathematics, and language achievement. 

 

Manuscript 1 defines clearly how the school effect on students‟ growth can be estimated using multilevel growth 

curve models with more than two levels. It also shows how the manner of coding time affects these estimates. 

Manuscript 2 introduces techniques to properly handle multilevel growth curve models with serial correlation at higher 

levels beyond level 1, while Manuscript 3 introduces a new multilevel growth curve model which can be used to model 

growth data with two or more levels of serial correlation simultaneously. Because most studies of school effects on 

students‟ growth have focused only on one effectiveness criterion, which is problematic given that school effects are 

only moderately consistent over different criteria. Moreover, the consistency issue has seldom been studied through 

multivariate growth curve models; Manuscript 4 introduces a model that can handle multivariate multilevel growth data 

with an unequal number of measurement occasions. 

 

Data from the LOSO-project (the Dutch acronym for Longitudinal Research in Secondary Education) and the 

SiBO-project (the Dutch acronym for School Career in Primary School) are used to answer the research questions of 

this dissertation. The main software used is SAS 9.2, MLwiN 2.02 and Mplus 6.1.   

 

This dissertation shows clearly how the choice of a time coding affects school effect estimates and their 

interpretation. It also recommends that the choice of a time coding should not only be based on the ease of interpretation 

and model convergence. The results show that school effects on students‟ well-being and language achievement in 

secondary school are greater for student growth than for student status. This work also indicates that the common 

assumption of serially uncorrelated level 1 residuals usually fails and therefore the need for appropriate modelling of 

this serial correlation is invaluable. These results demonstrate how modelling of serially correlated residuals at level 1 

or level 2 has a huge payoff on school effects estimates. Because of the increasing popularity of multilevel growth curve 

models as a flexible tool for investigating longitudinal change in students‟ outcomes, this study investigates some covert 

issues in methodology resulting from repeated measures data structure. A complex double serial correlation multilevel 

growth curve model is developed and the results of this model show great improvement in school effects estimates 

compared to those of models without double serial correlation correction. This dissertation also investigates the school 

effects on pupils‟ growth in both mathematics and reading comprehension (and their relation) in primary schools taking 

previous changes in mathematics into account through a bivariate transition multilevel growth curve model. The results 

show that stronger growth in mathematics tends to associate with stronger growth in reading comprehension. Earlier 

growth in mathematics is also found to predict subsequent growth in reading comprehension. 
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In onderwijseffectiviteitsonderzoek wordt algemeen aangenomen dat scholen een grotere impact hebben op de 

leerwinst dan op de resultaten van de studenten op één bepaald tijdstip. Deze overtuiging is voornamelijk gebaseerd op 

onderzoeksresultaten waarin het aandeel van het schooleffect op de aanvangsscore wiskunde ongeveer drie keer minder 

groot bleek te zijn dan het aandeel op de leerwinst of de vorderingen die de studenten boeken gedurende een bepaalde 

tijd. Deze en een aantal andere studies hebben ertoe geleid dat de leerwinst van leerlingen binnen het 

onderwijseffectiviteitsonderzoek beschouwd wordt als het beste criterium om schooleffectiviteit te meten. Het 

onderzoek van dergelijke veranderingen in de leerlingresultaten heeft het aantal longitudinale studies in het 

onderwijseffectiviteitsonderzoek drastisch doen stijgen in de laatste twee decennia. Bovendien zien onderzoekers nu in 

dat cross-sectionele designs de impact van scholen onderschatten en dus geen degelijk kader bieden voor 

schooleffectiviteitsonderzoek. Het gebruik van gegevens uit herhaalde metingen maakt multiniveau groeicurvemodellen 

een waardevolle analysetechniek in het onderwijsonderzoek. Dit komt omdat een multiniveau groeicurvemodel 

veranderingen in leerlingresultaten nauwkeuriger schat door rekening te houden met de hiërarchische aard van de 

gegevens. Correcte resultaten zijn niet alleen belangrijk voor onderzoekers, maar ook voor beleidsmakers en ouders, die 

beiden een degelijk onderwijs voor hun burgers, respectievelijk kinderen, wensen. 

 

Het belangrijkste doel van dit proefschrift is het verbeteren van de statistische methoden die 

onderwijseffectiviteitsonderzoekers gebruiken om tot zo meer correcte resultaten te komen. In dit opzicht zijn de 

traditionele schattingen van schooleffecten en de voorgestelde methoden van dit proefschrift met elkaar vergeleken om 

zo de noodzaak voor meer geavanceerde technieken bij het gebruik van groeicurve-modellen in de verf te zetten. 

Dergelijke technieken zullen niet alleen van toepassing zijn op het onderwijseffectiviteitsonderzoek, maar ook op het 

onderwijsonderzoek in het algemeen, en op alle andere onderzoeksgebieden die geïnteresseerd zijn in 

groeicurvenmodellering. De schattingen van het effect van de school op de prestaties en groei van de leerlingen worden 

gebruikt voor verschillende types van leerlingresultaten, zoals welbevinden, prestaties voor wiskunde en voor 

Nederlands. 

 

Manuscript 1 definieert duidelijk hoe het effect van de school op de groei van de leerlingen geschat kan worden 

met behulp van multiniveau groeicurvemodellen met meer dan twee niveaus. Het toont ook aan hoe de tijdscodering 

van invloed is op deze schattingen. Manuscript 2 introduceert technieken om multiniveau groeicurvemodellen met 

seriële correlatie op een hoger niveau dan niveau 1 goed te verwerken. Manuscript 3 introduceert een nieuw 

multiniveau groeicurvemodel dat kan worden gebruikt om longitudinale data met twee of meer niveaus van seriële 

correlatie tegelijk te modelleren. De meeste studies naar schooleffecten op de groei van studenten zijn slechts gericht op 

één effectiviteitscriterium, wat problematisch is omdat de effecten van de school slechts matig consistent zijn over 

verschillende criteria. Bovendien werd deze consistentiekwestie zelden onderzocht door middel van multivariate 

groeicurvemodellen. Vandaar dat Manuscript 4 een model introduceert dat kan omgaan met longitudinale, multivariate 

en multiniveau gegevens met een ongelijk aantal meetmomenten. 

Gegevens van het LOSO-project (Longitudinaal Onderzoek in het Secundair Onderwijs) en het SiBO-project 

(Schoolloopbanen in het Basisonderwijs) worden gebruikt om de onderzoeksvragen van dit proefschrift te 

beantwoorden. De belangrijkste software die werd gebruikt zijn SAS 9.2, MLwiN 2.02 en Mplus 6.1. 

 

Dit proefschrift laat duidelijk zien hoe de keuze van tijdscodering invloed heeft op de schattingen van 

schooleffecten en hun interpretatie. Er wordt dan ook aanbevolen de keuze van een tijdscodering niet alleen te baseren 

op het gemak van de interpretatie of de convergentie van het model. De resultaten laten zien dat de schooleffecten op 

het welbevinden en de taalprestaties van de leerlingen in het secundair onderwijs, groter zijn voor de groei van de 

studenten dan voor de behaalde scores op een bepaald moment. Dit werk illustreert ook het belang van het modelleren 

van serieel gecorreleerde residuen op niveau 1 of niveau 2. Omwille van de toenemende populariteit van multilevel 

groeicurvemodellen als een flexibel instrument voor het onderzoeken van longitudinale verandering in 

leerlingenresultaten, onderzoekt deze studie een aantal verborgen problemen in de methodologie die voortvloeien uit de 

datastructuur van herhaalde metingen. We ontwikkelden een complex multilevel groeicurvemodel met dubbele correctie 

voor seriële correlatie, en de resultaten van dit model laten een grote verbetering in de schattingen van schooleffecten 

zien vergeleken met die van modellen zonder dubbele seriële correlatie correctie. Dit proefschrift onderzoekt ook de 

schooleffecten op de groei van leerlingen, zowel voor wiskunde als voor begrijpend lezen (en hun relatie) in het 

basisonderwijs, rekening houdend met eerdere groei in wiskundeprestaties via een bivariaat transitie multilevel 

groeicurvemodel. Met behulp van een voorgesteld tweefasig effectiviteitscriterium en het bivariaat transitie multilevel 

groeicurvemodel, tonen de resultaten aan dat een sterkere groei in de wiskunde samenhang vertoont met een sterkere 

groei in begrijpend lezen. Eerdere groei in wiskunde blijkt de latere groei in begrijpend lezen te kunnen voorspellen. 

Dickson Nkafu Anumendem, Gevorderde technieken in multiniveau groeicurvemodellen. 

Toepassing op onderwijseffectiviteitsonderzoek. 
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INTRODUCTION 
 

The field of educational research has seen in the past three decades a great 

change in the use and development of sophisticated statistical methodology and 

techniques for analysing longitudinal data. The very early results of Raudenbush‟s 

(1989, 1995) more advanced growth models have challenged researchers over the use 

of archaic or outdated statistical methodology. For example, cross-sectional analysis, 

which do not provide the proper framework for studies in school effectiveness 

processes because many of these processes change with the passing of time. Despite 

the wide range of statistical methods available for the analysis of multiple wave data, 

growth curve models seem to have gained great acceptance among many educational 

effectiveness researchers as an invaluable tool for assessing school effectiveness. The 

investigation of changes in students‟ outcomes has necessitated the use of repeated 

measurements and resulted in the general call for longitudinal studies of school 

effects (Teddlie & Reynolds, 2000). 

One of the most appropriate ways of modelling longitudinal data is by the 

estimation of individual growth trajectories as advocated by several authors (Rogosa, 

1995; Singer & Willett, 2003; Willett, 1997). Growth curve models (GCM) assume 

that there is a growth curve that has given rise to the scores on the measurement 

occasions. The model puts smooth curves over the observed measures to estimate 

continuous trajectories that are believed to underlie the observed outcomes (De 
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Fraine et al., 2005). These models are also multilevel models, because measurement 

occasions are nested within students (who themselves are nested within schools). In 

this dissertation, “student growth” refers to the growth parameters or slope and 

“student status” refers to the intercept of the growth curve model. The general 

measure of school effect is the intraclass correlation for random intercept GCM 

models. In addition, this dissertation introduces the percentage of variance between 

schools for both criteria (status or growth) as a measure for the school effect in 

random intercepts and random slopes GCM. 

There are a number of studies that have been carried out in this domain but with 

diverse results. Some authors confirm that the school effect is larger when student 

growth is used as the effectiveness criterion (May, Supovitz, & Perda, 2004; 

Raudenbush & Bryk, 2002; Van Damme & De Fraine, 2005); others found exactly 

the opposite (Reardon, 2003). Some others have even found mixed results when more 

than one outcome is used (De Fraine et al., 2006; Wilkins & Ma, 2002; 2003). 

This dissertation investigates how the choice of a time coding affects school 

effects estimates and their interpretation. It also gives the circumstances under which 

time coding would be appropriate while illustrating on the pitfalls of such choices 

when based only on the ease of model interpretation and convergence. The 

hypothesis here is that school effects in student‟s well-being and language 

achievement in secondary school, are greater for student growth than for student 

status. This work also looks deeper into the common assumption of serially 

uncorrelated level 1 residuals and hypothesizes that this assumption usually fails and 

therefore the need for appropriate modelling of this serial correlation is invaluable. 

Because of the increasing popularity of multilevel growth curve models as a flexible 

tool for investigating longitudinal change in students‟ outcomes, this dissertation 

makes a critical look into some of the coverts in methodology resulting from repeated 

multilevel data structure. Multilevel growth curve models are also frequently applied 

to data with more than two levels of hierarchy as a result necessitating a closer look 

at more advanced forms of serial correlation. A complex double serial correlation is 

developed and empirical tested and the results compared with other ordinary growth 
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curve models. This comparison is done to identify how much improvement this new 

approach with double serial correlation correction can bring on the estimation of 

school effects for the case of three level data. 

Most studies of school effects on student growth have focused only on one 

effectiveness criterion, which is problematic given that school effects are only 

moderately consistent over different criteria. Moreover, the consistency issue has 

seldom been studied through multivariate growth curve models. This study 

investigated the school effects on pupils‟ growth in both mathematics and reading 

comprehension (and their relation) in primary schools taking previous changes in 

mathematics into account through a bivariate transition multilevel growth curve 

model. Using the proposed two-stage effectiveness criteria and the bivariate transition 

multilevel growth curve, it is hoped that the results showed that stronger growth in 

mathematics tends to associate with stronger growth in reading comprehension. 

The cardinal aim of this dissertation is therefore to ameliorate the statistical 

methods applied by researchers in the field of educational effectiveness in order to 

have more valid results. To do this, school effect estimates from the traditional 

methods and the new methods are adequately examined to show the need for more 

advanced techniques when using growth curve models. Such techniques will not only 

be applicable to educational research but all research fields interested in modelling 

growth. The school effect estimates on student status and student growth are used for 

different types of student outcomes like well-being, mathematics, Dutch language. 

Manuscript 1 defines clearly how the school effect on student‟s growth can be 

estimated using multilevel growth curve models with more than two levels. It also 

shows how the manner of coding time affects these estimates. Manuscript 2 

introduces techniques to properly handle multilevel growth curve models with serial 

correlation at higher levels beyond level 1 while Manuscript 3 establishes a new 

multilevel growth curve model which can be used to model growth data with two or 

more levels of serial correlation simultaneously. Finally Manuscript 4 introduces a 

model that can handle multivariate multilevel growth data with an unequal number of 

measurement occasions. 
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1. Problem statement 
 

There has been a general belief in school effectiveness research that schools 

have a larger impact on their students‟ growth than on their students‟ outcomes at a 

certain point in time. This belief emanates mainly from the research results of 

Raudenbush in which the proportion of the school effect on student initial status for 

mathematics was about 6 times less than that for learning rates or students‟ progress 

over time (Raudenbush, 1989, 1995). He found that the school accounts for more 

than 80% of the variance in mathematics growth over time. The above research and 

many others have evoked the use of growth in student outcomes over time and this 

growth gained great acceptance among many researchers as the most appropriate 

criterion for assessing school effectiveness. The investigation of such changes in 

students‟ outcomes has boosted the number of longitudinal studies in educational 

research. In addition to this, researchers now understand that cross-sectional designs 

underestimate the impact of schools and that these designs do not provide the proper 

framework for studies on school effectiveness. The use of repeated measure data 

makes multilevel growth curve models an invaluable statistical tool in educational 

research. This is because this statistical method models changes in student outcomes 

more efficiently by taking into account the hierarchical nature of the data. More 

accurate results are not only appealing to researchers but also to policy makers and 

parents. 

1.1.     Educational effectiveness research 

 

Educational effectiveness research is a domain that studies questions like: Do 

schools really differ with respect to their impact on pupils? How big is this effect? 

How can it be assessed? What are the factors that cause the effect? Can this effect be 

found in all types of educational contexts, such as in primary and secondary schools, 

in the various countries around the world? What are the theoretical explanations 

behind research findings in this area? It is of course capital that a criterion (or several 

criteria) be chosen to connote that one school is more effective than another. The 
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sphere of influence of educational effectiveness has proportionately stretched to 

assessing the magnitude and stability of these school effects. This dissertation will 

look into two criteria for educational effectiveness: student status and student growth 

(in cognitive and non-cognitive outcomes) with great focus on the magnitude and 

accuracy of school effects estimates for these two criteria. 

1.2.     Modelling educational effectiveness 

 

Reading through the literature of educational effectiveness research, one finds 

several definitions and theoretical models proposed by different authors. There are 

many definitions of the concept “effectiveness”, especially because every discipline 

has its own viewpoint. Scheerens and Bosker (1997) provide a description of three 

possibilities: the economic, the organization-theoretical and the pedagogical 

definitions. Most definitions indicate that a school or a class is more effective when it 

realizes the desired goals to a higher extent. But what is meant by “desired goals” 

also differs immensely across studies and fields. This makes the choice of the 

effectiveness criterion a very crucial issue. The current study will address two main 

criteria: student status and student growth, for both students‟ cognitive and non-

cognitive outcomes. 

However, educational effectiveness can be broken down into at least two major 

parts: instructional effectiveness and school effectiveness. Instructional effectiveness 

is used to describe educational effectiveness at the classroom level while school 

effectiveness is used for the effectiveness of the school as an organization. Scheerens 

and Creemers (1989) define educational effectiveness as “the effectiveness of the 

educational system in general comprising all modes of schooling”. With the passing 

of time, there has also been a transition of school effectiveness to educational 

effectiveness. The main reason for this being the fact that school effectiveness has 

been broadened to include different modes and different organizational levels of 

schooling. 

A model is used to specify or visualize complex phenomena in a simplified or 

reduced manner. It is generally made of two parts: the conceptual and the formal one. 
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The conceptual part usually involves abstract terms. These terms are usually units 

like facts, concepts, and variables. The formal part is a system of relationships among 

these units. Looking at the background of educational effectiveness, it is possible to 

distinguish three disciplines and thus the models required for each (Scheerens & 

Bosker, 1997). The economic approach, which focuses on the “Education Production 

function” (Monk, 1992), the educational-psychological approach with main focus on 

“Effective Instruction and Learning Conditions” (Creemers, 1994) and the generalist-

educationalist approach, that focuses on integrated, multilevel school effectiveness 

modelling (Bosker & Scheerens, 1994). The third category will be our main concern 

in this dissertation because it is in a sense a combination of the first two approaches. 

Details of these approaches can be read in the research contributions of Creemers 

(1994) and Scheerens (1990). 

2. Statistical methodology 
 

The most popular statistical analysis methods in educational effectiveness 

research are concerned with modelling a single response variable, measured for a 

sample of subjects, coming from a certain population. This concept can also be 

extended to measuring several aspects, several response variables, of a sample of 

subjects from a certain population and the data analysed as multivariate data. 

However, a design where, for each subject, several measurements of the same 

variable are recorded under different experimental conditions is often termed a 

repeated measures design. If the variable is measured repeatedly over time for each 

subject, we describe this as longitudinal data. Longitudinal techniques are therefore 

those applied to studies in which subjects are measured repeatedly through time. This 

is in contrast to cross-sectional studies in which a single outcome is measured for 

each subject. Let‟s consider an example presented in the book of Verbeke and 

Molenberghs (2000) to make this clearer. They describe a repeated measurement 

study design where for each subject, diastolic blood pressure is recorded under 

several experimental conditions (sitting, standing, lying etc.). If the time at which 
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each measurement is taken, is also recorded, then the diastolic blood pressure is 

measured repeatedly over time for each subject, representing a longitudinal study. 

However, it will not be longitudinal if emphasis is laid only on the position of 

the patient and not on the time the measurement is made. In this case the order of 

taking the repeated measurements can be different for the different patients. Some 

could start with lying while others start with standing. It is worth noting that repeated 

measures can also be done over spatial dimensions resulting in a spatial data. The 

latter of the design above can be seen as spatio-temporal data if the distance of the 

centre of gravity (standing > sitting > lying) of the patient is considered from the 

floor together with the time of the repeated measurements. Though a medical field 

example, similar settings can be obtained in educational effectiveness studies. 

Although longitudinal data can also be viewed as a multivariate design in terms 

of its data structure, there are many fundamental differences, which affect the mode 

of analysis of such data. The analyses of such complex data structure therefore 

require special statistical techniques to properly model, carefully program and 

judiciously run the relevant software. 

During the modelling of repeated measurements, it happens that correlation 

comes in to play a very pertinent role. This type of correlation called a serial 

correlation which is almost always present in longitudinal data only and not in other 

forms of clustered data needs special attention. It is therefore worthwhile that this 

serial correlation is taken into account when considering growth modelling as the 

statistical model choice. The importance of accounting for serial correlation cannot 

be undermined if school effects are to be properly estimated. Correcting for serial 

correlation can greatly affect the estimation of model variance and covariance 

parameters which are used to estimate the school effect. To know how to deal with 

this correlation, it is important to distinguish between several kinds of correlation 

(Fahrmeir & Tutz, 2001). In general, there are four major types of correlations that 

can be distinguished. These are clustered data (baby rats from the same mother), 

longitudinal data (repeated measurements over time), spatial data (repeated 

measurement of soil fertility from the centre of an experimental farm), and data of 
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measurements of different variables, taken on the same subject. Analogous studies 

can be designed in educational research, think for example of correlation in clustered 

data as children from the same family attending the same school. Or correlations in 

longitudinal data as students‟ repeated measurements through their entire primary or 

secondary school. Collateral for spatial data can be looking at children‟s repeated 

measurements with respect to their home distance from school. Finally, several 

student outcomes can be measured on the same student. This dissertation will focus 

only on two of these correlations, the second category (clustered data) and a 

combination of the second and last categories (clustered data and repeated 

measurements). 

There are several methods proposed in the literature (Fahrmeir & Tutz, 2001) on 

the types of statistical techniques that can be applied to handle longitudinal data 

depending on the type of response. Amongst which is the general linear model for 

continuous and normally distributed responses. These models can be extended to 

linear mixed models, by including random effects in the model, which allow for the 

modelling of subject-specific characteristics of individuals. It will be possible to 

cover most of the heterogeneity of the data by taking subject-specific differences into 

account, which is not possible by allowing only fixed effects that only yield 

population-averaged models. 

3. Data description 

3.1.     Longitudinal research in secondary education (LOSO) 

 

The first data that is considered in the research project leading to this 

dissertation is the LOSO which is the acronym for the Dutch form “Longitudinaal 

Onderzoek in het Secundair Onderwijs” (Anumendem et al., in press; De Fraine et 

al., 2007; Van de gaer et al., 2009). This is a large scale research project in which 

6411 students from 90 secondary schools in Flanders are followed from September 

1990 till date even after the completion of secondary school studies. In order to 

follow up students changing schools, the research was limited to two regions in 
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Flanders taking into account their representativeness in the educational setting in 

Flanders. 

Data collection on the student characteristics was made possible via a number of 

questionnaires while the student outcomes (cognitive or non-cognitive), Dutch and 

mathematics achievement were assessed a number of times. These assessments were 

done via curriculum based tests administered at five different measurement 

occasions: at the beginning and end of first grade, and at the end of the second, fourth 

and sixth grades. A common scale for the Dutch language was obtained for the five 

measurement occasions using Item Response Theory. For the non-cognitive student 

outcomes, the same questionnaire was administered four times during secondary 

school. This questionnaire includes items on well-being, academic self-concept, 

integration in the class, degree of effort for studying and teacher-student relationship. 

There are also background variables which include gender, age, socioeconomic status 

of family, language spoken at home and initial cognitive abilities. 

3.2.     Longitudinal research in primary education (SiBO) 

 

The second data set considered for this project is the SiBO-data 

(Schoolloopbanen in het BasisOnderwijs). The SiBO data are from a large scale 

project on school careers in primary education which started in September 2002 in 

the last class of the kindergarten (Maes, Ghesquière, Onghena, & Van Damme, 

2002). This project involves 210 schools with over 8500 pupils, who were followed 

through their primary school career. The data obtained come from a reference sample 

which is a representation of the Flemish primary school population. After getting this 

sample, three additional samples were taken: that is the GOK-sample (Gelijke-

OnderwijsKansenbeleid [Equal Educational Opportunities Policy]), a method-school-

sample and a Ghent-sample. Data collection at the school, teacher and pupil level was 

by means of questionnaires and tests. There are also cognitive and non-cognitive 

effectiveness criteria similar to that discussed for the LOSO-project. Similar 
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background variables as for the data from the LOSO-project are also available in this 

SiBO-project data. 

4. Structure of the dissertation 
 

This dissertation consists of four manuscripts that have been submitted to peer-

reviewed journals in the domains of educational effectiveness research and statistical 

methods.  

Manuscript I deals with the hypothesis that school effects will be larger when 

the intercept refers to a later point in time (May et al., 2004). Though there are a 

number of publications on growth curve models today, the relationship between the 

initial status and the time at which it is defined was however first indicated by 

Rogosa, Brandt, and Zimowski (1982) and Rogosa and Willett (1985). The initial 

status is not the only concern in growth curve models but also its relationship with the 

growth rate and covariates. The first manuscript intends to add more flesh to the vivid 

discussions already found in the literature on the implications of poorly defining the 

time variable (Duncan et al.,1999; McArdle, 1988; Willett & Sayer, 1994). Many 

others have build on these ideas and thus brought about research in the invariance of 

growth curve parameters due to changes in the definition of the initial status. In 

educational effectiveness research as well as other research fields, the initial status is 

most often not the natural origin, but another one defined by factors which are most 

of the time different from the origin of the process being investigated. The first 

manuscript gives a simple, clear and straightforward illustration of the statistical 

methodology of a three level quadratic growth curve model in a compact form. It 

goes further to apply this on the LOSO data to analyse two different students‟ 

outcomes: Dutch language achievement and student well-being. 

Manuscript II presents a growth curve model with serial correlation at one level. 

In any educational process where time is required to acquire knowledge, current 

knowledge is built on the previous. Such an influence of previous knowledge on the 

current, will certainly present itself in the structure of the repeated measurement data 

and consequently into the growth model errors. The second manuscript intends to 
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expand the knowledge on how to conscientiously construct a statistical model that 

can handle such data. Goldstein, Healy, and Rasbash (1994) have indicated the 

possibility of correlated level 1 residuals for multilevel models by considering 

autocorrelated models for both discrete and continuous time. In their work, they 

illustrate this fact only for level 1 residuals though in their discussion they indicate 

the possibility of further research into models with higher level serial correlation 

using the example of repeated measurements nested within students who are in turn 

nested within schools. Maas and Snijders (2003) have indicated the need for other 

families of covariance matrices with structures more complex than the common 

compound symmetry model but less than the complete unstructured model. The use 

of autoregressive models (order 1) for equally time spaced data has also been 

mentioned by a number of these researchers (Goldstein et al., 1994; Mass & Snijders, 

2003; Snijders & Bosker, 1999). The main purpose of Manuscript II is firstly to 

introduce a serial correlation method to multilevel (three and more levels) growth 

curve models for school effectiveness research and to apply it to real data to show 

how it impacts the estimates of school effects. Secondly, this method will be 

extended to handle level 2 serial correlation functions in the special case of three-

level data to show the implications of extending from the common two level models 

discussed in the literature (Little et al., 2006; Mass & Snijders, 2003; Snijders & 

Bosker, 199). This method will then be used to demonstrate for the first time the 

complex structure of serial correlation at student and school levels and how this 

affects the estimates of the school effects. 

While longitudinal studies are universally accepted by researchers as a key design 

to study the changes in a student performance over time, it comes with a number of 

challenges in terms of data structure and statistical analysis. Children, for example, 

change with time by virtue of their experience in school, and also because the 

structures, functions, and compositions of the schools they attend also change with 

time. There are possibly other sources of this change that are neither of the children‟s 

nor the schools‟ making (purely stochastic) which cannot be captured by researchers 

but are in any case present in a way as to influence the outcome of interest. One can 
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say that the sources and consequences of changes in student outcomes often 

constitute the object of study in school effectiveness research (Rowan & Denk, 

1982). Scheerens and Bosker (1997) have shown how school effects are 

underestimated when the school variance structure is misspecified or not taken into 

account. 

Manuscript III extends further the methodology introduced in the second 

manuscript to look at two levels of change simultaneously in a three level model. The 

method of the third manuscript in addition to breaking the level-1 error as in 

manuscript II, also includes a complex serial correlation at the second level, resulting 

in what is called in this dissertation “double serial correlation” (DSC). The main 

interest of this manuscript is then to compare school effects estimates from multilevel 

nonlinear growth curve models with and without such a complex serial correlation 

correction. 

Manuscript IV introduces a bivariate transition multilevel growth curve model 

for longitudinal data with more than one student outcome (reading comprehension 

and mathematics), with unequal number of measurement occasions. The 

measurement and explanation of the school effects on students‟ reading 

comprehension and mathematics achievement in primary school children has so far 

not been studied in depth. Generally, in school effectiveness studies that have 

addressed the relationship between reading and mathematics achievement, the focus 

has been more on the effects of schools at some point in time. Other studies have 

focused on mathematics achievement as a predictor of reading comprehension 

(Lerkkanen et al., 2005) or reading as a predictor of mathematics performance 

(Kirsch et al., 2002). These studies make the key assumption of deciding in advance 

which of the outcomes is dependent on the other. A few multivariate studies have 

nonetheless been done to investigate the possibility of a relationship between overall 

reading ability and mathematics, by looking at the common characteristics 

responsible for high performance in mathematics and reading (De Maeyer et al., 

2010). However, research investigating the relationship between parameters of 

pupils‟ growth in reading comprehension and mathematics without any assumption 
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on their functional dependence is still wanting. Manuscript IV focuses on reading 

comprehension which requires more advanced cognitive and linguistic skills. While 

studies have shown that individual differences in reading comprehension in particular 

during primary school are stable (de Jong & van der Leij, 2002), differences between 

schools however have not been addressed in depth. 
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MANUSCRIPT 1: The impact of coding time on the 
estimation of school effects

1
 

 

Anumendem, D. N., De Fraine, B., Onghena, P., & Van Damme, J. 

 

Abstract 

 

Multilevel growth curve models are becoming invaluable in educational research 

because they model changes in student outcomes efficiently. The coding of the time 

variable in these models plays a crucial role as illustrated in this study for the case of 

a three-level quadratic growth curve model. This paper shows clearly how the choice 

of a time coding affects school effects estimates and their interpretation. A new 

definition for school effects for growth curve models with random intercepts and 

slopes is proposed. This study recommends that the choice of a time coding should 

not only be based on the ease of interpretation and model convergence but also on its 

consequences on the student status and growth parameter estimates. The current 

application illustrates that in general the school effects for student growth in well-

                                                 
1
 Manuscript has been accepted for publication in Quality and Quantity International Journal of Methodology. 
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being and language achievement in secondary school, are greater for student growth 

than for student status. 

1. Introduction 
 

Growth curve models have become very popular in educational research and 

other fields of research like psychology and medicine. These models are a flexible 

method used to model change over time (Singer & Willett, 2003; Willett, 1997). In 

educational research for example, the importance of growth curve models is stressed 

by many authors (May, Supovitz, & Perda, 2004; Raudenbush, 1989, 1995; Teddlie 

& Reynolds, 2000). The theoretical analysis of change over time as in growth curves 

can even be traced as far back as Wishart (1938) and Tucker (1958). 

Growth curve models are related to multilevel models where measurement 

occasions are nested within persons. They are also related to the structural equation 

framework because latent growth trajectories are assumed (Curran & Hussong, 

2002). The shape of these underlying trajectories varies across studies. In the social 

science field and especially educational effectiveness research, linear growth curves 

are applied regularly, which is not a problem when the study is limited to data with 

two or three time points. In a linear growth curve model, the change over time is 

modelled by two growth parameters: the intercept (status) and the slope (growth). 

The (rather common) limitation of growth curve models to linear growth curves when 

more complex models would fit better, might result in unreliable conclusions. This 

paper shows that more complex growth curves can bring much more contributions in 

the knowledge required for understanding change in longitudinal studies with more 

than three measurement occasions. In the current paper, a more complex model will 

be applied: a quadratic growth curve model where the change over time is modelled 

by three growth parameters: the intercept, the slope and the acceleration (quadratic 

growth). 

It is also rather common that growth curve models are limited to two-level data 

even when more than two would be more plausible. Typically, these take the form of 
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measurements nested within persons. While the analysis of two-level data has been 

well documented (Verbeke & Molenberghs, 2000), considerably less attention has 

been given to the analysis of three-level data. Three level data usually take the form 

of measurement occasions nested within persons and persons nested within schools, 

hospitals or firms. The addition of the third level makes it possible to see whether 

change patterns differ over schools, hospitals or firms as the case may be. Three-level 

growth curve models thus enable the researcher to investigate whether students in 

certain schools make more progress or why patients in some hospitals show a faster 

recovery process. Three-level growth curve models in educational effectiveness 

research also allow for the calculation of the percentage of the variance in the growth 

parameter that lies between schools. This percentage is also know as the intraclass 

correlation coefficient (ICC) and is interpreted as the school effect on a certain 

student outcome. However, most textbooks on multilevel models or growth curve 

models (such as Singer & Willett, 2003; Snijders & Bosker, 1999) do not discuss the 

calculation of this school effect (% of the variance between schools) on the student 

growth. The current paper will therefore discuss this topic and propose a clear way of 

calculating the school effect. 

In educational effectiveness research, these three-level models have given rise to 

a lively debate whether schools have a larger effect on student status (intercept) than 

on student growth (slope) (De Fraine, Van Landeghem, Van Damme, & Onghena, 

2005; De Fraine, Van Damme, & Onghena, 2007; May, Supovitz and Perda, 2004; 

Raudenbush 1989, 1995; Teddlie & Reynolds, 2000). Some researchers believe that 

schools have a larger impact on their students' growth than on their students' 

outcomes at a certain point in time. This conviction stems from the study of 

Raudenbush (1989, 1995) in which the school effect on student initial status for 

mathematics was 14% whereas the school effect on the learning rates was over 80%. 

May et al., (2004) indicate that time coding might affect the size of the school effect. 

They hypothesize that the school effect on student status will be larger when the 

intercept refers to a later point in time. The current study will investigate whether the 
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time coding affects this debate in terms of producing larger effects on student status 

than on student growth. 

The current paper goes into one of the topics which is unavoidable for all 

researchers applying growth curve models: the choice of the time coding. With the 

fast growing use of longitudinal statistical analysis methods in several fields of 

research and in educational effectiveness research in particular, it is invaluable that 

the questions regarding the effects of time coding and scaling be addressed properly. 

The importance of this time coding is highlighted by several researchers who call for 

in-depth studies on the problem (Raudenbush, 2001a, 2001b; Raudenbush & Bryk, 

2002). One important aspect is the definition of the status (intercept) through the time 

coding (Rogosa, Brandt, & Zimowski, 1982; Rogosa & Willett, 1985). A number of 

articles and handbooks have been written that discuss the effects of changing the 

meaning of the intercept in growth curve models (Duncan, Duncan, & Strycker, 

2006; McArdle, 1988; Rogosa, 1995; Willett & Sayer, 1994). A few others have 

investigated the effect of the time coding on the correlation between intercept and 

linear slope (Mehta & West, 2000; Rogosa, 1995; Rogosa & Willett, 1985). These 

authors have shown that this correlation can change radically by simply changing the 

time point to which the intercept refers. Mehta and West (2000) also studied how the 

choice of a specific time coding affects the variance of the intercept. It has also been 

shown that shifting the intercept does not change the slope parameter in a linear 

growth curve model. However, this shift of intercept has not been discussed in 

relation to the impact on school effects. 

The coding of time in growth curve models also has important implications for 

the interpretation of the model (Biesanz, Deeb-Sossa, Papadakis, Bollen, & Curran, 

2004; Kreft, de Leeuw, & Aiken, 1995; Mehta & West, 2000). In other words, 

changing the time coding comes down to changing the research question of interest. 

Mehta and West (2000) indicate that time coding effects in growth curve models 

parallel the effects of centring predictor variables in multilevel models. 
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However, most of the studies on time coding effects mentioned above operate 

within the framework of two-level linear growth curve models. They are only of 

limited interest for researchers that investigate non-linear shaped growth curves and 

for researchers looking at three-level models. This paper therefore opens up 

theoretical and practical implications of a time coding dependence of parameter 

estimates for the more complex three-level quadratic growth curve model. These 

types of models can enable the researcher to investigate the school effects on the 

student linear and quadratic growth in any outcome of interest. 

There are several plausible reasons for considering an intercept different from 

the initial status by coding the time variable. First, coding time could be used 

especially in growth curve models to address particular substantive research 

questions (Raudenbush, 2001a, 2001b; Raudenbush & Bryk, 2002; May, Supovitz & 

Perda, 2004). A second reason to code time could be when there is a critical need for 

interpretable parameters estimates (Kreft, de Leeuw, & Aiken, 1995). Third, coding 

of time might also be used to circumvent software convergence problems (De Fraine 

et al., 2005; Verbeke & Molenberghs, 2000). And lastly coding of time might also be 

used to solve boundary value problems in parameter estimation (Verbeke & 

Molenberghs, 2000). For example changing the unit of time from years to months 

will have a non-linear effect on the variance of the outcome but implicitly affect the 

school effect estimate and possibly its interpretation. 

It is the intention of this study to obtain a common framework on which one can 

base the coding of time to gain general approbation of the interpretation, in terms of 

the parameter estimates, and most importantly the school effects. To investigate the 

consequences of different time coding schemes on school effects estimates, we will 

study two important types of estimates: (1) the variances and covariances and (2) the 

intraclass correlation as will be defined, based on these estimates. Also the formulas 

for the means (fixed effects) will be provided. 

The consequences of changing the time coding are investigated in two ways. 

First, the exact expressions of the effects of changing the time coding on the 
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estimation of the covariance parameters are derived mathematically. Second, these 

insights are applied on a dataset of students‟ well-being in secondary schools to 

estimate corresponding school effects. In this application, a three-level quadratic 

growth curve model is fitted with a complex modelling of between and within school 

covariance structures. 

2. Research questions 
 

This paper addresses three main research questions (a-c) after unveiling some of 

the ramifications around the definition of ICC in multilevel growth curve models. 

This study also opens a way forward with a new definition of the ICC for multilevel 

growth curve models with random intercepts only and those with random intercepts 

and slopes. Before answering these four research questions, a matrix representation of 

a three-level quadratic growth curve model in the style of Laird and Ware (1982), is 

formulated. This is because as the number of levels in a multilevel quadratic growth 

curve model increases, the mathematical representation become very cumbersome. 

a) How do different time coding schemes affect the estimates of the fixed effects, 

school effects and the interpretation of the intercept and intraclass correlation 

coefficient in a three-level quadratic growth curve model? 

b) How true is the hypothesis that school effects on student status are larger when 

the intercept refers to a later point in time? 

c) How large are the school effects on their students‟ growth compared to their 

students‟ status under different time coding schemes? 

3. Method 
 

In the current study, the impact of time coding is studied for the case of a three-

level quadratic growth curve model. This paper extends the two-level models, often 

seen in the literature (Hoffman, 2007; Kwok, West, & Green, 2007; Laird & Ware, 

1982; Lange & Laird, 1989; Mehta & West, 2000; Verbeke & Molenberghs, 2000), 

to three-level linear growth models (Spyros, 2008) and further extends the three-level 

linear growth curve model to a three-level quadratic growth curve model. The three-
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level quadratic growth curve model considered in this paper is more complex than 

most three-level random intercept models (Biesanz et al., 2004; Fitzmaurice, Laird, & 

Ware, 2004; Yang, Goldstein, & Heath, 2000). The complexity arises in the number 

of random effects specified at the different levels. 

The quadratic growth curve is chosen here as the most parsimonious of all non-

straight line polynomials. The first step is to derive mathematical expressions (in 

matrix notation) for three-level quadratic growth curve models. The next step is the 

discussion of unconditional growth curve models which is followed by an extension 

to conditional growth curve models. Lastly an elaboration on the effects of altering 

time coding schemes is made. 

3.1.     Unconditional Growth Curve Model 

 

Consider for a start, a standard two-level quadratic growth curve model as the 

one presented in equation 1 below 

2

0 1 2jk jkjk j j j jkY t t       ,                                                                                    (1) 

Equation 1 represents an unconditional growth curve model for a person j . 
jkY is the 

response variable for the thj person at the thk measurement occasion.
0j  represents the 

intercept which in this equation is the expected value of 
jkY  for the thj person when 

the time 
jk

t  is zero.
1j  is the regression coefficient corresponding to the expected 

change in 
jkY for a 1-unit change in time (

jk
t ) for the thj person.

2j  represents the 

acceleration or deceleration in growth. 

Equation 1 can be repeated for all the individuals in the study and once again be 

arranged as matrices (following Laird & Ware, 1982) and shown in equation 2a 

below. 

j j j jX                                                                                                              (2a) 

This model assumes that 
j and 

j  (which contains student-specific regression 

coefficients) are independent and 
jX is the design matrix for level-1 covariates (1, 
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time and time squared). Allowing the 
j to be modelled with a multivariate regression 

model, equation 2a can be modified to get 2b 

j j j j jZ X                                                                                                 (2b), 

where 
j j jZ X K . Details of this model can be found in Verbeke and Molenberghs 

(2000). 

Extending the model now to a three-level unconditional quadratic growth curve 

in matrix form and introducing a new subscript, yields the following result with i  

representing the school and j the student. The vectors of repeated measurements are 

stacked into the matrices: 

i i i i i i iX X X                                                                                             (3) 

Where i is a response or outcome vector for school i . iX is a matrix of time 

covariates.   is a vector containing the fixed effects. i is a vector containing school 

random effects, i is a vector containing student random effects and i is the vector of 

residual components. The dimensions of the vectors i and i depend on the number 

of random effects allowed in the model.  

3.2.     Conditional growth curve model 

 

The model described by equation 4a below, is an extension of equation 3 to 

include covariates additively. It is a conditional three-level quadratic growth curve 

model with fixed effects parameters  , student-specific effects i and school-specific 

effects i . Using the notation similar to that in Laird and Ware (1982), equation 4b is 

derived. Care must be taken with these notations because though simple in 

visualisation, they are more complex in concept. In the process of stacking, vectors 

will have also vector components in order to avoid representing them as very high 

dimensional matrices. 

i i i i i i iX T Z                                                                                                    (4a) 
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Where i is the response or outcome vector, iX , iT and iZ are matrices of known 

covariates at measurement occasion level, school level and student level respectively. 

1 1 1

( , ),

( , ),

( , )

,..., , ,..., , ,...,
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 

 

 

     

                                                               (4b) 

Where i is the in -dimensional response or outcome vector for school i , and 1 i N 

, with N being the total number of schools. Here in  refers to the number of students 

in school i , while N is fixed for a particular study. This means in will take values like 

1n ,…, Nn with 1n and Nn being the dimensions of the response vectors for school 1 and 

school N respectively. The number of measurement occasions per student in each 

school is also allowed to vary and denoted by 
ijm . Moreover, iX , iT and iZ are 

( )in p , ( )in q and ( ')in q dimensional matrices of known covariates respectively.   is 

the p-dimensional vector containing the fixed effects. i  is the q-dimensional vector 

containing school random effects, i is the 'q -dimensional vector containing student 

random effects and i is the in -dimensional vector of residual components. For 

covariance matrices, v is a general ( )q q covariance symmetric matrix, u is a 

general ( ' ')q q covariance symmetric matrix and  is a ( )i in n covariance matrix 

which may be assumed (though not necessarily) to depend on i and j only through 

their dimensions in and 
ijm . This means the linear mixed model of Laird and Ware 

becomes a multilevel linear mixed model. This matrix notation is very handy when 

looking at models with several levels. It is used later on in this paper, to ease 

demonstration and make the necessary changes tractable. 

3.3.     Coding time and parameter estimates for a three-level quadratic growth 

curve model 

 

The effects of changes in time coding will be considered as a linear 

transformation. Equation 1 can be written in matrix form as follows: 
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If a new coding is given to the time variable, the design matrix iX  (factor loading 

matrix) changes in the above matrix equation. This change affects the solution of this 

system of equations as will be shown shortly. Let
ijkt  be the time variable defined by 

the scale  1,..., k  meaning k  measurement occasions (in this application there are 

four measurement occasions just to simplify the mathematical steps). Let‟s assume 

that it is always possible to code this time variable to a new time *ijkt such that the 

relationship between the new time and the former is linear as *ijk ijkt a bt   where 

0b  . This gives a similar system of equations as the one above with the new design 

matrix being *iX  

1 1
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3 3

4 4

2 2

1 1
2

2 2

2 2

2 2

23 3
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4 4

1 * * 1

1
1 * * 1
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a a
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    
   
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*i iX X P                                                                                                          (5) 

 

The relationship between the original design matrix and the transformed design 

matrix is represented in equation 5 and by simply making choices for the constants a

and b in the linear relationship, the transformation matrix P is defined. The inverse 

transformation is represented by equation 6 below. 

1*i iX X P                                                                                                            (6) 
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1P is the inverse of the matrix P and is the matrix of the inverse transformation 

shown in equation 6. This inverse matrix is always possible to get because the matrix

P is non-singular. 

where 

2 2

1

2

1 1
0 2

0 0 1

b ab a

P adjP b a
P b



 
 

   
 
 

 

adjP  is called the adjoint matrix of the transformation matrix P and is defined to be 

the transpose of the cofactor matrix of P  and P  is the determinant of P . 

The expectation of i  from equation 3 is given by iX   and becomes 1* *iX P   

under the linear transformation of equation 6. It is possible to relate the fixed effects 

parameters estimated under the original time variable (  ) to those under the 

transformed time variable ( * ) by 1* P   with parameters for a quadratic growth 

curve being: 

2

0 0 1 22

1 1 22

2 22

* (7)

1 2
* (8)

1
* (9)

a a

b b

a

b b

b

   

  

 

  


 



 

Equations 7-9 are different from those obtained in the case of a linear growth model 

(see Stoel & Van den Wittenboer, 2003). 0 , 1 , 2  are the intercept, linear slope and 

quadratic slope for the fixed effects parameters under the original time variable and 

0 * , 1 * , 2 *  are those under the transformed time variable. The transformation 

obtained when 1b   in simple terms represents a shift in the origin from one 

measurement occasion to another. This special case appears frequently in educational 

research and this specific situation will be discussed later in detail. 

The fixed effect estimates are not the only parameters affected by a linear 

transformation of the time variable but even substantially are the random effects. The 

covariance matrix of the observations across schools, students and measurement 

occasions for the unconditional three-level growth curve model shown in equation 3  
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can be expressed as ( )
i

T

yy i v uV X X      in which there is no iT  or iZ  matrix. After 

the transformation, this is obtained 

 

 

 

 

where * 1 1( )
v

T

vP P    and * 1 1( )
u

T

uP P     

It is then possible to calculate the components of the transformed covariance 

matrix for the school level and the student level in terms of the components of the 

original covariance matrix. An elaboration is shown with the school level covariance 

matrix ( v ). The student-level for this model will follow in a similar fashion. 

* 1 1

2 2

11 12 13

1

21 22 232

31 32 33

( )

1
0 2

0 0 1

v

T

v

v

P P

b ab a v v v

where P b a and v v v
b

v v v

 



  

   
   

      
  
  

, 

11v is the variance of the student status, 22v is the variance of the student growth, 33v  is 

the variance of the general curvature of the growth curve or the acceleration. 21v , 31v  

and 32v are the covariances of the student status and the student growth parameters, 

student status and acceleration, and student growth and acceleration respectively at 

the school level. 

The above matrix equations can then be solved as follows: 

2 2 2

11 12 13

* 1 1

21 22 234

2

31 32 33

0 0
1

( ) 0 2 0

0 0 1 2 1
v

T

v

b ab a v v v b

P P b a v v v ab b
b

v v v a a

 

     
    

         
        

 

By multiplying these three matrices out gives the following as the solutions for the 

transformed components of *

v
 in terms of the original components of 

v
 : 

 

1 1

1 1 1 1

* *

* * ( )( * )

* ( ) ( ) ( * )

* ( * )
v u

T

yy i v u i

T T T

i v u i

T

i i

V X P X P

X P P P P X

X X
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



 

   

   

      

     
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2 4 2 3

11 11 22 33 12 13 232 4 2 3

2 2 2
*

a a a a a
v v v v v v v

b b b b b
      , 

3 2

12 22 33 12 13 232 4 2 3

2 1 2 3
*

a a a a
v v v v v v

b b b b b
     , 

2

13 33 13 234 2 3

1
*

a a
v v v v

b b b
   , 

2

22 22 33 232 4 3

1 4 4
*

a a
v v v v

b b b
   , 

23 33 234 3

2 1
*

a
v v v

b b
   and 

33 334

1
*v v

b
  

The effects of changes in the time coding on the random effects in a quadratic growth 

curve model relationships are more complex than the ones shown in Garst (2000), for 

a linear growth curve. The process of coding time and the above relationships do not 

seem to be a simple generalization as some authors put it (Mehta & West, 2000). 

The relationships shown indicate that all the components of the transformed 

covariance matrix change. The variance of the quadratic slope ( 33v ) and its associated 

covariances with the intercept and linear slope variances play a very important role in 

the estimation and interpretation of the student status and student growth. 

3.4.     Shifting the intercept 

 

Consider a typical transformation in the educational and social sciences of the 

form *ijk ijkt a t   meaning 1b  (Biesanz et al., 2004; De Fraine et al., 2005, 2007; 

Wilkins & Ma 2002, 2003). When considering a linear growth curve model, a shift in 

the origin results in a change in the intercept and not the slope parameter with 1b  . 

On the contrary a quadratic growth curve model with a similar shift in the origin does 

not only affect the intercept but also the linear slope parameter. The quadratic slope 

parameter is invariant with 1b  . The expressions for the mean, variance and 

covariance parameters under this transformation now simplify to the following: 
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2 4 2 3

11 11 22 33 12 13 23* 2 2 2v v a v a v av a v a v                                                                  (10) 

3 2

12 22 33 12 13 23* 2 2 3v av a v v av a v                                                                         (11) 

2

13 33 13 23*v a v v av                                                                                                 (12) 

2

22 22 33 23* 4 4v v a v av                                                                                            (13) 

23 33 23* 2v av v                                                                                                     (14) 

33 33*v v                                                                                                                  (15) 

Also note that the mean and variance of the acceleration parameter is unchanged 

when only the intercept is shifted. Based on the mathematical relationships of 

equations 10-15, it is not possible to confirm the hypothesis that school effects will be 

larger when the intercept refers to a later point in time. For the case of a linear model, 

the mathematical relationships show a clear trend with few conditions. For example 

in the linear case 2

11 11 22 12* 2v v a v av    and implies simply that with a negative 

covariance between the random intercept and linear slope, 11 11*v v  for all values of a

. Under this condition of negative covariance (meaning students with low status grow 

faster than students with high status), the transformed variance will increase as the 

origin shifts to later time points. The three-level quadratic growth curve model results 

in tables 1A, 2A, and 3A of the appendix A can be used to verify the mathematical 

relationships presented in equations 10-15. 

Despite the various reasons for coding the time variable discussed earlier on in 

this section, the bone of contention still remains in terms of the varying interpretation 

of the results after a time variable transformation. School effects estimation and 

interpretation change drastically when different time coding schemes and 

interpretations of student status are used. The possibilities of obtaining valid 
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intercepts (estimate and interpretation), and yet meaningless school effect estimates is 

enormous. 

Consider a regression model given as 2

0 1 2jk jkjk j j j jkY X X       , 
0j is called 

the 
jkY  intercept of this regression equation when 0jkX   is in the scope of the model. 

When 0jkX   is not in the scope of the model then
0j does not have any particular 

meaning as a separate term in the regression equation (Kutner, Nachtsheim, Neter, & 

Li, 2005). Consider for example that 
jkX  is the age of student k in secondary school j, 

then 
0j as an intercept will be nonsense considering that 

jkX cannot take zero for 

students in secondary school. In any case, if the ages of the students in secondary 

school range between 12 and 18 years, one may be interested in a particular age or 

mean age and so modify the regression equation correspondingly. For example, the 

age could be re-coded as “age minus 12”. In that case, 0jkX   refers to the age at the 

beginning of secondary school and therefore the intercept is meaningful. While the 

latter example remains reasonable and sometimes even very convenient in terms of 

answering specific research questions, it complicates the use of the intercept variance 

in the estimation of school effects. Indeed, Raudenbush and Bryk (2002) emphasize 

that researchers should be cautious with the choice of location for level-1 covariates 

because of its implications in the interpretation of the variances and covariances of 

the model. 

While it is possible to estimate the intraclass correlation coefficient (ICC) for a 

particular student outcome at the start of grade 7 of secondary school for example, it 

is not possible in this case to use the ICC estimate as a school effect and get a 

meaningful interpretation. The school effect obtained using the ICC calculated at the 

start of grade 7 represents the percentage of variance in the particular student 

outcome due to the differences in the schools they attend. However, this school effect 

estimate is not very correct because the students have just barely started school and 

the schools cannot solely be responsible for the variability. In fact if it were ever 

possible in practice, to account for all the recruitment characteristics responsible for 

this difference, then the school effect at the start of the year should be zero. School 
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effects estimates using ICC will make more sense only when considered at a later 

time than the start of the study because the impact of the school would have been felt 

by the students and consequently their performance. 

The use of the ICC for the estimation of school effects on student growth is 

handicapped because it is limited to random intercept models. This paper proposes a 

new definition which is general enough to take care of quadratic and higher order 

polynomials growth curves with more than three levels of hierarchy. The choice of a 

later time also becomes one of great interest because of the many possibilities that 

would be available in any repeated measurement study when the meaningful intercept 

occurs at a point different from the initial status. 

3.5.     Small variance components estimation problems 

 

The problem of estimating small variance components is very frequent when 

considering quadratic three-level growth curve models. However, this problem is also 

very common with multilevel models of many levels when the point of convergence 

is close to the boundary parameter space. When such a problem is encountered during 

data analysis, the most common temptation is for researchers to set these variance 

components to zero and move on with the analysis. The time transformation 

illustrated above can be used to circumvent this problem. Consider the transformation 

*ijk ijkt a bt  and let 0a   and 
1

b
c

  then the covariance parameters under this 

transformation now simplify to the following 

11 11*v v , 12 12*v cv , 2

13 13*v c v , 2

22 22*v c v , 3

23 23*v c v , and 4

33 33*v c v  

This transformation is applied only to the design matrix of the random part of 

the growth model and results in enlarged covariance parameters. Therefore the fixed 

effects estimates remain unchanged while the multiplicative factor used cancels out in 

the school effect calculation. This implies that the peak of the loglikelihood is well 

away from the boundary. This transformation helps to make the system of normal 

equations to be more stable and the maximization algorithm used to solve the system 

of equation, runs without any convergence problems. It is worth noting that this 
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technique does not apply to convergence problems due to model misspecifications. 

An example of model misspecification can be the convergence problem resulting 

from the estimation of negative variance components. 

4. The intraclass correlation coefficient in growth curve 
models 

 

The intraclass correlation coefficient (ICC) is considered as a measure of school 

effects in educational effectiveness research. In this domain the use of growth models 

is increasing with much interest centred on the school effects on student status and 

even recently on student growth. It is important to unveil some of the ramifications 

around the definition of ICC in growth curve models. The most common definition of 

ICC for growth curve models is described by the proportion of the total variance that 

lies “between” people (Singer & Willett, 2003). Although this definition is commonly 

used in the social science fields like behavioural measurement, psychometrics, and 

educational effectiveness, a definition of the ICC is lacking when models deviate 

from being a random intercept only model. This section will throw more light into 

this issue and open a way forward for new definitions of the ICC for growth curve 

models that contain random slopes. 

4.1.     The intraclass correlation in two-level random intercept models 

 

For a 2-level model with only a random intercept, the definition of the ICC can 

be written in a straightforward way mathematically as 11

2

11

v

v 
 (Snijders & Bosker, 

1999; Verbeke, & Molenberghs 2000). This ICC represents the proportion of the 

variance at the second level. It can also be interpreted as the expected correlation 

between two randomly chosen subjects within the same group. In educational 

research, one can talk of two students within a school or two measurement occasions 

within a student. This definition for the case of a two-level random intercept model 

posses no problem in terms of consistency with many other authors (Fritzmaurice, 

Laird, & Ware, 2004; Goldstein, 1995; Raudenbush & Bryk, 2002). 
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4.2.     The intraclass correlation in three-level random intercept models 

 

In a three-level model (as in repeated measurements within students and 

students within schools) with only a random intercept, there are two ways to calculate 

the ICCs (Siddiqui, Hedeker, Flay, & Hu, 1996). Once the total variance is estimated 

as a sum of all variances at the three levels, then the first definition of ICCs for the 

second and third levels can be defined for the student and school levels as 

 11

2

11 11

school

v
ICC

v u 


 
 and 11

2

11 11

student

u
ICC

v u 


 
 

 

Where 11v  and 11u are the variances for the intercepts at the school and student level 

respectively. 2  is the level-1 variance (Davis & Scott, 1995). A second method to 

define these ICCs is: 

11

2

11 11

school

v
ICC

v u 


 
 and 11 11

2

11 11

student

u v
ICC

v u 




 
. Here the student ICC indicates the 

correlation between any two measurement occasions for the same student in the same 

school (Siddiqui et al., 1996). The two definitions are valid as they represent different 

truths about the same model. The first method represents the proportion of variance at 

the student and school level while the second represents an estimate of the expected 

correlation between two randomly selected subjects in the same school. In any case, 

in educational research, the main interest is on the ICC at the school level which is 

used as a measure of the school effect. The ICC at the student-level is not of prior 

interest here, thus the difference between the two methods for this case is not so 

important. 
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4.3.     The intraclass correlation in three-level random intercept and slope  

           model 

 

A multilevel growth curve model with more than just a random intercept is 

much more complex and the definition of the ICC becomes trickier resulting in 

inconsistencies between different authors (Singer & Willett, 2003). Unlike for the 

random-intercept only model where the intraclass correlation coincides with the 

proportion of variance in the response or outcome variable between groups 

(Raudenbush & Bryk, 2002), models with a random intercept and slopes do not have 

such a coincidence. For a three-level growth curve model with a random intercept 

and random slopes, this coincidence does not occur because the intercept and slopes 

components are allowed to covary; as a result the total variance is no longer the sum 

of the variances of the different components. 

A proposal for calculating the school effects in a linear growth curve model with 

a random intercept and slope has been made by Raudenbush and Bryk (2002) using 

“the percentage of variation that lies between schools for both the initial status and 

growth” to measure the school effect. They give a formal definition (without referring 

to it as an ICC) of the percentage of variance between schools on the student initial 

status and student growth as: 

% variance between schools on student‟s initial status = 11

11 11

v

v u
 

% variance between schools on student‟s linear growth = 22

22 22

v

v u
, 

Here 22v  and 22u are the variances for the linear slopes at the school and student levels 

respectively. 

In a three-level quadratic growth curve model, the percentage of variance 

between schools for the student status, linear and quadratic growth components as 

defined above can be written as: 11

11 11

v

v u
, 22

22 22

v

v u
 and 33

33 33

v

v u
 respectively. Here, 33v  
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and 33u are the variances for the quadratic slopes for the school and student levels 

respectively. 

A generalisation of this definition of proportions is proposed in this paper for a three 

level quadratic growth curve model with random intercept, linear slope and quadratic 

slope, to reconcile the two definitions. That is the definition for a random intercept 

only model (ICC) and that for the random intercept and slopes model (% variance 

between schools). This will enable the estimation of school effects on the students‟ 

linear and quadratic growth in a particular outcome variable. 

Consider the three-level quadratic growth curve model described by equation 4b 

and which allows for three random regression parameters which are the intercept, 

linear slope and quadratic slope. Let the variance of the error term 
ijk  be 2 , the 

variances of the student and school level intercepts are 11u  and 11v  respectively. The 

variances for the corresponding student and school level linear and quadratic slope 

residuals are 22u , 22v , 33u  and 33v . It is then possible to define the percentage of 

variance between schools on each of these regression parameters (intercept, linear 

slope and quadratic slope) as follows: 

% variance between schools on 
1ijp p    

11

2

11 11

1
( 1)( 1)

( 1)( 1) ( 1)( 1)

1

1

0,..., 1 .

p
p p

p p p p

v
when P

v u

v
when P

v u

where p P and Pis the number of random effects allowed


 

 

   


  

 
 
 

 

                          (16), 

For example with a random intercept only model, P=1 and 0p  , and the percentage 

of variance between schools on the intercept as defined by equation 16, corresponds 

to the definition of the traditional intraclass correlation coefficient. 

A second example can be a random intercept, linear slope and quadratic slope model 

with P=3 and 0,1,2p  . The second example will result in the estimation of three 

percentages of variance between schools that is on the intercept ( 1 ), linear slope ( 2 ) 

and quadratic slope ( 3 ). 
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4.4. Definition of the percentage of variance between schools for models  

with more than three levels 

 

This paper puts forward another proposed definition which can be used to 

generalize the above definition for models with more than three levels of hierarchy. 

An example in educational research could be repeated measurements within students 

within classes within schools within educational systems or even within countries. 

This is done with an additional index which replaces the different letters used to 

denote the different levels, to avoid running out of letters of the alphabet. Let 

( 1)( 1)q p pv  
 denote the variance of the qth level random regression coefficient. q takes 

values 1,…, Q  with Q  not less than 2.  It is then possible to define the percentage of 

variance between units of the q level on each of these regression parameters as 

follows: 

% variance between units of level q on 
ijp  =

( 1)q p 
 , 

where 

11

11

1

( 1)

( 1)( 1)

( 1)( 1)

2

1 1,...,

1 2,...,

q

Q

q

q

q p

q p p

Q

q p p

q

v
when P and q Q

v

v
when P and q Q

v






 

 




 




 
  








, 

where 0,..., 1p P  . Where P  is the number of random coefficients allowed and Q  is 

the number of levels of hierarchy in the data. In this new definition, the percentage of 

variance between level q units for the case of a random intercept model, that is with 

1P  will corresponds to the definition of the intraclass correlation at the qth level (

1q ). 
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5. Application to educational data 
 

5.1.     Data 

 

The data that will be considered in this application are the LOSO-data which is 

the acronym for the Dutch form “Longitudinaal Onderzoek in het Secundair 

Onderwijs”. This is a large-scale research project on secondary education (Van 

Damme et al., 2006). In this project, over 6000 students from about 57 schools in 

Flanders (Belgium) are followed during secondary education. The student outcome 

studied is the student well-being at school. The outcome is obtained by the use of the 

questionnaire on student well-being and was administered to the students four times 

during secondary school: at the end of Grade 7, Grade 8, Grade 10 and Grade 12. 

Student well-being at school is measured on a 32-item scale.  The sample with 3788 

students from 53 schools is studied for the application of the time transformations and 

school effect estimations described earlier. The sample includes only students who 

did not change schools and students who did not repeat a grade. It is also restricted to 

those students who have at least three measurements, in order to be able to estimate 

individual student growth curves. 

The main software programme used in this is SAS 9.1 (SAS Institute Inc. 2003). 

The PROC MIXED procedure of SAS is very flexible and suitable for fitting 

multilevel models, hierarchical linear models, and growth curve models (Singer, 

1998). Two other software programmes were used for comparability with the outputs 

of some of the models done in SAS: MLwiN 2.02 (Rasbash et al., 2000) and Mplus 4 

(Muthén & Muthén, 2006). 
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5.2.     Time coding schemes 

 

The operationalization of time as described earlier is *ijk ijkt a t   and 
1

*ijk ijkt t
c



, where the new time variable is *ijkt . In the original time coding of the data, the 

origin refers to the start of Grade 7. In what follows, four alternative time codings 

will be applied in which the origin refers to end of Grade 7, Grade 8, Grade 10 and 

Grade 12. In this study, six different time codings will be compared: original time, 

(time minus 1), (time minus 2), (time minus 4), and (time minus 6). In other words, 

the constant a  takes values 0 (original time), -1 (coding A), -2 (coding B), -4 (coding 

C), -6 (coding D) and the transformation of time by scaling (coding E) which 

considers the time in decades by letting 10c  . Three-level quadratic growth curve 

models are then fitted for the original and the other five different transformed time 

variables. The three columns of the design matrices below represent time
0 

(1), time
1 

(time) and time
2 
(time squared). 

 

Time code O

1 1 1

1 2 4

1 4 16

1 6 36

 
 
 
 
 
 

 (original time), Time code A

1 0 0

1 1 1

1 3 9

1 5 25

 
 
 
 
 
 

 (time - 1), Time code 

B

1 1 1

1 0 0

1 2 4

1 4 16

 
 
 
 
 
 

 (time - 2),  Time code C

1 3 9

1 2 4

1 0 0

1 2 4

 
 

 
 
 
 

 (time - 4), 

Time code D

1 5 25

1 4 16

1 2 4

1 0 0

 
 

 
 
 
 

 (time - 6),  Time code E 

2

2

2

2

1 11
10 10

2 41
10 10

1641
10 10

6 361
10 10

 
 
 
 
 
 
 
 
 

(time/10) 

The design matrices shown above have a great impact on the schools and students 

fixed effects and random effects parameters. The next paragraph looks into the 

impact of time coding on the intraclass correlation or proportion of variance between 

schools for three-level growth curves. 
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6. Results 
 

Three different specifications of a three level growth curve model are considered 

as follows: Model A is a three-level linear growth curve model with random intercept 

and linear slopes for both the school and student levels. Model B is a three-level 

quadratic growth curve model with random intercept and linear slopes for the school 

and student levels. Model C is a three-level quadratic growth curve model with 

random intercept, linear and quadratic slopes for both the school and student levels. 

The ordinary deviance statistics in combination with individual and school growth 

profiles is used to show that a quadratic growth fits better than a linear one. However, 

in order to determine how many random effects to specify in the quadratic growth 

curve model, a mixture of chi-square asymptotic null distribution as the null 

distribution of the deviance statistic is used. The degrees of freedom are calculated as 

the number of random effects in the models. Model C is shown to have the best fit 

compared to any other reduced model in terms of random effects. However, the 

results of model A and B are still considered to show the effect of choosing less 

fitting models instead of the more appropriate quadratic growth curve with all 

possible random effects. The result of this model fit is presented on table A1. The 

results of the parameter estimates of the fixed effects for model C with the different 

time codings are in table 1. A summary of the results for the three growth curve 

models described for the student well-being is given in table 2. Detailed results of all 

the parameter estimates can be found in tables A2, and A3 of the appendix A. 

 



38 

 

Table 1 

 The estimates of the fixed effects of the students‟ well-being with a quadratic growth 

curve. 

 Estimate( model based Std errors) 

Effects Original  Code A Code B Code C Code D Code E 

Intercept 3.96(0.030)* 3.74(0.012)* 3.55(0.016)* 3.30(0.020)* 3.21(0.022)* 3.96(0.030)* 

Linear  

slope 

-0.24(0.018)* -0.20(0.014)* -0.16(0.009)* -0.09(0.005)* -0.01(0.012) -0.24(0.018)* 

Quadratic 

Slope 

0.02(0.002)* 0.02(0.002)* 0.02(0.002)* 0.02(0.002)* 0.02(0.002)* 0.02(0.002)* 

 

The results of table 1 show obviously that changing the time coding by shifting 

the intercept affects the intercept and the linear slope of the growth curve but not the 

quadratic slope which in all these transformations is significantly different from zero 

(p<0.0001). The fixed effects results of the scaling transformation (Code E) are the 

same as those of the original time as expected because the transformation is done 

only on the random effects design matrix. This is a good transformation if the reason 

of transforming the time variable is to avoid small variance estimation problems. 

Care must be taken in any case when deciding to shift the intercept to later time 

points because some parameters may even become insignificant. This can be seen 

with the time coding D at the end of grade 12 which shows that the linear slope is not 

significantly different from zero (p=0,5818) at a 5% level. 
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Table 2 

 The percentage of the variance of the well-being at the school level for the three 

models 

School level Original 

time 

Time code 

A 

Time code 

B 

Time code 

C 

Time code 

D 

Time code 

E 

Model A 

% var Intercept 

% var Slope 

 

5.9 

18.0 

 

5.2 

18.0 

 

5.2 

18.0 

 

7.4 

18.0 

 

11.5 

18.0 

 

5.9 

18.0 

Model B 

% var Intercept 

% var Slope 

 

5.4 

13.7 

 

5.1 

13.7 

 

5.17 

13.7 

 

7.17 

13.7 

 

10.60 

13.7 

 

5.40 

13.7 

Model C 

% var Intercept 

% var Lin. Slope 

% var Quad Slope 

 

9.7 

29.7 

40.0 

 

4.3 

26.4 

40.0 

 

3.3 

21.1 

40.0 

 

4.9 

15.2 

40.0 

 

7.6 

/ 

40.0 

 

9.7 

29.7 

40.0 

 

Looking at the results of table 2 for model A and model B, the percentage of 

variance at the school level on the student status for student well-being increases in 

general as the origin is shifted to later time points.  At the start of Grade 7 (original 

time coding), about 5% of the differences in student well-being on the student status 

are situated at school level but by the end of Grade 12 (Time code D), this school 

effect has grown to about 11% for model A and 10% for model B. This result ties 

with the findings of May et al. (2004) even though a more complex model and data 

structure has been considered. The linear (model A) and quadratic (model B) models 

indicate a constant variance in student linear growth though a little higher for the 

linear model than for the quadratic model (18%; 13.73%). 

Model C shows that the school effect on the student status decreases from 9.7% 

to 3.3% by the end of grade 8 and then increases to 7.6% at the end of grade 10. On 

the other hand, the school effect on the students‟ linear growth in well-being 

decreases from 29.7% to 15.2% at the end of grade 10. Since the linear growth 

parameter is not significant at the 5% level of significance, no school effect 
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parameter on linear growth was estimated. No school effect was estimated for linear 

growth in well-being because one of the corresponding variance parameter estimated 

at the end of grade 12 was not significant. The school effect on the student growth in 

well-being from model C seems consistently higher than the school effect on the 

student status thus confirming the findings of Raudenbush (1995) that schools have a 

higher effect on the students‟ growth than status at a certain point in time. The 

quadratic parameter representing the rate at which the students‟ grow over time is 

also estimated and its corresponding school effect is estimated as 40%. This means 

that schools have an even greater effect on the rate of growth with time than the 

growth in the student‟s well-being. These data also support that schools have a larger 

effect on student growth than on student status. 

7. Discussion and Conclusion 
 

Growth curve models are growing in terms of their application in several 

research domains. The current paper was intended to shed some light on the issue of 

time coding in these growth curve models. Some studies have addressed the effects of 

changes in the time scale, but most of these studies were restricted to the common 

linear two-level growth curve model. In the current study, a broader framework was 

chosen and the effects of changes in time coding were illustrated for the quadratic 

three-level growth curve model. 

The paper employed two methods to study the effects of time coding in 

growth curve models: mathematical formulas and an elaborated application. First, 

formulas were derived that indicated that different time coding schemes affect both 

the estimates of the fixed effects (growth parameters) and the variances and 

covariances (random effects). Formulas were derived for a linear transformation of 

the time variable and for the special cases where the intercept is shifted and also 

when some variance parameters are very small. These formulas are easy to use in 

reverse order to calculate the parameters that would have been found when another 

time scale would have been used. Second, the effect of shifting the intercept was 
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illustrated through an application on educational data. For these analyses, the school 

effects were compared for three types of models (A, B and C) and six different time 

codings. The five of these time coding schemes differed according to what 

measurement occasion was chosen as the origin and the sixth was a time scale 

transformation for very small variance parameters. This application illustrated that, 

when the intercept refers to another point in time, this affects the estimation of the 

size of the school effects. 

The current article also gave an overview on the meaning and calculation of the 

ICC, which is interpreted in educational effectiveness research as „the school effect‟. 

Because of the lack of a clear definition on how to calculate school effects in random 

slope models, a clear formula was proposed. This formula makes it possible to 

compare school effects on different growth parameters (such as the intercept and the 

slope). This formula was given for models with three levels and it was elaborated to 

models with more levels in the hierarchy and more random coefficients. 

The main conclusion of this study is that the estimation of the size of the school 

effect (intraclass correlation) can be strongly determined by the choices for the time 

scale. The hypothesis that school effects are larger when the intercept refers to a later 

point in time (May et al., 2004) was only partially confirmed. The analyses for the 

well-being subscribed a general increase of school effects at a later time point. The 

current study also contributes to the discussion in the field of educational 

effectiveness whether school effects are larger for student growth (slope) or for 

student status (intercept). The school effect on the student growth in well-being 

seems consistently higher than the school effect on the student status thus confirming 

the findings of Raudenbush (1995). 

In the study, only raw school effects were calculated. This means that no 

covariates (such as student prior achievement, intelligence, sex or socio-economic 

status) were added to the model in order to make a more fair comparison between 

schools (Teddlie & Reynolds, 2003). One would expect such net school effects to be 
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smaller than the raw school effects though research on this decrease for conditional 

quadratic growth curve models are rare. 

When model C is used instead of model B, the school effect on student linear 

growth in well-being increases from about 14% to 30% with the untransformed time. 

Though the results are not as strong as those obtained by Raudenbush (1995), they 

are in agreement with the fact that schools affect students‟ growth more than their 

status in well-being. Our three-level quadratic growth curve model as specified in 

model C produces the largest school effect on both the students‟ linear and quadratic 

growth in well-being. 

And only for model C, the estimate of the school effect on students‟ linear slope 

was affected by the time coding (as was expected from the formulas that were 

derived). The effects of the time coding in model C on the estimate of school effect 

for the slope was quite impressive. However, no conclusion can be made in terms of 

how the school effects will behave (increase or decrease) when the time coding is 

changed without considering what type of model is used. Further research with other 

response variables may help to generalise our findings. 

Then, how should researchers decide on what time coding they should use? The 

coding of time can be chosen to solve substantive problems, stretching from easily 

and readily interpretable parameter estimates, to interests in the understanding of 

school effects at particular points in time. Based on the results of this study, we want 

to advise researchers using growth curve models to be very explicit on the time 

coding used. Studies should report very clearly to what point in time the intercept is 

referring. This is important, because different time coding schemes alter the 

estimations. In fact, changing the time coding comes down to changing the research 

question. The current paper has shown that school effects estimates might change 

drastically when the time coding is changed. 
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MANUSCRIPT 2: Multilevel serial correlation 
correction of school effect estimation in growth 

curve models
2
 

 

 Anumendem, D. N., De Fraine, B., Onghena, P., & Van Damme, J. 

 

Abstract 
 

The analysis of repeated measurement data can be carried out very efficiently using 

multilevel methods albeit the standard assumption of serially uncorrelated level 1 

residuals usually fails. The need for appropriate modelling of this serial correlation 

is invaluable in statistical analysis. This study examines educational effectiveness 

research data with unequally spaced three-level repeated measurements. We 

introduce the semi-variogram for multilevel data, which determine the presence and 

the form of serial correlation in repeated measurements of students‟ response 

variables. We propose modelling of serially correlated residuals at level 1 with 

appropriate functions and go further to model serial correlation at level 2. This 

proposed method is used finally to show the huge impact of serial correlation 

correction on school effects estimates. 

 

                                                 
2
 Manuscript submitted for publication. 
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1. Introduction 
 

The general belief in school effectiveness research is that schools have a larger 

impact on their students‟ growth than on their students‟ outcomes at a certain point in 

time. This belief emanates mainly from the research of Raudenbush (1989, 1995) in 

which he showed that the proportion of the school effect on student initial status for 

mathematics was 14% whereas that for learning rates or students‟ progress over time 

was over 80%. This study and many others have accreted the use of growth in student 

outcomes over time to the point of becoming the incumbent method among some 

researchers who see it as the most appropriate criterion for assessing school 

effectiveness. The investigation of such changes in students‟ outcomes has 

necessitated the call for more studies with repeated measurements over time. 

The assessment of school effectiveness using student growth in outcomes has 

resulted in the general call for longitudinal studies of school effects (Teddlie & 

Reynolds, 2000). They see longitudinal school effectiveness studies as the most 

sophisticated in nature and note at the same time the increasing need of such studies 

in the field of school effectiveness. They propose two main reasons for this increase. 

The first is that cross-sectional designs may underestimate the impact of schools and 

the second is that cross-sectional designs do not provide a proper framework for 

studies in school effectiveness processes. 

While longitudinal studies are universally accepted by researchers as a key 

design to study change over time, it comes with a number of challenges in terms of 

data structure and statistical analysis. Children change with time by virtue of their 

experience in school, and also because the structures, functions, and compositions of 

the schools they attend change with time. There are possibly other sources of this 

change that are neither of the children‟s nor the schools‟ making, which cannot be 

captured by the researcher. Accordingly, the inebriety caused by these sources is 

present in a way as to influence the outcome of interest. One can say that the sources 

and consequences of this genre of stochastic change often constitute the object of 

study in school effectiveness research (Rowan & Denk, 1982). 
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It is very possible that the small school effects reported by many studies result 

from the statistical methods used (Scheerens & Bosker, 1997). Scheerens and Bosker 

(1997) also show how school effects are underestimated when the school variance 

structure is misspecified or not taken into account at all. For a three-level situation as 

shown later in the current study, within student variance can also be misspecified and 

result to another underestimate of the school effects. However, the method proposed 

in this paper is not only geared towards obtaining larger school effects but also to 

achieving better and more accurate estimates of variance components. 

While Ferron, Dailey, and Yi (2002) have looked at two-level models of change 

with misspecification of level 1 error structure, relatively little has been done for 

three-level models. Our study breaks the level 1 error into two components, a pure 

measurement error which can be corrected for misspecification (by the use of 

covariance structures like; simple, compound symmetry, banded, autoregressive (1), 

toeplitz etc.) and a serial correlation component which must be accounted for with a 

proper structure (by the use of gaussian, power and exponential functions). The 

model is extended further to include serial correlations at the second level. The 

principal aim of this paper is then to study the effects of serial correlation correction 

on school effects estimates in a multilevel growth curve model setting. 

Although multilevel growth curve models are very popular among educational 

researchers, and time series most prominent among econometricians, some 

researchers have considered the multilevel growth curve models as a genre of the 

time series (Goldstein, Healy & Rasbash, 1994; Verbeke & Molenberghs, 2000; 

Willms & Raudenbush, 1989). Time series and their applications have been used in 

several fields in which repeated measurements or observations are used. (Diggle, 

1990; Diggle, Liang & Zeger, 1994; Goldstein, Healy & Rasbash, 1994; Huitema & 

McKean, 2007; Verbeke, Lessaffre, & Brant, 1998). Repeated measures with a 

continuous time setting can thus be viewed as short time series especially when 

applied to growth models. Fundamentally the use of the term time series is just to 

emphasize what is observed in practice during repeated measurement investigations 

(Diggle, 1990). Short time series are often present in medicine where systolic and 
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diastolic blood pressure repeated observations are used for example to assess the 

effectiveness of a hypertension drug. However, time series and their applications 

have been very rarely used in the field of educational effectiveness research. 

Most authors use multilevel growth curve models because of their elegance and 

flexibility to model observations from individuals taken at different sets of time 

points (Van den Noortgate & Onghena, 2006; Cools, Van den Noortgate & Onghena, 

2008). For example in growth studies for student‟s academic achievements, 

observations may be taken more often in the earlier classes than in the later classes. 

Say at the beginning of year 1, end of year 1, end of year 2, end of year 4 and end of 

year 6. However, researchers have failed very often to model level 1 variance due to 

serially correlation. The standard assumption frequently used by these researchers 

using growth curve models for repeated measurement data is that the within-subject 

residuals are serially independent or uncorrelated. This assumption fails very often 

especially in cases where such repeated measurements are made close together and 

even more when unequally spaced. There is even a high chance of always finding 

serial dependence between repeated measurements. Such a dependency can be 

expressed in terms of serial correlation functions. Growth curve models with serial 

correlation have been used often in time series analysis of longitudinal data in the 

field of economics, medicine and geostatistics. However, very little is known about 

such serial correlations in educational effectiveness research even for the simple two-

level models. Therefore to further extend the two-level models to three-level growth 

curve models stand out as an even greater challenge. This challenge comes in because 

of the possibilities of serial correlation at higher levels other than level 1 which until 

now have never been investigated. 

In any educational process where time is required to acquire knowledge, current 

knowledge is built on the previous. Such an influence of previous knowledge on the 

current, will certainly present itself in the structure of the repeated measurement data 

and consequently into the growth model errors. Goldstein, Healy, and Rasbash (1994) 

have indicated the possibility of correlated level 1 residuals for multilevel models by 

considering autocorrelated models for both discrete and continuous time. In their 
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work, they illustrate this fact only for level 1 residuals though in their discussion they 

indicate the possibility of further research into models with higher level serial 

correlation using the example of repeated measurements nested within students who 

are in turn nested within schools. Their discussion on such an autocorrelation will 

mean correlated level 2 structures with the standard independence assumption at level 

1. Maas and Snijders (2003) have indicated the need for other families of covariance 

matrices with structures more complex than the common compound symmetry model 

but less than the complete unstructured model. The use of autoregressive model or 

order 1 for equally time spaced data has also been mentioned by a number of these 

researchers (Goldstein et al., 1994; Mass & Snijders, 2003; Snijders & Bosker, 1999). 

 The main purpose of this dissertation is firstly to introduce a serial correlation 

method to multilevel (three and more levels) growth curve models for school 

effectiveness research and apply it to real data to show how it impacts the estimates 

of school effects. Secondly, this method will be extended to handle level 2 serial 

correlation functions in the special case of three-level data to show the implications 

of extending from the common two level models discussed in the literature (Little et 

al., 2006; Mass & Snijders, 2003; Snijders & Bosker, 199). This method will then be 

used to demonstrate for the first time the complex structure of serial correlation at 

student and school levels and how this affects the estimates of the school effects. This 

gap in the current literature can be a good starting point, considering that it is very 

common to find some serial dependency among level 1 observations (measurement 

occasions) in multilevel longitudinal data. The term “level 1 serial correlation” is 

used when referring to the correlation of the repeated measurements of the students. 

Similarly, the “level 2 level serial correlation” refers to the serial correlation of the 

average school repeated measurements over time. 

2. Research questions 
 

This paper introduces a method of detecting the presence and the type of serial 

correlation in multilevel growth curve models by drawing inspiration from authors 
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like Diggle (1990), Diggle, Liang, and Zeger (1994), and Verbeke and Molenberghs 

(2000). In order to inculcate this method in educational effectiveness research, the 

article shows applications of this statistical method to school effectiveness data and 

finally goes on to give answers to the following three main research questions. 

1) Is it possible to find serial correlation in repeated measurements of students‟ 

outcomes in educational effectiveness research (at level 1 or level 2)? 

2) What is the best functional form that can be used to describe the serial 

correlation process when it exists? 

3) How are the school effects on students‟ status and students‟ growth affected in 

the presence of serial correlation? 

3. Method 
 

3.1.     Three sources of random variability 

 

School effect estimates are obtained from the estimates of the maximum 

likelihood or restricted maximum likelihood estimates of the variances at the different 

levels. This implies errors in the estimation of these variances will be carried over to 

the school effect estimation. There are at least three possible types of random 

variation that can be of great interest in any longitudinal study (Diggle, Liang, & 

Zeger, 1994; Verbeke & Molenberghs, 2000). 

The first type of random effect is stochastic variation between units (schools or 

students), resulting from the fact that the sample units are drawn at random from a 

population of such units. The second type of variation is due to serial correlation, 

which is the part of any unit‟s (school or student) observed measurement profile as a 

result of time-varying stochastic processes operating within that unit. For example 

students well-being measured sequentially will reflect to some extent biological, 

psychological, and emotional processes operating within them (Diggle, Liang & 

Zeger, 1994; Verbeke & Molenberghs, 2000). This type of stochastic variation results 

in correlation between pairs of measurements on the same unit which in turn depends 
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on the time separation between the pairs of measurements. Typically, this correlation 

is a decreasing function of the time separation between these measurements 

(horizontal axis) and the variance attributed to this correlation is represented by the 

height of the curve in Figure 1. The third and last source of random variation is the 

measurement error, which is due to the measurement process itself. A summary of 

these three sources of random variation showing how the total variance is partitioned 

is given in Figure 1. 

 

 

Figure 1. A hypothetical variogram showing the partitioning of total variance into   

               variances due to random effects, serial correlation and measurement error 

 

Adequate modelling of the serial correlation is very essential not only to obtain 

valid inferences for parameters in the mean model (which for many studies in the 

fields of economics, medicine and biostatistics are of primary interest (Verbeke, 

Lessaffre, & Brant, 1998)), but also for the variance/covariance parameters which are 

of primary interests in school effectiveness research. The estimates of these variance 

components are used to obtain school effects estimates. Diggle (1990) and Diggle, 

Liang, and Zeger (1994), have worked on this problem of serial correlation for the 

case of a two-level model, with random intercept only and under stationarity 

conditions and they have shown that taking serial correlation into account could 

result in huge improvements of the model predictions. 
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3.2.     Detecting serial correlation in multilevel growth curve models 

 

This section proposes a method of detecting serial correlation for two-level 

models and then generalizes the two-level growth curve models to models with three 

levels or more. It begins with some background information on semi-variogram for 

two-level random intercepts models. Considerable attention is then devoted to the 

extension of these two-level random intercepts and slopes growth curve models to 

three-level models (Anumendem, De Fraine, Onghena, & Van Damme, in press), and 

finally the application of the proposed extended models to real data. 

3.3.     Accounting for serial correlation 

 

A standard assumption frequently used for repeated measurement data as 

indicated previously, is that the within-subject residuals are serially independent or 

uncorrelated serially. This assumption fails very often especially in cases where such 

repeated measurements are made very close to each other (hourly or daily) for fast 

changing responses like body temperature, well-being and blood pressure. But such 

correlation can also be very frequent in repeated measurement made in months and 

years for slowly changing responses, like children‟s growth in height and children‟s 

academic growth in language or mathematics achievement. Once the presence of 

serial correlation is acknowledged, any statistical method used has to take this into 

account. The model proposed in this light is given by equation 1 representing a three-

level growth curve model with a serial correlation at level 1 or level 2. 

3.4.     Three-level serially correlated growth curve model 

 

A proposed multilevel linear mixed model (multilevel growth curve model) 

extended to include level 1 serial correlation is given below 
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Where i is the in -dimensional response or outcome vector for school i , and 1 i N 

, with N being the total number of schools and in  taking values like 1n ,…, Nn with 1n

and Nn being the dimensions of the response vectors for school 1 and school N 

respectively. Moreover, iX , iT and iZ are ( )in p , ( )in q and ( ')in q dimensional 

matrices of known covariates respectively.   is a p-dimensional vector containing 

fixed effects. i  is the q-dimensional vector containing school random effects, i  is 

the 'q -dimensional vector containing student random effects and 
( )e i is the in -

dimensional vector of residual components. For covariance matrices, 1  is a general 

( )q q covariance symmetric matrix, 2  is a general ( ' ')q q covariance symmetric 

matrix. The time series assumption is usually that the serial effect of 
( )s i (or 

( )s i  for 

level 2) is a population phenomenon, independent of the students (or schools). The 

serial correlation matrix iH  is assumed to depend only on i  through its dimension in

and through the measurement occasions
ijkt . It is assumed further that the ( k , 'k ) 

element 
'ijkkh of iH  is modelled as ' '( )ijkk ijk ijkh g t t  for some decreasing function ( )g 

with (0) 1g  . Examples of such decreasing functions include ( ) ug u   , ( ) exp( )g u u 

, and 2( ) exp( )g u u   which are the power, exponential and Gaussian serial 

correlation functions respectively. This implies that the correlation between 
( )s ijk and 

( ) 's ijk only depends on the time interval between response 
ijky and 

'ijky and decreases 

with increases in this interval. The serial correlation function depends on a pair of 

times and only under the assumption of stationarity does this pair of times simplify to 

the time lag (Box, Jenkins, & Reinsel, 2008). 
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Serial correlations can be modelled by using flexible parametric models as 

proposed by Lessaffre, Asefa, and Verbeke (1999), in which they assume a 

parametric form for the correlation function by using fractional polynomials. This 

paper considers the empirical semi-variogram (nonparametric technique) described 

later because it does not require fitting of the linear mixed model itself. 

4. Semi-variogram theoretical framework  

4.1.     Random intercepts multilevel growth curve models 

 

Historically, the semi-variogram (also frequently called variogram in some 

literature (Diggle, 1990; Diggle, Liang & Zeger, 1994)) has been widely used in 

spatial statistics to identify the covariance structure in geostatistical data (Little et al., 

2006). Diggle (1988) first introduced it for the case of a random intercept linear 

mixed model. This was later extended by Verbeke, Lesaffre, and Brant (1998) to 

situations containing not only random intercepts (models with nonconstant variance) 

but also random slopes. The semi-variogram applied to longitudinal data, can be seen 

as one-half the expected squared difference between residuals obtained on the same 

subject. A semi-variogram can be used as a diagnostic tool and can also suggest 

appropriate models for the covariance (Fritzmaurice, Laird, & Ware, 2004). 

A semi-variogram is especially used to describe the association among repeated 

values and easily estimated with irregular observation times (Diggle, 1990). In this, 

an estimate of the semi-variogram also called sample variogram (Diggle, Liang, & 

Zeger, 1994) is obtained from smoothing the scatter plot of the 
1

( 1)

2

N
i i

i

n n




  half-

square differences 
2( )

2

ij ik

ijk

r r
V


  between pairs of residuals within subjects (

ij ikr r ) 

versus the corresponding lags ijk ij ikU t t   at measurement occasions j  and k  for 

subject i . The in  are the responses or observations of subject i  with N being the total 
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number of subjects. The semi-variogram is estimated from the data as the plot of the 

half-squared differences (
ijkV ) and the time lags 

(
ijkU ) by fitting a non-parametric curve and denoted by ˆ

ijkV (
ijkU ). Usually LOESS 

(locally weighted scatterplot smoothing) is used because of its great combination of 

classical methods like linear and nonlinear regression. Loess smoothing combines 

both the simplicity of linear least squares regression and the flexibility of nonlinear 

regression. This is done by fitting simple models to localized subsets of the data to 

build up a function that describes the deterministic part of the variation in the data 

(Cleveland & Devlin, 1988). 

In a random intercepts model (in which random intercepts are the only random 

effects), the marginal covariance matrix for a three-level multilevel model is given 

for two separate model fit by Equations 2 and 3 for level 1 and level 2 serial 

correlations respectively. 

1

2 2 2 2

i i in n i nv J u J H I                                                                                         (2) 

2

2 2 2 2

i i in n i nv J u J H I                                                                                          (3) 

The notations are described earlier on in detail except for 
inJ which is ( )i in n  and 

containing only ones while 2v and 2u denote the variances of the school level random 

intercepts and student level random intercepts respectively. The variances due to the 

level 1 and level 2 serial correlations are represented by 1

2  and 2

2  respectively. This 

implies that the residuals 
ijkr  of the j th student of the i th school at the k th 

measurement occasion have constant variances, 1

2 2 2 2v u      and 2

2 2 2 2v u      

with serial correlation variances at the student level ( 1

2 ), and school level ( 2

2 ). 

Level 1 Serial Correlation 

The correlation between two residuals 
ijkr and 

'ijkr from the same student j  from school 

i  at measurement occasions k  and 'k , is given by 

2 2

1 '

' 2 2 2 2

1

( )
( )

ijk ijk

ijk ijk

u g r r
r r

v u




 

 
 

  
                                                                           (4) 

Level 2 Serial Correlation 
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A similar correlation can be obtained between two residuals ikr and 'ikr  from the same 

school i  at measurement occasions k  and 'k  is  

2 2

2 '

' 2 2 2 2

2

( )
( )

ik ik

ik ik

v g r r
r r

v u




 

 
 

  
                                                                               (5) 

4.2.     Random intercepts and slopes multilevel growth curve models 

 

When growth curve models with random slopes in addition to the random 

intercepts are used to model the growth process, introducing serial correlation to the 

level 1 residuals requires complex statistical methods and software. This paper 

discusses and elaborates on some of the methods already mentioned in the literature 

for random intercepts only, while showing how they can be extended and applied to 

school effectiveness research under a number of conditions. It has often been shown 

in other fields of research that in growth curve models with random intercepts and 

slopes, the covariance structure of Equations 2 and 3 is usually dominated by its first 

two components. This implies that to efficiently study the random effects, it is 

necessary to first remove the variability in the data due to the random effects at both 

the school and student level. The residuals obtained can then be explored using the 

empirical semi-variogram as illustrated previously. There are two possibilities 

described in this paper on how to go about this exploration of residuals: examining 

subject-specific residuals and examining transformed residuals. 

The first, is looking at subject specific residuals ˆ ˆ ˆ
i i i i i iX T Z      , in which  

ˆ ˆ ˆ( , )i i i iE     and ˆ ˆ( )i i iE    are the empirical Bayes estimates for the i  and i  

obtained by fitting a specific multilevel growth curve model. The main drawbacks of 

this approach are the strong dependence of the i  and i  on the normality assumption 

specified by the model on the random effects and also the form of the variance 

covariance structure imposed on Equations 2 and 3. This simply means wrong 

normality assumptions will have great repercussions on the preceding analyses. 

Caution must therefore be taken when exploring the functional form of the subject-

specific residuals if an assumed covariance function had been used previously 
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because this could indirectly contaminate the serial correlation if present. Despite the 

above shortcomings, in educational effectiveness research one usually encounters 

huge amount of data, reducing the chances of non-normality of the random effects. If 

the covariance structure is in addition left to be more general (unstructured) then one 

can proceed using these subject specific residuals. Morrell, Pearson, Ballentine, and 

Brant (1995) have used such residuals for the case of a two level nonlinear growth 

curve model. 

The second is to look instead at transformed residuals. This was proposed by 

Verbeke, Lesaffre, and Brant (1998) and which also serves as a simple informal 

check for the need of a serial component in a linear mixed model. This technique 

requires the transformation of ordinary least squares residuals OLS
ˆri i iX    based 

on some presumed mean structure and ignoring any dependence among the repeated 

measurements. The transformation process entails projecting the ordinary least 

squares residuals orthogonally to the columns of iT  for the school level random 

effects and iZ  for student level random effects. In this case the transformed residuals 

are left only with variability not explained by the random effects. This second method 

is very complex and thus only really makes a big gain when applied to small or very 

moderate datasets and in which restrictions have been put on the covariance structure 

of the random effects. 

5. Application 

5.1.     Data 

 

The data that will be considered in this application stem from the LOSO 

research conducted on secondary school students from the academic year 1990-1991 

to the academic year 1996-1997 (Van Damme et al., 2006). In this project, over 6000 

students from about 57 schools in Flanders (Belgium) are followed during secondary 

education. Two student outcomes are studied in this paper: Dutch achievement (the 

mother tongue of most students) and student well-being at school. Achievement in 

Dutch was measured via curriculum-based tests administered at five different 
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measurement occasions: at the start of first year (Grade 7), and at end of first year 

(Grade 7), second year (Grade 8), fourth year (Grade 10) and sixth year (Grade 12). 

A common scale for the Dutch language scores for the five measurement occasions 

was obtained using Item Response Theory. The questionnaire on student well-being 

was also administered four times during secondary school: at the end of Grade 7, 

Grade 8, Grade 10 and Grade 12. However, for comparison purposes, only four of the 

measurement occasions of the language achievement were used just as for well-

being. Student well-being at school is measured on a 32-item scale. Two samples 

(3788 students from 53 schools are used for well-being and 3311 students from 52 

schools are used for Dutch language achievement) are studied for the application. The 

student samples include only students who did not change schools and students who 

did not repeat a grade. The sample is also restricted to those students who have 

measurements at least three time points in other to be able to estimate individual 

student growth curves. School effects in all the models will be estimated at the end of 

year 1(grade 7). 

SAS 9.1 (SAS Institute Inc., 2003) and its PROC MIXED is used because it is 

very flexible and suitable for fitting multilevel models or hierarchical linear models, 

and growth curve models (Singer, 1998). MLwiN 2.02 (Rasbash et al., 2000) was 

also used because it provides a wide range of multilevel models together with 

plotting, diagnostic and data manipulation facilities. 

5.2.     Comparing models with and without serial correlation 

 

The first research question on whether it is possible to find serial correlation in 

repeated measurements of students‟ outcomes in educational effectiveness research is 

dealt with by considering three growth models. A three-level quadratic growth curve 

model is applied to data in which measurements are nested within students and 

students are in turn nested within schools. The three models considered are: a model 

without serial correlation (model A), a model with serial correlation at level 1 (model 

B) and a model with serial correlation at level 2 (model C). The first model (model 
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A) is the most frequently used and makes a very strong assumption about the nature 

of the residuals. The standard assumption being that within subject residuals are 

serially uncorrelated. In model B, this assumption will be tested by modelling a serial 

correlation at level 1, thus modelling how the within-student residuals are serially 

correlated. In this paper the verification of a serial correlation at level 2 (model C) 

will be a step forward in the field of educational effectiveness in general and the 

analysis of repeated measurement multilevel data in particular. In model C, the serial 

correlation of the within-school residuals will be modelled. 

The three models described earlier with a random intercept only are fitted to 

determine whether or not serial correlation exists in the data. Using the results 

obtained, the verification of the presence of serial correlation is done by taking the 

difference between -2 times the log of restricted maximum likelihood estimates of 

model A and model B which is 414.4 (with a variance due to serial correlation of 

0.084). The difference is then compared to a chi-square distribution with 2 degrees of 

freedom and seen to be clearly significant at a 5% significance level. This is an 

indication that the amount of serial correlation between the repeated measurements of 

the students cannot be neglected and this paper admonishes researchers to consider 

correcting for this in their models. A similar conclusion is drawn when comparing 

model A to model C. The difference in their -2 times log of restricted maximum 

likelihood values is 200.8 with 2 additional parameters (with a variance due to serial 

correlation of 0.01). This is still an insurmountable difference when considered with 

2 degrees of freedom though less than the serial correlation at level 1. This indicates 

once again that average repeated measurements of the school are also strongly 

serially correlated.  It is also worth noting that the fixed effects parameter estimates 

for both model A and B are almost identical but for model C there are some slight 

differences in parameters as well as their standard errors. Thus taking serial 

correlation into account will not only be useful for a true interpretation of the random 

variability in the data but also to obtain valid inferences for the growth profiles 

(student growth as well as school growth). The same three models A, B and C this 

time with a random intercept and a random slope, are once again fitted to the data and 
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the results compared. Comparing the fits of models A to B and A to C indicates 

deviance values of 127.6 (2 degrees of freedom) and 102.1 (2 degrees of freedom) 

respectively. 

The results of the students‟ language achievement not presented, indicate that 

the difference in -2loglikelihood for models A and B with a random intercept only is 

62.8 (2 degrees of freedom). This is significant at a 5% level of significance though 

with a smaller difference in comparison with the same calculations for the students‟ 

well-being outcome. Comparing model A and C for the students‟ language 

achievement shows a difference of 319.9 (2 degrees of freedom). For the case of a 

model with random intercepts and random slopes, the differences between models A 

and B and models A and C are 41.1 (2 degrees of freedom) and 159.1 (2 degrees of 

freedom) respectively, and are both significant at a 5% level of significance. 

5.3.     Serial correlation functions 

 

As indicated earlier, the repeated measurement framework of time series is 

usually made of many more subjects in comparison to the number of measurement 

occasions. In this case the amount of information available to describe the shape of 

the serial correlation is limited thus giving ascendancy over the search of serial 

correlation functions to a set of plausible functions instead of looking at an infinite 

set of these functions. The consideration of a plausible set of functions in a sense is 

much more practical and easier to implement with available software. In SAS Proc 

Mixed, such functions would have to be positive definite to ensure that matrices 

created with entries of this functional forms are also positive definite (Littel et al., 

2006). Three of these types of functions whose correlation asymptotically dies to zero 

will be considered in this application: the spatial power, exponential and Gaussian 

models of serial correlations. However, some researchers have settled down to only 

the exponential and Gaussian serial correlations given that the behaviour of spatial 

power and exponential are in general similar (Verbeke, Lesaffre, & Brant, 1998; 

Verbeke & Molenberghs, 2000). 
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where 2  is the variance attributed to the particular serial correlation function 

considered and   represents how fast the correlations decrease as a function of the 

time lags 
ijl . The time lags ( 12l , 24 46l l , 14l , 26l , 16l ) are estimated from the data easily to 

be (1, 2, 3, 4, 5) thus reducing the parameters to be estimated to 2  and  . 

The need for improving statistical acumen in the modelling of growth curves 

models in educational effectiveness research is inevitable. Therefore the semi-

variogram proposed for checking serial correlation in multilevel longitudinal data 

could become a very essential tool available to researchers in the future. The 

modified version of the semi-variogram for three-level data will be applied in order to 

investigate the possibility of distinguishing which of these functions best represent 

the serial correlation structure in the data. Figures 2a and 2b showing two simulated 

representative samples of the student well-being, for three different serial correlation 

functions (g(u)) for random intercepts only with serial correlations of  with rates of 

decrease of 0.5 and 2 respectively. It is clear from Figure 2a that the semi-variogram 

will find it very difficult to make a clear cut demarcation between the Gaussian and 

exponential functions. In any case Figure 2b shows that possibility of making the 

difference between the Gaussian and exponential function when the rate of decrease 

is 2. The figures will guide our choice of serial correlation function when the semi-

variogram is obtained. With as few as four measurement occasions, the number of 
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time lags greatly depends on the time spacing between the measurement occasions. 

For example four measurements at equally spaced times say, year 1, 2, 3, and 4 will 

produce only three time lags (1, 2, and 3) whereas four measurements at unequally 

spaced times 1, 2, 4, and 6 produces five time lags (1, 2, 3, 4, and 5). It is thus better 

to get four unequally spaced times measurements than get six equally spaced times 

when researching on serial correlation. 

 

Figure 2a. Serial correlation with rate decrease of 0.5 

 

Figure 2b. Serial correlation with rate of decrease of 2 
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The graphs of three different serial correlation functions corresponding to the three 

functional forms are shown in Figures 2a and 2b, simulated with properties of the 

students‟ well-being outcome. The log likelihood values point to the indistinguishable 

fact of these three functions at level 1. The three serial correlation functions show a 

difference of 0.008% which is no doubt an inane difference. Looking at the three 

serial correlation functions for level 2, the results indicate a difference of 0.1% which 

is still very small but higher than at level 1. However, the distinction between the 

exponential and power serial correlations still remains practically impossible using 

deviance statistics because they all show the same model fit statistics for both the 

random intercepts model and the random intercepts and slopes model. 

Looking only at the results of the deviance statistics, will indicate that the three-

level growth curve models with serial correction at level 1 do not depend very much 

on the type of serial correlation function used. The differences between the -

2loglikelihood values are almost negligible possibly because of the few number of 

measurement occasions present in the data. The -2loglikelihood values for the spatial 

power and exponential functions remain identical confirming why other authors have 

restricted their search to exponential and Gaussian serial correlations only. When 

serial correlation is included at level 2, the difference between the loglikelihood 

values for the Gaussian serial correlation and spatial power (or exponential) increases 

but still not as much as to call for too much attention. 

While the difference between the plausible serial correlation functions is 

relatively small, the level 1 serial correlation correction for the random intercepts 

model, using the Gaussian serial correlation function shows the largest value of the -

2loglikelihood. For level 2 corrections, the exponential and spatial power functions 

larger values of the -2loglikelihood. Similar arguments can be put forward when 

looking at the results obtained for the students‟ language achievement outcome. The 

Gaussian function seems better for level 1 serial correlation while exponential and 

spatial power result in a better fit for level 2 serial correlation corrections. 
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5.4.     Application of semi-variogram 

 

Figures 3 and 4 show semi-variograms obtained by using subject-specific residuals 

(students and schools) with student random effects only and with school random 

effects only respectively. It was earlier explained that such subject-specific residuals 

will only be valid for large datasets and unstructured variance covariance matrices. 

Note that these plots in Figures 3 and 4 represent the variance plotted against time lag 

because they are easily estimated from data which are unequally spaced in time 

instead of correlation plots. Correlation plots in any case will be quite similar only 

that they will instead be decaying from left to right as the lags increase as seen in 

Figures 2a and 2b. The two plots both indicate an indubitable presence of a serial 

correlation either at level 1 or level 2 as was illustrated earlier on in Figure 1 (total 

variability partition). The semi-variograms also point out the fact that a decaying 

function could as well be used to represent the serial correlation. It was also indicated 

earlier on that with few measurement occasions, the shape of the serial correlation 

cannot be captured completely. Hence, the semi-variogram estimated for this 

particular example cannot make a good distinction between a Gaussian serial 

correlation and an exponential serial correlation functions. However, it does 
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distinguish clearly the power function from the other two functions.

 

Figure 3. Semi-variogram of Level 1 serial correlation 

 

 

 

Figure 4. Semi-variogram of Level 2 serial correlation 
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5.5.     School effects estimates with serial correlation correction 

 

After finding that the data are serially correlated, the next step is to estimate the 

school effects taking this correlation into account. The Gaussian serial correlation 

was considered for the measurement occasions correlation though the results 

indicated by the semi-variogram of Figure 3. The plot of Figure 4 shows that the 

power function will be the best functional form for the serial correlation at level 2. 

The results presented in Tables 1 and 2 for the students‟ well-being and language 

achievement reveal that serial correlation correction at level 1 can result in a larger 

school effect estimate for the student well-being (3.3% to 4.8%) and language 

achievement (41% to 48%). Correction of serial correlation at level 2 does show a 

different pattern for the well-being outcome as for the language achievement 

outcome. The school effect for the status of the students‟ well-being when level 2 

serial correlation is taken into account, reduces from 3.3% to 2.3% while for the 

language achievement, it increases from 41.5% to about 43%. 

Table 1 

Random effects estimates of students‟ well-being for the model A, B and C with 

random intercepts only and serial correlation 

parameters 
Without serial  

correlation 

Level 1 serial  

Correlation(gau) 

Level 2 serial  

Correlation(gau) 

Variance       

School level intercept 0.009(0.0026)* 0.009(0.0025)* 0.006(0.0028)* 

Student level intercept 0.146(0.0044)* 0.095(0.0077)* 0.147(0.0044)* 

Residual 0.119(0.0018)* 0.082(0.0024)* 0.114(0.0018)* 

Serial correlation    

School serial           /              / 0.007(0.0018)* 

Student serial           / 0.084(0.0065)*            / 

School effect       

Student status 3.3% 4.8% 2.3% 

* Significant at 5% level of significance 
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Table 2 

Random effects estimates of students‟ language achievement for the model A, B and 

C with random intercepts only and serial correlation 

Parameters 
Without serial  

correlation 

Level 1 serial  

Correlation(pow) 

Level 2 serial  

Correlation(gau) 

Variance       

School level intercept 0.306(0.0636)* 0.304(0.0630)* 0.316(0.0676)* 

Student level intercept 0.241(0.0075)* 0.234(0.0088)* 0.243(0.0074)* 

Residual 0.191(0.0030)* 0.096(0.0089)* 0.179(0.0028)* 

Serial correlation    

School serial           /              / 0.0225(0.0050)*  

Student serial           / 0.112(0.033)*             / 

School effect       

Student status 41.5% 47.9% 42.8% 

* Significant at 5% level of significance 

 

As earlier indicated, school effectiveness research also seeks estimates of school 

effects on students‟ growth. In this light, quadratic growth curve models with random 

intercepts and slopes are considered to enable the estimation of school effects on 

students‟ growth. The same models are then reconsidered twice, once with level 1 

serial correlation correction and once with level 2 serial correlation. The results of 

these models for the students‟ well-being and students‟ language achievement are 

presented in Tables 3 and 4 respectively. 
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Table 3 

Random effects estimates of students‟ well-being for the model A, B and C with 

random intercepts & slopes and serial correlation 

 
Without serial 

correlation 

Level 1 serial 

correlation(gau) 

Level 2 serial 

Correlation(gau) 

Variances    

School level intercept 0.012(0.0035)* 0.01(0.0029)* 0.002(0.0057)* 

School level slope 0.001(0.0002)* 0.0007(0.0002)* 0.0001(0.0003)* 

Student level intercept 0.217(0.0079)* 0.110(0.0079)* 0.221(0.0079)* 

Student level slope 0.004(0.0004)* 0.00001(--) 0.0047(0.0003)* 

Residual 0.0970(0.0019)* 0.0820(0.0025)* 0.0940(0.0018)* 

School effect    

Student status 5.2% 8.3% 0.9% 

Student growth 20% 98.5% 2.1% 

* Significant at 5% level of significance 
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Table 4. 

Random effects estimates on students‟ language achievement for the model  

A, B and C with random intercepts & slopes and serial correlation 

 
Without serial 

correlation 

Level 1 serial 

correlation(gau) 

Level 2 serial 

correlation(pow) 

Variances    

School level intercept 0.263(0.0551)* 0.265(0.0556)* 0.232(0.0508)* 

School level slope 0.002(0.0005)* 0.002(0.0005)* 0.002(0.0006)* 

Student level intercept 0.196(0.0080)* 0.168(0.0084)* 0.189(0.0098)* 

Student level slope 0.002(0.0005)* 0.00001(--) 0.003(0.0005)* 

Residual 0.175(0.0034)* 0.042(0.086)* 0.166(0.0032)* 

School effect    

Student status 57.3% 61.2% 55.1% 

Student growth 50.0% 99.5% 40.0% 

* Significant at 5% level of significance 

 

Results in Table 3 show that with a level 1 serial correlation, the school effect on both 

the students‟ status and growth increase from 5.2% to 8.3% and 20% to 98.5% 

respectively. The interesting fact about these results seems to be the greater increase 

on the students‟ growth than status. It is worth noting that with level 1 serial 

correlation correction, the variance of the student level linear slope is very small and 

just approximated to 0.00001 without any estimates for the standard errors. With 

serial correlation at level 2, the school effects on the students‟ status and growth both 

decrease drastically with little or no school effects (0.9%) on the students‟ status at 

the end of year 1 (Grade 7) but with a much higher though still small school effect on 

the students‟ growth in well-being (2.1%). Table 4 shows that the school effect on 

students‟ status and growth in language achievement increase with serial correlation 

considered at level 1, from 57.3% to 61.2% and 50% to 99.5% respectively. The 
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school effect on students‟ status and growth in language achievement both decrease 

with level 2 serial correlation though far less than for the students‟ well-being. 

6. Discussion and Conclusion 
 

Researchers in educational effectiveness research generally split up total 

variance into two components that is the measurement error and random effects of the 

different levels present in the data. The level 1 variance is thus considered to be the 

error variance and the rest considered to be random effects due to random samples 

(groups) present. This is often done under the assumption of independent level 1 

residuals. The results of this study show that this assumption is in general not realistic 

when working with longitudinal data. It illustrates that there is a very important serial 

correlation component left out and how incorporating this component can greatly 

improve the accuracy of the models and the estimated school effects. Analysis on 

repeated measurements with more than three times will very often show some 

amount of serial correlation and it is thus necessary to check the data and take the 

required measures when need be. 

The results show that more often than not, repeated measurement data will be 

serially correlated which is in line with the findings by early researches in 

longitudinal data. Diggle et al. (1994) have indicated that the presence of random 

effects other than random intercepts (e.g. random linear slopes) in addition to 

measurement error will inundate the effect of serial correlation. This idea made them 

to limit their study to level 1 serially correlated growth curve models with random 

intercepts only. The findings of this article nonetheless indicate contrasting results to 

that of Diggle et al. (1994) in the sense that when level 1 or level 2 serial correlation 

corrections for random intercepts and slopes quadratic growth curves are considered, 

they show a great reduction in the variance of the random effects. This means the 

random effects do not overshadow the presence of the serial correlation always and 

therefore modelling only the random intercept effects cannot correct for serial 

correlation in growth curve models with random intercepts and slopes. The finding of 
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this study showed in addition that all forms of serial correlation corrections 

considered for a three-level growth curve model with random intercept and slopes 

fitted better either at level 1 or level 2. 

Another key finding of this article is that the use of the semi-variogram in 

repeated measurement data with as few as four time points (as well as time lags), is 

most useful for the detection of the presence of serial correlation, but less splendid for 

the type of correlation function present when the serial correlation is small. The 

results from the semi-variogram, however, still indicate that the presence of serial 

correlation should be considered much more seriously than the type of serial 

correlation function when significant but small serial correlation is present. 

The three-level quadratic growth curve model considered in this article with 

serial correlation correction at level 1 or level 2 shows that repeated measurement 

data in educational effectiveness research can have serially correlated residuals. The 

results of this paper indicate that school effects on the student status and student 

growth are in general underestimated without level 1 serial correlation correction. 

This may be due to the overestimation of the level 1 variance. It seems that models 

without serial correlation correction ascribe too much variability to the level 1 

random effect. Correction of level 2 serial correction seems not to show a general 

direction. When level 2 serial correlation is considered for a random intercept model, 

the school effects for the students‟ status in well-being reduced while that for the 

students‟ language achievement increased. This is simply an indication that the two 

outcomes are different stochastically in terms of variability around the students‟ and 

schools‟ growth profiles. 

The advice to researchers of multilevel growth curves will be to include a serial 

correlation component in their models for educational data no matter the type of 

outcome. This paper  focused on the correction of serial correlation at level 1 or level 

2, however, further research is required to combine both levels of serial correlation in 

a single three-level quadratic growth curve model. This paper also advices 

researchers to consider unequal time spacing between measurements when they 

intend to do as few as four repeated measurements. 
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MANUSCRIPT 3: Double serial correlation for 
multilevel growth curve models

3
 

 

Anumendem, D. N., Verbeke, G., De Fraine, B., Onghena, P., & Van Damme, J. 

 

Abstract 

 

Multilevel growth curve models for repeated measures data have become 

increasingly popular and stand as a flexible tool for investigating longitudinal change 

in students‟ outcome variables. In addition, these models allow the estimation of 

school effects on students‟ outcomes though making strong assumptions about the 

serial independence of level-1 residuals. This paper introduces a method which takes 

into account the serial correlation of level-1 residuals and also introduces such serial 

correlation at level- 2 in a complex double serial correlation multilevel growth curve 

model. The results of this study from both real and simulated data show a great 

improvement in school effects estimates compared to those that have previously been 

found using multilevel growth curve models without correcting for double serial 

correlation for both the students‟ status and growth criteria. 

                                                 
3
 Manuscript submitted for publication. 
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1. Introduction 
 

Educational effectiveness research is a domain that tries to furnish answers to 

questions like: Do schools really differ with respect to their impact on pupils? How 

big is this impact? How can it be assessed? What are the factors that cause the effect? 

Can this effect be found in all types of educational contexts, such as in primary 

schools, secondary schools, and in the different countries around the world? What are 

the theoretical explanations behind research findings in this area (Scheerens & 

Bosker, 1997; Teddlie & Reynolds, 2000)? It is of course invaluable that a criterion 

(if possible two or more criteria) be chosen to evaluate school effectiveness. Our 

study will look into two criteria for educational effectiveness: student status and 

student growth, with a focus on correctly estimating these effects. 

The assessment of school effectiveness using student growth in outcomes has 

resulted in the general call for longitudinal studies of school effects (Teddlie & 

Reynolds, 2000). While longitudinal studies are universally accepted by researchers 

as a key design to study the changes in a student performance over time, it comes 

with a number of challenges in terms of data structure and statistical analysis. 

Children, for example, change with time by virtue of their experience in school, and 

also because the structures, functions, and compositions of the schools they attend 

also change with time. There are possibly other sources of this change that are neither 

of the children‟s nor the schools‟ making (purely stochastic) which cannot be 

captured by researchers but are in any case present in a way as to influence the 

outcome of interest. One can say that the sources and consequences of changes in 

student outcomes often constitute the object of study in school effectiveness research 

(Rowan & Denk, 1982). 

School effectiveness researchers, with the exception of Raudenbush and Willms 

(1995) have almost always found only small school effects estimates for the students‟ 

status in different student outcomes. It is possible that the small school effects 

reported by many studies are a result of the use of poor statistical methods (Scheerens 
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& Bosker, 1997). Scheerens and Bosker have shown how school effects are 

underestimated when the school variance structure is misspecified or not taken into 

account at all. 

While Ferron, Dailey, and Yi (2002) have looked at two-level models of change 

with misspecification of level-1 error structure, this paper looks at two levels of 

change in a three level model. However, it breaks the level-1 error or unexplained 

variability, into two components; a pure measurement error which can be corrected 

for misspecification and a serial correlation component which must be adequately 

accounted for with a proper structure. This model is then extended to include a 

complex serial correlation at the second level, resulting in what is called in this paper 

“double serial correlation” (DSC). The main interest of this paper is then to compare 

school effects estimates from multilevel nonlinear growth curve models with and 

without serial correlation correction. 

Multilevel growth curve models have been considered as a class of time series 

by many researchers (Goldstein, Healy, & Rasbash, 1994; Verbeke & Molenberghs, 

2000; Willms & Raudenbush, 1989). These models are a subset of time series models 

because they can be viewed as windows in a time series. In multilevel longitudinal 

studies, it is very common to find that there is some dependency among level-1 units 

with time. This dependency can be expressed in terms of serial correlation functions, 

which are generally positive definite. Models with dependency of level-1 units are 

very popular in the analysis of longitudinal data in the fields of economics, medicine 

and geostatistics to name a few. In any case very little is known about serial 

correlations in educational effectiveness research and three-level quadratic growth 

curve models stand as a greater challenge with the possibility of a DSC. One of the 

main aims of this paper is to introduce this method for three-level longitudinal data 

and apply it to show its impact on the estimates of school effects. Starting with level-

1 and later extend the method to handle two levels of serial correlation functions in 

the special case of three-level growth curve models which is innovative to all fields in 

general. A DSC is proposed for a three-level growth curve model in the next section. 
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2. DSC multilevel growth curve model 
 

There are at least three possible types of random variation in general (Diggle, 

Liang, & Zeger, 1994; Verbeke & Molenberghs, 2000) that can be of interest in a 

longitudinal study. A summary of these three will help in the understanding of later 

concepts. The first is random effects which are stochastic variations between units 

resulting from the fact that the sample units are drawn from a population of such 

units. In this area of research one can think of units, such as countries, educational 

systems, schools and the students. Assuming a three -level sampling where a sample 

of schools is drawn from a population of schools and within the schools, a sample of 

students is drawn from a population of students and these students are observed 

repeatedly. This means we have a school random effect and a student random effect. 

The second type of random variation is serial correlation which is the part of any 

unit‟s (country, educational system, school or student) observed measurement profile 

which may be the result of time-varying stochastic processes operating within that 

unit. For example, a student‟s well-being measured sequentially will reflect to some 

extent biological, psychological and emotional processes operating within them. This 

type of stochastic variation results in correlation between pairs of measurements on 

the same unit which in turn depends on the time separation between the pairs of 

measurements. Typically, this correlation is a decreasing function of the time 

separation between these measurements. Finally the third type of random variation is 

the measurement error which is random variation due to the measurement process 

itself. 

This paper proposes a multilevel growth curve model (three levels) with DSC 

which is an extension to the linear mixed model proposed by Verbeke and 

Molenberghs (2000). The extension is with respect to the number of levels in the 

nested data (from two to three) and the serial correlation (from level-1 only to levels -

1 and -2). The resulting model can be written as 
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                  (1) 

 

Where i is the in -dimensional response or outcome vector for school i , and 1 i N 

, with N being the total number of schools. in  depends on the particular school while 

N is fixed for a particular study. This means in will take values like 1n ,…, Nn with 1n

and Nn being the dimensions of the response vectors for school 1 and school N 

respectively. The dimension of the response vector per student within each school is 

also allowed to vary and denoted by 
ijm . Moreover, iX , iT and iZ are ( )in p , ( )in q

and ( )i ijn m dimensional matrices of known covariates respectively. Vector   is p-

dimensional containing fixed effects, while i  is the q-dimensional vector containing 

school random effects. Vector 
ij  is the 

ijm -dimensional vector containing student 

random effects and 
( )e i  is the in -dimensional vector of residual components. For 

covariance matrices, 1 , of level-3 random effects is a general ( )q q covariance 

symmetric matrix, 2  is a general ( )ij ijm m covariance symmetric matrix of level-2 

random effects. The usual assumption of such a model is that the serial effects 
( )s ij  

and 
( )s i are population phenomena, independent of the school and students 

respectively. The serial correlation matrices iH  and 'ijH  are assumed to depend only 

on i and j  through their dimensions in and 
ijm  respectively, and the measurement 

occasions
ijkt . It is assumed further that the ( k , 'k ) element 

'ijkkh of 'ijH is modelled as 

' 1 '( )ijkk ijk ijkh g t t   and 'ikkh of iH  is modelled as ' 2 '( )ikk ik ikh g t t  for some decreasing 

function ( )g   with (0) 1g  . Examples of such decreasing functions include ( ) ug u   , 

( ) exp( )g u u  , and 2( ) exp( )g u u   which are the power, exponential and Gaussian 
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serial correlation functions respectively and these functions are allowed to be 

specified differently at the different levels of serial correlation. The correlation 

between 
( )s ijk  and 

( ) 's ijk  at level-1 only depends on the time interval between response 

ijky  and 
'ijky and decreases as this interval increases. Similarly the correlation between 

( )s ik  and 
( ) 's ik  at level-2 only depends on the time interval between response iky  and 

'iky and decreases as this interval increases. 

The serial correlation function can be specified to depend on a pair of times and 

only under the assumption of stationarity does this pair of times simplify to the time 

lag (Box & Jenkins, 1970). This kind of correlation can be modelled by using flexible 

parametric models as proposed by Lesaffre, Asefa, and Verbeke (1999). They assume 

a parametric form for the correlation function by using fractional polynomials. 

However it is also possible to explore residual covariance structure and consequently 

the serial correlation function, using the empirical semi-variogram (nonparametric 

technique). 

3. Detecting DSC in random intercept and slope multilevel 
growth curve models 

 

Historically the semi-variogram also frequently called variogram (Diggle, 1990; 

Diggle, Liang, & Zeger, 1994) has been widely used in spatial statistics to represent 

the covariance structure in geostatistical data. Diggle (1988) first introduced it for the 

case of a random intercept linear mixed model. The use of the term variogram or 

semi-variogram depends on the way the mathematical expression is perceived. This 

was later extended by Verbeke, Lesaffre, and Brant (1998) to situations containing 

not only random intercepts (constant variance) but slopes too. The semi-variogram 

can be used as a diagnostic tool and can also suggest appropriate models for the 

covariance (Fitzmaurice, Laird, & Ware, 2004). 

We propose in this paper an extension of the applicability of the semi-variogram 

to models with more than two levels. Starting with some background knowledge of 

semi-variogram for random intercepts models, random slopes are then incorporated 
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into the three-level models. Finally this proposed model is applied to real data. An 

advantage of the semi-variogram is that it can be used to describe the association 

among repeated values and easily estimated with irregular observation times (Diggle, 

1990). In this case, an estimate of the semi-variogram ˆ
ijkV (

ijkU ) also called empirical 

or sample variogram (Diggle, Liang, & Zeger, 1994) is easily obtained from 

smoothing the scatter plot of the 
1

( 1)

2

N
i i

i

n n




  half-square differences 

2

'
'

( )

2

ik ik
ikk

r r
V


  

between pairs of residuals within subjects ( 'ik ikr r ) versus the corresponding lags 

' 'ikk ik ikU t t   at measurement occasions k  and 'k  for subject i . The technique uses 

information on lags rather than the measurement occasions themselves. The half-

squared differences are then plotted against the time lags by fitting a non-parametric 

curve using a loess curve. The loess function combines the simplicity of linear least 

squares regression with the flexibility of nonlinear regression. The loess curve is 

obtained by fitting simple models to localized subsets of the data and then using them 

to build up a function that describes the deterministic part of the variation in the data 

(Cleveland & Devlin, 1988). 

In a random intercept model (in which only random intercepts are the random 

effects), the marginal covariance matrix for a three-level multilevel model is given by 

1 2

2 2 2 2 2'
i i in n i ij nv J u J H H I                                                                              (2) 

The notations are defined as in equation 1 above except for 
inJ is ( )i in n  matrix 

containing only ones and 
inJ   which is a blocked diagonal matrix with 

inJ  blocks. The 

school level random intercepts variance and student level random intercepts variance 

are denoted by 2v and 2u  respectively. This implies that the residuals 
ijkr have a 

constant variance 1 2

2 2 2 2 2v u        with serial correlation at the level-1 and level-2. 
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3.1.     Double serial correlation (DSC) 
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If observations for level-1 units within the same level-2 units are made at the same 

time points with equal or unequal time spacing, then the time lags will be the same 

for both levels-1 and-2. These types of data are for example present in studies where 

a student cohort in a specific sample of schools is followed by taking test at fixed 

measurement occasions. And if the serial correlation function is the same for both 

levels then equation 3 can be simplified as follows 

2 2 2

1 2 '
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                                                                    (4) 

Considering a model with double serial correlation for a three-level growth curve 

model with random intercepts and slopes, the marginal covariance matrix will be of 

the form 

1 2

2 2 2

1 2 '
i

T T

i i i i i ij nT T Z Z H H I                                                                           (5) 

Where iT and iZ are matrices of known level 3 and level 2 covariates respectively. 

1  and 2  are covariance matrices for level 3 and level 2 random effects, iH  and 

'ijH  are level 1 and level 2 serial correlation matrices. The serial correlation variances 

for level 1 and level 2 are represented by 1

2  and 2

2 . 2  is the level 1 error variance 

and 
inI is an identity matrix. 

The first approach that can be used to investigate the presence of serial 

correlation in subject specific residuals given by the use of ˆ ˆ ˆ
i i i i i ijX T Z      , in 

which ˆ ˆ ˆ( , )i i ij iE     and ˆ ˆ( )ij ij iE    are the empirical Bayes estimates for the i  

and 
ij  obtained by fitting a specific multilevel growth curve model. The main 

drawbacks of this approach are the strong dependence of the ˆ
i  and ˆ

ij  on the 

normality assumption on the random effects and also the form of the variance 
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covariance structure imposed on equations 1 and 2. This simply means wrong 

normality assumptions will have repercussions on the analyses thereafter. Caution 

must therefore be taken when exploring the functional form of the subject-specific 

residuals if an assumed covariance function had been used previously because this 

could indirectly contaminate the serial correlation if present. Despite the above 

shortcomings, in longitudinal educational effectiveness research one usually 

encounters huge amount of data and in addition maximum likelihood estimators for 

the fixed effects and variance components are still consistent even with non-

normality of random effects distribution (Verbeke & Lesaffre, 1997). If the 

covariance structure is allowed to be more general (unstructured) then one can 

proceed using these subject specific residuals. Morrell, Pearson, Ballentine, and Brant 

(1995) have used such residuals for the case of a two level nonlinear growth curve 

model. 

The second approach is to look instead at transformed residuals proposed by 

Verbeke, Lesaffre, and Brant (1998). This approach serves as a simple informal 

check for the need of a serial component in a linear mixed model. This technique 

requires the transformation of ordinary least squares residuals OLS
ˆri i iX    based 

on some presumed mean structure and ignoring any dependence among the repeated 

measurements. The transformation process entails projecting the ordinary least 

squares residuals orthogonally to the columns of iT for the school level random 

effects and iZ for student level random effects. In this case the transformed residuals 

are left only with variability not explained by the random effects. This second method  

3.2.     School effects 

 

In educational effectiveness research, the school effect is measured by 

percentage of variance in the outcome that is between schools (ICC for cross-

sectional data). However, for growth curve models with random intercepts and 

slopes, there exists no general agreement on what a „school effects‟ is. We therefore 

propose a definition of school effect as the percentage of variance between schools 
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for growth curve models with random intercepts and slopes. This proposed definition 

can be extended to three or more levels of hierarchy. The semi-variogram described 

above can be applied in a straightforward manner with the addition of random slopes 

at the second and third levels. This results in the inclusion of two new terms to 

equation 2. This means the covariance between the random intercepts and the random 

slopes is taken into account when estimating the variances of the different levels. 

However, this covariance parameter is less important when defining the percentage of 

variance at a particular level as shown in the next paragraph. 

An example of a model with more than two levels in educational research could 

be repeated measurements within students within classes within schools within 

educational systems or even within countries. To make the presentation simple, an 

additional index is used in place of the different letters used previously. This index is 

used to denote the different levels in order to avoid running out of letters of the 

alphabet. Let 
( 1)( 1)q p pv  

 denote the variance of the qth level random regression 

coefficient, and that q takes values 1,…, Q  with Q  not less than 2. With this notation, 

it is then possible to define the percentage of variance between units of the q level on 

each of these growth model parameters as follows: 

% variance between units of level q on 
ijp =

( 1)q p 
, 

where 
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where 0,..., 1p P  . Where P  is the number of random coefficients allowed and Q  is 

the number of levels of hierarchy in the data. In this new definition, the percentage of 

variance between level q units for the case of a random intercept model (that is with 

1P  ) corresponds to the definition of the intraclass correlation (ICC) at the qth level 

( 1q ) for a random intercept model. For a random intercept and slope model (P=2), 
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the definition indicates the estimation of two school effects: one effect for the 

intercept, and another effect for the slope. 

4. Application to educational data 
 

4.1.     Data 

 

The data considered for the application results from a large scale research 

project on secondary education (Van Damme et al., 2006). In this project, over 6000 

students from about 57 schools in Flanders (Belgium) are followed. Several student 

outcomes are studied in this research but the application of the method proposed in 

this article has been limited to two student outcomes being the student‟s Dutch 

achievement (the mother tongue of most students) and well-being at school. 

Achievement in Dutch was measured via curriculum based tests administered at five 

different measurement occasions: at the start of first year (Grade 7), end of first year 

(Grade 7), second year (Grade 8), fourth year (Grade 10) and sixth year (Grade 12). 

A common scale for the Dutch language scores for the five measurement occasions 

was obtained using Item Response Theory (IRT). The questionnaire on students‟ 

well-being was administered four times during secondary school and measured on a 

32-item scale. The chosen student samples for the application include only students 

who did not change schools and those who did not repeat a grade. 

4.2.     Software 

 

Two software programmes are used in this study because of their different 

merits and demerits. Firstly, PROC MIXED of SAS 9.1 (SAS Institute Inc., 2003) is 

very flexible and suitable for fitting multilevel models, hierarchical linear models, 

and growth curve models (Singer, 1998). Secondly, MLwiN 2.02 (Rasbash et al., 

2000) which provides a wide range of multilevel models together with plotting, 

diagnostic and data manipulation facilities. And lastly, it enabled us to compare 

results of multilevel models fitted in SAS to those of same multilevel model fitted in 
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MlwiN. However, SAS has the upper hand because it allows the programming of the 

more complex DSC multilevel growth curve model. 

4.3.     Results of random intercept only models 

 

A quadratic growth curve model fitted the data best, but with different random 

effect specifications at the student and the school levels. Several authors stress the 

importance of nonlinear modelling (Bauer & Cai, 2008; Harring, 2009) when it 

represents the growth profile better. The first set of models used to obtain the results 

of Table 1, considered only random intercepts for both the students‟ and schools‟ 

growth profiles. The fixed part of the model is assumed to be quadratic and 

considered reasonable from the variance exploration and deviance statistics. A 

mixture of chi-square distribution is used as null distribution for the likelihood ratio 

test statistic (Verbeke & Molenberghs, 2000) for the inclusion of random linear and 

quadratic growth effects. 

There are four multilevel random intercept quadratic growth curve models fitted 

to the data. However more emphasis is put on the different serial correlation 

structures specified. The results of the first column of Table 1 come from the model 

without any serial correlation. Under this model specification, the school effect on the 

students‟ status in well-being is estimated to be about 3%. Such a small school effect 

on the students‟ status for a noncognitive outcome is in agreement with the current 

literature in school effectiveness research. The second and third models in Table 1 are 

improvements on model 1 and are obtained by specifying a Gaussian serial 

correlation at level-2 and level-1 respectively. When the level-2 serial correlation 

variability (the stochastic variation of schools from the school mean profile) is 

modelled, the overall school effect estimation drops to 2.2%. Considering the student 

level serial correlation correction (model 3), the school effect on the students‟ status 

in well-being increases to 4.3%. The school effects estimates from model 2 and 3 are 

far larger than that from model 1. It is worth noting that model 2 fits better than 
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model 1 when looking at the deviance statistic while model 3 fits even better than 

models 1 and 2. 

In order to take into account the serial correlation at levels 1 and 2 

simultaneously, model 4 with a DSC is fitted to the data. The school effect is again 

estimated without all the stochastic variability at the student and school levels. The 

school effect estimate from model 4 is then 3.4%, which is less than that of model 3 

but greater than that of model 2. In any case one may tend to favour this model 

because it fits better than the first three, and corrects for both levels of serial 

correlation. In comparison to the model without serial correlation correction, the 

results of model 4 show an increase of about 17% in the school effect on the students‟ 

status in well-being. 

Other spatial serial correlation functions considered were spatial power and 

exponential. However, test of model fit using deviance statistics indicate that the 

choice of a serial correlation function did not matter much at level-1 (see Table 2a of 

the appendix B). But at level 2, the results show a slight difference in favour of the 

Gaussian serial correlation function over the other two functional forms. 
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Table 1 

Well-being outcome modelled using four different three level quadratic growth curve 

models 

 Model1 Model 2 Model 3 Model 4 

Parameters     

Fixed effects     

Intercept 3.9708(0.0192) 3.935 (0.0285) 3.9668(0.0191)       3.9417(0.0282) 

Linear slope -0.2473(0.0089) -0.2285 (0.0172) -0.2465(0.0084)    -0.2328(0.0170) 

Quadratic slope 0.0198(0.0012) 0.0178 (0.0024) 0.0200(0.0012)     0.0185(0.0024) 

Variances     

School intercept 0.0080 (0.0024) 0.0055(0.0027) 0.0085(0.0025) 0.0063(0.0027) 

Student intercept 0.1443(0.0044) 0.1472(0.0044) 0.0953(0.0077) 0.0985(0.0077) 

Residual 0.1228(0.0019) 0.1142(0.0018) 0.0818(0.0024) 0.0794(0.0023) 

-2loglikelihood 14751.3 14550.5 14336.9 14159.1 

Degree ff 6 8 8 10 

Serial correlation     

Level 2 serial           / 0.0073(0.0018)              / 0.0063(0.0018) 

Level 1 serial           /            / 0.0844(0.0065) 0.0801(0.0065) 

     

School effect     

Initial status 2.9% 2.2% 4.3% 3.4% 

Model 1: without serial correlation; Model 2: with level 2 Gaussian serial correlation correction only Model 3: with level 1 Gaussian 

serial correlation correction only; Model 4: with both levels 1 and 2 Gaussian serial correlation corrections. 

 

However, basing the choice of the serial correlation functional form on the results of 

Table 2a will be wrong. The reason for this being the absence of a formal test for two 

multilevel growth curve models which differ only in the type of serial correlation 

functions used in each. Two such models will have the same number of parameters as 

such even the famous deviance statistics cannot be applied with zero degree of 

freedom. More appropriate results are therefore obtained using the semi-variogram 

technique shown in Figures 1a and 1b. Figure 1a shows that the level 1 serial 
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correlation is most likely a Gaussian form while Figure 1b indicates that level 2 has 

an exponential form. In fact the results of Table 2a only help to indicate that serial 

correlation cannot be neglected in the model specification since useful comparisons 

can only be made when compared to the same models without DSC. 

When the students‟ Dutch achievement outcome is considered, the results on 

Table 2 below are obtained. Looking at the results for model 1 (no serial correlation) 

in the first column of Table 2, the school effect on the student status estimate is 40%. 

The models with serial correlation correction all result in larger school effects. Unlike 

the school effects estimates of the students‟ well-being outcome, the double serial 

correlation correction for the Dutch achievement produced the highest school effect 

estimate in comparison to level 1 and level 2 corrections each alone. The DSC 

correction results in an increase of about 11.3% in the school effect estimate 

compared to the model 1 with no serial correction. Model 4 once again shows to be 

the best fit for the data when compared to the other three using once again deviance 

statistic. 

 

 

 
Figure 1a: Semi-variogram of Level 1 serial correlation 
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Figure 1b: Semi-variogram of Level 2 serial correlation 
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Table 2 

Dutch achievement outcome modelled using four different three level quadratic 

growth curve models 

 Model1 Model 2 Model 3 Model 4 

parameters     

Fixed effects     

intercept 4.4815(0.0782) 4.4577(0.0878) 4.4802(0.0787) 4.4599(0.0878) 

Linear slope -0.0883(0.0112) -0.0642(0.0273) -0.0886(0.0111) -0.0654(0.0277) 

Quadratic slope 0.0214(0.0016) 0.0171(0.0038) 0.0214(0.0016) 0.0173(0.0039) 

Variances     

School intercept 0.2938(0.0601) 0.3028(0.0636) 0.2977(0.0609) 0.3028(0.0633) 

Student intercept 0.2460(0.0075) 0.2475(0.0075) 0.2354(0.0083) 0.2409(0.0081) 

Residual 0.1929(0.0030) 0.1811(0.0028) 0.1519(0.0089) 0.1375(0.0129) 

-2loglikelihood 19775.3 19459.4 19712.2 19408.8 

Degree ff 6 8 8 10 

Serial correlation     

Level 2 serial / 0.0221(0.0049) / 0.0195(0.0056) 

Level 1 serial / / 0.0546(0.0083) 0.0530(0.0118) 

     

School effect     

Initial status 40% 41.4% 43.5% 44.5% 

Model 1: without serial correlation; Model 2: with level 2 serial correlation correction only Model 3: with level 1 serial correlation 

correction only; Model 4: with both levels 1and 2 serial correlation corrections. 

 

4.4.     Results of random intercept and slope models 

 

In order to see the impact of modelling serial correlation on students‟ growth in 

well-being, three multilevel quadratic growth curve models with random intercepts, 

linear and quadratic slopes at the school level and random intercepts and linear slopes 

for the student level were fitted. Though the results of the model random effects 



87 

 

selection and fit for the student well-being in Table 1a of the appendix B show the 

possibility of a random slope at the student level, the time needed for convergence 

was far longer. 

Three models are used: model 1 with no serial correlation, model 2 with level-1 

serial correlation and model 3 with the DSC. The results of these three models are 

presented in Table 3a in the appendix B. The school effect estimate on the initial 

status with serial correlation correction at level-1 seems to be better than for the 

double serial correlation in the presence of random slopes. In any case, the complex 

DSC model results in a higher school effects estimate compared to the model without 

any serial correlation. It also has the best fit compared to the other two models. 

However, the increase in the school effect estimate on the students‟ linear growth in 

well-being increases enormously with either the level-1 or DSC correction. 

5. Simulation study 
 

A small simulation study was conducted to evaluate the impact of the number of 

level-3 and level-2 sample units, and number of measurement occasions on the 

multilevel growth curve model with DSC, to detect the presence of level-1 and most 

especially level-2 serial correlations. It also allows an evaluation of the problem when 

school effects are estimated by using growth models without serial correlation 

correction on data with such a property. We also looked at the impact on the growth 

criteria used (student status and student growth). Using the well-being outcome 

characteristics (intercept =3.941, linear slope =-0.2328 and quadratic slope = 0.0185), 

data was simulated with level-2 and level-3 random effects variances of 0.5 and 0.62 

respectively. We also included a level-1 error variance of 0.51. Level-1 and level-2 

Gaussian serial correlations were specified as 0.4*ranexp (0)*((1/ )
2
). Where   (the 

rate of decrease of the serial correlation function) was fixed at 0.8 and ranexp is a 

random value generator function for variables with an exponential distribution. Six 

datasets were generated with six different level 3 units (30, 40, 50, 60, 70, & 90), 50 

level-2 units per level-3 unit and 5 measurement occasions for each level-2 unit. 

These generated samples ranged between 7500 and 22550 observations. A multilevel 
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growth curve model without and with DSC is fitted to the data using PROC MIXED 

of SAS 9.2. 

The school effect estimates for the student status and linear growth is then 

obtained from the estimates of the level-2 and level-3 variance components. The 

results indicated that except for the case of 30 schools (level-3); the DSC model was 

able to detect the presence of the two level serial correlations present in the data. The 

school effect estimates after correcting for DSC, indicated that school effect on the 

student status decreases (83% to 62%) with increase in the number of schools from 

30 to 90. However, the school effect on the student growth was relatively stable 

varying between 42% and 45% inclusively as shown in Table 3. 
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Table 3 

Multilevel growth curve model with DSC results on six simulated datasets (with 50 

students per school and 5 measurement occasions per student). 

 

Number of schools 

30  40  50 60  70  90  

Covariance parameter Estimate 

School level  

Intercept 0.4526 0.5547 0.5807 0.5777 0.5573 0.4967 

Intercept, slope 0.1697 0.2454 0.2447 0.2286 0.2329 0.2402 

Slope 0.3222 0.3254 0.3053 0.3014 0.2973 0.3221 

Student level       

Intercept 0.1866 0.1116 0.2570 0.3344 0.3404 0.3463 

Intercept, slope 0.4340 0.4344 0.3945 0.3780 0.3758 0.3674 

Slope 0.4046 0.3991 0.4001 0.4006 0.4089 0.4025 

Serial correlation        

School level 1.36E-21 3.67E-21 0.0018 0.0017 0.0010 0.0009 

Student level 0.1073 0.1527 0.0617 0.0083 0.0030 0.0012 

Residual 0.6500 0.6423 0.6474 0.6393 0.6425 0.6516 

School effect       

Status 71% 83% 69% 63% 62% 59% 

Growth 31% 45% 43% 43% 42% 44% 

 

In order to see how the DSC model performs compared to a model without this 

specification, the two types of models were fitted on each set of simulated data and 

the results summarised with bar charts as in Figures 2a and 2b. The results indicate 

that correcting for serial correlation at both levels generally gave larger school effect 

estimates on both the student status and growth. The gain in school effect estimation 

by correcting for DSC seems more pronounced on the student status when the 

number of schools is less than 50. For the impact of the DSC corrected model on 

student growth, the number of schools has to be less than 40. 
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Figure 2: School effect estimates on student status (a) and student growth (b) with & 

without double serial correlation correction using multilevel data with different 

school sample sizes. 

The number of schools was then fixed at 50 and the number of students per 

school varied (30, 40, 50, 60, and 80) and new samples obtained on which the models 

with and without serial correlation were fitted. The school effect for the student status 

and growth were estimated and the results summarised using the bar charts as shown 

in Figures 3a and 3b. The results revealed that when the number of students per 

school is less than 60 (except 30 students), the school effect on the student status are 

underestimated by the model without DSC.  
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Figure 3: School effect estimates on student status (a) and student growth (b) with & 

without double serial correlation correction using multilevel data with different 

number of students per school. 

A similar procedure was used to investigate when the number of schools was 

fixed at 50, the number of students per school at 50 and the number of measurement 

occasions varied from 4 to 8. The results indicate that 5 to 6 repeated measures are 

enough to be able to detect level-1 and -2 serial correlations when they exist in the 

data. 

In school effectiveness studies, policy makers, administrator, parents and 

researchers often want to know the ranking of schools. Usually schools are ranked 

using the estimates of school level residuals which are of course conditioned on the 

model used and its assumptions. The study reveals that when DSC correction is 

omitted in the models when in fact it does exists, 21 out of the 52 schools are 

incorrectly ranked using the students Dutch language achievement outcome. Some 

schools even gained up to 4 places on the ranking when the appropriate multilevel 

growth curve model with DSC correction is used compare to when neglected. These 

school ranking results are very crucial to parents and school administrators and 

consequently school residuals must be estimated correctly. 

School effect on student status with 

changing number of students per school

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

30 40 50 60 80

Number of students per school

(a)

S
c

h
o

o
l 
E

ff
e

c
t 

Status

Status Serial

School effect on student growth with 

changing number of students per school

0,00

0,10

0,20

0,30

0,40

0,50

0,60

30 40 50 60 80

Number of students per school

(b)

S
c

h
o

o
l 
E

ff
e

c
t

Growth

Growth Serial



92 

 

6. Discussion and Conclusion 
 

The importance of nonlinear modelling, and the need of modelling level-1 

residuals properly, have been stressed by a few publications in the area of educational 

effectiveness research. However the modelling of level-1 residuals serially in a three 

level model is rather new and as shown in this article, can greatly affect the estimates 

of school effects on students‟ status and growth in academic achievement outcomes 

as well a non-cognitive outcome like well-being. 

According to the results of this study, the modelling of serial correlation for such 

longitudinal data, improves the estimates of school effects on both the students‟ 

academic achievement in Dutch and the students‟ well-being at school. This article 

further illustrates that for longitudinal data with more than two levels, residuals at the 

higher levels could equally be serially correlated and thus needing consideration if 

school effects and other important model parameters must be estimated properly. 

The simulation study showed that such longitudinal data with level-1 and -2 

serial correlations can exist in many situations under different conditions. However, 

not all possibilities have been explored in this paper but with a dataset of about 50 

schools, about 50 students per school and at least 5 equally spaced or 4 unequally 

spaced measurement occasions, DSC can be detected. The simulation results also 

seem to hint that the estimation of the school effect on growth is less affected by 

changes in number of schools and DSC correction as compared to the estimation of 

the school effect on student status. 

The impact of the DSC model on the school effects on the students‟ status and 

growth shows the importance of the model in growth curve applications in general. 

From these findings, it is recommended that checks for the presence of serial 

correlation should always be made whenever longitudinal data (with at least four 

measurement lags for unequally spaced measurement occasions, or five equally 

spaced measurement occasions) are used to model growth. It also emphasises the gain 

in model fit and validity of school effects estimation with the use of the complex 

DSC for growth curve models with three levels.  
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MANUSCRIPT 4: Growth in reading 
comprehension and mathematics achievement in 
primary school: A bivariate transition multilevel 

growth curve model approach
4
 

 

Anumendem, D. N., De Fraine, B., Onghena, P. & Van Damme, J. 

Abstract 
 

There is an increasing interest in the field of educational effectiveness research for 

studying changes in pupils‟ outcomes over time. However, most studies focus on the 

growth in only one effectiveness criterion, which is problematic given that school 

effects are only moderately consistent over different criteria. Moreover, the 

consistency issue has seldom been studied through multivariate growth curve models. 

The current study investigates school effects on pupils‟ growth in both mathematics 

and reading comprehension (and their relation) in primary schools taking previous 

changes in mathematics into account through a bivariate transition multilevel growth 

curve model. Using the proposed two-stage effectiveness criteria, the results indicate 

some level of consistency between school effects. It revealed that schools in which 

pupils show a stronger growth in mathematics tend to also show a stronger growth in 

reading comprehension. Earlier growth in mathematics was found to predict 

subsequent growth in reading comprehension. 

                                                 
4
 Manuscript submitted for publication. 
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1. Introduction 
 

The measurement and explanation of school effects on both students‟ reading 

comprehension and mathematics achievement in primary school children has seldom 

been studied. Some studies have focused on mathematics achievement as a predictor 

of reading comprehension (Lerkkanen et al., 2005) or reading as a predictor of 

mathematics performance (Kirsch et al., 2002). These studies make the key 

assumption of deciding in advance which of the outcomes is dependent on the other. 

A few multivariate studies have nonetheless been done to investigate the possibility 

of a relationship between overall reading ability and mathematics, by looking at the 

common characteristics responsible for high performance in mathematics and reading 

(e.g. De Maeyer et al., 2010). The current study goes further, because it investigates 

growth in reading comprehension and mathematics without any assumption on their 

functional dependence. 

Reading achievement in primary school contains two distinguishable 

components: word reading and reading comprehension. Reading comprehension is a 

complex process and requires not only the fluent decoding of words but also 

understanding vocabulary, making inferences and relating the ideas to prior 

knowledge. Reading comprehension in primary schools stretches from the 

understanding of the meaning of words to the meaning of a short text and this is 

highly dependent on age. Many researchers have argued that true measurement of 

reading comprehension skills can only be obtained at later stages of primary school 

say from the third grade on (7 or 8 years old) (Adams, Treiman, & Pressley, 1998; 

Topping & Fisher, 2003; Van Keer, 2004). This paper focuses on reading 

comprehension which requires more advanced cognitive and linguistic skills. For this 

reason pupils were only tested from the end of grade 3 on. While studies have shown 

that individual differences in reading comprehension in particular during primary 

school are stable (de Jong & van der Leij, 2002), differences between schools 

however have not been addressed in depth. It might also be interesting to find out if 
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this stability mentioned by de Jong and van der Leij (2002) remains when considered 

in conjunction with mathematics. 

Mathematics achievement in primary schools usually embodies different 

components like: arithmetic, basic number knowledge, memorisation of arithmetic 

operations like addition, subtraction, and conceptual understanding and procedural 

knowledge (Dowker, 1998; Donlan & Gourlay, 1999). Studies have shown that 

pupils‟ skill in mathematics develops rapidly during formal instruction (Geary, 1990; 

Jordan, Hanich, & Kaplan, 2003). 

Most studies in the field of educational effectiveness are limited to only one 

outcome variable as the effectiveness criterion. Or these studies report on several 

effectiveness criteria, but they model each criterion separately. Many researchers 

have called for the development of better statistical methods capable of handling 

more than one effectiveness criterion in the same model (Teddlie, Reynolds, & 

Sammons, 2000; Van de gaer et al., 2009). When effectiveness criteria are modelled 

separately, the underlying assumption is that these different effectiveness criteria are 

independent of each other. As far as the school effects estimation is concerned, we 

hypothesize that this assumption is most often not tenable with reading 

comprehension and mathematics in primary school. The implication of such an 

assumption is for example, that a pupil‟s or school‟s score in mathematics is not 

related to the pupil‟s or school‟s performance in reading comprehension. On the 

contrary, some studies have suggested that mathematics achievement and reading as a 

whole may depend on similar predictors (Bull & Johnston, 1997; Tymms, 1999), 

strengthening the need for combining these effectiveness criteria. Other studies have 

even found that similar linguistic abilities are needed for both mathematics problem 

solving and reading comprehension tasks (Jordan et al., 2002). Further studies have 

identified four components of mathematical problem solving as; translation, 

integration, solution planning and execution, with the first two of these components 

highly correlated with reading comprehension skills (Mayer, 1987). 

In addition to the plea for multiple criteria, educational effectiveness researchers 

advocate studying student outcomes over time (De Fraine, Van Damme, & Onghena, 
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2007; Raudenbush, 1995; Singer & Willett, 2003). It is argued that growth in student 

outcomes over time is a very essential criterion since learning means changing 

(Teddlie, Reynolds, & Sammons, 2000). In order to investigate changes in student 

outcomes over time, longitudinal data are invaluable. This paper will address both the 

plea for multiple effectiveness criteria and the plea for studying growth. The use of 

growth curves as a statistical method introduces another level of choice of criterion 

beyond the choice of pupil outcome variable. This paper tries in the next section to 

delineate these two stages of school effectiveness criteria. Firstly, the choice of the 

dependent or outcome variables with a correlation strong enough to lend credence to 

a multivariate model instead of separate univariate models. Secondly, one has to 

make a choice of which growth curve parameters to use to model the student 

outcomes and to estimate the school effect. These parameters could be obtained at a 

certain point in time (intercept) or as a growth parameter (linear or quadratic). 

 

2. Two-Stage Effectiveness Criteria 
 

Generalisation of results of different studies with different criteria has most 

often been problematic given that school effects are only moderately consistent over 

different criteria. Moreover, the consistency issue has seldom been studied through 

growth curve models. This paper introduces what is called “two-stage effectiveness 

criteria” to study school effect consistency in multivariate multilevel growth curve 

models (MMGCM). In stage 1, the researcher chooses one or more student outcomes 

(reading comprehension, mathematics achievement, well-being, etc.) and in stage 2, 

the growth parameters are chosen (initial status, linear change, quadratic slope, etc.). 

This process can result in two or more effectiveness criteria depending on the number 

of outcome variables and the nature of the growth. For example, two outcome 

variables and a random intercept and linear growth model will have four possible 

effectiveness criteria: an intercept (student status) and a linear slope (student growth) 

each for both outcomes. 
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The current study has two first stage criteria which are mathematics and reading 

comprehension and two second stage criteria (intercept and linear slope). The four 

effectiveness criteria in this study are therefore: mathematics intercept, mathematics 

slope, reading comprehension intercept and reading comprehension slope. These four 

effectiveness criteria (see Figure 1- illustrate pupils' growth in both mathematics and 

reading comprehension (and their relation) in primary schools through a bivariate 

multilevel growth curve model (BMGCM). 

 

Figure 1 A proposed schema of the two-stage school effectiveness criteria for a 

              bivariate linear growth curve model. 

 

The advantages of MMGCM are enormous. They are not only statistically 

powerful, but are also capable of answering a wider range of research questions more 

efficiently. These questions could stretch from stability to consistency of school 

effects. The choice of characteristics taking into account their dependence, can 

greatly reduce the chance of making a type 1 error (Hox, 2002) and as a consequence, 

improves generalisability of the study findings. 

 

3. Objectives 
 

The main objectives of the current study are summarised by the following research 

questions: 

Maths Achievement Reading Comprehension 

Student Outcomes 

Slope Status Status Slope 

Stage 1 

Stage 2 
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1. What is the nature of the evolution of mathematics achievement and reading 

comprehension from the end of Grade 3 to the end of Grade 6 in primary 

school? Are there differences in the growth trajectories for these two 

outcomes? 

2. What is the correlation between the mathematics and reading comprehension 

growth profiles at the pupil level and at the school level? 

3. How large is the school effect on the pupil status and pupil growth? Is this 

effect similar for the two outcomes? 

4. What is the impact on the estimates of the school effects when the dependence 

of mathematics and reading comprehension is taken into account? In other 

words, we will compare school effects for two separate univariate models and 

one bivariate model. 

5. Can the prior growth in mathematics explain the subsequent differences in 

pupils‟ status and growth in reading comprehension and mathematics 

achievement?  

 

4. Methodology 
 

In this section, we will discuss three models: (1) the univariate multilevel 

growth curve model (UMGCM), (2) the bivariate multilevel growth curve model 

(BMGCM) and (3) the extension to a transition model (the bivariate transition 

multilevel growth curve model, BTMGCM). 

4.1.     Univariate Multilevel Growth Curve Model (UMGCM) 

 

The univariate multilevel growth curve models (UMGCM) will be applied to the 

mathematics scores on the one hand and the reading comprehension scores on the 

other hand. These two univariate multilevel growth curve models are each of the 

form 

~ ( , )i i i i i iN X Z y b b                                                                                   (1) 
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In equation 1 above, the iy ‟s are vectors representing all the measurements for the i
th

 

school. 

Each outcome or response measurement 
ijky  denotes the k

th
 measurement for the j

th
 

student from the i
th

 school. This means the vector of responses iy = ( 11iy , 12iy ,…, 1 ji my

,…,
i jin my )

T
.  

4.2.     Bivariate Multilevel Growth Curve Model (BMGCM) 

 

The research questions will be answered by applying two univariate multilevel 

growth curve models (UMGCM) and two bivariate multilevel growth curve models 

(BMGCM). The two univariate multilevel growth curve models are each of the form 

In the bivariate model, the two outcomes are combined through the proper 

specifications of a bivariate distribution for all the random effects taking into account 

the dependence of the growth processes. In this combined model, a bivariate 

normally distributed response is considered for the new response Y. Where Y= (Y1, 

Y2) ~ 1 1 2 2 1 2(( , ), ( , ))N X X     and the mean structures and variance covariance 

matrices are allowed to be different. 

A multivariate response can be incorporated into a multilevel growth curve 

model by creating an extra lowest level, which is called level zero in this paper. In the 

growth curve model setting, the two responses are nested within the measurement 

occasions which are in turn nested within the students and finally within the schools. 

The main purpose of the level 0 is to define the double response per pupil. Our 

interest is then to use this model to assess the relationship between the growth 

parameters of the two response variables (reading comprehension and mathematics 

achievement). 
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Figure 2  Data collection structure for reading comprehension and mathematics  

               outcome variables. 

 

Modelling the two outcome variables simultaneously, accounts for the 

dependence between the outcomes and thus improves the parameter estimates of the 

model. This is usually of great importance when association structures change with 

time (Fieuws & Verbeke, 2004). In this study, we will fit a model, which has a 

structure of a four-level model but with the lowest level called level 0 because its 

variability is not of interest. The reason being that the level 0 index is used only to 

differentiate between the response variables. In this case the structure of the data fits 

into a multilevel growth curve model. 
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This means our model can be written as  

2 2 2
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The school level variance (level 3) is given by:  
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The level 1 matrix components represent parameters associated with the error terms 

of the two growth processes 
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In vector notation we can simple write 

~ ( , ), ~ ( , ) ~ ( , )k v jk u ijkMVN MVN and MVN          

Where   is a zero mean vector and v  and u  are respectively the covariance 

matrices for the school and student levels. An extension of this unconditional growth 

curve model to a conditional model is possible. Conditional versions of the BMGCM 

can enable the estimation of general and specific effects for the combined responses 

or for each response in the model respectively. 
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4.3.     Bivariate Transition Multilevel Growth Curve Model (BTMGCM) 

 

A common problem with multivariate outcome data is the possibility of 

incomplete observations in the outcome vector. There are a number of reasons why 

some observations might be absent in a study. When incomplete observations are 

missing at random or even completely at random, maximum likelihood estimates 

obtained from multilevel growth curve models (Dempster, Laird, & Rubin, 1977) or 

the full maximum likelihood estimates for latent growth models (Muthén, 2004), are 

still valid. However sometimes because of the design of the study, the statistical 

method used or the type of pupil outcomes to be considered, attritions occur in one 

outcome variable and not in the other. The situation in this study is summarized in 

Table 1 with the (X) indicating that a test was administered at that primary school 

grade. Students took a mathematics test at 7 occasions, while the reading 

comprehension test was administered at 4 occasions. 

Table 1 

Overview of the measurement occasions of the mathematics and reading 

comprehension tests. 

Outcome Begin 

grade1 

End  

grade1 

End  

grade2 

End  

grade3 

End  

grade4 

End  

grade5 

End  

grade6 

Mathematics X X X X X X X 

Reading 

Comp 

   X X X X 

 

A bivariate transition multilevel growth curve model (BTMGCM) is introduced 

in this section as a way of circumventing the problem of missing reading 

comprehension scores at the beginning of grade 1, end of grades 1 and 2. This is 

considered as a better alternative to deleting the available mathematics scores 

obtained at those measurement occasions. The purpose of this model is to account for 
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any possible dependence of the pupils reading comprehension and mathematics 

growth curves on these prior mathematics achievement scores. 

Transition models are a specific class of conditional models. In a transition 

model, an outcome (
ijkY ) in a longitudinal sequence is described as a function of 

previous outcomes or history 
ijkh = (

1ijY ,…,
1ijkY 
) (Diggle et al., 2002; Fahrmeir & 

Tutz, 2001). The order of a transition model is the number of previous measurements 

that is still considered to influence the current outcome. This is a model which is 

simple to fit and understand yet strong enough to enable the investigation of the 

complex relationship that current processes have with their history. These models 

have been discussed in detail in textbooks such as Diggle et al. (2002), Molenberghs 

and Verbeke (2006) and Fahrmeir and Tutz (2001). However, extensions to handle 

more than one student outcome and in a multilevel growth curve model setting have 

never been done. It is in this context that the following BTMGCM is introduced, 

firstly, to solve the problem of unequal number of measurement occasions for the two 

pupil outcomes. And secondly, the model provides a powerful framework that can 

throw more light on the question of dependence of growth in one outcome on 

previous growth in a different outcome. The formulation of a bivariate transition 

model is given as follows: 

2 2 2

01 11 21 1 00 10 20 0 1 2 1

2 2 2

02 12 22 2 00 10 20 0 1 2 2

( , ) 1

( , ) ' ' ' ' ' ' ' 1

ijk ijk ijk ijk ijk ijk

ijk ijk ijk ijk ijk ijk

ijk k k k ik ik ik ijk ijk

ijk

ijk k k k ik ik ik ijk ijk

t t h v v t v t u u t u t if z
Y

t t h v v t v t u u t u t if z

     

     

           
 

          




 

where 1 , 2  are functions (most often linear) of the history (
ijkh ). In the special case 

of this study 1 2    . The  ‟s indicate the possibility of separate models for the 

independent variables of the growth curve model. In compact form, the bivariate 

transitional growth curve model can be written as 

( , (h , )) ~ ( (h , ), )i i i i i i i iN X Z   y b b   . 

The next section proceeds with the application of the models described so far. First of 

all the paper examines if BMGCMs are more realistic and statistically backed to use 

instead of two separate UMGCMs. Next it compares the BMGCM with the bivariate 
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growth model controlling for previous changes in mathematics using BTMGCM. The 

results from the three models are then investigated for any fundamental changes in 

the conclusions. 

 

5. Application 
 

The data used for this study were collected as part of a longitudinal research 

project to describe and explain pathways through primary education, SiBO 

(Schoolloopbanen in het BasisOnderwijs). There were about 200 Flemish schools that 

participated in this study, which started in September 2003 and followed one cohort 

of pupils throughout their career in primary school (Grade 1 to Grade 6). All the 

pupils took mathematics achievement tests at 7 occasions and reading comprehension 

tests (Dutch language) at four occasions (see previous section). Grade-appropriate 

tests with common scales for the reading comprehension and mathematics scores 

were obtained separately for four measurement occasions and seven measurement 

occasions respectively, using Item Response Theory. A number of background 

variables were also collected including: socio-economic status of the family, gender, 

language spoken at home, age and ethnic-cultural background. The sample used for 

this paper had 194 schools with 6250 pupils. 

The average growth profile was explored for both mathematics and reading 

comprehension and looking at the deviance statistics and parsimony, we settled down 

to a linear growth model for both outcomes. The time variable (linear slope) is coded 

0 for end of Grade 3, 1 for end of Grade 4, 2 for end of Grade 5 and 3 for end of 

Grade 6. Two main software programmes are used in this study because of their 
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different merits. First, SAS 9.1 (SAS Institute Inc., 2003) is used because of its 

PROC MIXED which is very flexible and suitable for fitting hierarchical linear 

models and growth curve models (Singer, 1998). Secondly, MLwiN 2.02 (Rasbash et 

al., 2000) provides a wide range of multilevel models together with plotting 

diagnostics. 

6. Results 
 

The results of the BMGCM reveal interesting improvements in the 

estimates of school effects and correlations in comparison with UMGCMs. 

First and foremost, the level-1 correlation for the joint growth processes 

for mathematics and reading comprehension is 0.17 and significant at a 5% 

level (p < 0.0001) indicating the need of fitting a bivariate model instead 

of two separate univariate models to the data. 

Looking at the results of the first column of Table 2a for the student 

level of the UMGCM, it is clear that all the variance-covariance 

parameters are significant except for the covariance between the pupil‟s 

status and growth in reading comprehension. This seems to indicate that 

the pupils‟ level for reading comprehension at the end of grade 3 has no 

significant relationship with the pupils‟ growth thereafter. However, the 

negative correlation between the pupils‟ status in mathematics and growth 

in mathematics (-0.182) is significant at a 5% level. Pupils with a high 

mathematics score at the end of grade 3 generally grow less between the 

end of grade 3 and end of grade 6. 

The second column of Table 2a shows the results of the BMGCM 

with four extra parameters rendering the possibility to answer many more 
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research questions. The non-significant correlation between pupils‟ status 

and growth in reading comprehension for the UMGCM is now significant 

under the BMGCM with value -0.085. This correlation is in the same 

direction as that between pupils‟ mathematics status and growth though 

weaker. Also the effect of pupils‟ status on growth in mathematics is 

significant and seems stronger in the BMGCM (-0.222) than in the 

UMGCM (-0.182). The cross covariances were all significant with 

corresponding correlations of 0.691 between pupils‟ mathematics intercept 

and reading comprehension intercept. Pupils with high scores in 

mathematics also tend to have high scores in reading comprehension at the 

end of grade 3. 

Table 2a 

Random Effects of the univariate multilevel growth curve models (UMGCM) 

compared with bivariate multilevel growth curve models (BMGCM) with 4 

measurements for Mathematics and Reading Comprehension (Student Level 

Variance Parameters) 

Variance parameter 

UMGCM 

  Estimate     Std error     Correlation 

BMGCM 

  Estimate   Std error    Correlation 

Math status 57.783 1.254 1 67.629 1.435 1 

Math slope 1.058 0.081 1 0.594 0.087 1 

Read status 36.926 0.879 1 47.184 1.038 1 

Read slope 0.861 0.081 1 0.888 0.083 1 

       

Covariance parameter       

Math status - slope -1.425 0.251 -0.182 -1.408 0.293 -0.222 

Read status - slope -0.325 0.205 0.058 -0.555 0.243 -0.086 

Math status - Read status / /  39.025 1.011 0.691 

Math status - Read slope / /  1.255 0.279 0.162 

Math slope - Read status / /  -0.501 0.263 -0.095 

Math slope - Read slope / /  0.284 0.062 0.391 
Estimates in bold are not significant at a 5% level. Mat=mathematics, Read=reading comprehension, status is the student intercept at 

the end of grade 3 and slope= linear growth. 
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Table 2b 

Random Effects of the univariate multilevel growth curve models (UMGCM) 

compared with bivariate multilevel growth curve models (BMGCM) with 4 

measurements for Mathematics and Reading Comprehension (School Level Variance 

Parameters) 

Variance parameter 

UMGCM 

  Estimate     Std error     Correlation 

BMGCM 

  Estimate   Std error    Correlation 

Math status 17.853 2.121 1 15.440 1.917 1 

Math slope 0.961 0.121 1 1.079 0.137 1 

Read status 14.044 1.655 1 12.373 1.508 1 

Read slope 0.456 0.068 1 0.676 0.093 1 

       

Covariance parameter       

Math status - slope -1.665 0.390 -0.402 -1.231 0.383 -0.302 

Read status - slope -0.681 0.249 -0.269 -0.712 0.274 -0.246 

Math status - Read status / /  9.277 1.439 0.671 

Math status - Read slope / /  -0.050 0.299 -0.015 

Math slope - Read status / /  -0.474 0.325 -0.130 

Math slope - Read slope / /  0.497 0.090 0.582 
Estimates in bold are not significant at a 5% level. Mat=mathematics, Read=reading comprehension, status is the student intercept at 

the end of grade 3 and slope= linear growth. 

 

Another positive correlation of 0.162 was observed between the pupils‟ 

mathematics intercept and reading comprehension slope. This means the pupils with 

a high score in mathematics at the end of grade 3 tend to grow faster in reading 

comprehension subsequently. A correlation of 0.391 is estimated between pupils‟ 

mathematics slope and reading comprehension slope. This indicates that fast growing 

pupils in mathematics also grew fast for reading comprehension. There is a 

significant and negative correlation for the pupils‟ reading comprehension intercept 

and slope in mathematics (-0.095). The negative correlation means that high 

achievers in reading comprehension at the end of grade 3 generally had a slower 

growth in mathematics. 

The results for the school level presented in Table 2b show some positive and 

significant correlations between the average mathematics and reading comprehension 

intercepts (0.672) and between their slopes (0.581). Schools with high end of year 3 

scores in mathematics also have high scores in reading comprehension. Similarly 
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schools with a steeper average slope in mathematics turn to have a steeper slope in 

reading comprehension too. The Table 2b results also show negative and significant 

correlations between the average intercept and average growth of schools for both 

mathematics and reading comprehension of -0.301 and -0.246 respectively. This 

means that schools with a high average mathematics score at the end of year 3 tend to 

have a slower average growth in mathematics during the subsequent grades, and so 

do the schools with high average reading comprehension. There were two 

correlations not significant at the 5% level for the relationship between schools‟ 

average intercept in mathematics and average growth in reading comprehension and 

between the schools‟ average intercept in reading comprehension and average growth 

in mathematics. These results may suggest that the school average growth in 

mathematics is not influenced by the average reading comprehension at the end of 

grade 3 and that the growth in reading comprehension is not influenced by the 

mathematics status too. 

After considering that a bivariate growth model was the better model compared 

with two separate univariate growth models, the bivariate transition growth model 

was fitted to handle the difference in number of measurement occasions for reading 

comprehension and mathematics. The bivariate transition multilevel growth curve 

model (BTMGCM) is suggested in this study not only to solve inequality in the 

number of measurement occasions between the two outcome variables but also as a 

means of answering the fifth research question of the current study. In this special 

design of the transition model, the previous measurement covariates are constructed 

as changes in the mathematics achievement of the pupils between the beginning and 

end of first grade and between the end of grade 1 and the end of grade 2. Two such 

second order transition growth models are fitted. The BTMGCM (I) includes the two 

covariates (math2_1 and math3_2) as main effects only and the BTMGCM (II) adds 

the interactions between the two covariates and the time variable.  
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Table 3 

Comparing the fixed effects estimates and model fits of a bivariate multilevel growth 

curve model (BMGCM) and two bivariate transitional multilevel growth curve 

models (BTMGCM (I) and BTMGCM (II)). 

 

Fixed effects parameter 

BMGCM 

Estimate (std error)    

BTMGCM (I) 

Estimate (std error)     

BTMGCM (II) 

Estimate (std error)    

Intercept Reading Comp 43.224 (0.245) 46.051(0.362) 46.633 (0.395) 

Intercept Mathematics 90.571 (0.312) 88.809 (0.479) 88.884 (0.497) 

Time*Reading Comp 5.249 (0.068) 5.305 (0.071) 4.518 (0.135) 

Time*Mathematics 5.563 (0.082) 5.584 (0.087) 5.248 (0.144) 

Math2_1*Reading Comp / -0.145 (0.017) -0.168 (0.017) 

Math2_1*Mathematics / 0.066 (0.019) 0.055 (0.018) 

Math3_2*Reading Comp / -0.014 (0.019) -0.039 (0.018) 

Math3_2*Mathematics / 0.179 (0.021) 0.185 (0.022) 

Math2_1*Time*Read Comp / / 0.030 (0.005) 

Math2_1*Time*Mathematics / / 0.018 (0.005) 

Math3_2*Time* Read Comp / / 0.033 (0.005)  

Math3_2*Time*Mathematics / / 0.008 (0.006) 

  

-2loglikelihood 238524.3 189018.9 189005.5 

Degrees of freedom 28 32 36 
Estimates in bold are not significant at a 5% level. Math2_1=change in mathematics between start of grade 1 and end of grade 1, 

Math3_2= change in mathematics between end of grade 1 and end of grade 2. Reading Comp=reading comprehension, status is the 

student intercept at the end of grade 3. 

 

The results of Table 3 show quite some differences between the fixed effects 

estimates of the BMGCM and the two versions of the BTMGCM. The BTMGCM (I) 

considers the dependence on the main effects of the two previous growths in 

mathematics (Math2-1 and Math3-2) and BTMGCM (II) also includes the interaction 

effect of these previous changes with time. The deviance statistics can be used to 

compare the fits of the models using the difference in the loglikelihood values and 

difference in degrees of freedom and a chi-square distribution as the null distribution 

for the likelihood ratio test statistic. Comparing BMGCM and BTMGCM (I) indicate 

a deviance value of 49506.3 with only 4 degrees of freedom is very significant (p < 

0.0001) indicating that there will be a significant loss in information by trying to 

reduce the BTMGCM (I) to BMGCM. A similar conclusion is established between 
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BTMGCM (I) and BTMGCM (II) in favour of BTMGCM (II) (p-value =0.017). The 

estimates of the earlier prior change in mathematics (start and end of grade 1) affect 

the pupils‟ growth in both reading comprehension and mathematics from the end of 

grade 3 to the end of grade 6. On the other hand the later prior change in mathematics 

(between end of grade 1 and end of grade 2) seems to impact only the pupils‟ 

subsequent growth in reading comprehension not their growth in mathematics. 

A summary of the fixed effects result is presented as growth profiles for the 

UMGCM, BMGCM and the final bivariate transition growth curve model in Figure 

3. The graphs of Figure 3(a) reveal that the average pupil score in reading 

comprehension at the end of grade 3 is underestimated by the univariate model 

(ReadUMGCM) and improved by the bivariate model (ReadBMGCM). In any case, 

the BTMGCM (for pupils with 1SD difference in prior math achievement 

(ReadBTMGCM+1SD) for both Math2_1 and Math3_2), gives the largest estimates 

for the reading comprehension score at the end of grade 3. A possible explanation for 

the underestimation by the UMGCM and BMGCM is that these models assume 

falsely that the growth processes only started at the end of grade 3. The BTMGCM 

(II) seems to indicate that growth in mathematics of the previous grades has a role to 

play in the average reading comprehension performance of pupils at the end of the 

third grade. 

The graphs of Figure 3(b) show no big difference between the BMGCM and 

BTMGCM for their estimates of the average score in mathematics at the end of grade 

3. This means that the change in prior mathematics achievement has a bigger 

influence on pupils‟ subsequent development in reading comprehension than in 

mathematics. 
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Figure 3. Average growth profiles for the UMGCM, BMGCM and BTMGCM (for 

+1SD difference in prior change) a) reading comprehension and b) mathematics. 

 

Also the growth in pupils‟ reading comprehension is larger in the BMGCM probably 

because this model assumes that this growth is only due to the instruction for reading 

comprehension. There seems to be quite a bit of contribution of skills gained due to 

the first two years of mathematics instruction to subsequent performances in reading 

comprehension. 

Figure 4(a) shows that on the one hand , pupils with a plus one standard 

deviation difference (+1SD) in prior mathematics (Math2_1) achievement 

(ReadBTMGCM+1SD) tend to have a lower end of grade 3 reading comprehension 

score but a steeper growth subsequently. On the other hand it indicates that, pupils 

with minus one standard deviation difference (ReadBTMGCM-1SD), show a less 

steep growth in reading comprehension. Not surprising though, pupils with a +1SD 

difference (MathBTMGCM+1SD) in prior mathematics achievement showed a 

steeper growth than pupils with a -1SD difference (MathBTMGCM-1SD) from the 

end of grade3 to the end of grade 6. 
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Figure 4. BTMGCM profiles for pupils with +1SD and -1SD of difference in prior 

mathematics achievement a) Reading comprehension and b) Mathematics. 

 

After considering the BTMGCM with earlier and later prior change in 

mathematics achievement as covariates, the results of variance-covariance parameters 

of the BMGCM are then compared with those of the BTMGCM and presented in 

Table 4. 

Table 4a 

Estimates of variance and covariance components for the bivariate multilevel growth 

curve model (BMGCM) compared with the bivariate transition multilevel growth 

curve model (BTMGCM (I)) (Student Level Variance Parameters) 

 

Variance parameter 

BMGCM 

Estimate    Std error    Correlation 

BTMGCM (I) 

Estimate    Std error   Correlation 

Math status 67.629 1.435 1 62.776 1.520 1 

Math slope 0.594 0.087 1 0.599 0.094 1 

Read status 47.184 1.038 1 46.355 1.165 1 

Read slope 0.888 0.083 1 0.882 0.091 1 

       

Covariance parameter       

Math status – Math slope -1.408 0.293 -0.222 -1.884 0.318 -0.307 

Read status – Read slope -0.555 0.243 -0.086 -0.552 0.268 -0.086 

Math status - Read status 39.025 1.011 0.691 37.922 1.107 0.703 

Math status - Read slope 1.255 0.279 0.162 0.984 0.307 0.132 

Math slope - Read status -0.501 0.263 -0.095 -0.667 0.254 -0.127 

Math slope - Read slope 0.284 0.062 0.391 0.245 0.067 0.337 
Math=mathematics, Read=reading comprehension, status is the student intercept at the end of grade 3 and slope= linear growth. 
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Table 4b 

Estimates of variance and covariance components for the bivariate multilevel growth 

curve models (BMGCM) compared with the bivariate transition multilevel growth 

curve model (BTMGCM (I)) (School Level or Between Variance Parameters)  

 

Variance parameter 

BMGCM 

Estimate      Std error   Correlation 

BTMGCM (I) 

Estimate    Std error   Correlation 

Math status 15.440 1.917 1 13.746 1.839 1 

Math slope 1.079 0.137 1 1.177 0.158 1 

Read status 12.373 1.508 1 9.391 1.300 1 

Read slope 0.676 0.093 1 0.676 0.099 1 

       

Covariance parameter       

Math status – Math slope -1.231 0.383 -0.302 -1.606 0.408 -0.399 

Read status – Read slope -0.712 0.274 -0.246 -0.766 0.266 -0.304 

Math status - Read status 9.277 1.439 0.671 8.023 1.325 0.706 

Math status - Read slope -0.050 0.299 -0.015 -0.303 0.301 -0.099 

Math slope - Read status -0.474 0.325 -0.130 -0.893 0.329 -0.268 

Math slope - Read slope 0.497 0.090 0.582 0.579 0.102 0.649 
Estimates in bold are not significant at a 5% level using the Wald test. Math=mathematics, Read=reading comprehension, status is 

the student intercept at the end of grade 3 and slope= linear growth. 

 

The results are quite similar in terms of the direction of the covariance though 

the BMGCM seem to yield higher estimates for most of the parameters as compared 

to the BTMGCM (I). However, one conspicuous difference is the significant 

correlation (-0.268) between the average school intercept in reading comprehension 

and average slope in mathematics for the BTMGCM, which is not significant in the 

BMGCM. This means schools with a higher average score in reading comprehension 

at the end of grade 3 do not grow as fast in mathematics in comparison to schools 

with a lower average score. In other words, the higher the school‟s average reading 

comprehension score at the end of grade 3, the lower the growth of the school in 

mathematics from the end of grade 3 to the end of grade 6.  

The school effect estimates for mathematics and reading comprehension on the 

pupils‟ status and growth were obtained for the different growth models described 

previously in this paper. The school effects are estimated as the proportion of 

variance accounted by the school level compared to that at the pupil level 

(Anumendem, De Fraine, Onghena, & Van Damme, in press). The results of the 
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school effect estimates under the three different models are summarised in Table 5 

below. The results indicate that univariate growth curve models seem to overestimate 

the effect of schools on the pupils at the end of grade 3 for both reading 

comprehension (27.5%) and mathematics (23.6%). The improved BMGCM estimates 

the same effects as 22.8% for reading comprehension and 18.6% for mathematics. 

However, the UMGCM seem to underestimate the school effect on growth with 

estimates of 34.6% and 47.6% for reading comprehension and mathematics 

respectively. Looking at the same estimates using the BMGCM, they increase to 

43.2% and 64.5% for reading comprehension and mathematics respectively. This 

means that assuming a joint bivariate growth in the pupils reading comprehension 

and mathematics achievement can result in larger estimates of the effects of schools 

on the pupils‟ growth than treating the outcomes as if they were independent of each 

other. 

The BTMGCM is fitted to remove the false assumption that the bivariate growth 

process started at the end of grade 3 for both pupil outcomes ignoring the first three 

measurements of mathematics. It is possible that knowledge acquired during the first 

two grades of primary school, might be responsible not only in the better fit of the 

model as shown earlier but also help avoid the fallacy of missing at random 

assumption for this data structure. With the BTMGCM, changes were observed in the 

school effect estimates on the pupils‟ status in reading comprehension (16.8%) and 

the growth in mathematics (66.5%). 
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Table 5 

 

The school effect estimates for the pupils‟ status and growth in reading 

comprehension and mathematics at the end of grade 3, for the three growth curve 

models described. 
 

At the end of Grade 3 

    

Reading comprehension 
School effect on student status 27.5% 22.8% 16.8% 

School effect on student linear growth 34.6% 43.2% 43.4% 

    

Mathematics achievement 
School effect on student status 23.6% 18.6% 18.0% 

School effect on student linear growth 47.6% 64.5% 66.5% 

    

 

This table also indicates that schools have a larger effect on their pupils‟ mathematics 

growth than on their growth in reading comprehension. 

7. Discussion and Conclusion 
 

Considering the correlation results, the UMGCM shows no significant 

relationship between the pupils‟ status and growth in reading comprehension. 

However, this effect became significant in the BMGCM indicating better power in 

the latter model. The BMGCM results also illustrate that pupils‟ who are higher 

achievers in mathematics at the end of grade 3 are also higher achievers in reading 

comprehension at the end of grade 3. Pupils with a stronger growth in mathematics 

also show a stronger growth in reading comprehension. Pupils who score high in 

mathematics at the end of grade 3 grow more in reading comprehension 

subsequently. However, pupils who are higher achievers in reading comprehension at 

the end of grade 3 experience a slower growth in mathematics. 

At the school level, the correlation between the average reading comprehension 

at the end of grade 3 and the average mathematics at the end of grade 3 was 

significant. This implies schools with high achieving pupils in mathematics also have 

high achievers in reading comprehension. Also schools with a high average growth in 

reading comprehension have a high average growth in mathematics. 
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The significant correlation between the overall mathematics achievement and 

reading comprehension growth profiles is an indication that statistically a BMGCM 

approach is more appropriate. The BMGCM also resulted in about 35% increase in 

the school effect estimate on pupils‟ growth in mathematics and about 25% increase 

for pupils‟ growth in reading comprehension. However, the school effect on the 

pupils‟ status dropped by 21% and 17% for mathematics and reading comprehension 

respectively. The univariate model seems to overestimate the differences between 

schools by the end of grade 3. The UMGCM also underestimates the effect of schools 

on pupils‟ linear change in mathematics as well as reading comprehension. This is far 

enough evidence of the need for more than one criterion to better estimate the effects 

of schools on primary school children. The results of the BMGCM also show more 

clearly that the effect of schools is more pronounced on the pupils‟ growth criterion 

than on the status. The school effects on the pupils‟ growth is about 3.7 times larger 

than on the pupils‟ status at the end of grade 3 for mathematics achievement and 

about 2.6 times more for reading comprehension. The same comparison at the 

beginning of grade 3 indicates that the school effect on pupils‟ growth is about 1.9 

times for mathematics and about 1.5 times for reading comprehension. Analysis at 

the end of grade 6 (not presented) corroborates these findings and also results of 

previous studies on longitudinal data (Raudenbush, 1989; 1995). It is nonetheless 

advisable to fit models with many more first stage criteria than just two as in this 

study (mathematics and reading comprehension), in order to generalise these 

findings. This can be considered a relative advantage of the choice of the growth 

criterion over the status criterion at the second stage for both first stage criteria 

because schools seem to have more impact on it. 

The results of the transition model showed that changes in mathematics 

achievement in the first and second grade could predict the change in reading 

comprehension in the later grades. When prior growth in mathematics is taken into 

account, the schools seem to help the low achievers at the end of grade 3 to catch up 

with their higher achieving peers by the end of grade 6. In other words pupils with a 
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larger gain in earlier mathematics achievement grow faster in reading comprehension 

subsequently though they are low achievers at the end of grade 3. 

The BMGCM showed no significant correlation between the schools‟ average 

mathematics score at the end of grade 3 and the growth in reading comprehension. A 

similar non-significant result is obtained for the correlation between the school‟s 

average score in reading comprehension at the end of grade 3 and the growth in 

mathematics. However, with the introduction of the BTMGCM, the correlation 

between the schools‟ average score in reading comprehension and the schools‟ 

average growth in mathematics became significant. The school level correlations 

indicate that schools that are effective in the pupils‟ average mathematics 

achievement are also effective in their average reading comprehension attainment on 

both the status and growth criteria. 

From the findings of this study, we recommend that researchers in the field of 

school effectiveness should consider multiple criteria to enable this field of research 

come up with improved school effect estimates. We encourage researchers to make 

more use of longitudinal data and the two-stage criteria proposed, to enable 

researchers to answer a wider range of scientifically relevant questions to school 

effectiveness research. We acknowledge the computational difficulties that such 

complex models with multiple stage 1 and 2 criteria will bring while recognising the 

invaluable contribution it will make to the field of educational effectiveness. The 

multivariate transition model proposed in this paper can be used by researchers to 

avoid false missingness assumptions or even the loss of data and in addition can 

answer other very relevant research questions. 

We were not able in our study to investigate the more appropriate joint causal 

change relationship. It would have been interesting for example to investigate 

whether the change in mathematics influences the change in reading comprehension 

and not the other way around. Nevertheless, this study serves as a strong foundation 

on which more complex educational research methods can be developed. 
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GENERAL DISCUSSION 
 

The last part of this dissertation summarises the main findings of the four 

manuscripts presented and looks at alternative approaches. There are three sections in 

this general discussion.  The first section summarises and discusses the main results. 

The second section focuses on the contributions of this research to educational 

effectiveness research in particular and to other research fields. Finally, section three 

investigates possible alternative approaches and directions for future research. 

1. Summary and discussion of the main results 
 

Manuscript 1 investigated growth curve models as a statistical method which is 

fast gaining grounds in various research domains in general and educational 

effectiveness research in particular. In this dissertation, a broader framework was 

chosen and the effects of changes in time coding were illustrated for a quadratic 

three-level growth curve model. Though, the formula for estimating school effect for 

random slopes GCMs was derived based on models with three levels, an elaboration 

is made to cover models with more than three levels in the hierarchy and more 

random coefficients. The main conclusion of this manuscript is that the estimation of 

the size of the school effect is strongly determined by the choices of the time scale. 

Also, the hypothesis that school effects are larger when the intercept refers to a later 

point in time was only partially confirmed. The current study also contributes to the 
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discussion in the field of educational effectiveness whether school effects are larger 

for student growth (slope) or for student status (intercept). However, no conclusion 

can be made in terms of how the school effects will behave (increase or decrease) 

when the time coding is changed without considering what type of model and 

outcomes are used. Though, the coding of time can be chosen to solve substantive 

problems, researchers should be very explicit on the time coding used in order to 

make replications or extensions of their studies possible. Altering the initial status, 

however without clearly stating so can make research results and interpretation to 

lose their transparency. It is therefore important to get a common framework on 

which educational effectiveness researchers can base the coding of time in order to 

gain general acceptable results. 

Manuscript 2 looked at the traditional way of splitting total variance into two 

components that is the measurement error and random effects of the data and 

compared it with a more proper version including a serial component. The results 

showed that more often than not, repeated measurement data will be serially 

correlated which confirmed findings of other researches in longitudinal data (Diggle 

et al., 1994). The results also indicated that the random effects do not always 

overshadow the presence of the serial correlation. Another key finding of this 

manuscript is that the use of the semi-variogram in repeated measurement data with 

as few as four time points is still a very useful tool for the detection of the presence of 

serial correlation. However, more focus should be on modelling the presence of serial 

correlation than the exact functional form of serial correlation present. 

The results of manuscript two showed for the first time that serial correlation is 

also present at level 2. The results indicated that school effects on the student status 

and student growth are in general underestimated without level 1 serial correlation 

correction. This may be due to the overestimation of the level 1 variance. The impact 

of level 1 and 2 serial correlation correction was different for the two students‟ 

outcomes. This indicated that the two outcomes were different stochastically in terms 

of variability around the students‟ and schools‟ growth profiles. The advice is 

therefore to include a serial correlation component in GCMs for educational data no 
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matter the type of outcome considered. And also to consider unequal time spacing 

between measurement occasions when few repeated measurements are foreseen. 

Manuscript 3 looked further into the research work of manuscript two and 

introduced a GCM with a serial correlation at each level of the hierarchy.  A double 

serial correlation multilevel GCM was established and applied to the LOSO data for 

the case of a three-level data. According to the results of this manuscript, the 

modelling of serial correlation greatly improved the estimates of school effects on 

both the students‟ academic achievement in Dutch and the students‟ well-being at 

school. The simulation study results showed that such longitudinal data with level-1 

and -2 serial correlations can exist in many situations under different conditions. The 

simulation results also hinted that the estimation of the school effect on growth is less 

affected by changes in number of schools. From these findings, it is recommended 

that checks for the presence of serial correlation should always be made whenever 

longitudinal data are used to model growth. It also emphasized the gain in model fit 

and validity of school effects estimation with the use of the complex double serial 

correlation for growth curve models with three levels. 

Manuscript 4 investigated multilevel growth curve models with more than one 

school effectiveness criterion. In order to investigate changes in student outcome over 

time, longitudinal data are invaluable. The use of growth curve as a statistical 

methodology introduced another level of choice of criterion beyond the choice of 

pupils‟ outcome variables. This manuscript delineated clearly between these two 

stages of school effectiveness criteria: Firstly, the choice of the dependent or outcome 

variables with a correlation strong enough to lend credence to a multivariate model 

instead of separate univariate models and secondly, the choice of growth parameters 

used to estimate the school effect. 

2. Usefulness of the research to educational effectiveness 
 

Firstly, based on the results of this study, researchers are advised to be very 

explicit on the time coding used. Studies should report very clearly at what point in 

time the intercept is referring to. In fact, it is argued that changing the time coding 
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comes down to changing the research question. Also, researchers can choose the 

coding of time to solve substantive problems, stretching from easily and readily 

interpretable parameter estimates, to interests in the understanding of school effects at 

particular points in time. 

Secondly, the research results of this dissertation showed that random effects do 

not overshadow the presence of the serial correlation always. Therefore, modelling 

only the random intercept effects cannot correct for serial correlation in growth curve 

models with random intercepts and slopes. Another key point that researchers have to 

bear in mind, is that the use of the semi-variogram in repeated measurement data with 

as few as four time points is possible and practical.  In order to properly correct for 

serial correlation in longitudinal data, researchers are advised to consider unequal 

time spacing between measurements when they intend to do as few as four repeated 

measurements. This can enormously reduce cost and yet properly model the growth 

in the outcome of interest. 

Thirdly, from the findings of this study, it is recommended that researchers in 

the field of school effectiveness should consider multiple criteria to enable this field 

of research come up with improved school effect estimates. Researchers are 

encouraged to make greater use of longitudinal data and the two-stage criteria 

proposed. This model, though a little more complex, can be employed by researchers 

to answer a wider range of scientifically relevant questions to school effectiveness 

research. The multivariate transition growth curve model proposed in this dissertation 

can be used to avoid false missing data assumptions or even the loss of data and in 

addition enable researchers answer other very relevant research questions. 

 

 

 

 

 

3. Limitations and directions for future research 
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3.1. Gain in extending unconditional growth curve models to conditional  

models 

  

In the dissertation, only raw school effects were calculated. This means that no 

covariates
5
 (such as student prior achievement, intelligence, sex or socio-economic 

status) were added to the model in order to make a more fair comparison between 

schools (Teddlie & Reynolds, 2003). It is expected that such net school effects will 

be smaller than the raw school effects though research on this decrease for 

conditional quadratic growth curve models are rare. Unconditional multilevel growth 

curve models (UMGCM) usually have only time as the independent variable and so 

time is not really considered as a covariate. Of course, UMGCM are flexible enough 

for different independent variables at the different levels to be taken into account. 

However, UMGCM, despite the presence of only the time variable and higher orders 

of time are already complex enough to model the growth processes involved. The 

more complex the model, the better it will seem to represent the growth process but 

caution is always required not to exaggerate the number of parameters to estimate in 

the model (parsimony). 

Unconditional quadratic multilevel growth curve models already have two 

covariates which are the linear time and quadratic time. Such a model for a three-

level data is already very complex when the variance-covariance matrices for the 

school (3x3) and student (3x3) levels are considered to be unstructured. On the other 

hand if the research interest is to estimate differential school effect then one may be 

allowed to include few of these covariates but this creates the risk of running out of 

degrees of freedom because the number of parameters to estimate quickly skyrockets. 

A trade-off is therefore needed to weight parsimony of the growth curve model being 

used. Since the prior achievement seems always to explain most of the school level 

variance and this is already take into account when UMGCM are used. CMGCM do 

                                                 
5
 Except for the transitional model in manuscript 4, where the prior growth in mathematics was introduced by two 

covariates.  
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not necessarily need to correct for prior achievement or aptitude any more but time-

varying covariates.  

 3.2.     Multilevel growth curve modelling versus latent growth modelling 

 

Due to the increasing interest in studying changes in pupils‟ outcomes by 

educational effectiveness researchers, two main statistical methodologies have been 

proposed to answer research questions involving multiple student outcomes.  This 

dissertation has investigated multiple effectiveness criteria through multivariate 

multilevel growth curve models. Nonetheless, the use of a bi-parallel process 

multilevel latent growth is also possible. This model comes down to modelling two 

dependent outcome variables as a multivariate variable with the repeated 

measurements of the two variables the repeated measurements becoming variables in 

themselves and assumed independent of each other. This is unlike the bivariate 

multilevel growth curve model (BMGCM) which considers independence only for 

the repeated measurements of the same outcome variable but allows the dependence 

of the two growth processes. The BMGCM enables a statistical test for the need of a 

multivariate growth model over separate univariate growth models. Arguments have 

been made by users of latent growth model which claim that constraints can always 

be used on latent growth models to make both approaches similar in terms of their 

outputs. While this is true under a very restricted class of models, deviations from the 

fundamental theory behind them are inevitable due to too many constraints. There is 

therefore a great need for more advanced statistical research to enable a proper 

comparison of the two approaches in terms of their similarities and dissimilarities. 
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Appendix A 
 

Table A1  

Results model for the student well-being outcome 

Random effects -2loglikelihood(reml) 

Model Student  School  

Mod 1 Int  lin_slope quad_slope Int lin_slope quad_slope 5094.3 (6 rand effects) 

Mod 2 Int lin_slope  Int lin_slope quad_slope 10846.8(5 rand effects) 

Mod 3 Int lin_slope quad_slope Int lin_slope  10907.1(5 rand effects) 

Mod 4 Int lin_slope  Int lin_slope  10916.3(4 rand effects) 

 

 G
2
 Mixture of Chi-square P-value  

Mod 2 vs Mod 1 5752.5 2

5:6  p(
2

5:6 >5752.5) <0.0001 

Mod 3 vs Mod 1 5812.8 2

5:6  p(
2

5:6 >5752.5) <0.0001 

Mod 4 vs Mod 2 69.2 2

4:5  p(
2

4:5 >5752.5) <0.0001 

Mod 4 vs Mod 3 9.2 2

4:5  p(
2

4:5 >5752.5) =0.0333 
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Table A2  

Results for random effects estimates of model B for well-being 

  Estimate( model based Std errors) 

 

Level Cov Original time Time code A Time code B Time code C Time code D 

School 
11v  0.0124* 0.0099* 0.0089* 0.0112* 0.0192* 

 
21v  -0.0016* -0.0009* -0.0001* 0.0013* 0.0027* 

 
22v  0.0007* 0.0007* 0.0007* 0.0007* 0.0007* 

Student 
11  0.2173* 0.1859* 0.1634* 0.1449* 0.1620* 

 
21  -0.0179* -0.0135* -0.0091* -0.0002* 0.0087* 

 
22  0.0044* 0.0044* 0.0044* 0.0044* 0.0044* 

Residual 2  0.09694* 0.09694* 0.09694* 0.09694* 0.09694* 

-2loglikelihood 14410.2 14410.2 14410.2 14410.2 14410.2 

cov = covariance
     

* significant at the 5% level 
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Table A3  

Results for random effects estimates of model C for well-being 

  Estimate( model based Std errors) 

Level Cov Original  Code A Code B Code C Code D Code E 

School 
11v  0.0314* 0.0121* 0.0091* 0.0144* 0.0184* 0.0314* 

 
21v  -0.0160* -0.0045* 0.0006 0.0009 0.0029 -0.1599* 

 
22v  0.0115* 0.0066* 0.0031* 0.0007* 0.0043* 11.529* 

 
31v  0.0019* 0.0007* -0.0002 -0.0008* 0.0001 0.1924* 

 
32v  -0.0014* -0.0011* -0.0007* 0.0001 0.0008* -14.324* 

 
33v  0.0002* 0.0002* 0.0002* 0.0002* 0.0002* 18.834* 

Student 
11  0.2017* 0.1765* 0.1782* 0.1862* 0.1344* 0.2017* 

 
21  -0.0235* -0.0039 0.0039* -0.0037* -0.0220* -0.2349* 

 
22  0.0272* 0.0184* 0.0116* 0.0039* 0.0044 27.222* 

 
31v  -0.0004 -0.0026* -0.0043* -0.0062* -0.0061* -0.0390 

 
32v  -0.0025* -0.002* -0.0015* -0.0005* 0.0006 -24.612* 

 
33v  0.0003* 0.0003* 0.0003* 0.0003* 0.0003* 25.147* 

Residual 2  0.091* 0.0904* 0.0905* 0.0905* 0.0905* 0.0905* 

-2loglikelihood 14203.4 14203.4 14203.4 14203.4 14203.4 14203.4 

Cov = covariance
     

* significant at the 5% level
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Appendix B 

Table 1a  

Results of model fit for the student well-being outcome 

Random effects -2loglikelihood(reml) 

Model Student  School  

Mod 1 Int linslop quadslop Int linslop quadslop 5094.3 (6 rand effects) 

Mod 2 Int linslop  Int linslop quadslop 10846.8(5 rand effects) 

Mod 3 Int linslop quadslop Int linslop  10907.1(5 rand effects) 

Mod 4 Int linslop  Int linslop  10916.3(4 rand effects) 

 

 G
2
 Mixture of Chi-square P-value  

Mod 2 vs Mod 1 5752.5 2

5:6  p(
2

5:6 >5752.5) <0.0001 

Mod 3 vs Mod 1 5812.8 2

5:6  p(
2

5:6 >5812.8) <0.0001 

Mod 4 vs Mod 2 69.2 2

4:5  p(
2

4:5 >69.2) <0.0001 

Mod 4 vs Mod 3 9.2 2

4:5  p(
2

4:5 >9.2) =0.0333 

Int=intercept ; linslop= linear slope; quadslop=quadratic slope; rand effects=random effects 
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Table 1b  

Results of model fit for the student Dutch achievement outcome 

Random effects -2loglikelihood(reml) 

 Student  School  

Model 1:  Int linslop quadslop Int linslop quadslop 19321.8 

Model 2:  Int linslop  Int linslop quadslop 19325.5 

Model 3:  Int linslop quadslop Int linslop  19442.3 

 

 G
2
 Mixture Chi-square P-value  

Mod 2 vs Mod 1 3.7 2

5:6  p(
2

5:6 >3.7)=0.655 

Mod 3 vs Mod 1 120.5 2

5:6  p(
2

5:6 >120.5) <0.0001 

Int=intercept ; linslop= linear slope; quadslop=quadratic slope; rand effects=random effects 
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Table 2a  

Comparing the -2loglikelihoods of three serial correlation functions for the students‟ 

well-being outcome 

Models  Serial correlation -2loglikelihood 

Random intercept   

 Level 1  

Model 1 Gaussian  14550.5 

Model 2 Exponential  14549.2 

Model 3 Power  14549.2 

 Level 2  

Model 4 Gaussian  14336.9 

Model 5 Exponential  14353.1 

Model 6 Power  14353.1 

 

Random intercept & slope   

 Level 1  

Model 7 Gaussian  14281.0 

Model 8 Exponential  14280.4 

Model 9 Power  14280.4 

 Level 2  

Model 10 Gaussian  14255.5 

Model 11 Exponential  14271.3 

Model 12 Power  14271.3 
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Table 3a  

Three multilevel quadratic growth curve models with random intercepts and slopes  

 Model1 Model 2 Model 3 

Parameters    

Fixed effects    

Intercept 3.960 (0.0295) 3.955(0.0297) 3.945(0.0293) 

Linear slope -0.2400(0.0184) -0.2398(0.0187) -0.2346(0.0184) 

Quadratic slope 0.0192(0.0024) 0.0194(0.0024) 0.0187(0.0024) 

    

Variances    

School level     

Intercept 0.0302(0.0088) 0.0311(0.0091) 0.0139(0.0132) 

Linear slope 0.0119(0.0037) 0.0122(0.0039) 0.0044(0.0062) 

Student level     

Intercept 0.2196(0.0079) 0.1119(0.0095) 0.1108(0.0093) 

Linear slope 0.0046(0.0004) 0.00001(-) 0.00001(-) 

Residual 0.0948(0.0018) 0.0820(0.0024) 0.0799(0.0023) 

    

-2loglikehood 14300.1 14221.1 14129.5 

Degree ff 13 15 17 

Level 2 serial           / / 0.0045(0.0036) 

Level 1 serial           / 0.0777(0.0069) 0.0798(0.0067) 

Correlation 

(intercept vs slope) 

   

School level -0.0158(0.0053) -0.0163(0.0054) -0.0061(0.0067) 

Student level -0.0185(0.0015) -0.0022(0.0009) -0.0021(0.0009) 

School effect    

Initial status 12% 21% 11.1% 

Student growth 72% 99% 99% 

Model 1: without serial correlation;  Model 2: with student level serial correlation correction only; Model 3: with both 

school and student level serial correlation corrections. 
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