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Abstract 
 

University research provides valuable inputs to industrial innovation. It is therefore 
not surprising that private sector firms increasingly seek direct access through 
funding public R&D. This development, however, spurred concerns about possible 
negative long-run effects on scientific performance. While previous research mainly 
focused on a potential crowding-out of scientific publications through 
commercialization activities such as patenting or the formation of spin-off 
companies, we study the effects of direct funding from industry on professors’ 
publication and patenting efforts. Our analysis on a sample of 678 professors at 46 
higher education institutions in Germany shows that a higher share of industry 
funding of a professor’s research budget results in a lower publication outcome both 
in terms of quantity and quality in subsequent years. For patents, we find that 
industry funding increases their quality measured by patent citations.  
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1 Introduction 

Over the past decades, universities have widened their activities beyond teaching and 

academic research. In particular, university research provides knowledge inputs to private-

sector innovation (Jaffe 1989; Salter and Martin 2001 for a review). One of the main 

channels through which knowledge and technology are transferred from science to the 

private sector is research conducted by university researchers for industry. The value of 

such inputs for the innovation performance of firms has been found to be considerable 

(Mansfield 1991, 1995, 1998; Zucker et al. 2002; Cohen et al. 2002; Cassiman et al. 

2008).  

It is therefore not surprising that firms increasingly seek direct access to university 

knowledge through sponsoring research projects. A recent OECD study shows a rise in 

industry funding for public sector R&D in most OECD countries. In Europe, Germany 

experienced the most significant increase. From 1997 to 2007, industry funding for public 

R&D in Germany doubled from 6.2% to 12.5% of R&D expenditure in higher education. 

Likewise in other continental European countries such as Italy (0.6% in 1997 and 3.2% in 

2007), and Austria (2% in 1998 and 4.5% in 2007) private sector funding for public R&D 

is growing (OECD 2009).  

While some policy makers argue that the potential of universities to foster and accelerate 

industrial innovations is not yet fully exploited and thus believe that there is still room for 

improving the (social) returns from academic research (European Commission 2003a,b; 

OECD 2007; Dosi et al. 2006), others are concerned with the distraction of academics 

from their actual research mission. From a private-sector perspective, the benefits of 

collaborating with academia are found to be unambiguously positive, whereas the effects 

on the scientific sector are not as clear cut. On the one hand, science may benefit from the 

initiation of new ideas from industry or the use of industry funds for hiring additional 

researchers or investment in lab equipment (Rosenberg 1998; Siegel et al. 1999). On the 

other hand, traditional incentives in scientific research characterized by knowledge sharing 

and rapid disclosure of research outcomes may be distorted (Blumenthal et al. 1996a,b; 

Campbell et al. 2002). Moreover, commercial interests may induce scientists to select 

research projects on the basis of their perceived value in the private sector and not solely 

on the basis of scientific progress. Increased funding from industry may thus be 

accompanied by a shift in scientists’ research agendas and in the incentives for disclosure 

that leads to a lower number of academic publications and to less effort devoted to basic 
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research. Further, inventions that address market demand may not necessarily be close to 

the academic research frontier (Trajtenberg et al. 1997).  

Previous research focused to great extent on the productivity effects of increased 

commercialization of university research via academic patenting and licensing (e.g. 

Henderson et al. 1998a,b; Thursby and Thursby 2002; Azoulay et al. 2009; Czarnitzki et 

al. 2009), academic entrepreneurship (e.g. Ding and Stuart 2006, Toole and Czarnitzki 

2010) and the engagement in contract research (e.g. Lach and Schankerman 2004; Carayol 

2007) and collaborative research (e.g. Zucker et al. 2002). Although consulting and 

contract research are often the quid pro quo for industry funds, there is only a handful of 

empirical evidence on the effects of industry funding on university research directly.  

This study aims to add to previous research by studying the effects of industry sponsoring 

on professors’ scientific productivity. Our data contains information on laboratory and 

funding characteristics as well as on publication and patent output for 678 professors at 46 

different universities in Germany covering a broad range of research fields in science and 

engineering. Germany is particularly interesting for studying the effects of industry 

funding as it has a strong tradition of public research funding on the one hand, and on the 

other hand experienced the most significant increase in industry funded university 

research among all OECD countries. We find that a higher budget share from industry 

reduces publication output of professors in terms of both quantity and quality in 

subsequent years. In turn, industry funding has a positive impact on the quality of applied 

research if measured by patent citations. Industry funding may thus still have beneficial 

effects by improving impact and quality of more applied research. Our results have 

important implications for policy makers aiming at encouraging technology transfer 

between science and industry and for public funding authorities. An increasing reliance on 

industry funding may indeed have an impact on the development of science in the long 

run. On the other hand, industry funded research results in successfully patentable and 

industrially relevant technologies that may create economic as well as social value.  

The following section gives an overview of insights from the literature on industry-science 

links and their impact on academic research and the role of industry funding for 

universities. Section 3 describes our data set. The set-up of our empirical study and the 

results of the econometric analysis are presented in section 4. Section 5 concludes.  
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2 Industry-science links and academic productivity 

Private sector incentives for engaging in relationships with science can be found in the 

increased speed and scope of technological change and the emergence of complex and 

multidisciplinary research fields. “Science-based technologies" such as biotechnology or 

nanotechnology have further strengthened the role of science for technological innovation. 

Public science provides important knowledge inputs and organizational pre-conditions and 

reduces the risk for firms to expand in new fields of technology (e.g. Mowery 1998; 

Zucker and Darby 1996; Zucker et al. 2002).  

To stimulate incentives for the commercialization of university research in the scientific 

sector, reforms of the (legal) research environment in the U.S., but also in Europe, were 

aimed at reducing the (administrative) burden of such activities for university researchers. 

Reforms generally increased commercialization efforts. In the U.S., for example, 

academic patenting soared (Mowery et al. 2001; Sampat 2006). Additionally, policies 

encouraging industry funding of academic research such as tax credits (OECD 2002) and 

government sponsored programs to support technology partnerships (for instance the 

SBIR in the U.S., see Audretsch et al. 2002; Link and Scott 2005) have been installed. The 

increased involvement of university researchers in such activities, however, has also 

generated a considerable controversy about the potential long-term effects on the future 

development of scientific. These concerns rest on the assumption that there is indeed a 

trade-off between research that is being disclosed in publications and more applied work 

that is of interest for industry (Rosenberg and Nelson 1994).  

This stands in contrast to the observation that research can result in both basic research 

findings and industrial applications. As argued by Stokes (1997), research can be located 

in “Pasteur’s Quadrant” implying that increased commercial incentives may lead to a shift 

from basic to applied research or from basic to dual-purpose research (see also Azoulay et 

al. 2009; Murray 2002; Levin and Stephan 1991). Sauerman et al. (2010) suggest that the 

latter argument could also imply that researchers who were engaged in dual-purpose 

research before do now merely exploit the commercial potential of their research without 

fundamentally changing their research agendas. Rosenberg (1998) regards industry 

contacts as a source of new research ideas and thus argues that science can benefit from 

increased collaboration with industry. Moreover, Azoulay et al. (2009) suggest that 

researchers benefit from the realization of complementarities between basic and applied 

research that otherwise would remain foreclosed. The authors point to intra-person 

economies of scope that emerge when a scientist is involved in both the development of 
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academic and commercial research outcomes. Furthermore, it has been argued that 

crowding-out of traditional research can be averted if scientists are assisted in their work 

for industry by their university’s technology transfer office (TTO). The involvement of a 

TTO may reduce the individual researchers’ burden and hence leave more time for other 

research projects (Hellman 2007). From the scientists’ perspective, industry grants provide 

an attractive source of funds supplementing ‘core funding’ and other public research 

funding. Such funds can be used to hire additional scientists who increase the lab’s overall 

research output for both applied and basic research.   

Despite these arguments in favor of industry funding for university research, skeptics 

argue that the traditional incentives in science that were characterized by knowledge 

sharing and rapid disclosure of research outcomes may be affected by industry grants and 

contracts (David et al. 1992, Dasgupta and David 1994; Nelson 2001). The critical 

question is thus to what degree increasing industry sponsoring induces a “skewing 

problem”. Does the option to attract industry funding (in addition to the core institutional 

funding) change the incentives of scientists to contribute to public (i.e., non-excludable) 

advances in the scientific literature? Even though the relative magnitude of industrial 

funding is not really high, it may be a critical resource influences faculty behavior. 

Slaughter and Leslie (1997) as well as Benner and Sandström (2000) argue that funding 

influences the behavior and outputs of researchers. Scientists’ incentives to create and 

immediately publish their research findings are obvious if their careers depend on their 

contributions to science in the form of publications and (graduate) education. The 

possibility to generate additional funds from industry may affect these incentives. That 

financial incentives do also play a role for scientists to engage in commercial activities has 

been emphasized in the literature (e.g., Ding and Stuart 2006; Jensen et al. 2003, Lach and 

Schankerman 2008). Monetary incentives may not only affect scientists’ willingness, but 

also their ability to share information with fellow scientists. Publishing of research results 

may for instance be hampered if industry funding has “strings attached” that affect 

incentives to disclose research results for free in academic journals. As a survey described 

in Thursby and Thursby (2002) documents that firms usually require researchers to sign a 

contract that includes a delay of publication clause (see also Louis et al. 2001). Cohen et 

al. (1994) report that a significant share of industry–university research centers in the U.S. 

allows cooperating firms to delete information from published reports and the right to 

delay publication.  
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As knowledge sharing among scientists is the basis for cumulative knowledge production 

and thus for scientific progress (Haeussler et al. 2010), industry funding that affects the 

incentives to share knowledge may have detrimental effects on the development of 

science. Further, long-run effects from industry-funded research projects may arise from 

the intensively and continuous involvement of the professors in the projects. This 

involvement has been shown to be necessary for university inventions to be successfully 

commercialized, but at the same time may distract researchers from other types of research 

(Jensen and Thursby 2001; Toole and Czarnitzki 2010).   

Finally, there may be a tradeoff between doing research for industry and publishing 

simply because of the time that is consumed by these alternative activities. It may become 

more attractive to spend time doing research that is closer aligned to industry interests 

than other (basic) research. In other words, due to time constraints, researchers’ publishing 

rates may decrease in favor of industry funded projects.  

In the light of these arguments on why science may benefit from industry involvement 

such as research funding and why it may not, the net-effects from on science are not 

obvious. 

Empirical Evidence on the effects of industry-sponsored research 

Blumenthal et al. (1996a, b) and Campbell et al. (2002) report survey-based evidence on 

negative effects from industry sponsoring on the publication of research results, 

knowledge sharing and the speed of knowledge disclosure. Blumenthal et al. (1997) find 

that U.S. academic life scientists had withheld research results due to intellectual property 

rights discussions such as patent applications (see also Louis et al. 2001). Godin and 

Gingras (2000), on the other hand, find that Canadian university researchers with funding 

from industry produce more scientific publications than their colleagues without such 

funding. They argue that this may be due to the fact that there is no trade-off between 

many types of contract research and academic science, and/or that scientific quality is a 

prerequisite for attracting such contracts in the first place. Industry may thus not only look 

at the researchers’ past patenting profile in order to assess their skills but also at 

publications and hence even strengthen the incentives for publishing by creating a signal 

of the scientist’s quality.  

Behrens and Gray (2001) study effects of different funding sources (industry, government 

and no external sponsor) on a variety of research processes and outcomes for graduate 

students at engineering departments in the U.S. of which almost 50% spent most of their 

time working on a project which was supported by industry. The authors argue that most 
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industry support is channeled by cooperative research centers where it is complemented 

by government support. As a consequence, total industry support amounts to 

approximately 20%-25% in the disciplines they study. Their findings suggest, however, 

that although the source of sponsorship and, to a lesser degree, the form of sponsorship are 

associated with a number of differences, these differences tend to be minor and related to 

structural aspects of a student’s research involvement and not eventual research outcomes. 

Gulbransen and Smeby (2005) find that researchers at Norwegian universities who had 

grants from industry also collaborate more extensively with industry than those without 

grants or contracts. They also study the relationship between industry funding and 

professors’ self-assessment of their research focus, i.e. basic, or more applied, and 

conclude that industrial funding is related to applied research, but not to basic research or 

development. Gulbransen and Smeby also find a positive correlation between industry 

funding and scientific productivity, but no correlation between commercial outputs and 

publications. Gulbrandsen and Smeby, however, do neither have information about the 

amount of funding nor on the share of that funding of the entire research budget. They just 

have information whether or not someone received funding from industry. Thus, it may be 

that the information of whether or not a professor has funding from industry is 

insufficient, as the number of grants or the relative share of industry funding compared to 

core funding may constitute the critical factor. Bozeman and Gaughan (2007) focus their 

study on the impact of research grants and contracts on interactive activities with industry 

and find that industry funding strengthens industry-science collaboration. They, however, 

provide no implications of increased collaboration on scientific productivity. Boardman 

and Ponomariov (2009) study the effects of industry grants on a broad set of indictors. 

They conclude that additional industry grants increase the likelihood of university 

scientists co-authoring papers with industrial scientists for academic journals, however, 

provide no “before and after” comparison of the university researchers’ publication 

behavior.  

Van Looy et al. (2004) find no evidence of a skewing problem at the Catholic University 

of Leuven in Belgium. They find that professors with industry contracts publish more than 

their colleagues without such contracts. However, selection effects are not controlled for 

in the study which makes it difficult to determine whether industry funding is causal or a 

reflection of the fact that industry selects the most productive researchers. Interestingly, a 

study on the same university by Kelchtermans and Veugelers (2011) – although not 

distinguishing between the sources of funds – finds that having access to project funding 
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is positively related to research output, but that the effect of funding on productivity is 

smaller for higher quantiles and even negative at the very top of the distribution.  

In summary, while the role of particular forms of technology transfer channels appear to 

be quite well understood, the effects of industry funding are not as clear. This study aims 

to shed light on the impact of private sector research sponsoring on professors’ subsequent 

scientific achievements.  

3 Data 

The empirical analysis of this paper is based on a unique dataset that had been created 

from different data sources. The core data had been collected by a survey among research 

units at German higher education institutions in the fields of science or engineering, i.e. 

physics, mathematics and computer science, chemistry and pharmaceuticals, biology and 

life sciences, electrical and mechanical engineering and other engineering and related 

fields such as geosciences. In spring 2000 the Centre for European Economic Research 

(ZEW, Mannheim) conducted a survey among a random sample of research units at 

general universities, technical universities and polytechnic colleges (“universities of 

applied sciences”) stratified by regions. The questionnaire addressed “head of 

departments”, in general full professors who have budget and personnel responsibility.i  

The German public research system also comprises non-university institutions such as 

Fraunhofer Society, Max-Planck Society, HGF Association of German Research Centers 

and WGL Science Association, to name only the four largest associations of publicly 

funded research institutes. The original survey also addressed such public non-profit 

research institutions. We do not consider these institutions in our analysis as they differ 

substantially from research units at universities and polytechnics, for instance with respect 

to the organizational structure and the fact that there is no teaching. General universities 

have both a research and an education mission within one organizational unit. They 

account for the lion’s share of total R&D expenditure on public research in Germany with 

about 45%. Technical Universities (TUs) specialize in science and engineering and 

account for about 7% of total public R&D. Universities of Applied Sciences (UaS) 

account for about 2% (Czarnitzki and Rammer 2003).  

The overall response rate to the survey was 24.4% providing us with information on 724 

different professors and their research teams. After the elimination of incomplete records, 

our final sample contains 678 professor-research unit observations from 46 different 

institutions of which 56% are universities, 23% are TUs and 21% are UaS.  For each of 
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the 16 German States (Länder), the sample comprises at least one observation (see Table 

A.2 for details). The key variables of interest are obtained directly from the survey. The 

professors were asked to indicate the amount and composition of “third-party funding”ii 

that they received during 1999 in addition to their core funding as a share of their total 

budget. In the final sample more than 61% of the professors received funds from industry. 

The amount of industry funding and its share of the total budget (INDFUND) at the level of 

the research unit differ between the types of institutions (see Table 1). The share of 

research grants from public sources of total budget (GOVFUND) is comparable between 

universities and technical universities, but considerably lower at UaS.  

TUs show the highest share with 10.6% of their total budget which amounts to more than 

160 thousand Euros on average in the year of the survey. The average number of staff per 

research unit (LABSIZE) is about 20 (median 13). The teams are slightly larger at technical 

universities compared to non-technical universities. UaS show significantly smaller 

numbers. The share of team members with a non-scientific, but technical background 

(TECHS) is larger than a quarter at UaS and thereby also larger at both techs and 

universities. Also the share of people in the team with a PhD (POSTDOCS) is largest at UaS. 

This, however, is due to the smaller overall team size and the lack of doctoral students. 

We know from the survey whether the professor had contact to his institution’s 

Technology Transfer Office (TTO). As it is conceivable that such contacts may impact both 

stronger technology transfer awareness and the time burden of such activities, it may also 

have effects on patenting and publishing activities. At universities, only two thirds of the 

professors had contacts to the TTO compared to 79% at TUs and 87% at UaS. The number 

of female professors is negligible with only 22 of the 678 professors in or sample being 

female.  

 

3.1 Publication and Patent data 

As we are interested in the scientific performance at the level of the individual researcher, 

or more precisely at the level of the head of the research unit, we supplemented the survey 

data with publication and patent information. We use the publication and patent output of 

the responding professor as a proxy for the research output of his research unit.iii The data 

base of the German Patent and Trademark Office (DPMA) contains all patents filed with 

the DPMA. Since applicants are obliged by law to disclose the name of the inventor in the 

patent application, we searched through this database for all patents which listed 

professors from our sample as inventors. One technique for measuring the quality or 
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impact of patents is patent citation analysis. There are basically two types of citations on a 

patent. First, citations of other patents by the inventor (or the applicant) and citations 

added by the examiner of the patent application. We focus on “forward citations” to the 

patents, defined as the number of citations received by each patent following its issue. 

Patent forward citations have been proved to be a suitable measure for the quality, 

importance or significance of a patented invention and have been used in various studies 

(see e.g. Henderson et al. 1998a; Hall et al. 2001; Trajtenberg 2001 or Czarnitzki et al. 

2008). The publication histories of the professors were traced in the ISI Web of Science® 

database of Thomson-Scientific (Philadelphia, PA, USA) which provides data on 

publications in scientific journals and bibliometric indicators. Thomson Scientific 

identifies and indexes a broad range of journals in all areas of the sciences, social sciences, 

and arts and humanities. The database covers all significant document types within these 

journals including articles, letters, notes, corrections, additions, excerpts, editorials and 

reviews. Records contain information such as the title, authors, keywords, cited 

references, abstracts and other document details. We searched for publications (articles, 

notes, reviews and letters) of professors in our sample through the ISI Web of Knowledge® 

platform by their name and subsequently filtered results on the basis of affiliations, 

addresses and journal fields. In order to assign the publications correctly to the professor, 

we also collected information of their career paths that allowed us to relate publication 

records to professors even if the affiliation on the publication did not correspond to the 

current one. The publication record in the database also contains the number of citations 

that each publication received. We use the citation counts, i.e. the number of forward 

citations to those publications as indication of publication quality or impact of each 

professor. Several authors have shown, that - despite some limitations - citation counts are 

an adequate indicator to evaluate research output (e.g. Garfield and Welljams-Dorof 1992; 

Baird and Oppenheim 1994).iv  

Since we are interested in the professors’ publication and patent track record and the 

respective citation counts before the survey as well as in their performance in the years 

after, we collect all patents and publications from the professor’s first entry until the end 

of 2007. The number of past publications depends of course on the academic experience 

or seniority of the researcher. To control for differences in experience, we therefore 

gathered information from the German National Library on the year in which the 

professors received their PhDs.v From this information, we calculate the years of the 

professors’ experience (EXPERIENCE) in academia. Although our professors are all rather 
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senior (and tenured) academic staff heading a research unit, we still want to control for life 

cycle effects as publication output has been shown to depend on the position in the 

academic life cycle (see e.g. Thursby et al. 2007). The average professor had been 

working for 22 years since receiving his PhD when filling out the survey in the year 2000 

(median is 22, too). This relatively high level of experience is of course due to the fact that 

the survey targeted “head of research units”. However, for a few professors, who 

according to their CVs either obtained their doctoral degree abroad or do not have a PhDvi, 

we used the year of their first publication as a proxy for the beginning of their academic 

career. If professors with very common names like “Müller” or “Fischer” and also 

common first names appeared in our dataset, we preferred to drop these observations from 

our dataset since publication and/or patent data could not be uniquely identified for them. 

For our main analysis, we limited the time horizon for publications, patents and citations 

to the period from 1994 to 2007vii. We thus fixed the “activity window” to six years before 

(1994-1999) and the eight years after the survey (2000-2007). In the former period, 

professors at universities on average published 16 items, professors at TUs about 6 and 

UaS professors 2. While we find high citations counts for university publications, the 

‘times cited’ for the other two categories is much lower (344 compared to 128 and 23, 

respectively). This is also reflected in the average number of citations per publication 

although the difference between universities and technical universities is much smaller 

(see Table 1). For patent applications, the picture is less diverse across types of 

institutions.  The average number of patent applications is 1.54 for university patents, 1.27 

for patents from technical universities and 1.20 from UaS. Patents from technical 

universities are, however, cited more frequently. In our data, a relatively small number of 

university professors are responsible for the majority of publications. 14% of the professor 

published nearly 50% of the total number of publications. The same is true for citations: 

there are very few highly cited professors, 11% with more than 1,000 total citations or 

more than 40 citations per paper.  This pattern is characteristic for publication output (see 

e.g. Kyvik 1991, 2003). For patent applications and citations, we find a similar picture. 

45% have not applied for a patent at all. From the total of 3,079 patent applications, 10% 

of the professors account for a quarter of these patents. The fact that not all patent 

applications are usually successful has to be taken into account while looking at the mean 

of patent forward citations which indicates that 67.7% of the patents received no forward 

citation at all. The average number of application among those with at least one patent is 6 

with a maximum of 67 patent applications in the period 1994-2007. 
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Looking at industry funding by research fields shows that it is highest in engineering, in 

particular for mechanical engineering with more than 240.000€ or about 14% of their total 

budget. The distribution of industry funds, however, is skewed (the median for mechanical 

engineering is about 88.000€ and 10% of total budget). The share of industry funding is 

lowest in physics and mathematics which is probably due to the rather theoretical research 

orientation of many professors in these fields (Table 2). Looking at research productivity 

by fields illustrates that in chemistry, physics, and biology, professors published most and 

also received a larger number of citations per publication compared to mechanical or 

electrical engineering. Patenting activity is highest among electrical engineers and as 

expected lowest among mathematicians and computer scientists both in terms of patent 

application as well as in terms of citations that their patents receive (Table 3).    

Table 1: Funding and scientific productivity (variable means by type of institution) 
Description Variable Uni TU UaS 

Funding:    

Amount Ind. Funding (T €)  98.044 168.463 61.735 
Share of Ind. Funding in % of Total 
Budget  

INDFUND 7.60 10.56 9.29 

Amount Gov. Grants (T €)  181.56 192.07    11.53 

Share of Gov. Grants in % of Total 
Budget 

GOVFUND 26.64 25.04 6.11 

Scientific Output 1994-1999:    

Publications  PUB1994-1999 16.35 6.46 2.28 

Citation Count of Publications CITPUB1994-1999 344.77 128.17 22.82 

Average Citations per Publication  CITperPUB1994-1999 15.44 7.52 4.67 

Patents  PAT1994-1999 1.54 1.27 1.20 

Citation Count of Patents  CITperPAT1994-1999 16.25 35.61 12.77 

Average Citations per Patent CITPAT1994-1999 3.81 4.23 3.71 

Scientific Output 2000-2007:    

Publications  PUB 26.24 13.34 2.99 

Citation Count of Publications CITPUB 256.73 124.17 15.76 

Average Citations per Publication  CITperPUB 7.46 3.57 1.85 

Patents  PAT 1.44 1.20 1.28 

Citation Count of Patents CITPAT 1.02 1.17 1.17 

Average Citations per Patent CITperPAT 0.23 0.24 0.10 

Controls:    

Number of people at lab  LABSIZE 21.38 24.31 15.73 

Number of years since PhD  EXPERIENCE 22.57 24.46 16.32 

Contact to TTO dummy TTO 0.66 0.79 0.87 

% technical employees  TECHS 7.01 7.85 19.87 

% employees with PhD  POSTDOCS 22.54 19.52 25.50 

Female Professor dummy GENDER 0.03 0.03 0.04 
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In our sample, we find that there are three types of scientists. First, purist researchers who 

did neither file patents nor received industry funding (27%). The finding that almost half 

of our professors never patent is in line with findings by Agrawal and Henderson (2002) 

who report similar numbers for faculty at MIT. A second group of professors may be 

named “commercialists”. They engage actively in patenting and receive a substantial share 

of their budget from industry funding (INDFUND > 10% and at least 3 patent applications 

between 1994 and 2007, 11%). These professors publish below average (on average 9 

publication from 1994-1999 and about 19 from 2000-2007). Third, the sample comprises a 

considerable number of researchers in between the two extremes.  

 

Table 2: Funding by Research Field 

Field Freq. % 
Amount of 
Industry 

Funding (T €) 

% Ind. 
Funding  
of Total 
Budget 

Physics 104 15.34 47.52 4.32 
Mathematics and     
     Computer Science 

107 15.78 39.09 5.95 

Chemistry 95 14.01 68.05 6.06 
Biology  58 8.55 28.70 7.46 
Electrical Engineering 101 14.90 130.75 11.54 
Mechanical Engineering 110 16.22 241.43 14.13 
Other Engineering 103 15.19 150.48 10.13 

 678 100.00   

 

 

Table 3: Scientific Productivity by Research Field 

 
Publica-

tions 
 

Citation 
Count 

 

Citations 
per 

publication 

Patents 
 

Citation 
Count  

 

Citations 
per patent 

Field Publications 1994-1999 Patents 1994-1999 
Physics 22.47 612.89 21.74 1.11 17.11 2.97
Mathematics and      
  Computer Science 

3.97 44.49 6.57 0.21 0.84 0.56 

Chemistry 27.53 513.24 16.07 1.80 23.24 5.47
Biology 11.52 320.59 21.83 0.91 7.60 3.67
Electrical Engineering 3.93 53.88 5.62 2.27 33.74 7.28
Mechanical Engineering 3.46 28.12 4.99 1.84 39.69 5.65
Other Engineering 6.94 93.62 7.97 1.57 12.33 1.70

 Publications 2000-2007 Patents 2000-2007 
Physics 33.29 419.68 9.45 0.91 1.06 0.20
Mathematics and      
  Computer Science 

6.50 39.54 3.61 0.25 0.08 0.02 

Chemistry 39.06 376.64 8.40 1.52 0.67 0.13
Biology  19.45 247.71 9.26 1.14 0.76 0.15
Electrical Engineering 11.58 84.04 3.00 1.90 2.11 0.45
Mechanical Engineering 6.54 24.91 2.31 1.91 0.91 0.26
Other Engineering 15.33 94.94 3.78 1.79 0.84 0.20
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3.2 The abolishment of the Professors’ Patent Privilege 

As our sample comprises patent applications before and after 2002, we cannot get away 

without discussing the potential impact of a legal reform that abolished a special clause in 

the law on employee inventions and came into force in February 2002 

(Arbeitnehmererfindungs-Gesetz, ArbEG, 2002). Prior to this reform, university 

researchers were exempted from the general obligation of employees to disclose job-

related inventions to their employers and could thus keep the ownership of their patents. 

While in the years after the Bayh-Dole Act U.S. university patent applications escalated, 

von Ledebur et al. (2009) find no such evidence for Germany. As thus the reform basically 

led to a shift in the ownership of the patents, but not in its numbers, it should not affect our 

data as we looked up patents based on academic investors not applicants. Moreover, a 

substitution of university ownership for firm ownership of patents (if the patent was the 

result of paid contract research and therefore belongs to a firm) should not affect our 

results as we take the overall count and not just university owned patents on which the 

scientist is mentioned as inventor. 

4 Empirical Analysis 

Primarily, our analysis aims to shed light on the effects of industry funding on scientific 

productivity. As potential effects are unlikely to show up immediately, we observe the 

scientific output up to eight years after the survey. We thus expect journal publication 

output and patent applications in the post-survey period 2000-2007 to be a function of the 

share of industry funding (INDFUND) and public grants (GOVFUND) the professors received 

for their research unit, their past publication and patenting efforts (PUB1995-1999, PAT1995-

1999 as past performance is likely to affect future performance due to a „cumulative 

advantage“), their lab size (LABSIZE), their experience (EXPERIENCE), the skill composition 

at the lab in terms of the percentage of technical employees (TECHS) and post doctoral 

researchers (POSTDOCS). In addition, we consider further attributes such as the research 

field, the type of institution and gender. 

Figure 1 depicts the development of industry funding for all German higher education 

institutions in the period 2000-2007 that is not covered by the survey. Compared to the 

year 2000, the amount has increased by more than 40%. Remarkably, the institutions’ core 

funding has been decreasing since 2002, while total budgets remained largely unchanged. 

Concerns raised by Lee (1996) regarding the effects of industry involvement in science on 

long-term, disinterested, fundamental research in the light of ‘declining federal R&D 
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support’ in the U.S. can thus be raised here as well. Unfortunately, the information on 

industry funding in the survey is limited to the year 1999. Data at the institutional level (as 

shown in Figure 1) documents an increase at the aggregate level in the post-survey years. 

This leads us to regard the survey-numbers for 1999 at the research unit level as “lower 

bound” of the industry funding received by the research unit in subsequent years. Public 

grants increased likewise which confirms Auranen and Nieminen (2010), who report a 

development towards a more competitive funding structure. GOVFUND is included to 

control for a professor’s success in attracting public funds. 

Additionally, as publication or patent output may not only be affected in terms of quantity, 

but also quality, we estimate the effects on citation counts (CITPUB, CITPAT) and average 

citations per publication and patent (CITperPUB, CITperPAT), respectively.   

Figure 1: University Funding (% changes relative to the year 2000) 
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4.1 Econometric set-up 

The number of publications and patent applications is restricted to non-negative integer 

values and also characterized by many zeros, since not all of the professors in our sample 

show a positive number of publications and/or patents.  The same applies for the number 

of citations for both measures. Hence, in order to investigate the relationship between 

funding and research output, we estimate count data models. This leads to the following 

estimation equation which is assumed to be of an exponential functional form: 

 2000 2007 1999 1999     
'

it i , i , it i i it iE Y | Z ,X ,c exp Z X c    
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where Yi is the count variable and stands either for publication counts (PUB), publication 

citations (CITPUB), patent applications (PAT), patent citations (CITPAT) or citations per item 

(CITperPUB, CITperPAT) by scientist i within the time span 2000 until 2007 which is 

assumed to be Poisson distributed with it > 0. Zi,1999 denotes the share of industry funding 

(INDFUND) in the survey’s reference year 1999. Xit represents the set of controls including 

the share of public grants (GOVFUND),  and  are the parameters to be estimated. ci is the 

individual specific unobserved effect, such as individual skills of each scientist or their 

attitude towards publishing or patenting.  

Usually, cross-sectional count data models are estimated by applying Poisson and negative 

binomial regression models (negbin). A basic assumption of the Poisson model is 

equidispersion, i.e. the equality of the conditional mean and the conditional variance 

which is typically violated in applications leading to overdispersion. This led researchers 

to the use of the negbin model since it allows for overdispersion. Although the negbin 

model relaxes this assumption of equidispersion, it is only consistent (and efficient) if the 

functional form and distributional assumption of the variance term is correctly specified. 

For the Poisson model, however, it has been shown that it is consistent solely under the 

assumption that the mean is correctly specified even if overdispersion is present (Poisson 

Pseudo (or Quasi) Maximum likelihood). In case the assumption of equidispersion is 

violated and hence the obtained standard errors are too small, this can be corrected by 

using fully robust standard errors (see Wooldridge 2002), which is what we do. 

A major drawback of our cross-sectional dataset is that it usually does not allow to control 

for unobserved heterogeneity which is most likely to be present in our data. Hence, if 

unobserved effects like, e.g., specific skills of each scientist are positively correlated with 

the right hand side variables, such as industry funding, the estimated coefficient of the 

industry funding variable is upwards biased. A solution is provided by the linear feedback 

model suggested by Blundell et al. (1995, 2002) who argue that the main source of 

unobserved heterogeneity lies in the different values of the dependent variable Yi with 

which observation units (professors, in our case) enter the sample. The model 

approximates the unobserved heterogeneity by including the log of the Yi from a pre-

sample period average in a standard pooled cross-sectional model (ln[PUB_MEAN], 

ln[PAT_MEAN] etc.). In case Yi is zero in the pre-sample period, e.g. a professor had no 

publications, a dummy is used to capture the “quasi-missing” value in log Yi of in the pre-

sample period (d[PUB_MEAN = 0], d[PAT_MEAN = 0] etc). We constructed the pre-sample 

mean estimator by using six pre-sample observations values of Y for 1994 to 1999. 
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4.2 Results  

Table 4 presents the results of the Poisson regressions on the publication output indicators. 

The effect of INDFUND is significantly negative for both the publication count and the 

citations count and citations per publication in the years after the survey. That is, a higher 

share of industry funding (in 1999) leads to a lower publication output in subsequent years 

(2000-2007) both in terms of quantity and quality. To be more precise, an additional 

percentage point of in the share industry funding of total budget reduces publication 

output by 0.8%. This implies an average loss of one publication for a 5.5% increase in 

industry funding (that on average about 6000 €) in the following 8 years. This effect 

becomes more pronounced if we look at the indicators referring to publication quality. The 

number of citations decreases 1.3% (and 1.6% fixed effects model) and the number of 

citations per publication is reduced by 1.3% in both specifications. The share of public 

research grants (GOVFUND) on the other hand has a positive and significant effect on 

publication output both in terms of publication count and citations per publication. This 

effect, however, is not robust to the fixed effects specification.  

Table 5 depicts the results from the patent equation. Interestingly, a higher share of 

industry funding has no effect on the number of patents, but does have a positive impact 

on patent citations and citations per patent. That is an increase of 2.6% (2.5% in the model 

with fixed effects) with each additional percentage point sponsored by the private sector. 

As patents can only receive citations if they were granted, the positive effect here can also 

be interpreted as a novelty and quality effect of industry funds on professors’ patents. 

Unlike in the publication model, where past publication record was significant but not past 

patenting activity, the patent equation shows that both past publications and past patent 

applications significantly determine future patent outcome. Public grants, on the contrary, 

have no impact on future patent activity.  

To sum up, depending on the expression of Yi, we find that: 

1.  <0 if  

 Yi denotes publication counts (PUB), the total number of citations to 

publications (CITPUB) or the average number of citations per publication 

(CITperPUB) 

2.  =0 if 

 Yi stands for patent applications (PAT)  

3.  >0 if  
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 Yi stands for patent citations (CITPAT) or the average number of citations 

per publication (CITperPUB). 

The main results are robust to the inclusion of the fixed ‘effect’ in the linear feedback 

model. It should be noted that we also tested a non-linear specification, i.e. we included 

the squared value of INDFUND to test whether the negative (or positive effect in the patent 

citation equations) effect of INDFUND may only occur up from a certain level of industry 

funding. The inclusion of INDFUND2, however, did not affect the significance of INDFUND, 

but it was never significant itself. The institution type (Uni, TU, UaS) dummies are jointly 

significant in the publication equations, but not in the patent equations. Generally, 

publications were significantly lower at TUs and UaS compared to universities that served 

as reference category. The research field dummies are in all models jointly significant 

(except in the CITperPUB fixed effect specification) capturing differences in publication 

patterns among research fields. The contact to a TTO has a positive impact on patent 

citations. We do not observe any “age”-related effects which is not surprising since the 

professors in our sample are quite homogenous in their level of experience.  

5 Conclusion and Discussion 

While from a private-sector perspective, the benefits from collaborating with academia are 

found to be unambiguously positive, the effects on the scientific sector were not as clear. 

We began this paper with the observation of a substantial growth in industry funding of 

university research and this study aimed at filling a gap in the literature by providing 

insights on the effects of such funding for scientific productivity. Our results show that the 

share of industry funding of total budget has reached a point (already in 1999 and shares 

have been increasing ever since) that is sufficiently high to negatively affect publication 

output. In other words, professors in our sample publish less in subsequent years the 

higher the share of industry funds relative to their total budget. This finding supports the 

“skewing problem” hypothesis for science and engineering faculty in Germany. If 

information sharing among scientists via publications is the basis for cumulative 

knowledge production and thus for scientific progress, industry funding that reduces 

publications may have detrimental effects on the development of science. Cohen et al. 

(2002) find the most important channel for knowledge transfer from science to industry to 

be the publication of research results. Thus, if industry funding reduces publications, not 

only the development of science could be impeded, but also technology transfer. Transfer 

may be strengthened between the university and the firms providing funds, but may be 
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reduced for all the others. On the other hand, we find that a higher share of industry 

funding does not impact the number of patent applications on which the respective 

professor is listed as inventor. We do, however, observe a significant positive effect on 

their impact in terms of forward citations to those patents. This effect can also be 

interpreted as a quality indicator as naturally only granted patents can receive citations. 

Thus, industry financing may increase the likelihood that a patent is granted. Patents of 

professors whose research is supported by industry may not only be more successful in the 

granting process, but also more visible and relevant for further applications in industry and 

hence receive more forward citations.  

We believe the results from this study are provocative for policy analysis and public 

funding authorities. An increasing reliance on industry funding compared to stagnating 

core funding may indeed affect the development of science in the long run if publication 

output is reduced. On the other hand, industry funding may be very valuable for 

professors’ applied research and the success of their patenting activities.  

Despite all efforts, our study is not without some limitations and the results presented 

ought to be interpreted with those caveats in mind. It could be argued that there is a bias in 

direction of above-average performers as our sample comprises information on “heads of 

research units” only (see Kelchtermans and Veugelers 2011). These academics must have 

performed well in their past carrier in order to hold such a position at all. Studying a 

sample of professors that are less homogenous in terms of their level of experience could 

also reveal interesting results that have remained foreclosed in our study. Researchers at 

earlier stages of their career may be led by other incentives that for instance increase their 

paper output despite of industry funding. From the funding perspective, we do neither 

know from which or how many firms funding had been obtained. Further, we can not 

make any judgment on the effects on research content. Future research could assess the 

effects on the scientists’ research content measured by changes in journal types and patent 

classifications. Additional insights into the professors’ patent activity could be gained 

from studying the type of citations to patents and their technology classifications. Such 

detailed information would allow statements regarding a shift in research content caused 

by increased industry funding for such research. It would have also been interesting to 

study effects of industry funding at a more disaggregate level. The effects on scientific 

productivity are very likely to depend on both the institutional setting (university 

provisions to support such activities) as well as on the actual activity that had been 

sponsored. Perhaps even more importantly, the extent to which more traditional scientific 
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activities are affected will certainly depend on what industry expects in return for their 

sponsoring. In other words, an analysis of “sponsoring firms and sponsored academics”-

pairs would be valuable to refine the insights from this study. Finally, it should be kept in 

mind the results may strongly depend on the institutional setting in Germany where 

university research traditionally has been predominantly financed by public sources and 

where the increase in industry sponsorship had been most significant. It would therefore 

be highly desirable to study the relationship between industry funding and scientific 

productivity at the individual level in settings that are comparable to those of Germany, 

for instance Austria, but also in very different settings like in the U.S. or U.K. In the U.S 

and the U.K industry sponsorship accounts for a much lower share of university research 

funding on average and had been declining in the period 1997 to 2007 (OECD 2009). 

Moreover, sponsoring firms seem to focus on top institutions as compared to a rather 

equally distributed allocation of such funds in Germany. Geuna (1997) finds that in the 

U.K. industrial funding that is long-term and/or has “no strings attached” is focused on a 

few universities, while a larger number of technology oriented institutions receive the 

shorter-term and less basic contracts. Further research in that direction may help to explain 

the differences between the results from this study and the research performance of 

scientists at top institutions like for instance MIT that is funded to a high degree by the 

private sector.  
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Table 4: Estimation results (678 obs.) on publication output (with INDFUND) 

Notes: Standard errors in parentheses are robust, all models contain a constant, field and institution type dummies.  
 CITperPUB and CITperPAT for models in columns 3 and 6. Pre-sample dummies d[X_MEAN] for observations with zero means are 
not presented. *** (**, *) indicate a significance level of 1% (5%, 10%). 

 Poisson Model 
Poisson Model 

with Fixed Effects 
Variable PUB CITPUB CITperPUB PUB CITPUB  CITperPUB
INDFUND  -0.008 ** -0.013** -0.013*** -0.008 **    -0.016***  -0.012*** 
 (0.004)  (0.006)   (0.005)   (0.003)    (0.006)    (0.005)    
GOVFUND   0.007 ***  0.005    0.005**  0.004   0.002      0.003
 (0.002)  (0.003)   (0.002)   (0.002) (0.003)    (0.002)
PUB1994-1999   0.013 ***               
 (0.002)                
PAT1994-1999   0.012                
 (0.011)                
CITPUB

1994-1999     0.001***  0.014***           
   (0.000)   (0.002)             
CITPAT

19945-1999   -0.000   -0.003**           
   (0.001)   (0.002)             
LABSIZE   0.123 *  0.366***  0.103*   0.111 **     0.165**   -0.042    
 (0.069)  (0.102)   (0.057)   (0.057)    (0.065)    (0.052)    
LABSIZE2  -0.000  -0.000** -0.000   -0.000    -0.000     -0.000    
 (0.000)  (0.000)   (0.000)   (0.000)    (0.000)    (0.000)    
EXPERIENCE  -0.042  -0.027    0.015   -0.054     -0.038     -0.001    
 (0.037)  (0.034)   (0.020)   (0.034)    (0.028)    (0.020)    
EXPERIENCE2   0.000  -0.000   -0.000    0.001      0.000     -0.000    
 (0.001)  (0.001)   (0.000)   (0.001)    (0.001)    (0.000)    
TTO   0.215 *  0.049    0.136    0.130      0.096      0.180**  
 (0.129)  (0.138)   (0.089)   (0.119)    (0.118)    (0.091)    
TECHS   0.003   0.007    0.000    0.005      0.008      0.004    
 (0.007)  (0.010)   (0.004)   (0.005)    (0.005)    (0.004)    
POSTDOCS   0.002  -0.004   -0.004   -0.000     -0.009***  -0.004   
 (0.004)  (0.005)   (0.002)   (0.004)    (0.003)    (0.002)    
GENDER   0.017  -0.204   -0.203    0.136     -0.078     -0.220    
 (0.194)  (0.279)   (0.193)   (0.156)    (0.248)    (0.208)    
ln[PUB MEAN]    0.601 ***        
       (0.053)           
ln[PAT MEAN]        0.057           
       (0.068)           
ln[CITPUB MEAN]    -0.163*** 
   (0.048)    
ln[CITPAT MEAN]     0.643*** 
   (0.047)    
ln[CITperPUB MEAN]       0.277*** 
        (0.033)    
ln[CITperPAT MEAN]         -0.044    
     (0.030)    

Log-Likelihood -6,379.11 -63,901.38 -2,308.94 -5,348.40 -44,018.36 -2,208.85 

Joint sign. inst. dum. χ2 (2) 80.53*** 43.86*** 22.71*** 38.26*** 16.05*** 10.99*** 

Joint sign. field dum. χ2 (6) 57.36*** 95.66*** 39.32*** 16.24** 14.15** 8.07 

McFadden's R2 0.487 0.603 0.337 0.570 0.727 0.366 
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Table 5: Estimation results (678 obs.) on patent output (with INDFUND) 

Notes: Standard errors in parentheses are robust, all models contain a constant, field and institution type dummies.  
 CITperPUB and CITperPAT for models in columns 3 and 6. Pre-sample dummies d[X_MEAN] for observations with zero means are not 
presented. *** (**, *) indicate a significance level of 1% (5%, 10%). 

 

 Poisson Model 
Poisson Model 

with Fixed Effects 
Variable PUB CITPUB CITperPUB PUB CITPUB  CITperPUB
INDFUND   0.003       0.026**  0.028*** -0.002     0.024 *      0.028** 
 (0.005)      (0.011)   (0.010)   (0.006)   (0.016)      (0.013)   
GOVFUND   0.003   -0.003   -0.001    0.003  -0.004   -0.002   
 (0.004)   (0.011)   (0.008)   (0.004) (0.013)  (0.008)   
PUB1994-1999   0.009 ***                
 (0.003)                    
PAT1994-1999   0.099 ***                
 (0.012)                    
CITPUB

1994-1999         0.000*** -0.002             
       (0.000)   (0.006)             
CITPAT

1994-1999        0.000    0.002             
       (0.000)   (0.004)             
LABSIZE   0.157       0.540*   0.492**  0.115     0.464 *      0.405** 
 (0.118)      (0.317)   (0.220)   (0.102)   (0.325)      (0.204)   
LABSIZE2  -0.000      -0.000   -0.000   -0.000 *   -0.000        0.000   
 (0.000)      (0.000)   (0.000)   (0.000)   (0.000)      (0.000)   
EXPERIENCE  -0.039       0.097    0.088   -0.049     0.150        0.111   
 (0.064)      (0.104)   (0.075)   (0.050)   (0.111)      (0.083)   
EXPERIENCE2   0.000      -0.003   -0.002    0.000    -0.004       -0.002   
 (0.001)      (0.002)   (0.002)   (0.001)   (0.003)      (0.002)   
TTO   0.269       1.176***  0.494    0.099     0.937 **     0.335   
 (0.345)      (0.364)   (0.450)   (0.330)   (0.394)      (0.464)   
TECHS   0.001       0.005    0.013   -0.001     0.004        0.008   
 (0.006)      (0.011)   (0.011)   (0.005)   (0.012)      (0.010)   
POSTDOCS   0.006      -0.005    0.002    0.007    -0.003        0.003   
 (0.006)      (0.013)   (0.009)   (0.005)   (0.015)      (0.011)   
GENDER   0.179      -2.131*** -2.925***  0.341    -2.255 ***  -2.977***
 (0.331)      (0.826)   (0.871)   (0.225)   (0.636)      (0.681)   
ln[PUB MEAN]     0.032           
        (0.075)           
ln[PAT MEAN]          0.523 ***         
         (0.088)           
ln[CITPUB MEAN]       0.198 **     
     (0.087)        
ln[CITPAT MEAN]       0.259 **     
     (0.136)        
ln[CITperPUB MEAN]         0.195*  
       (0.101)   
ln[CITperPAT MEAN]         0.090   
       (0.088)   
Log-Likelihood -1,343.47 -1,318.19 -348.20 -1,173.97 -1,190.98 -325.91 

Joint sign. inst. dum. χ2 (2) 1.27 3.05 4.17 0.78 1.07 2.05 

Joint sign. field dum. χ2 (6) 19.48*** 24.68*** 20.01*** 11.42* 14.00** 11.64* 

McFadden's R2 0.250 0.235 0.183 0.345 0.309 0.236 
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7 Appendix 

Table A.1: Scientific Productivity by Research Field (professors’ academic life time, 
e.g. all publications and patents until 2007) 

 Publications Patents 

Field 
Publica-

tions 
Citation Count 
of Publications 

Citations 
per 

Publication 
Patents 

Citation 
Count of 

Patents 

Citations 
per patent 

Physics 87.64 1,895.817 33.57 3.15 56.11 6.83
Mathematics /   
Computer Science 

19.86 186.75 11.48 0.79 14.28 7.65 

Chemistry 112.85 1,865.13 26.06 5.59 85.99 14.345 
Biology / Life 54.17 1,109.57 32.13 3.10 79.40 25.38 
Electrical 23.91 239.82 9.92 6.70 263.38 37.12 
Mechanical 16.36 86.79 7.36 6.14 150.53 11.06 
Other Engineering 36.93 401.79 12.72 5.85 107.54 10.16 
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Table A.2: Industry Funding of Higher Education Institutions in the Sample 

Institution Type State 
Professors 
in sample

Professors
surveyed

in state

average 
funding from 
industry in % 

of total budget

average funding from 
industry in % of total 
"third party funding"

average funding from 
industry in % of total 
"third party funding" 
from survey at “state

level"
# Students

in State

          1999 1999 1999  2006

Albert-Ludwigs-University Freiburg Uni Baden-Wurttemberg  13 2.71 11.23 

FH Mannheim UaS Baden-Wurttemberg  4 0.68 50.00 

FHT Esslingen UaS Baden-Wurttemberg  12 2.19 25.42 

University of Stuttgart Uni Baden-Wurttemberg  37

66

10.29 23.57 

27.56 237 611 

FH Augsburg UaS Bavaria 2 3.33 50.00 
Ludwig Maximilian University of 
Munich Uni Bavaria 23 3.61 13.13 

TU München TU Bavaria 26 11.70 31.96 

University of Würzburg Uni Bavaria 17

68

4.70 10.65 

26.43 251 163 

Humboldt-University of Berlin Uni Berlin 12 1.53 3.42 

TFH Berlin UaS Berlin 12
12

13.75 35.00 
19.21 132120 

FH Brandenburg UaS Brandenburg 7 7 11.35 40.00 40.00 40 786 

Hochschule Bremen UaS Bremen 7 3.49 30.29 

University of Bremen Uni Bremen 19
26

4.94 15.05 
22.67 33 356 

Fachhochschule Hamburg UaS Hamburg 7 17.94 25.71 

TU Hamburg-Harburg TU Hamburg 24 11.70 38.13 

University of Hamburg Uni Hamburg 20

51

6.68 14.53 

26.12 65 908 

Fachhochschule Darmstadt UaS Hesse 13 1.20 26.15 
Johann Wolfgang Goethe University 
of Frankfurt Uni Hesse 13 5.31 10.94 

TU Berlin TU Hesse 39 9.30 31.49 

University of Kassel Uni Hesse 12

77

23.54 48.25 

29.21 157 452 

Ernst-Moritz-Arndt-University 
Greifswald Uni Mecklenburg-West Pom. 5 3.70 9.30 

Fachhochschule Neubrandenburg UaS Mecklenburg-West Pom. 1 0.00 0.00 
Otto-von-Guericke-University of 
Magdeburg Uni Mecklenburg-West Pom. 18 7.52 24.67 

University of Rostock Uni Mecklenburg-West Pom. 2

26

1.20 8.00 

10.49 34 221 

Fachhochschule 
Braunschweig/Wolfenbuttel UaS Lower Saxony  9 11.36 54.78 

University of Goettingen Uni Lower Saxony  6 2.70 6.67 

University of Hannover Uni Lower Saxony  30

45

11.63 30.30 

30.58 146 992 
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FH Aachen UaS North Rhine-Westphalia  23 17.45 41.35 

Aachen University of Technology TU North Rhine-Westphalia  25 14.32 29.44 

University of Dortmund Uni North Rhine-Westphalia  18 8.96 23.11 

University of Cologne Uni North Rhine-Westphalia  9

75

5.11 13.33 

26.81 449 963 

Fachhochschule Kaiserslautern UaS Rhineland-Palatinate  3 0.00 0.00 
Fachhochschule Kaiserslautern, 
Zweibrücken UaS Rhineland-Palatinate  7 7.11 48.57 

University of Kaiserslautern Uni Rhineland-Palatinate  27

37

9.79 27.01 

25.19 97 514 

University of Saarlandes Uni Saarland 18 13.44 29.72 

HTW Saarland UaS Saarland 6
24

12.67 32.50 
31.11 19 334 

HTW Dresden UaS Saxony 9 12.02 35.00 

Dresden Technical University TU Saxony 25 9.41 26.53 

University of Leipzig Uni Saxony 16

50

2.45 7.04 

22.86 103 583 

Fachhochschule Magdeburg UaS Saxony-Anhalt 8 1.50 20.00 
Martin-Luther-University of Halle-
Wittenberg Uni Saxony-Anhalt 23

31
4.45 17.61 

18.80 50 097 

Christian-Albrechts-University of 
Kiel Uni Schleswig-Holstein 22 7.11 26.53 

Fachhochschule Flensburg UaS Schleswig-Holstein 11
33

11.22 50.56 
38.55 44 893 

Fachhochschule Erfurt UaS Thuringia 1 0.00 0.00 

Friedrich-Schiller-University of Jena Uni Thuringia 21 7.61 30.48 

TU Ilmenau TU Thuringia 16

38

7.19 18.48 

16.32 48 201 

Total / Average      678 678 7.39 24.91 25.09  

 
Endnotes: 
                                                 
i Usually a chair has only one professor. Larger universities, however, may also have several professors at one chair. Nevertheless, only one is the head of the department. 
ii See Schmoch and Schubert (2009) for details on “third-party funds” (Drittmittel) in Germany.  
iii Even though we do know the number of each chair’s employees and details on their qualification, we do not have further details (e.g. sex, name) of the individual team 
members. Thus, we cannot collect publication and patent information at the team member level. 
iv The popular impact factor of the journal in which the article was published would have also been available, but since we study different fields of science, the journal impact 
factors have been shown to be not appropriate (see Amin and Mabe 2000). 
v In Germany a dissertation needs to be published in the German National Library (Deutsche Nationalbibliothek). This central archival library among other things, collects, 
permanently archives, comprehensively documents and records bibliographically all German and German-language publications from 1913 onwards. 
vi Some Professors in our sample who are employed at UaS may not necessarily have a doctoral degree nor have they gone through the procedure of habilitation or junior 
professor. At UaS these qualifications are not compulsory for becoming professor. Candidates can apply for the position after their doctorate or in some cases a diploma is 
already sufficient if the person has gained research experience in industry for several years. 
vii We also tested the robustness of the results to a model specification with all publications and patents from the first publication or patent found in the data base. The main 
results remained unchanged. See Table A.1 in the appendix for descriptive statistics on publication and patent output over the professor’s entire academic life time.     
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