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Abstract This paper is concerned with the numerical solution of parabolic
partial differential equations with time-delay. We focus in particular on the de-
lay dependent stability analysis of difference methods that use a non-constrained
mesh, i.e., the time step-size is not required to be a submultiple of the delay.
We prove that the fully discrete system unconditionally preserves the delay
dependent asymptotic stability of the linear test problem under consideration,
when the following discretization is used: a variant of the classical second-order
central differences to approximate the diffusion operator, a linear interpolation
to approximate the delay argument, and, finally, the trapezoidal rule or the
second-order backward differentiation formula to discretize the time deriva-
tive. We end the paper with some numerical experiments that confirm the
theoretical results.
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1 Introduction

Complex phenomena in biological, chemical and physical systems can some-
times be modeled by delay partial differential equations (PDEs). Since the
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2 Chengming Huang, Stefan Vandewalle

1970s, such equations have been widely studied and several important prop-
erties such as existence and stability of the solution are nowadays fairly well
understood, see [23]. However, the exact solution is not available in general, so
one has to resort to numerical methods when solving such equations. The nu-
merical analysis of computational methods for delay PDEs has not received too
much attention yet in the literature. For some early results, we refer, for exam-
ple, to the paper by van der Houwen, Sommeijer and Baker [12] who considered
predictor-corrector methods for parabolic equations with delay. Higham and
Sardar [11] discussed the stability of fixed points for a discretized reaction-
diffusion equation with delay and found that a small delay increases the sta-
bility range. Zubik-Kowal and Vandewalle [27] investigated the convergence of
waveform relaxation methods for solving semi-discrete delay PDEs.

Most numerical schemes for PDEs without delay can be adapted to the
solution of delay PDEs, when they are combined with an appropriate interpo-
lation procedure for the evaluation of the delay argument. However, the long
time stability properties of such combinations may be surprisingly different
from the analogous properties of methods for problems without delay. As we
will see in §2 of this paper, there are many factors which may adversely affect
the stability of discretization schemes. In order to gain some insight into the
stability properties of numerical methods for delay PDEs we will adhere to
the common practice of studying a representative model equation. In the dis-
crete delay case, a typical test problem is the diffusion equation with a linear
delayed reaction term:





∂u

∂t
= a

∂2u

∂x2
+ bu(t− τ, x), t > 0, x ∈ Ω = [0, L],

u(t, x) = g(t, x) , t ∈ [−τ, 0] , x ∈ Ω,

u(t, x) = 0 , t > 0 , x = 0 or L.

(1)

This equation is a natural extension of the classical test problem in the stability
analysis of parabolic PDEs. This model equation was used by Zubik-Kowal in
[26], where the contractivity of θ-methods was studied. In our earlier work [14],
a similar (but more general) equation was considered. For that equation, we
derived the exact delay dependent stability regions of the continuous system,
the semi-discrete system, and a fully discrete system. The latter was based on
the Crank-Nicolson scheme on a constrained mesh, i.e., with a time stepsize
that is a submultiple of delay. Wu and Gan [24] extended the above results to
the case of neutral delay PDEs.

A natural follow-up to the above studies is the investigation of the stability
of other classical schemes when adapted to delay PDEs. In particular, one
is then looking for an answer to the following question: “Does there exist a
method which fully preserves the delay dependent asymptotic stability of PDE
(1) for an arbitrary stepsize ?” When trying to answer that question, one
is inevitably confronted with the analogous question for the delay ordinary
differential equation (ODE)

y′(t) = ay(t) + by(t− τ). (2)
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Unconditionally stable difference methods for delay partial differential equations 3

The delay-dependent stability properties of many classical time-integration
methods applied to (2) have been investigated over the years, see the mono-
graphs [2,5] and the extensive bibliography therein. In the case of real coeffi-
cients, for example, several classes of Runge-Kutta methods, including A-stable
theta methods, Gauss methods and Radau methods, are proved to preserve the
delay-dependent stability of equation (2) (cf. [7–9,13]). Linear multistep meth-
ods, and backward differentiation formulae in particular, are considered in [4,
16]. Equations with complex coefficients are studied in [10,19]. Many of these
results apply to some extent to (1), or at least to a semi-discrete version of that
equation after an appropriate spatial discretization is employed. Nevertheless,
most of these results also suffer from the limitation of a constrained mesh. To
our knowledge, the delay dependent stability of numerical methods with an
arbitrary stepsize for (2) is largely an open problem, too. It should be pointed
out that the delay-independent stability of numerical methods is another mat-
ter, which is fairly well understood. For example, it is known that all A-stable
natural Runge-Kutta methods preserve the delay-independent stability of de-
lay ODEs with constant coefficients [25,17]. If the equi-stage interpolation
procedure introduced by in’t Hout [15] is employed in order to approximate
the delay argument, stability also holds for non-constrained meshes [15,20].
The same is true for linear multistep methods [3,22].

In this paper we focus on the delay dependent stability analysis of numeri-
cal methods with a non-constrained mesh. A feasible approach for proving the
unconditional stability of numerical methods with an interpolation procedure
is established. A positive answer to the above question is obtained. The paper
is organized as follows. In §2, we first summarize some factors which possibly
affect the stability of discretization schemes. Then, in §3, we look for methods
which unconditionally preserve the stability of the test problem (1). We will
prove that the trapezoidal rule and the second order backward differentiation
formula (BDF), combined with an appropriate spatial discretization, possess
this property. In §4, we present some numerical experiments to show the differ-
ence between unconditionally stable methods and other methods. We conclude
with some remarks in §5.

2 Sources of instability

There is a vast literature on the stability of difference methods for PDEs
without delay and many schemes are known to be unconditionally stable for
the model equation

∂u

∂t
= a

∂2u

∂x2
, (3)

with a > 0; see, e.g., [21]. However, when these methods are adapted to de-
lay PDEs, there are several factors which possibly lead to instability. In this
section, we summarize some of them.
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4 Chengming Huang, Stefan Vandewalle

2.1 Stability of the continuous problem

It is well known that the model equation (3) is asymptotically stable if and only
if the coefficient a is positive. In the case of delay PDEs, however, the stability
condition is much more complicated. Without loss of generality, we assume
τ = 1 and L = π in (1) such that the notations can be greatly simplified, i.e.,
the model equation reduces to





∂u

∂t
= a

∂2u

∂x2
+ bu(t− 1, x), t > 0, x ∈ Ω = [0, π],

u(t, x) = g(t, x) , t ∈ [−1, 0] , x ∈ Ω,

u(t, x) = 0 , t > 0 , x = 0 or π,

(4)

where a, b ∈ R. Taking the Fourier transform, we are led to the characteristic
equation

λ = −ak2 + be−λ , k = 1, 2, . . . ; (5)

see, e.g., [23, Ch. III]. Equation (4) is asymptotically stable for any initial
function g(t, x) if and only if all the roots of each of the equations (5) have
negative real parts. The set of such parameter pairs (a, b) constitutes the so-
called asymptotic stability region, which we denote by S∗. Using the root locus
technique, one arrives at the following well-known result (cf., e.g., [6,23,14]).

Proposition 1 The pair (a, b) ∈ S∗ if and only if a ≥ 0 and −a < −b < θ
sin θ

where θ is the root of the equation θ cos θ = −a sin θ that satisfies π/2 ≤ θ <
π.

The stability region S∗ is drawn in Figure 1. It is bounded above by the
line C∗ = {(a, b) : a = b}; it is bounded below by the curve

C0 =
{

(a, b) : a(θ) =
−θ cos θ

sin θ
and b(θ) =

−θ

sin θ
, θ ∈ [

π

2
, π)

}
, (6)

and it is bounded at the left by the line segment

D0 =
{

(a, b) : a = 0, −π

2
< b < 0

}
.

Note that D0 ⊂ S∗. In the picture it can also be seen that the wedge region
defined by a − |b| > 0 is a strict subset of S∗. This fact can be proven easily
by using (5).

An equivalent expression for S∗ is given in the theorem below. It will sim-
plify the comparison of the analytical and numerical stability regions in our
subsequent stability analysis further on in this text.

Theorem 1 The pair (a, b) ∈ S∗ if and only if a ≥ 0 and there exists a value
µ ∈ R such that

−a + µb < 0 and
∣∣∣∣

b(µ− e−λ)
λ− (−a + µb)

∣∣∣∣ < 1, <λ = 0. (7)
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Fig. 1 Analytical stability region S∗ of delay PDE (4).

Proof The pair (a, b) ∈ S∗ iff all the roots λ of (5) have negative real parts for
every k. This is equivalent with the condition that a ≥ 0 and all the roots of
(5) for k = 1 have negative real parts. Using Theorem 1 in [13], we obtain the
desired result.

2.2 Instability due to the spatial discretization

Let the spatial step size be ∆x = π/(N + 1) for some N ∈ Z+, and define the
mesh points xk = k ∆x for k = 0, 1, . . . , N + 1. Using central differences to
approximate the Laplacian we obtain the semi-discrete system

u′k(t) = a

(
uk+1(t)− 2uk(t) + uk−1(t)

∆x2

)
+ b uk(t− 1), k = 1, . . . , N ,(8)

where uk(t) approximates u(t, xk). It is natural now to inquire about the re-
lationship between the stability region of the ODE system (8) and S∗. In [14]
we proved that the ODE stability region is only a subset of S∗, if a ≥ 0. In
other words, the use of central differences leads to a reduction in the size of the
stability region of the original delay PDE. This reduction cannot be undone
by any subsequent time discretization (cf. [14, Th.3.9]).

In order to overcome this problem, an alternative central difference scheme
was suggested in [14]. When ∆x is replaced by ∆x̃ := 2 sin 1

2∆x, one obtains
the corresponding (consistent) semi-discrete system

u′k(t) = a

(
uk+1(t)− 2uk(t) + uk−1(t)

∆x̃2

)
+ b uk(t− 1), k = 1, . . . , N ,(9)

which has a stability region that matches exactly with S∗. In the present paper,
we shall continue to use this technique in order to discretize the Laplacian
operator.

Published version: http://dx.doi.org/10.1007/s00211-012-0467-7 
Journal homepage: http://link.springer.com/journal/211 

 
5



6 Chengming Huang, Stefan Vandewalle

2.3 Instability due to the approximation of the delay argument

When a delay equation is solved numerically, we have to consider how to ap-
proximate the delay argument. Different approximations may lead to entirely
different stability properties. For example, we consider the following scheme
for (4):

un+1
k − un

k

∆t
=

a

2
δ2un+1

k

∆x̃2
+

a

2
δ2un

k

∆x̃2
+ bvn

k , k = 1, . . . , N . (10)

Here, ∆t is the time stepsize; un
k denotes an approximation to u(tn, xk) with

tn = n∆t; the operator δ2 is defined by δ2uk = uk+1 − 2uk + uk−1, and vn
k

is an approximation to the delay argument. To ensure an as high as possible
accuracy it is natural to require vn

k to approximate u(tn + 1
2∆t − 1, xk). Let

∆t = 1/(m− 1
2 ) with m ∈ Z+, then tn + 1

2∆t− 1 = tn−m+1. Hence, it seems
reasonable to define

vn
k = un−m+1

k . (11)

Now we perform a discrete von Neumann stability analysis. Substituting

un
k = ξneijk∆x, 1 ≤ j ≤ N,

into (10) combined with (11), we get the following equation for ξ:
(

1
∆t

+
2a sin2(j∆x/2)

∆x̃2

)
ξm +

(−1
∆t

+
2a sin2(j∆x/2)

∆x̃2

)
ξm−1 − b = 0. (12)

If a > 0 and b = 0, then |ξ| < 1 so that the scheme preserves the asymptotic
stability of (3). When b 6= 0, however, the scheme cannot completely preserve
the stability of (4). In fact, for any m, there exists a > 0, satisfying a−|b| > 0,
such that ∣∣∣∣∣

b
1

∆t + 2a sin2(∆x/2)
∆x̃2

∣∣∣∣∣ =
∣∣∣∣

b

m− 1
2 + 1

2a

∣∣∣∣ > 1.

This means that equation (12) has at least one root ξ lying outside of the unit
disk, and thus scheme (10) is unstable. From §2.1 it is known that the wedge
region defined by a− |b| > 0 is a subset of S∗. Hence, the stability of the PDE
is not preserved. Note that this instability comes from the particular approx-
imation of the delay argument used above. An alternative approximation will
be considered in Section 3.1, for which an unconditional stability result will
hold.

2.4 Instability due to the time discretization

Finally, we show by means of two examples that the instability may also origi-
nate from the time discretization. To that end, we consider two unconditionally
stable methods for (3). In order to exclude any adverse effects of the inter-
polation procedure, we shall resort here to a constrained mesh, i.e., we set
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Unconditionally stable difference methods for delay partial differential equations 7

∆t = 1/m with m ∈ Z+. Then, every delayed argument can be evaluated from
a past grid point and no interpolation procedure is necessary.

An adaptation of the Dufort-Frankel scheme to (4) leads to

un+1
k − un−1

k

2∆t
= a

un
k+1 − un+1

k − un−1
k + un

k−1

∆x̃2
+ bun−m

k , k = 1, . . . , N. (13)

Setting again un
k = ξneijk∆x, we derive the equation

ξ − ξ−1

2∆t
= a

2 cos j∆x− ξ − ξ−1

∆x̃2
+ bξ−m.

Next, we set ξ = −1 and j = N , which leads to

a + (−1)mb = 0 .

This shows that, when m is even, the whole line defined by a+b = 0 lies outside
of the asymptotic stability region of scheme (13). Therefore, the scheme cannot
completely preserve the stability of the underlying delay PDE (4).

Another example is the following three-level scheme:

un+1
k − un−1

k

2∆t
=

3
8
(

a

∆x̃2
δ2un+1

k + bun+1−m
k ) +

1
4
(

a

∆x̃2
δ2un

k + bun−m
k )

+
3
8
(

a

∆x̃2
δ2un−1

k + bun−1−m
k ), k = 1, . . . , N. (14)

It is obtained by applying an A-stable second-order method to the semi-
discrete system (9). It is easy to verify that the scheme is stable for any a > 0
when b = 0. By means of a discrete von Neumann stability analysis, we can
again show that the method cannot completely preserve the stability of (4).

These examples show that some methods which are unconditionally stable
for PDE (3), are possibly no longer unconditionally stable for delay PDE (4).

3 Delay dependent stability preserving difference methods

Motivated by the above discussion and examples, we will now look for methods
which completely preserve the asymptotic stability of the model equation (4).

3.1 A discretization based on the trapezoidal rule

An application of the trapezoidal rule to (9) leads to

un+1
k − un

k

∆t
=

a

2
δ2un+1

k

∆x̃2
+

a

2
δ2un

k

∆x̃2
+

b

2
(vn+1

k + vn
k ), k = 1, . . . , N, (15)

where vn
k approximates u(tn − 1, xk). Let ∆t = 1/(m− ε) with integer m and

ε ∈ [0, 1), then tn− 1 = tn−m + ε∆t and we can use linear interpolation to get

vn
k = εun−m+1

k + (1− ε)un−m
k .
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Substituting the above into (15), we find, after rearranging terms,

un+1
k − un

k

∆t
=

a

2∆x̃2
[δ2un+1

k +δ2un
k ]+

b

2
(
εun−m+2

k + un−m+1
k + (1− ε)un−m

k

)
,

(16)
The above equation is subject to the following discrete initial and boundary
conditions





un
0 = 0, n > 0,

un
N+1 = 0, n > 0,

un
k = g(tn, xk), n = −m,−m + 1, . . . , 0; k = 0, 1, . . . , N + 1 .

(17)

Since we have a zero Dirichlet boundary condition, the discrete system
(16) can be solved by using finite Fourier series. Also, in this particular case
the discrete von Neumann stability analysis provides a stability condition for
(16) that is not only necessary but also sufficient, see, e.g., [21]. Substituting
un

k = ξneijk∆x, with j = 1, 2, . . . , N , into (16), we find

ξ − 1
∆t

=
−2a

∆x̃2
(ξ +1) sin2(j∆x/2)+

1
2
bξ−m(ξ +1)(1− ε+ εξ), j = 1, . . . , N.

(18)
Difference equation (16) is asymptotically stable if and only if all of the roots
of each of the algebraic equations in (18) satisfy |ξ| < 1.

In the following, we identify the relationship between the analytical sta-
bility region S∗ and the numerical stability region. The result is formulated
as Theorem 2 below. Its proof and also some of the proofs further on in this
paper are based on the following two lemmas. The proofs of those lemmas are
elementary but quite technical, and hence deferred to the appendix.

Lemma 1 For a given φ ∈ [0, π), let the functions r(ε) and ϕ(ε) be defined
by

1− ε + εeiφ = r(ε)eiϕ(ε), ε ∈ [0, 1], (19)

with ϕ(0) = 0 and ϕ(ε) continuous. Then 0 < r(ε) ≤ 1, 0 ≤ ϕ(ε) ≤ φ and

f(ε) := 2(1− ε) tan
φ

2
+ ϕ(ε) ≥ φ. (20)

Lemma 2 Let ε ∈ [0, 1], φ ∈ [0, π), and let ϕ(ε) be defined by (19). Then

h(ε) := (3− ε)
√

(5− 3 cos φ)(1− cos φ)− 3φ + ϕ(ε) ≥ 0.

Theorem 2 If (a, b) ∈ S∗, then the difference equation (16) is asymptotically
stable, i.e., the discrete scheme unconditionally preserves the delay dependent
stability of the model equation (4).
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Unconditionally stable difference methods for delay partial differential equations 9

Proof We need to prove that all the roots ξ of (18) for every j satisfy |ξ| < 1
under the assumption (a, b) ∈ S∗. We first consider the case of j = 1, i.e.,

ξ − 1
∆t

=
−a

2
(ξ + 1) +

1
2
b ξ−m(ξ + 1)(1− ε + ε ξ). (21)

It is easy to see that, for any a > 0 and b = 0, all roots of (21) satisfy |ξ| < 1.
Now, assume that the statement that all roots of (21) satisfy |ξ| < 1 for

all (a, b) ∈ S∗ does not hold true. Then, since the roots of a polynomial are
continuously dependent on its coefficients, there must exist at least one point
(a1, b1) ∈ S∗ such that (21) has a root |ξ| with |ξ| = 1. It is easy to verify
ξ 6= −1. Let ξ = eiφ with φ ∈ [0, π). A short calculation then reveals that

2i(m− ε) tan
φ

2
= −a1 + b1e−imφ(1− ε + εeiφ).

Using the functions defined in Lemma 1, we can rewrite this as

2i(m− ε) tan
φ

2
= −a1 + b1r(ε)e−i(mφ−ϕ(ε)).

From (a1, b1) ∈ S∗ it follows that (a1, b1r(ε)) ∈ S∗. Using Theorem 1, we
conclude that there exists a real number µ such that −a1 + µb1r(ε) < 0 and

∣∣∣∣
b1r(ε)(µ− e−λ)

λ− (−a1 + µb1r(ε))

∣∣∣∣ < 1, <λ = 0.

Considering

2i(m− ε) tan
φ

2
+ (a1 − µb1r(ε)) = −b1r(ε)(µ− e−i(mφ−ϕ(ε))),

and taking λ = i(mφ− ϕ(ε)), we have

|2i(m− ε) tan
φ

2
+ (a1 − µb1r(ε))| < |i(mφ− ϕ(ε)) + (a1 − µb1r(ε))|,

which implies

2(m− ε) tan
φ

2
< mφ− ϕ(ε).

This can be rearranged to

2(1− ε) tan
φ

2
+ ϕ(ε) < φ− (m− 1)(2 tan

φ

2
− φ).

Thus, the left-hand side is strictly smaller than φ, which contradicts with (20).
Hence, for j = 1, all the roots of (18) satisfy |ξ| < 1 whenever (a, b) ∈ S∗.

The proof for j = 2, . . . , N follows easily. Indeed, since (a, b) ∈ S∗ implies
that (

a
sin2(j∆x/2)
sin2(∆x/2)

, b

)
∈ S∗,

by applying the conclusion just proven for j = 1, we arrive at the result.
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3.2 A discretization based on second order backward differentiation

Application of the second order backward differentiation formula (BDF) to (9)
gives

3un+2
k − 4un+1

k + un
k

2∆t
=

a

∆x̃2
δ2un+2

k + bvn+2
k , k = 1, 2, . . . , N,

where vn+2
k is an approximation to u(tn+2−1, xk). Since ∆t = 1/(m− ε) with

integer m and ε ∈ [0, 1), we define

vn+2
k = εun+3−m

k + (1− ε)un+2−m
k .

Therefore, we have

3un+2
k − 4un+1

k + un
k

2∆t
=

a

∆x̃2
δ2un+2

k + b
(
(1− ε)un+2−m

k + εun+3−m
k

)
. (22)

In addition to the initial-boundary values (17) which are evaluated from the
original PDE formulation (4), this scheme needs additional starting values
u1

k, k = 1, 2, . . . , N . These values can be computed by means of a different
scheme, e.g., the trapezoidal rule.

Next, we shall perform a discrete von Neumann stability analysis. Substi-
tuting un

k = ξneijk∆x into (22) yields

3ξ2 − 4ξ + 1
2∆t

=
−4aξ2

∆x̃2
sin2(j∆x/2) + bξ2−m(1− ε + εξ), j = 1, 2, . . . , N.

(23)
For the particular case of j = 1, we have

3− 4ξ−1 + ξ−2

2∆t
= −a + bξ−m(1− ε + εξ). (24)

Using the same argument as the one at the end of the proof of Theorem 2, we
can prove the following lemma.

Lemma 3 If all the roots of (24) satisfy |ξ| < 1 for all (a, b) ∈ S∗, then all
the roots of (23) satisfy |ξ| < 1 for all (a, b) ∈ S∗ too.

The remainder of the paragraph is devoted to proving the central result on
the stability of the BDF method.

Theorem 3 If (a, b) ∈ S∗, then the difference equation (22) is asymptotically
stable, i.e., the method unconditionally preserves the delay dependent stability
of the model equation (4).

Proof The proof is based on an analysis of the roots of (24) for different values
of m. We split the proof into three parts which will be formulated further on
as three separate lemmas. For m = 1 and for m = 2, we show correctness
of the result in Lemma 4 and Lemma 5, respectively. Their proofs are based
on a simple argument using the so-called boundary locus technique (cf. [1]).
In this case, the stability region of (23) is easily bounded by half lines in the
(a, b)-plane. The remaining values of m, i.e., m ≥ 3, require a more elaborate
proof, and shall be dealt with in a unified way in Lemma 6.
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Unconditionally stable difference methods for delay partial differential equations 11

In the case of m = 1, equation (24) can be reformulated as

(1− ε)
(

3
2
− 2ξ−1 +

1
2
ξ−2

)
= −a + bξ−1(1− ε + εξ). (25)

For any ε ∈ [0, 1), we define the set

S1(ε) = {(a, b) : all roots of (25) satisfy |ξ| < 1}.

Note that if ∂S1(ε) ∩ S∗ is empty, then necessarily S∗ ⊆ S1(ε) because

S1(ε) ∩ S∗ ⊇ {(a, b) : a > 0 , b = 0},

and because ξ in (25) is continuously dependent on a and b. Also,

∂S1(ε) ⊆ {(a, b) : (25) has at least one root ξ with |ξ| = 1}.

Let ξ = eiφ in (25). Since the coefficients of (25) are real, the roots come in
complex conjugate pairs. Hence,we can restrict our analysis to φ ∈ [0, π]. The
value φ = 0, i.e., ξ = 1, gives

−a + b = 0,

which represents a line in the (a, b)-plane. This line is identical to the boundary
C∗ of the analytical stability region S∗. The value φ = π, i.e., ξ = −1, gives

4(1− ε) = −a− b(1− 2ε). (26)

This represents another line, which we denote by C1
π. For the other φ-values,

we have

(1−ε)[(1−cos φ)2 + i sinφ(2−cos φ)] = −a+b((1−ε) cos φ+ε− i(1−ε) sin φ).

Separating real and imaginary parts yields the set of equations
{

(1− ε)(1− cos φ)2 = −a + b((1− ε) cos φ + ε),
(1− ε) sin φ (2− cos φ) = −b(1− ε) sin φ.

Solving for a and b, one obtains

a = −((1− ε) + ε(2− cos φ)) and b = −(2− cos φ),

which represent a line segment starting at (−1,−1) and ending at (−1−2ε,−3).
We denote this segment by C1

φ. As an illustration, these lines and segments
are shown in Fig. 2 for two different values of ε. Inspection of their locations
leads to the following result.

Lemma 4 For any ε ∈ [0, 1), we have S∗ ⊆ S1(ε).
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Fig. 2 Boundary locus of S1(ε). Left: ε = 0. Right: ε = 0.3.

Proof It is sufficient to prove that C1
π and C1

φ lie outside of S∗. Since C1
φ lies in

the left half plane, it naturally lies outside of S∗. Since C1
π intersects the line

a = 0 at (0,−2 − 2
1−2ε ) whose b-coordinate does not belong (−π

2 , 0), it does
not intersect the boundary D0 of S∗. Since C1

π intersects the line b = a at (-2,
-2) which lies in the left half plane, it is sufficient to prove that C1

π does not
intersect the boundary C0 of S∗. Considering that the slope of C1

π is −1
1−2ε , it

suffices to consider the limiting case ε = 0 and to prove that the corresponding
C1

π does not intersect C0.
If both would intersect, substituting the parameter equations of C0 (6) into

(26) with ε = 0 yields

4 =
θ cos θ

sin θ
+

θ

sin θ
=

θ

tan θ
2

≤ π

2
, θ ∈ [

π

2
, π) .

This is a contradiction, which completes the proof of the lemma.

Next we deal with the case of m = 2. Formula (24) becomes

(2− ε)
(

3
2
− 2ξ−1 +

1
2
ξ−2

)
= −a + bξ−2(1− ε + εξ). (27)

We define the set

S2(ε) = {(a, b) : all roots of (27) satisfy |ξ| < 1}.
We perform an analysis similar to the case of m = 1. Let ξ = eiφ with φ ∈ [0, π].
Then φ = 0 gives, as before, −a+ b = 0, i.e., a line that matches boundary C∗
of S∗. The value φ = π leads to the line

4(2− ε) = −a + b(1− 2ε), (28)
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Fig. 3 Boundary locus of S2(ε). Left: ε = 0. Right: ε = 0.8.

which we denote by C2
π. For the other φ-values, equation (27) can be written

as a two by two linear system of equations, the solution of which is given by

a =
(ε− 1)(3ε− 4)(1− cos φ)

2(1− ε) cos φ + ε
− 1 and b =

(3ε− 4)(1− cos φ)
2(1− ε) cos φ + ε

− 1 .

This is the parameterization of a line segment in the (a, b)-plane, starting at
(-1, -1) and ending in ( (2−ε)(6ε−5)

2−3ε , 3(2−ε)
2−3ε ). We denote this line segment by C2

φ.
Note that C2

φ goes through (∞,∞) when ε ≤ 2
3 . Also, C2

φ is part of the line
defined by

(b + 1)(1− ε) + a + 1 = 0. (29)

We draw these lines in Fig. 3 for two different values of ε. An analysis of their
locations yields the following result.

Lemma 5 For any ε ∈ [0, 1), we have S∗ ⊆ S2(ε).

Proof With a similar line of reasoning as in the proof of Theorem 4, we shall
show that C2

π and C2
φ lie outside of S∗. First, we consider C2

φ and actually
prove the stronger result that the entire line defined by (29) lies outside of S∗.
Obviously, this line intersects C∗ only at (-1, -1). If it would intersect C0, we
could substitute the formulas for a and b from (6) into (29), and find, for some
θ ∈ [π

2 , π):

(1− θ

sin θ
)(1− ε)− θ cos θ

sin θ
+ 1 = 0 .

This can be rewritten as

2− ε =
θ(1 + cos θ)

sin θ
− ε

θ

sin θ
≤ π

2
− π

2
ε,
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which contradicts with ε ∈ [0, 1). In addition, substituting a = 0 into (29), we
get

b =
−1

1− ε
− 1 ≤ −2.

This means that line (29) does not intersect D0.
A similar analysis for C2

π shows that C2
π lies outside of S∗. Therefore, the

boundary of S2(ε) lies outside of S∗ and, thus, S∗ ⊆ S2(ε). This completes the
proof of the lemma.

Finally, we have arrived at the case of m ≥ 3. We can prove the corre-
sponding result below.

Lemma 6 If (a, b)∈S∗, ε ∈ [0, 1) and m≥ 3, then all roots ξ of (24) satisfy
|ξ| < 1.

Proof Assume that the conclusion of the theorem is not true, then there exists
a point (a1, b1) ∈ S∗ such that (24) has a root ξ with |ξ| = 1 for some m ≥ 3.

Let ξ = eiφ with φ ∈ [0, π]. We first prove that φ 6= π. In fact, if φ = π,
then

4(m− ε) = −a1 + (−1)mb1(1− 2ε).

If m is odd, the above equality implies that (a1, b1) lies on the left-hand side
of the line C1

π. This contradicts with the fact that S∗ lies on the right-hand
side of C1

π. If m is even, then (a1, b1) lies on the left-hand side of the line C2
π.

This also contradicts with the fact that S∗ lies on the right-hand side of C2
π.

Next we consider the case of φ ∈ [0, π) and show that this also leads to a
contradiction. Substituting ξ = eiφ into (24) and using Lemma 1, we get

(m−ε)
(
(1− cos φ)2 + i sinφ (2− cos φ)

)
= −a1 + b1r(ε)e−i(mφ−ϕ(ε)). (30)

Also, (a1, b1) ∈ S∗ implies (a1, b1r(ε)) ∈ S∗. By Theorem 1, there exists a real
number µ such that −a1 + µb1r(ε) < 0 and

∣∣∣∣
b1r(ε)(µ− e−λ)

λ− (−a1 + µb1r(ε))

∣∣∣∣ < 1, <λ = 0. (31)

Equation (30) can be reformulated as

(m−ε)
(
(1−cos φ)2 + i sinφ (2−cos φ)

)
+ (a1−µb1r(ε))

= −b1r(ε)(µ−e−i(mφ−ϕ(ε))).

We denote the left-hand side of the equation by G. Taking λ = i(mφ− ϕ(ε)),
we can use (31) to show that G is bounded as follows:

|G|2 < |i(mφ− ϕ(ε)) + (a1 − µb1r(ε))|2.
Since a1 − µb1r(ε) > 0, we can work this out to get

(m− ε)
√

(5− 3 cos φ)(1− cos φ) < mφ− ϕ(ε),
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Fig. 4 Analytical stability region and location of the selected parameter pairs (a, b) (starred
points) considered in the numerical experiments, for τ = 0.1 . Left: a = 1. Right: a = 100.

or, with h(ε) as defined in Lemma 2,

(m− 3)(
√

(5− 3 cos φ)(1− cos φ)− φ) + h(ε) < 0.

Since
√

(5− 3 cos φ)(1− cos φ) ≥ φ for all φ ∈ [0, π), the above inequality
contradicts the result of Lemma 2. This completes the proof.

Remark 1 Readers familiar with the analysis for constrained meshes (cf. [9,
13]), will notice that the analysis in the present paper is much more compli-
cated. Obviously, this is due to the fact that we focuss on non-constrained
meshes (i.e., ε 6= 0). The case ε = 0 is covered also by our analysis. However,
that special case could also be proven directly, with a much simpler proof.

4 Numerical tests

In this section we present some numerical experiments to illustrate our the-
oretical findings. To this end, we consider four methods: the trapezoidal rule
(TR), the second order backward differentiation formula (BDF), the Dufort-
Frankel scheme (DF) given in (13), and scheme (10) with the delay argument
evaluated by (11).

We consider test problem (1) with the function g(t, x)=1 and L=π. The
delay-independent stability condition for this equation is given by −a ≤ b < a.
The (weaker) delay-dependent stability condition follows from the analysis in
§2, after a transformation of the problem into the normalized form (4). For
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Fig. 5 The norm of the numerical solutions of TR, BDF and DF schemes with ∆t = 1/40
up to T = 30 for a = 1 and different values of parameter b. Left: TR. Middle: BDF. Right:
DF scheme.

example, for a delay fixed to τ = 0.1, we have that for a = 1, the delay-
dependent stability interval for the parameter b is given by −16.35 ≈ b0 < b <
1. For a = 100, the delay-dependent stability condition for the parameter b is
given by −104 ≈ b̃0 < b < 100 (see Fig. 4).

The effect of different spatial discretizations has been tested in our earlier
work [14]. Here, we concentrate on the effect of the time discretization. The
spatial step size is fixed for all our experiments to ∆x = π/50. First, we take
a = 1 and set time step size ∆t = 0.025, i.e., m = 4 and ε = 0. In this case,
the TR, BDF and DF schemes can be applied and no interpolation procedure
is needed. For the tests we take b = −17,−16.35,−1.5,−1, 0.5, 0.99, 1.2. The
corresponding (a, b) pairs are indicated as starred points on the left picture of
Fig. 4. We consider the magnitude of the numerical solution at time-points tn
over a time window [0, T ] with T = 30. The observed results are given in Fig.
5, where we used the weighted discrete L2-norm to measure the magnitude of
the numerical solution:

‖un‖ =

√√√√
N∑

k=1

(un
k )2∆x .

These numerical results confirm our theoretical findings. In Fig. 5 one can see
that the TR and BDF schemes are stable for all −16.35 ≤ b < 1. However,
the DF scheme looses stability when b < −1.

Next, we take a = 100 and set time stepsize ∆t = τ/(4− 0.5), i.e., m = 4
and ε = 0.5. The results obtained with scheme (10), TR and BDF are presented
in Fig. 6 for different values of parameter b. The (a, b) pairs considered in the
experiments are plotted in the right picture of Fig. 4. Also Fig. 6 illustrates
the stability of the TR and BDF methods, for all selected parameter values.
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Fig. 6 The norm of the numerical solutions of TR, BDF and scheme (10) with ∆t = 1/35
(i.e., m = 4) up to T = 30 for a = 100 and different values of parameter b. Left: TR. Middle:
BDF. Right: scheme (10).

Scheme (10), however, is unstable for several values of b. The numerical results
show that this scheme does not even preserve the delay-independent stability
region.

Next, we investigate numerically the effect of different values of ε. We
consider the TR and BDF schemes, and we fix a = 100 and b = −104, leading
to a parameter pair just inside the stability region. Furthermore, we take
m = 4 and ε = 0, 0.1, 0.5, 0.8, 0.9. The observed results are given in Fig. 7.
This figure shows that both methods are stable independent of the value of
ε. Note that the delay-independent stability theory cannot be applied to this
situation because the parameter pair falls within the delay-dependent stability
region of the PDE, but outside of the delay-independent stability region.
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Fig. 7 The norm of the numerical solutions of TR and BDF with ∆t = τ/(4 − ε) up to
T = 30 for a = 100, b = −104 and different values of ε. Left: TR. Right: BDF.
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Fig. 8 The norm of the numerical solutions of G2 and R2 with ∆t = 1/25 at T = 60 for
a = 1, b = −16.34, and different types of interpolation procedure. (a) numerical solutions
using G2. (b) numerical solutions using R2.

Finally, we also conducted some numerical tests with high order time dis-
cretizations for the semi-discrete system (9). These tests are not covered by
our theory. We selected the 2-stage Gauss method (G2) and the 2-stage Radau
IIA method (R2), which are given by the Butcher tableaus

1/2−√3/6 1/4 1/4−√3/6
1/2 +

√
3/6 1/4 +

√
3/6 1/4

1/2 1/2
,

1/3 5/12 −1/12
1 3/4 1/4

3/4 1/4
, (32)

respectively. We use a Lagrange interpolation procedure on r+s+1 consecutive
equi-stage points around the delay point to approximate the delay argument,
where r and s are non-negative integers and where s denotes the number of the
used nodes behind the delay point. For example, for linear interpolation we
have r = 0 and s = 1. This type of interpolation was introduced in [15]. There,
it was shown that when r ≤ s ≤ r + 2, the 2-stage Gauss and Radau methods
preserve the delay-independent stability of the semi-discrete system (9) as
well as the delay-independent stability of the PDE (4). We performed three
experiments for different values of r and s, which all satisfy r ≤ s ≤ r+2. The
numerical results are given in Fig. 8. These results show that in some cases
the methods appear stable indeed, while in some other cases the methods
are definitely unstable. So it still remains an open question whether there
exist high order interpolation techniques which guarantee the delay-dependent
stability.

5 Concluding remarks

In this work, we analyzed the delay dependent stability of numerical methods
with an interpolation procedure. A rigorous theoretical analysis showed that
both the trapezoidal rule and the second-order BDF method, combined with
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Unconditionally stable difference methods for delay partial differential equations 19

an appropriate spatial discretization, preserve the asymptotic stability char-
acteristics of the continuous delay PDE model problem, independent of the
selected time step.

The results of the paper can easily be extended to the case of multi-
dimensional parabolic model problem equations. Indeed, after taking a multi-
dimensional Fourier transform, the analysis of the PDE problem boils down
to the analysis of a set of scalar delay equations of the form (2). However, it
seems impossible to extend these results to the more general equations with
both fixed and distributed delays. For θ-methods, this has been verified in
[18]. The analysis of the stability of higher order time discretization methods
combined with appropriate interpolation procedure remains subject of further
investigation.
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Appendix: The proofs of lemmas 1 and 2

Lemma 1 For a given φ ∈ [0, π), let the functions r(ε) and ϕ(ε) be defined by

1− ε + εeiφ = r(ε)eiϕ(ε), ε ∈ [0, 1], (33)

with ϕ(0) = 0 and ϕ(ε) continuous. Then 0 < r(ε) ≤ 1, 0 ≤ ϕ(ε) ≤ φ and

f(ε) := 2(1− ε) tan
φ

2
+ ϕ(ε) ≥ φ. (34)

Proof The first statement follows from φ 6= π. A standard calculation shows

ϕ′(ε) =
sinφ

(1− ε + ε cos φ)2 + ε2 sin2 φ
≥ 0,

which, when combined with ϕ(1) = φ, gives the second statement. Finally, we
have

f ′(ε) =
sinφ

(1− 2ε)2(1− cos2 φ
2 ) + cos2 φ

2

− sinφ

cos2 φ
2

≤ 0 ,

which, together with f(1) = φ, gives (34).

Lemma 2 Let ε ∈ [0, 1], φ ∈ [0, π), and let ϕ(ε) be defined by (33). Then

h(ε) := (3− ε)
√

(5− 3 cos φ)(1− cos φ)− 3φ + ϕ(ε) ≥ 0.
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Proof Let φ∗ ∈ (0, π) be the root of the equation

√
(5− 3 cos φ)(1− cos φ) = 2 tan

φ

2
.

It is easy to find that cosφ∗ = −1/3, which implies that φ∗ ∈ (π/2, π). A
direct calculation shows that

h′(ε) = −
√

(5− 3 cos φ)(1− cos φ) +
sinφ

(1− 2ε)2(1− cos2 φ
2 ) + cos2 φ

2

.

If φ ∈ [0, φ∗], then h′(ε) ≤ 0. Considering ϕ(1) = φ and

h(1) = 2(
√

(5− 3 cos φ)(1− cos φ)− φ) ≥ 0, φ ∈ [0, π],

we have
h(ε) ≥ 0, ε ∈ [0, 1], φ ∈ [0, φ∗]. (35)

If φ ∈ (φ∗, π), then h′(ε) has two zeros ε1 and ε2:

ε1 <
1
2
, ε2 >

1
2
, and

ε1 + ε2

2
=

1
2
.

A further calculation shows

h′′(
1
2
) = 0, h′′(ε) > 0 for ε <

1
2

and h′′(ε) < 0 for ε >
1
2
.

Also, it is easy to find that

h(0) = 3(
√

(5− 3 cos φ)(1− cos φ)− φ) > 0.

If ε1 < 0, then

h(ε) ≥ min{h(0), h(1)} > 0, ε ∈ [0, 1], φ ∈ (φ∗, π). (36)

If ε1 ∈ [0, 1/2), then

h(ε1) ≥ (3− 1
2
)
√

(5− 3 cos φ)(1− cos φ)− 3φ > 0, φ ∈ (φ∗, π) ⊆ (π/2, π),

and
h(ε) ≥ min{h(ε1), h(1)} > 0, ε ∈ [0, 1], φ ∈ (φ∗, π). (37)

A combination of (35), (36) and (37) gives the conclusion of the lemma.
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