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Abstract

Ordinal regression is used for modelling an ordinal response variable as a

function of some explanatory variables. The classical technique for estimat-

ing the unknown parameters of this model is Maximum Likelihood (ML).

The lack of robustness of this estimator is formally shown by deriving its

breakdown point and its influence function. To robustify the procedure, a

weighting step is added to the Maximum Likelihood estimator, yielding an

estimator with bounded influence function. We also show that the loss in

efficiency due to the weighting step remains limited. A diagnostic plot based

on the Weighted Maximum Likelihood estimator allows to detect outliers of

different types in a single plot.

Keywords: Breakdown point, Diagnostic plot, Influence function, Ordinal

regression, Weighted Maximum Likelihood, Robust distances.

1. Introduction

Logistic regression is frequently used for classifying observations into two

groups. When dealing with more than two groups, this model needs to be
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generalized. When the labels of these groups are naturally ordered, an ordi-

nal regression model can be fitted to the data. The group label is then the

ordinal response variable. Ordinal variables occur frequently in practice, e.g.

in surveys where respondents have to specify whether they strongly disagree,

disagree, are indifferent, agree or strongly agree with a given statement. As

illustration in this paper, we use the wine data set of Bastien et al. (2005).

These data characterize the quality of 34 years of Bordeaux wine, the qual-

ity being assessed on the ordinal scale Poor-Average-Good. The quality is

assumed to be related to four explanatory variables: temperature (measured

by the sum of average day temperatures in degrees celsius), sunshine (dura-

tion of sunshine in hours), heat (number of very warm days) and rain (rain

height in mm). In Figure 1, two scatter plots representing the data are given.

One can see that the explanatory variables contain relevant information to

characterize the quality of the wine. For example, rainy years correspond

generally to poor wines as well as years with few sunshine and warm days.

Following Anderson and Philips (1981), we introduce the ordinal regres-

sion model of interest via a latent, unobservable continuous variable Y ∗.

This latent variable depends on a vector of explanatory variables X =

(X1, . . . , Xp)
t as

Y ∗ = βtX + ε, (1)

where β is a p-vector of unknown regression parameters and ε is a random

variable with cumulative distribution function F . The observed ordinal vari-

able Y takes as values the labels 1, . . . , J . We have

Y = j if αj−1 < Y ∗ ≤ αj , for j = 1, . . . , J, (2)
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Figure 1: Scatter plots of Rain versus Temperature (left panel) and Sunshine versus Heat

(right panel) for the Wine data categorized as Poor, Average or Good. The value of the

dependent variable “quality of Wine” is represented by the corresponding symbol.

where the αj are unobserved thresholds with −∞ = α0 < α1 < . . . < αJ−1 <

αJ = ∞. Combining (1) and (2) yields

IP[Y = j|X = x] = F
(
αj − βtx

)
− F

(
αj−1 − βtx

)
for j = 1, . . . , J. (3)

We assume that F is strictly increasing and symmetric around zero, so

F (0) = 0.5. Standard choices for the distribution function F are the logistic

link function, F (t) = 1/(1 + e−t), corresponding to the logistic distribution,

or the probit link function, F (t) = Φ(t), with Φ the cdf of the standard

normal distribution.

Fitting an ordinal regression model requires the estimation of J−1+p pa-

rameters, i.e. the J−1 thresholds α = (α1, . . . , αJ−1)
t and the p components

of β. Maximizing the log-likelihood function is the most common procedure

to obtain these estimations (e.g. Anderson and Philips, 1981; Franses and

Paap, 2001; Powers and Xie, 2008).
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In general, when estimating parameters by means of Maximum Like-

lihood, it is expected that outliers will have a devastating impact on the

results. The lack of robustness of the Maximum Likelihood method in the

logistic regression model has been already extensively studied in the litera-

ture, e.g. breakdown points have been computed (e.g. Croux et al., 2002;

Müller and Neykov, 2003) and influence functions have been derived (Croux

and Haesbroeck, 2003). Also, robust estimation techniques have been intro-

duced (e.g. Carroll and Pederson, 1993; Wang and Carroll, 1995; Bianco and

Yohai, 1996; Gervini, 2005; Bondell, 2008; Hobza et al., 2008; Hosseinian and

Morgenthaler, 2011). However, to our best knowledge, similar results are not

yet available for the ordinal regression model.

In this paper, we investigate the lack of robustness of the ML procedure

in the ordinal regression setting by computing breakdown points and influ-

ence functions. A robust alternative consisting of a weighting step added

to the ML methodology is then presented. Section 2 defines the Maximum

Likelihood estimator and states the conditions under which this estimator

exists. In Section 3, the breakdown point of the ML estimator is derived and

shown to go to zero as the sample size tends to infinity. A robust alternative

is introduced in Section 4. In Section 5, the influence functions of the clas-

sical and robust estimators are computed and they are then used in Section

6 to construct a diagnostic plot detecting influential points. The statistical

precision of the robust estimators is discussed in Section 7. Finally, Section

8 makes some conclusions.
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2. Maximum likelihood estimation

2.1. Definition

Let Zn = {(xi, yi) : i = 1, . . . , n} be a sample of size n where the vector

xi ∈ Rp contains the observed values of the p explanatory variables and yi,

with 1 ≤ yi ≤ J , indicates the membership to one of the J groups. The

Maximum Likelihood estimator is obtained by maximizing the log-likelihood

function, i.e.

(α̂, β̂) = argmax
(α,β)∈RJ−1+p

l (α, β) , (4)

under the constraint α1 < . . . < αJ−1, with

l (α, β) =
n∑

i=1

J∑

j=1

δij log
(
F
(
αj − βtxi

)
− F

(
αj−1 − βtxi

))
, (5)

and where the indicator function δij takes the value 1 when yi = j and 0

otherwise.

To explicitly take into account the ordering constraint in the maximiza-

tion, Franses and Paap (2001) recommend to re-parameterize the log-likeli-

hood function by replacing the vector of thresholds α by γ = (γ1, . . . , γJ−1)
t

defined as

α1 = γ1

αj = γ1 +

j∑

k=2

γ2k, for j = 2, . . . , J − 1. (6)

The parameter γ is uniquely identified by asking that γj ≥ 0, for j > 1. The
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log-likelihood function (5) can be rewritten as

l (γ, β) =
n∑

i=1

J∑

j=1

δij log

(
F (γ1 +

j∑

k=2

γ2k − βtxi)− F (γ1 +

j−1∑

k=2

γ2k − βtxi)

)

=

n∑

i=1

ϕ(xi, yi, (γ, β)). (7)

The Maximum Likelihood estimators of γ and β are then given by

(γ̂, β̂) = argmax
(γ,β)∈RJ−1+p

l (γ, β) . (8)

The advantage of the optimization problem in (8) is that no constraints need

to be put on the parameters: the resulting estimates for the thresholds α will

be automatically ordered. Furthermore, equality of two thresholds implies a

zero values for some γj, with j > 1, yielding minus infinity for the objective

functions in (7), and they can be excluded from the solutions set.

2.2. Existence

When working with a binary regression model, it is well known that an

overlap between the two groups of observations is necessary and sufficient for

existence and uniqueness of the Maximum Likelihood estimates (Albert and

Anderson, 1984). For ordinal regression, the existence of the ML estimates

has also been characterized by overlap conditions. Haberman (1980) states

these conditions in algebraic terms. Proposition 1 below summarizes these

conditions.

Proposition 1 (Haberman, 1980). Let the set Ij contain the indexes of the

observations for which yi = j, for j = 1, . . . , J . The Maximum Likelihood

estimate exists if and only if
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(i)
∑

i

δij ≥ 1 for all j = 1, . . . , J

(ii) For all α and β, there exists an index j in {1, . . . , J}, and there exists

an i in Ij such that xtiβ < αj−1 or xtiβ > αj .

In words, these conditions state that the ML estimates exist if and only

if (i) there is no empty group and (ii) there is overlap between at least two

groups with consecutive labels. As only one overlap is necessary to ensure

existence and uniqueness, the overlap condition is not more stringent than

in the binary case.

3. Breakdown point of the Maximum Likelihood estimator

In the logistic regression setting, Croux et al. (2002) showed that the ML

estimator never explodes when outliers are added to the data. On the other

hand, the estimated slope goes to zero when adding 2p well chosen outliers.

This behavior also holds in ordinal regression, as Propositions 2 and 3 below

prove.

Let zi = (xi, yi) denote the ith observation and Z ′
n+m = {z1, . . . , zn, zn+1,

. . . , zn+m} the initial sample with m outliers, zn+1, . . . , zn+m, added. The ML

estimator of the thresholds and slope parameter is denoted by θ̂(Zn) = θ̂n.

The notation ‖.‖ refers to the Euclidean norm.

Definition. The explosion breakdown point of θ̂n at the sample Zn is the

minimal fraction of outliers that needs to be added to the initial sample to

get the estimator over all bounds, i.e.

ε+(θ̂n, Zn) =
m+

n +m+
with m+ = min

{
m ∈ N0

∣∣∣∣ sup
zn+1,...,zn+m

‖θ̂(Z ′
n+m)‖ = ∞

}
.
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The above definition is the addition breakdown point of an estimator.

Alternatively, once could consider the replacement breakdown point, where

observations are replaced by outliers until the estimator goes over all bounds.

The replacement breakdown point is less appealing in our setting, since one

could make the overlap condition of proposition 1 fail, causing a breakdown

of the estimator due to its non-existence. When adding outliers to the data,

the overlap condition remains verified.

Assuming that overlap holds initially, Proposition 2 formally proves that

the ML estimator in ordinal regression is uniformly bounded above when

adding an arbitrary number of outliers in the data. The proof is given in the

Appendix.

Proposition 2. Assume that ‖θ̂(Zn)‖ <∞, with θ̂(Zn) the Maximum Like-

lihood estimator computed on the sample Zn. Then ε
+(θ̂n, Zn) = 1.

While Proposition 2 shows that the explosion breakdown point of the ML

estimator is 100%, Proposition 3 derives an upper bound for the breakdown

point of the slope estimator taking both implosion and explosion behaviors

into account.

Definition. The breakdown point of β̂n at the sample Zn is the minimal

fraction of outliers that needs to be added to the initial sample in order to

make the estimator tend to zero or to infinity:

ε(β̂n, Zn) =
m∗

n +m∗

with m∗ = min(m+, m−) and

m+ = min

{
m ∈ N0

∣∣∣∣ sup
zn+1,...,zn+m

‖β̂(Z ′
n+m)‖ = ∞

}
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m− = min

{
m ∈ N0

∣∣∣∣ inf
zn+1,...,zn+m

‖β̂(Z ′
n+m)‖ = 0

}
.

Proposition 3. At any sample Zn, the breakdown point of the slope of the

ML estimator for the ordinal regression model satisfies

ε(β̂n, Zn) ≤
pJ

n+ pJ
,

where p is the number of explanatory variables and J the number of groups.

Proposition 3 shows that the ML estimator is not robust since its asymp-

totic breakdown point, i.e. limn→+∞ ε(β̂n, Zn), is zero. This lack of robust-

ness does not come from an explosion but rather from an implosion of the

slope estimator toward zero. It is interesting to note that the implosion of

the slope estimate does not imply implosion of the estimations of the thresh-

olds. Indeed, as β̂ goes to 0, α̂j tends to F
−1(p1 + . . .+ pj), where pj is the

frequency of observations in the jth group. In general, this limit does not

vanish to zero.

To illustrate the implosion breakdown of the slope estimator, let us con-

sider the simulated data set pictured in Figure 2, with n = 50 observations

classified into J = 3 ordered groups. The group membership depends on

p = 2 explanatory variables (simulated as independent standard normals)

while the error term is distributed according to the logistic distribution. The

true values of the parameters are set at β = (−1, 1.5)t and α1 = −α2 = −1.

This choice of thresholds leads to three groups of equivalent size. Based on

this initial data set, the ML estimate of β is given by β̂ = (−1.30, 1.60)t,

yielding ‖β̂‖ = 2.06. The ML estimator yields a misclassification rate (which

is the proportion of observations for which ŷ 6= y) equal to 28%.
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Figure 2: Scatter plot of the simulated data set. The dotted line represents the shift of

the additional observation ((s,−s), 3).

Both the estimator and the misclassification rate may be completely per-

turbed by the introduction of a single outlier in the data. Add one obser-

vation with x = (s,−s) moving along the dotted line in Figure 2 and with

y = 3. This additional observation is most outlying when s is positive since

it lies then in the region of observations associated with the smallest possi-

ble y-score. When s is negative, the observation is outlying in the space of

explanatory variable (if s is large) but it has the expected value as far as the

y-variable is concerned.

For each value of s, the parameters of the ordinal regression model are

estimated by Maximum Likelihood and the corresponding misclassification

rate is computed. The resulting norm of β̂ and the rate of misclassification

are represented in Figure 3 with respect to s. As expected, negative values of s

yield an additional observation which does not bias too much the estimator.

On the other hand, as soon as s gets positive, the impact of the added
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Figure 3: Simulated data set with ((s,−s), 3) as additional observation. Left panel: Norm

of the slope parameter. Right panel: Proportion of misclassified observations.

observation becomes apparent and gets even quite extreme as s increases.

Not only the norm of the slope estimator goes to zero but the misclassification

rate reaches a limit of about 66%, close to the classification performance of

a random guess.

4. Weighted Maximum Likelihood Estimator

In this Section, we construct a robust alternative to the ML estimator.

The most simple way to decrease the influence of outliers is to downweight

them by adding weights into the log-likelihood function. As such, a weighted

Maximum Likelihood estimator is obtained, as already suggested and studied

in the simple logistic regression setting (e.g. Carroll and Pederson, 1993;

Croux and Haesbroeck, 2003; Croux et al., 2008).

Many different types of weights could be designed. Here, the downweight-

ing will be done using robust distances computed in the space of the ex-
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planatory variables. Let m and S denote robust estimates of the location

and covariance matrix based on x1, . . . , xn. In this paper, the Minimum Co-

variance Determinant estimator (Rousseeuw and Van Driessen, 1999) with a

breakdown point of 25% has been used. The weight wi attributed to the ith

observation is then given by

wi = W (di) with di = (xi −m)tS−1(xi −m), (9)

for a given weight functionW . The robust distances measure the outlyingness

of each observation xi, for i = 1, . . . , n. They are only computed from the

continuous explanatory variables. In particular, dummy variables are not

taken into account when computing the distances.

The Weighted Maximum Likelihood (WML) estimator is then the solu-

tion of the following maximization problem

(γ̂, β̂) = argmax
(γ,β)∈RJ−1+p

n∑

i=1

wiϕ(xi, yi, (γ, β)), (10)

where ϕ is the log-likelihood of an individual observations, as in equation (7).

Obviously, if one takes a constant weight function, the usual ML es-

timator is obtained again. A typical weight function is the step function

W0/1(d) = I(d ≤ χ2
p(0.975)) where χ2(0.975) is the 97.5% quantile of the

chi-squared distribution with p degrees of freedom. With such a weight func-

tion, observations lying far away from the bulk of the data are discarded. As

only extreme observations are discarded, one expects that in most cases the

overlap condition of Proposition 1 will still hold. Nevertheless, to guarantee

existence of overlap, a smoother weight function is prefered, as the Student

weight function defined by Wν(d) = (p + ν)/(d + ν), where ν is the degree
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of freedom. The larger ν, the less observations are downweigthed. We take

ν = 3. Far away observations do get small weights but are not discarded

completely from the data set. Therefore, the weighted ML estimate using

the W3 weight function exists as soon as the ML estimate exists.

To illustrate numerically the robustness of the WML estimator, we repeat

the experiment discussed in Section 3. Similar as Figure 3, Figure 4 shows

how the norm of a robust estimate of the slope parameter depends on the

position of a single added outlier with value x = (s,−s)t and y = 3. It

can be seen that the norm of the slope does not tend to zero anymore,

and is only changing in the region where the added observation is not too

different from the bulk of the data. We see that the curve corresponding

to the Student weight function is smoother than the one based on the 0/1

weights, as expected. Figure 4 also shows that the misclassification rate is

only slightly varying with the values of the outlier, and nowhere close to 66%,

the misclassification rate corresponding to random guessing.

5. Influence function

5.1. Derivation

Breakdown points are global measures of robustness measuring robust-

ness in presence of large amounts of contamination. On the other hand,

influence functions are local measures of robustness, characterizing the im-

pact of an infinitesimal proportion of contamination located at a point (x, y).

The influence function of a statistical functional T at the model distribution

H0 is defined by

IF((x, y);T,H0) = lim
ε→0

T ((1− ε)H0 + ε∆(x,y))− T (H0)

ε
(11)
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Figure 4: Simulated data set with ((s,−s), 3) as additional observation. Left panel: Norm

of the slope parameter. Right panel: Proportion of misclassified observations. Parameters

are estimated with WML using 0/1 weights (solid line) or Student’s weights (dashed line).

where ∆(x,y) is the Dirac distribution having all its mass at (x, y) for given

x ∈ IRp and y ∈ {1, . . . , J}. Contamination on y is restricted to its possible

values since any other choice for y would be easily detected.

We first derive the influence function of the statistical functionals related

to the estimation of the parameters γ and β. They are the solutions of

an unconstrained problem, see equation (8), and easier to deal with. Let θ

represent the joint vector (γ, β). The statistical functional relative to the ML

estimator in ordinal regression is given by

θML(H) = argmax
θ∈RJ−1+p

EH [ϕ(X, Y ; θ)],

for any distribution H of the variables (X, Y ). The first order condition

yields

EH [ψ(X, Y ; θ)] = 0 with ψ(X, Y ; θ) =
∂ϕ(X, Y ; θ)

∂θ
.
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At the model distributionH0, equation (3) holds, and it follows that θML(H0) =

θ0, with θ0 the true parameter vector. We observe that θML is simply a M-

type statistical functional for which the IF is readily available (Hampel et al.,

1986, page 230) and given by:

IF((x, y); θML, H0) = −EH0

[
∂2ϕ(X, Y ; θ)

∂θ2

∣∣∣∣
θ0

]−1

ψ(x, y; θ0). (12)

The first factor in (12) is a constant (J − 1+ p)-square matrix, which we

demote by M(ψ,H0), independent of x and y. Its explicit form is given in

the Appendix. The shape of the influence function is mainly determined by

the second factor ψ with components (ψ1, . . . , ψJ−1, ψβ), and defined as

ψ1(x, y; θ) =
J∑

j=1

I(y = j)
f(αj − βtx)− f(αj−1 − βtx)

F (αj − βtx)− F (αj−1 − βtx)
,

ψk(x, y; θ) = 2γk

[
I(y = k)

f(αk − βtx)

F (αk − βtx)− F (αk−1 − βtx)

+

J∑

j=k+1

I(y = j)
f(αj − βtx)− f(αj−1 − βtx)

F (αj − βtx)− F (αj−1 − βtx)

]

for k = 2, . . . , J − 1 and

ψβ(x, y; θ) = −x
J∑

j=1

I(y = j)
f(αj − βtx)− f(αj−1 − βtx)

F (αj − βtx)− F (αj−1 − βtx)
,

with f = F ′ the density function of the error term in (1).

It is easy to see that the influence function of ML is bounded in y, since y

only enters the IF through the indicator functions I(y = j). The first J − 1

components of ψ are also bounded in x, as f and F are bounded functions

(at least for the logit and probit link functions). The slope component of ψ,

however, is unbounded in the value of the covariate x, proving the lack of
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robustness of the ML-estimator in presence of small amounts of contamina-

tion.

Let us now turn to the derivation of the influence function of the WML

statistical functional θWML. It is defined as

θWML(H) = argmax
θ∈RJ−1+p

EH [W (DH(X))ψ(X, Y ; θ)]

where (X, Y ) ∼ H . With GH the marginal distribution of X , the distance

function DH is given by DH(x) = (x− µ(GH))
tΣ(GH)

−1(x− µ(GH)) where

(µ(GH),Σ(GH)) are the location and covariance functionals corresponding

to the MCD estimator.

Using the explicit expression of ψ given above, it is easy to check that

conditional Fisher consistency holds, i.e. EH0
[ψ(X, Y ; θ0)|X = x] = 0 for

all x ∈ Rp. Lemma 1 of Croux and Haesbroeck (2003) leads then to the

following expression for the influence function, IF((x, y); θWML, H0), of the

Weighted Maximum Likelihood estimator:

−EH0

[
W (DH0

(X))
∂2ϕ(X, Y ; θ)

∂θ2

∣∣∣∣
θ0

]−1

W (DH0
(x))ψ(x, y; θ0). (13)

Leaving aside the constant matrix, the impact of an infinitesimal con-

tamination at (x, y) on WML is measured by means of the same function ψ

as before, now multiplied by the weight function. The influence function of

WML remains therefore bounded in y but also becomes bounded with re-

spect to outlying values of the explanatory variables as soon as xW (DH0
(x))

is bounded. Both for the Student weight function and for the 0/1 weight

function we get bounded influence functions.

16



From expressions (12) and (13), the influence functions of the functionals

corresponding to the thresholds α1, . . . , αJ−1, are readily obtained. Denote

A1, . . . , AJ−1 the statistical functionals corresponding to the estimators of the

components of the parameter α, and C1, . . . , CJ−1 the first J−1 components

of the statistical functional θML or θWML. Using definition (6), one gets

IF ((x, y) ;A1, H0) = IF ((x, y) ;C1, H0)

IF ((x, y) ;Aj, H0) = IF ((x, y) ;C1, H0) + 2

j∑

k=2

γkIF ((x, y) ;Ck, H0)

for j = 2, . . . , J − 1.

5.2. Numerical Illustrations

Let us look at some graphical representations of the influence functions.

We take for F the probit link but similar results hold for the logit link. We

consider the model Y ∗ = βtX + ε, where the covariates X follow a standard

normal distribution. The ordinal variable Y is then given by (2), where the

thresholds are such that every group has equal probability of occurrence.

We focus here on the univariate case, p = 1, with J = 3 groups and we

set β = 1.5. Figure 5 shows the influence functions of A1 (upper panels) and

of the functional B estimating the slope parameter β (lower panels) for the

ML estimator (left panels) and for the WML estimator based on Student’s

weights with ν = 3 (right panels), as a function of x. Several curves are

drawn, one for each possible value of y. While the influence functions of

the ML estimator are unbounded, adding weights yields bounded influence

functions for the WML estimator. Bounded IF are also obtained for the

WML estimator with the 0/1 weighting scheme (not reported) but jumps

appear due to the discontinuity of the step weight function.
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Figure 5: Influence functions for the first threshold A1 (upper row) and for the slope B

(lower row) as functions of x with y ∈ {1, 2, 3}, for p = 1 and with J = 3 groups. Left

panels: ML estimator. Right panels: WML estimator based on Student weight function

with ν = 3.
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It is worth to interpret in more detail these influence functions. First, as

β is positive, large negative values of the explanatory variable yield a fitted

value of the ordinal variable, ŷ, equal to its smallest score (ŷ = 1) while

large positive ones would correspond to the highest score (ŷ = 3). Looking

now at the influence function of the first threshold (upper plots of Figure 5),

one can observe that negative (resp. positive) x values have a zero influence

when associated with y = 1 (resp. y = 3), showing that these points are not

influential even on the ML estimator. The influence is smaller (in absolute

value) for those x lying in the area corresponding to ŷ = y than elsewhere.

The same remarks hold for the IF of the slope parameter (see lower panel of

Figure 5). These influence functions also shows the expected symmetry.

This leads to the definition of several types of outliers in the ordinal

regression setting. For outlying values of x, i.e. for leverage points, some

couples (x, y) are influential, while others are not. If ŷ = y, the corresponding

outlier has less influence on the estimation of the parameters. It can be

labelled as a good leverage point, as in linear regression (Rousseeuw and

Leroy, 1987). On the other hand, when ŷ 6= y, this outlier might be highly

influential and can be considered as a bad leverage point. It may happen that

ŷ 6= y even if x is not outlying in the space of the explanatory variables. In

that case, we talk about vertical outliers.

6. Diagnostic plot

It has been shown that atypical observations may have an important effect

on the Maximum Likelihood estimator. In order to detect the potentially

influential observations beforehand, diagnostic measures could be computed.
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Figure 6: Illustration of the diagnostic plot detecting influential points (vertical axis)

and leverage points (horizontal axis). The influence measure is plotted versus the robust

distance (RD).

Here follow the approach of Pison and Van Aelst (2004), based on influence

functions.

The influence of each observation on the classical estimator is measured

and plotted with respect to the robust distances (RD) computed on the

continuous explanatory variables in the data set. Figure 6 displays such

a diagnostic plot. The vertical and horizontal lines correspond to cutoff

values: a distance or influence measure larger than the cutoff value indicates

an atypical observation. As shown on Figure 6, we get four parts: Part I

contains the regular observations, Part II corresponds to the vertical outliers,

part III to the good leverage points and Part IV to the bad leverage points.

To compute the influence measures, we evaluate the influence function of

the ML estimator at each observed couple (xi, yi). As expression (12) shows,

this IF still depends on unknown quantities: the model distribution of the
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explanatory variables, G, and the true values of the parameters, θ0. To avoid

the masking effect, Pison and Van Aelst (2004) suggest to estimate G and

θ0 in a robust way. The parameter θ0 is estimated by WML. The distribu-

tion G is estimated by the empirical distribution based on the observations

which are not detected as outliers in the space of explanatory variables, i.e.

for which di ≤ χ2
p(0.975). Recall that di are the robust distances defined

in (9). Since G and θ0 are replaced by estimates, we speak about empirical

influence functions (EIF). The overall influence measures for the threshold

and regression slope estimators are then

EIFAi =
‖EIF((xi, yi), A)‖√

J − 1
and EIFBi =

‖EIF((xi, yi), B)‖√
p

where the factors 1/
√
J − 1 and 1/

√
p scale the norms. As cutoff for the

influence measure, the empirical 95% quantile of a set of simulated overall

empirical influence functions is chosen, as in Pison and Van Aelst (2004).

Two examples will illustrate the usefulness of this diagnostic plot in prac-

tice. The first one is based again on the simulated data set of Section 3. In

this simple and simulated setting, the different types of outliers may be eas-

ily detected by visual inspection of the data. We will show that the same

detection may be obtained via the corresponding diagnostic plot.

The left panel of Figure 7 displays the data together with the robust fit

obtained with the Weighted Maximum Likelihood estimator. The dashed

lines separate the plane in three parts, according to the fitted value of the

respons variable. The diagnostic plot for the slope parameter is shown on the

right panel (similar results hold for the thresholds). Some particular observa-

tions (numbered from 1 to 8) are pinpointed on these two plots. Observations

1, 2, 3 and 4 are leverage points. Out of these four observations, only one
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Figure 7: Original simulated data set together with the fitted separating lines based on

the WML estimator with 0/1 weights (left panel) and corresponding diagnostic plot (right

panel).

(observation 4) is a bad leverage point. Observations labelled as 5, 6, 7 and

8 are not outlying in the space of explanatory variables but are misclassified.

They are vertical outliers and lie indeed in Part II of the diagnostic plot.

For the second illustration, let us come back to the wine data set presented

in the Introduction. There are n = 34 observations and p = 4 explanatory

variables; visual analysis of the data is no longer possible. Figure 8 gives the

diagnostic plot based on the slope parameter. Several observations (num-

bered by their index which gives the corresponding year of the production of

the wine) lie in the outlying parts of the plot. Eight observations are out-

lying in the space of explanatory variables. Two of them are bad leverage

points (years 1928 and 1956) while the others (years 1927, 1929, 1932, 1935,

1947 and 1949) are not influential. Except for 1935, these years are known

to be either disastrous or exceptional as far as their climatic conditions are
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Figure 8: Diagnostic plot for the Wine data set.

concerned. Years 1944 and 1953 are flagged as vertical outliers. They corre-

spond indeed to wines for which the observed quality is not validated by the

estimated model.

7. Simulation study

While adding weights in the log-likelihood function makes the ML es-

timator robust, it also leads to a loss in statistical efficiency. By means

of a modest simulation study, we show that this loss remains limited. For

m = 5000 samples of size n = 50 or n = 200, observations were generated

according to the ordinal regression model, with F the probit link function,

and the covariates following a N(0, Ip) distribution, for p = 2, 3 and 5. The

thresholds α = (α1, . . . , αJ−1)
t are selected such that every value of the or-

dinal variable Y has the same probability to occur. We present results for

J = 3 groups. The slope parameter is taken as β = (1, 1, . . . , 1)t. For every

generated sample, the parameters are estimated with ML and WML using
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p = 2 p = 3 p = 5

n 50 200 ∞ 50 200 ∞ 50 200 ∞

W0/1 Effn(α) .984 .989 .991 .951 .986 .990 .767 .973 .986

Effn(β) .941 .961 .963 .922 .962 .965 .686 .951 .964

W3 Effn(α) .953 .947 .943 .940 .926 .921 .975 .904 .893

Effn(β) .959 .933 .922 .956 .929 .909 .978 .919 .894

Table 1: Relative efficiencies of WML w.r.t. ML for the threshold and slope estimators,

using 0/1 weights (W0/1) and the Student weight function (W3).

both the 0/1 and the student weight functions.

For every component of α and β, we compute the Mean Squared Errors

(MSE) of the estimators, and summarize the relative finite-sample efficiencies

of the Weighted ML versus the ML estimator as

Effn(α) =
1

J − 1

J−1∑

k=1

MSE(α̂k,ML)

MSE(α̂k,WML)
and Effn(β) =

1

p

p∑

k=1

MSE(β̂k,ML)

MSE(β̂k,WML)
.

The results are reported in Table 1. In the column n = ∞, we report

asymptotic efficiencies computed using the rule

ASV(T,H0) = EH0

[
IF2((X, Y );T,H0)

]
,

with T the functional corresponding to the estimation of one component of

α or β (Hampel et al., 1986, page 85). Using numerical integration and the

expression for the influence functions derived in Section 5, we obtain the

asymptotic variances and efficiencies.

Table 1 shows that the loss in efficiency remains very limited. When

using the 0/1 weights, the efficiencies are above 90%, with the exception of
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the setting where the sample size is low w.r.t. the dimension, i.e. p = 5

and n = 50. We also observe that the finite-sample efficiencies converge

to their asymptotic counterparts. Using the smooth weight function W3

yields slightly lower efficiencies, but they are more stable with respect to the

sample size. We observe again convergence to the asymptotic efficiencies.

We conclude from this simulation study that the loss in statistical efficiency

when using the WML is very limited, while, as shown in the previous section,

it has much better robustness properties.

8. Conclusion

To the best of our knowledge, this is the first paper where robustness for

ordinal regression is studied. First we study the robustness of the classical

Maximum Likelihood Estimator, and show that the slope estimator is explo-

sion robust but implodes toward zero when well-chosen outliers are added

to the data. We also showed that the ML estimator has an unbounded in-

fluence function, but the IF remains bounded with respect to contamination

in the ordinal response variable. To obtain a bounded influence estimator,

it therefore suffices to add weights based on the outlyingness of the values

of the explanatory variables. The resulting Weighted Maximum Likelihood

estimator has a bounded IF if the weight function is appropriately chosen.

The price for the gain in robustness when using the WML is a loss in statisti-

cal efficiency. However, as shown in Section 7, this loss in efficiency remains

limited.

The influence functions are not only useful in their own right but may

also be used to compute asymptotic variances of the classical and robust
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estimators, as was done in Section 7. Furthermore, the influence functions

can be used in a diagnostic context, as shown in Section 6: combining robust

distances with influence measures, one can detect different types of outliers

(vertical outliers, good and bad leverage points) in a single diagnostic plot.

Appendix

Expression for the constant matrix M(ψ,H0) in (12)

The matrix M(ψ,H0) can be decomposed as




m11 m12 m13 m14 . . . m1(J−1) M1B

m12 m22 2γ2m13 2γ2m14 . . . 2γ2m1(J−1) M2B

m13 2γ2m13 m33 2γ3m14 . . . 2γ3m1(J−1) M3B

...
...

. . .
...

...

m1(J−1) 2γ2m1(J−1) 2γ3m1(J−1) . . . . . . m(J−1)(J−1) M(J−1)B

M t
1B M t

2B . . . . . . . . . M t
(J−1)B MBB




.
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Let X ∼ GH , then

m11 = −EGH

[
J∑

j=1

(f(αj − βtX)− f(αj−1 − βtX))2

F (αj − βtX)− F (αj−1 − βtX)

]
,

m1k = −2γk

{
EGH

[(
f(αk − βtX)(f(αk − βtX)− f(αk−1 − βtX))

F (αk − βtX)− F (αk−1 − βtX)

)]

+

J∑

j=k+1

EGH

[(
(f(αj − βtX)− f(αj−1 − βtX))2

F (αj − βtX)− F (αj−1 − βtX)

)]}
,

M1B = EGH

[
X

J∑

j=1

(f(αj − βtX)− f(αj−1 − βtX))2

F (αj − βtX)− F (αj−1 − βtX)

]
,

MkB = 2γk

{
EGH

[
X

(
f(αk − βtX)(f(αk − βtX)− f(αk−1 − βtX))

F (αk − βtX)− F (αk−1 − βtX)

)]

+

J∑

j=k+1

EGH

[(
(f(αj − βtX)− f(αj−1 − βtX))2

F (αj − βtX)− F (αj−1 − βtX)

)]}
,

for k = 2, . . . , J − 1. Furthermore, the diagonal elements are given by

mkk = −4γ2k

{
EGH

[(
f(αk − βtX)2

F (αk − βtX)− F (αk−1 − βtX)

)]

+

J∑

j=k+1

EGH

[(
(f(αj − βtX)− f(αj−1 − βtX))2

F (αj − βtX)− F (αj−1 − βtX)

)]}

for k = 2, . . . , J − 1, and

MBB = −EGH

[
X tX

J∑

j=1

(f(αj − βtX)− f(αj−1 − βtX))2

F (αj − βtX)− F (αj−1 − βtX)

]
.

To obtain the constant matrix in (13), we add the weight W (DH(X)) in all

the expectations.

Proofs of the Propositions

Proof of Proposition 2 In order to prove this, let us show that for every

finite number m of outliers, there exists a real positive constant M(Zn, m)
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such that

sup
zn+1,...,zn+m

‖θ̂(Z ′
n+m)‖ < M(Zn, m).

For every θ = (α1, . . . , αJ−1, β
t)t, define

δ(θ, Zn) = inf{ρ > 0| ∃j ∈ {1, . . . , J − 1} and ∃i ∈ Ij+1 : xtiβ ≤ −ρ+ αj

or i ∈ Ij : xtiβ ≥ ρ+ αj}.

The existence conditions stated in Proposition 1 imply that 0 < δ(θ, Zn) <

+∞. This can also be written as

max
j=1,...,J−1

{rj0(θ),−rj1(θ)},

where rj0 = min
Ij

max(xtiβ−αj , 0) and rj1 = max
Ij+1

min(xtiβ−αj , 0). Thus, the

mapping θ → δ(θ, Zn) is continuous. Then, with Sp+J−2 denoting the sphere

in Rp+J−1 centered at the origin, one gets δ∗(Zn) = inf
θ∈Sp+J−2

δ(θ, Zn) > 0.

Denote the log-likelihood function on the contaminated sample Z ′
n+m as

l. Let l0 be this log-likelihood computed for the vector θ∗ = (α∗, β∗) with

α∗
j = F−1(j/J), j = 1, . . . , J − 1 and β∗ = 0. It is easy to check that

l0 = −(n +m) log J . Take z̃ = exp(l0) and define

M(Zn, m) =
F−1(1− z̃)

δ∗(Zn)
,

which only depends on the original sample Zn and on the number m of

outliers added to Zn. Let us suppose that θ̂n+m satisfies

‖θ̂n+m‖ > M(Zn, m). (14)

For all θ̂n+m ∈ RJ−1+p, there exist at least one j0 ∈ {1, . . . , J − 1} and

one 1 ≤ i0 ≤ n such that

i0 ∈ Ij0 and
xti0 β̂n+m − α̂j0n+m

‖θ̂n+m‖
≥ δ

(
θ̂n+m

‖θ̂n+m‖
, Zn

)
≥ δ∗(Zn) > 0 (15)
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or

i0 ∈ Ij0+1 and
xti0 β̂n+m − α̂j0n+m

‖θ̂n+m‖
≤ −δ

(
θ̂n+m

‖θ̂n+m‖
, Zn

)
≤ −δ∗(Zn) < 0.

(16)

Case 1: When i0 verifies (15), the log-likelihood is such that

l(θ̂n+m;Z
′
n+m) =

n+m∑

i=1

L(θ̂n+m; zi) ≤ L(θ̂n+m; zi0)

since L(θ; zi) =

J∑

j=1

δij log
(
F (αj − βtxi)− F (αj−1 − βtxi)

)
is always nega-

tive. Thus,

l(θ̂n+m;Z
′
n+m) ≤ log

[
F
(
α̂j0n+m − xti0 β̂n+m

)
− F

(
α̂j0−1n+m − xti0 β̂n+m

)]

≤ log
[
F
(
α̂j0n+m − xti0 β̂n+m

)]
≤ log

[
F
(
−‖θ̂n+m‖δ∗(Zn)

)]

= log
[
1− F

(
‖θ̂n+m‖δ∗(Zn)

)]
< log [1− F (M(Zn, m)δ∗(Zn))]

= log(z̃) = l0

using the inequalities in (15), the symmetry and strict increasing behavior of

F , the hypothesis that ‖θ̂n+m‖ > M(Zn, m) and the definitions of M(Zn, m)

and z̃.

Case 2: When i0 verifies (16), one also gets l(θ̂n+m;Z
′
n+m) < l0. Here

the inequality log(y − x) < log(1− x) for 0 < x < y < 1 is used.

The inequality l(θ̂n+m;Z
′
n+m) < l0 implies that θ̂n+m cannot be the ML-

estimate. Therefore, equation (14) does not hold and the theorem is proven.

Proof of Proposition 3 As in the previous proof, let l be the log-likelihood

function on the contaminated sample Z ′
n+m and l0 its value computed for θ∗.
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Let δ > 0 be fixed. It is always possible to find ξ > 0 s.t. log(F (−ξ)) = l0.

Let us define M = max
1≤i≤n

‖xi‖, N = ξ/δ and A =
√
p(2N + M). Take

{e1, . . . , ep} the canonical basis of Rp and add to the initial sample Zn the

m = pJ outliers

zji = (vti , j) with vi = Aei, i = 1, . . . , p and j = 1, . . . , J.

Take ‖β‖ > δ, α arbitrarily and θ = (α, β). The aim is to show that

l(θ;Z ′
n+m) < l0 as soon as ‖β‖ > δ which will imply that ‖β̂n+m‖ ≤ δ.

Since this reasoning holds for all δ > 0, β̂ can be made as small as possible

by adding m = pJ outliers.

For j fixed in {1, . . . , J − 1}, define the hyperplane Hj
δ = {x ∈ Rp :

αj − xtβ = 0}. The distance between a vector x ∈ Rp and Hj
δ is

dist(x,Hδ) =

∣∣∣∣xt
β

‖β‖ − αj

‖β‖

∣∣∣∣ .

First, suppose that ∃ i0 ∈ {1, . . . , p} s.t. dist(vi0 , H
j
δ ) is bigger than N . If

αj−vti0β > 0, then take the outlier zj+1
i0

. Since αj−vti0β = dist
(
vi0 , H

j
δ

)
‖β‖ >

N‖β‖ > Nδ = ξ, one has

l(θ, Z ′
n+m) ≤ L(θ, zj+1

i0
) = log

[
F
(
αj+1 − vti0β

)
− F

(
αj − vti0β

)]

≤ log
[
1− F

(
αj − vti0β

)]
< log(1− F (ξ)) = log(F (−ξ)) = l0.

On the other hand, if αj − vti0β < 0, then take the outlier zji0 . Since

−
(
αj − vti0β

)
> N‖β‖ > Nδ = ξ, one has

l(θ, Z ′
n+m) ≤ L(θ, zji0) = log

[
F
(
αj − vti0β

)
− F

(
αj−1 − vti0β

)]

≤ log
[
F
(
αj − vti0β

)]
< log(F (−ξ)) = l0.
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Now, suppose that the distance between the hyperplane Hj
δ and vk is

smaller than N for all k = 1, . . . , p. Let k0 be the index s.t. |βk0| = max
1≤k≤p

|βk|.
If βk0 > 0, it follows that βk0A − αj = dist(vk0, H

j
δ )‖β‖ ≤ N‖β‖ and βk0 ≥

‖β‖/√p leading to

αj ≥ ‖β‖
(
A√
p
−N

)
= (M +N)‖β‖.

Therefore, take an observation zi0 from Zn with yi0 = j + 1. Now,

αj − βtxi0 ≥ αj − ‖β‖‖xi0‖ ≥ (M +N)‖β‖ −M‖β‖ > Nδ = ξ

and

l(θ, Z ′
n+m) ≤ L(θ, zi0) = log

[
F
(
αj+1 − βtxi0

)
− F

(
αj − βtxi0

)]

≤ log
[
1− F

(
αj − βtxi0

)]
< log(1− F (ξ)) = log(F (−ξ)) = l0

On the other hand, if βk0 < 0, then αj − βk0A ≤ |αj − βk0A| ≤ N‖β‖ and

βk0 ≤ −‖β‖/√p which leads to

αj ≤ ‖β‖
(
N − A√

p

)
= −(M +N)‖β‖.

Therefore, take an observation zi0 from Zn with yi0 = j. Now,

αj − βtxi0 ≤ −(N +M)‖β‖ − βtxi0 ≤ −(M +N)‖β‖+M‖β‖ < −Nδ = −ξ

and

l(θ, Z ′
n+m) ≤ L(θ, zi0) = log

[
F
(
αj − βtxi0

)
− F

(
αj−1 − βtxi0

)]

≤ log
[
F
(
αj − βtxi0

)]
< log(F (−ξ)) = l0.

As this reasoning holds for all j ∈ {1, . . . , J − 1}, the theorem is proven.
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