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Abstract : Remanufacturing activities are gaining momentum in the manufacturing industry. Therefore, the need for
optimized networks becomes more pressing. In this paper we take a profit maximization approach to simultaneously
determine the optimal network and the delivery strategy to support remanufacturing services offered to customers.
In order to set up a network, investment decisions have to be made concerning the number, locations and types of
remanufacturing facilities. Additionally, appropriate capacity and inventory levels have to be set in order to guarantee
a given service level. These network decisions are influenced by the way the remanufacturing services are offered
by the manufacturing firm. We consider two possible service delivery strategies: the service provider can either
make a quick exchange of the used part by a refurbished one or re-install the original part after remanufacturing it.
The model described in this paper is applied to optimize the network and service delivery strategy at a worldwide
manufacturer of construction, mining and industrial equipment.
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1 Introduction

Original equipment manufacturers (OEMs) in many industries are facing fierce competition in their primary
(new product) market. At the same time the growing installed base of equipment provides an opportunity to
develop a profitable remanufacturing business. Companies such as Caterpillar and HP already have considerable
remanufacturing activities and many other companies are following. The launch of more extensive warranties and
overhaul services relies on remanufacturing activities and fits the current trend of more service orientation in the
industrial equipment industry (Cohen et al. 2006, Pawar et al. 2009).

Now that remanufacturing activities have captured the attention of top management, they are brought to the market
more actively and globally optimized reverse logistics networks are pursued. Such network decisions do not only
involve the number and the location of the facilities, but also the assignment of specific tasks to appropriate facilities
and determining optimal capacity and inventory levels. Furthermore, OEMs should realize that the contractual
arrangements being made with customers regarding for instance the ownership of parts and the service delivery method
will impact the optimal design of the reverse network. Although setting up a multi-echelon repairable parts network
is a daunting task, it is a vital step in order to efficiently provide remanufacturing services. In this paper we report on
our research concerning the design of a reverse logistics network.
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2 Problem Description

When setting up a reverse logistics network for remanufacturing services, many strategic decisions have to be taken.
In this paper we take the perspective of a profit maximizing company with contractual obligations (service levels). For
a logistics network to take form, clearly, a decision has to be made about the number and location of the facilities.
Moreover, different types of facilities may be used to support the remanufacturing business, e.g. inspection centers
or rewiring facilities. Next to the locations and types of facilities to open, the capacity levels have to be determined.
Typically in the remanufacturing business, capacity will be determined by the number of operators that are employed.
Furthermore, remanufacturing services can be provided through different delivery strategies. With respect to the
service delivery strategy we consider two options, i.e. refurbishment without an exchange of the part and refurbishment
with an exchange. In the former case, a technician travels to the customer site and disconnects the worn-out part(s).
Next, the used part is sent to a remanufacturing facility. After being remanufactured, the original part returns to the
owner (customer) and a technician reinstalls it. The involved machine can only be restarted when this job is completed.
In the second service delivery strategy, the technician travels to the customer but already brings along a remanufactured
part. The worn-out part is then exchanged by a remanufactured one, which limits the machine downtime. Next, the
worn-out part is sent to a remanufacturing facility. After being remanufactured, the part can serve as an exchange part
for another customer. In the first delivery strategy, the equipment downtime equals the remanufacturing lead time,
whereas in the second delivery strategy the customer receives an immediate replacement.

Most research has focused on networks supporting the second delivery strategy, which we will refer to as
"refurbishment with exchange" or simply "exchange" strategy. The first delivery strategy, i.e. the customer regains his
own equipment, is labeled "refurbishment without exchange" or in short "refurbishment" strategy. From a customer
point of view, the advantage of refurbishment compared to exchange is the receipt of his own part at the expense of
a longer inactive equipment time. From a company point of view, the exchange strategy seems attractive because
of lower field technician transportation costs, but this benefit is tempered by higher inventory costs due to the
requirement to carry a physical inventory of remanufactured parts. Furthermore, different selling prices can be set
for a refurbishment with or without exchange. We allow for a choice and even a mix between the two service
delivery strategies. All the decisions with respect to the facility locations, the capacities and the delivery strategy
will have an impact on the inventory levels that are needed to obey the contractual obligations. As a consequence,
the required inventory levels need to be taken into account when evaluating different design structures. Due to the
specific characteristics of remanufacturing, we deal with a one-for-one replenishment inventory problem. Moreover,
uncertainty is prevailing in demand, processing and transportation times.

We formulate a non-linear mixed integer model that allows making the decisions concerning the number and type of
facilities needed, their capacity levels, the delivery strategy, and the amount of inventory required. Given the model’s
complexity, we solve it by a differential evolution search algorithm. After presenting the related literature in the next
section, Section 4 clarifies the model. There, we consecutively discuss the three sub-problems of the model: the
facility location problem, the capacity problem and the inventory problem. Next, in Section 5 the optimization method
is briefly reviewed. Section 6 presents the case study that motivates this research. We conclude in Section 7.

3 Related literature

One of the major contributions of this paper lies in its multi-disciplinary approach, as we integrate facility location,
capacity and inventory decisions. Therefore, our work is related to three distinct research streams: facility location,
the queueing and spare part inventory management literature. In this section, we do not want to be exhaustive but
review the major contributions in each of the three research fields in order to position our research.

The first relevant literature stream is that of the facility location problem (see for example Melo et al. (2009) for an
extensive overview). Many authors have demonstrated that integrating facility location and inventory decisions can
be very rewarding (Daskin et al. 2002, Shen et al. 2003). Next to designing a cost efficient supply network, customer
service objectives should be taken into consideration, as in the work of Zuo-Jun Max and Daskin (2005), Nozick and
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Turnquist (2001) or Mak and Shen (2009). Although both Nozick and Turnquist (2001) and Mak and Shen (2009)
consider stochastic replenishment times, they do not optimize the capacity levels.

The second literature stream deals with queuing networks. Queueing networks are often modeled by using the
parametric decomposition approach. The queueing network is decomposed into separate building blocks (i.e.
individual workstations or in our case individual facilities in a multi-echelon network). Besides the steady-state waiting
time distributions of separate blocks, we have to link the separate blocks by means of linking equations. As such, a
linking equation literally links the results obtained at the separate building blocks to obtain the performance of the
network as a whole. We refer the reader to Shanthikumar and Buzacott (1981), Buzacott and Shanthikumar (1993),
Hopp and Spearman (2000), Whitt (1983) and Whitt (1993) for excellent reviews.

Lastly, the spare part inventory literature has paid special attention to multi-echelon repairable networks due to both
the applicability and complexity of these networks. In his seminal work, Sherbrooke (1986) formulates a technique
to find the base stock level that minimizes the expected number of back-orders in a two echelon parts network with
ample repair capacity. This METRIC model has been adapted by many authors to make it applicable to more realistic
settings. Muckstadt (1973) extends the model to the MOD-METRIC that allows multi-indenture parts. The VARI-
METRIC model that is based on the work of Graves (1985) and further improved by Sherbrooke (1986), allows for a
higher variability in the distribution of the back-orders. A highly restrictive assumption of these multi-echelon models
is the conjecture of infinite repair capacity. The research on multi-echelon capacitated repairable networks was started
by Gross et al. (1983). Diaz and Fu (1997) optimize the inventory levels for multiple items in a network with limited
repair capacity, general repair times and a demand rate that depends on the repair backlog. The work of Sleptchenko
et al. (2003) is probably the first that simultaneously optimizes the repair capacity and the inventory levels. Also
Caggiano et al. (2006) focus on both capacity and inventory levels in a multi-echelon network, however, they consider
the level of capacity and inventory as given and search for an optimal allocation of the resources based on real time
data. We deal in our model explicitly with one-for-one replenishment rules. Consequently, (S-1,S) replenishment rules
will be applied.

To the best of our knowledge, only Rappold and Van Roo (2009) and van Ommeren et al. (2006) have simultaneously
optimized the capacity, the inventory and the facility locations in a multi-echelon repair network with uncertainty.
Although van Ommeren et al. (2006) take into account demand uncertainty, they do not consider stochastic processing
times and they do not use queuing theory. The setting of our research is comparable to that of Rappold and Van Roo
(2009), but it differs on some key aspects. Whereas Rappold and Van Roo (2009) allocate a fixed amount of inventory
between the different stocking locations, we determine the required inventory level endogenously based on utilization
levels and variances in demand and production processes, while obeying given service levels. Lastly, we formulate
a model that is as widely applicable as possible by assuming general distributions for both transportation and repair
times and by allowing multiple products, resources and network echelons.

Contrary to earlier work on repair network optimization in which only one delivery strategy is considered, we consider
two delivery strategies, i.e. exchange vs. refurbishment. The OEM will incur different costs and will gain different
revenues depending on the opted delivery strategy. As such, cost minimization is not a valid objective and consequently
we maximize profit. As observed by Melo et al. (2009), a profit maximizing objective is scarcely studied in reverse
logistics networks. Recently, increased attention for profit maximization in remanufacturing can be observed, e.g.
Vorasayan and Ryan (2006), Jiang et al. (2010), Savaskan et al. (2004), Ferguson and Toktay (2006). However, none
of these consider the network design. While Fonseca et al. (2010) do optimize a reverse network design by profit
maximization, they focus on waste disposal instead of remanufacturing. Consequently, the profit-orientation of our
model can be considered a novelty in the field of network design for remanufacturing activities.

4 Model Formulation

In this section, we derive our mathematical model. We first set out the general setting for which the overall model
holds (Section 4.1), followed by a description of the flow rates in the network in Section 4.2. These flow rates are
commonly used in the three sub-models: the facility location sub-model, the capacity (queueing) sub-model and the
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inventory sub-model. Although we formulate one integrated model that solves these sub-models simultaneously, the
three sub-problems will be clarified separately in Sections 4.3 to 4.5.

4.1 General Setting

We consider a stochastic multi-product, single indenture parts network with multiple facility types that can be opened
at a location chosen from a fixed, predetermined set of facilities f (f = 1, . . . , F ). For this setting, Figure 1 clearly
depicts a very general multi-echelon structure. In Section 6 where the case study is introduced, we use a more restricted
multi-echelon structure. In this section, however, we prefer to describe the model in its generic form. The figure is an
example of a network that consists of three levels, i.e. three types of facilities, but in general the model foresees an
unspecified number of levels for each operation to be supported, e.g. cleaning, rewiring, distribution centers, etc.

Customer demand exists for different types of parts, also known as different stock-keeping units (SKUs). The number
of SKUs is denoted by C (c = 1, . . . , C). The parts that need to be remanufactured enter the network at customer
locations. Moreover, a second type of entry point into the network are the production facilities of new parts. This
latter source of parts is necessary to satisfy demand for remanufactured parts when the volume of returned parts is
insufficient (see Section 4.2). By combining the part type and the entry point of the part, we can define a part p as an
unique combination of a SKU and a SKU-origin. We use p = 1, . . . , P for used parts from customer locations and
p = P + 1, . . . , 2P for newly produced parts from production facilities. As a result, the part set P is a combination
of different SKUs (when C > 1) and different SKU-origins. Parts p that belong to a specific SKU c are physically the
same part type, but they differ according to the location from which they originate. It is also important to know that a
part p ∈ {1, . . . , P} is exactly the same as a part p+ P . They only differ in their supply source, i.e. their entry point:
a part p ∈ {1, . . . , P} is supplied by the customer and is remanufactured to an as-new condition, while a part p+P is
supplied by the manufacturer and is produced from new components and raw materials.

We assume Poisson distributed demand at the different customer locations, which are represented by echelon level 0
in Figure 1. This assumption is justified when the installed base of complex machines is large compared to the demand
levels (Diaz and Fu 1997). With a large installed base, the demand process is not influenced by the lead time of the
remanufacturing service.

Remanufacturing activities include several processing steps such as inspection, cleaning, disassembly, rebearing,
rewiring, distribution, all performed at one or more facilities f . These facilities differ in their level of specialization,
i.e. some facilities may only perform one type of operation (e.g. inspection or distribution), while others are all-round
facilities and perform multiple operation types. As the level of specialization of the facilities increases, the network
will constitute more echelons.

Figure 1: Example of a reverse logistics network.

Obviously, different routings for each part p are possible across the network in Figure 1. A routing is defined by
the sequence of facilities (locations) that a part p visits, starting at an entry point and ending in a demand point,
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both located at echelon 0. If a part is subsequently transported according to the arrows 1, 2, 3 and 4, all three
echelons (e.g. inspection, rewiring and distribution) are used and the facilities at these echelons can be considered
to be specialized. For instance, a facility in echelon a is specialized in inspection. In contrast to this structure,
routing the parts through arrows one and five leads to an all-round facility at echelon a that is capable of inspection,
remanufacturing and distributing the parts. Consequently, this network structure contains only one echelon. All these
possible network structures have in common that the additional inventory of parts needed for an exchange strategy is
kept at the highest level in the network, from where the parts are sent directly to the customers. To distinguish between
the two service delivery strategies, all routings are duplicated resulting in a set of routings under the refurbishment
strategy (r = 1, . . . , Rp), and the exchange strategy (r = Rp + 1, . . . , 2Rp).

Remanufacturing activities performed along a specific routing r for a given part p are represented by o (o =
1, . . . , Opr). When multiple process steps are combined into a facility f (e.g. rebearing, rewiring and distribution), it
is represented by a single operation o. By defining different operations o into a routing r, it is possible to construct
any general network layout. It becomes even possible to have routings where parts, after being shipped from facility
f to another location for some operation, are sent back to the same facility f for subsequent operations. Furthermore,
the use of routings r with different numbers of operations, enables us to distinguish network design structures with
different echelons, i.e. different levels of specialization in the facilities.

Within these settings, we determine the optimal network structure and the optimal delivery strategy for each service
region (customer location), while obeying the main constraints of service level compliance and demand satisfaction.
Optimality is defined as profit maximization during a period T in steady-state. Our model formulation relies on three
groups of decision variables:

1. binary variables Yf decide on the opening and closing of facilities f (facility location sub-model)

2. integer variables sf decide on the number of operators in each facility f (capacity sub-model)

3. continuous variables τpr decide on the flow of parts p that must be assigned to a routing r (overall model)

The first group of decision variables is used in Section 4.3 to open (Yf = 1) or close (Yf = 0) a facility f . As
remanufacturing activities are generally quite labor intensive, we use labor (operators) as an indicator for the capacity
level. Consequently, the second group of decision variables, sf , indicates the number of operators at facility f (Section
4.4). Finally, the routing fractions τpr indicate which fraction of the incoming flow of parts p will go through the
network according to routing r. Since the flow rates are commonly used in the three sub-models and τpr-values
influence these flow rates (see Section 4.2), the third group of decision variables handles the optimal flow assigned
to the facilities by making a trade-off in the three sub-models between costs for transportation, production, capacity
and inventory. The τpr-values clearly determine the transportation cost between two locations (see Section 4.3), the
capacity level of facility f (see Section 4.4) and the inventory level in a routing r (see Section 4.5). Since we use
distinct routings for the refurbishment strategy and the exchange strategy, two strategies with different cost and price
implications, the decision on τpr simultaneously incorporates the decision on the service delivery strategy.

Although our definitions of the decision variables differ from those typically found in comparable literature as
described in section 3, these decision variables allow for a model formulation that can be efficiently solved (see section
5). Moreover, our model formulation is very flexible as it allows for different echelons, service delivery strategies and
facility types to be considered simultaneously.

4.2 Flow Rates

As explained in the previous section, parts can enter the network either from a customer location (used part sent back)
or from a production facility (newly manufactured parts). We first discuss the inflow of used parts coming from the
customer. Recall that in our setting a technician travels to the customer site, disassembles the used part and sends it to a
remanufacturing facility. Due to the high and early involvement of the service provider in the remanufacturing process,
the potential return flow equals the demand (not taking into account possible rejections due to quality problems). The
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total demand for refurbished parts at a certain customer location during the period T equals T ∗Dp, where Dp is the
demand rate per time unit for p ∈ {1, . . . , P}.

In order to start the remanufacturing process, some fraction τpr of the demand Dp has to be assigned to a routing r,
resulting in an average return rate of part p at such a routing r of

λpr = τprDp (1)

Since the total fraction assigned to all the routings r is not allowed to exceed 100%, we have the following constraint

2Rp∑
r=1

τpr ≤ 1 (2)

We note that by summing across all refurbishment routings without exchange (r ∈ {1, . . . , Rp}) and with exchange
(r ∈ {Rp + 1, . . . , 2Rp}), the decision on the fractions τpr can result in a mixed policy between the refurbishment
strategy and the exchange strategy. Moreover, the inequality in Equation 2 allows for accepting less returns in the
network than the maximum volume of T ∗Dp, if this would be more economic according to the profit function. Or in
other words, the model will decide to provide new parts if it is more profitable than delivering remanufactured ones.
For each p ∈ {1, . . . , P}, this leads to a net average arrival rate at the beginning of the reverse chain (external arrivals)
of

λp =

2Rp∑
r=1

λpr

Furthermore, additional units may be disposed of at each subsequent remanufacturing operation because the quality
standard is not met. Therefore, a scrap rate ωpro is applied to each used part p ∈ {1, . . . , P} when it leaves operation
o in routing r, while no scrap rate is assumed for new parts, i.e. ωpro = 0 ∀p ∈ {P + 1, . . . , 2P}. The average arrival
rate of part p at operation o in routing r can then be written has

λpro = λpr if o = 1

λpro = λpr
o−1∏
ȯ=1

(1− ωprȯ) if o > 1

Since total demand must be satisfied, new parts p ∈ {P + 1, . . . , 2P} are necessary to replace scrapped or uncollected
parts. The required quantity of new parts is equivalent to the demand level that is not met by remanufactured parts. The

delivery rate of remanufactured parts p ∈ {1, . . . , P} equals
2Rp∑
r=1

λprOpr
(
1− ωprOpr

)
. Consequently, the necessary

arrival rate of new parts p ∈ {P + 1, . . . , 2P} is equal to

λp = D(p−P ) −
2R(p−P )∑
r=1

λ(p−P )rO(p−P )r

(
1− ω(p−P )rO(p−P )r

)
Similar to Equation 1, we have to find values τpr to determine the flow rate of these new parts arriving from the
manufacturing plants. As we want to satisfy total customer demand for remanufactured parts, there are 2Rp − 1

additional decision variables τpr for new parts p ∈ {P + 1, . . . , 2P}) under the constraint
2Rp−1∑
r=1

τpr < 1, where the

last routing 2Rp takes the remaining units: τp(2Rp) = 1−
2Rp−1∑
r=1

τpr.

Figure 2 is a graphical, simplified representation of the generic remanufacturing system. Note that the time dimension
of planning period T (e.g. days) corresponds to the time dimension of all the flow rates in this section (e.g. parts
per day). The remainder of this section is organized as follows. First we develop the three sub-models, one for each
problem: the facility location problem, the queueing and capacity problem and the inventory problem. Then these
sub-models are integrated into an overall model for profit maximization.

6



Figure 2: Conceptual representation of the remanufacturing system.

4.3 Facility Location Sub-Model

The first sub-model deals with the number and location of facilities that must be opened according to the model. We
use a fixed set F of potential facility locations f and allow for different levels of specialization of these facilities by
defining routes with different operations, i.e. sets of activities at these facilities. For example, a facility f at a specific
location could be used to execute either inspection or rewiring activities or execute both of these activities. The level
of specialization is specified depending on the routing that is chosen according to τpr. The choice of a location for a
facility is a balancing act between different cost components: fixed facility costs, transportation costs and production
costs.

4.3.1 Facility Costs

The fixed facility costs during planning period T consist of two parts: a fixed overhead cost FFC1f (e.g. depreciation
charges, administration and management) and a fixed cost FFC2f associated with the number of operators sf . If a
facility is opened, the fixed costs are charged during each period T . The open-close decision is handled by a binary
variable Yf . Total fixed facility costs FC become

FC =

F∑
f=1

(FFC1f + FFC2fsf )Yf (3)

The opening or closing of certain facilities has an impact on the routings that can be used in order to fulfill demand.
When a facility is closed, no flow is allowed for parts p along a route r that requires facility f . As a result, we have

τpr = 0 if ∃f : Yf = 0 ∧
Opr∑
o=1

ςprof = 1 (4)

with ςprof equal to 1 if operation o for part p in routing r requires facility f and 0 otherwise.

4.3.2 Transportation Costs

The transportation costs related to operation o also consist of two parts that are dependent on the facility location: a
fixed cost FTCpro to set-up a shipment and a variable cost V TCpro that depends on the transportation distance. These
costs are charged by the carrier and are the same for refurbished and exchanged parts. They vary with the number of
shipments in a planning period T . We obtain its total cost value TC as

TC = T

2P∑
p=1

Rp∑
r=1

Opr∑
o=1

(
λpro + λp(r+Rp)o

)
(FTCpro + V TCpro) (5)
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4.3.3 Production Costs

The decision where to open facilities and which activities to allocate to these facilities will also impact the production
costs. For each unit of part p that is processed through operation o, a variable production cost for resources consumed
V PCpro has to be included. Moreover, as explained in Section 4.2, remanufacturing operations are characterized
by some fractional scrap level ωpro to handle the quality problems. For each scrapped unit, a variable disposal cost
V DCpro is added to the total production cost PC. Consequently, PC can be written as

PC = T

2P∑
p=1

2Rp∑
r=1

Opr∑
o=1

λpro (V PCpro + ωproV DCpro) (6)

4.4 Queueing and Capacity Sub-Model

The model wants to determine an appropriate combination of capacity and inventory investments. To this end, we
need to describe the relationship between capacity levels and lead times at the facilities in the network. We do this by
transforming the network into a queuing system that consists of arrival and remanufacturing processes.

4.4.1 Arrival Processes

From Section 4.2, we know that the system is characterized by an expected arrival rate λp for each part p. This is
equivalent to an expected time between arrivals of IAp = 1/λp. Given a large installed base of complex machines, it
is reasonable to assume that the arrivals follow a Poisson process with parameter λp. This Markovian arrival pattern
leads to a squared coefficient of variation (SCV) at the entry points of c2IAp = 1, a measure that describes the variability
level of the interarrival times. As a result, assigning fractions τpr to routes r does not change the SCV of the interarrival
times at the entry point of these individual routes, referred to by c2IApr (Whitt 1983). Such an entry point can then be
modeled as an M/G/m queue. However, higher echelon facilities will face a variability at their inbound that depends
on the variability and utilization levels at all lower echelon facilities (see Equation 10). Since the arrival process at
these facilities is no longer Poisson, the resulting queues are modeled as G/G/m queues.

The next step is to aggregate at each facility f , the rates of all arriving parts p into a single arrival process. This results
in an average aggregate arrival rate λf and a SCV of the aggregate interarrival times c2IAf at a facility f . When we

define the aggregate arrival rate of part p at facility f as λpf =
2Rp∑
r=1

Opr∑
o=1

λproςprof , we have λf =
2P∑
p=1

λpf . It consists of

facility arrivals that are both internal (i.e. coming from another facility) and external (i.e. coming from the customer).

The external aggregate arrival rate at facility f is determined by λ′f =
2P∑
p=1

2Rp∑
r=1

λpr1ςpr1f . The SCV of the external

aggregate interarrival times c′2IAf is also equal to 1 due to the Markovian arrival process, but the value of the internal
aggregate interarrival times c2IAf depends on the variability and utilization levels of production processes along a part’s
route. Expressions for these values are derived in the next section.

4.4.2 Remanufacturing Processes

In this section we elaborate on the relationship between capacity levels and lead times of the operations. For each part
p that requires an operation o along route r, we have the following production characteristics: expected unit processing
time PRpro with SCV c2PRpro and variance σ2

PRpro
. The expected unit process rate µpro equals 1/PRpro. As we work

with single unit flows, possible set-up times that occur when processing different parts, can be incorporated into the
processing time and the corresponding SCV and variance. We allow the processing time characteristics to be part
dependent: not only different SKUs c differ in remanufacturing process times due to e.g. part size or complexity,
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also the SKU-origin has an impact on the required remanufacturing times. Depending on their origin, parts may have
been exposed to different working conditions such as heat and moisture and may have received different preventive
maintenance treatments.

In our stochastic model, we have to take into account possible disruptions resulting in a reduced availability of capacity.
Therefore, we transform the natural expected value and variability of the processing time into effective measures using
the capacity availability Af (Hopp and Spearman 2000). We have

Af =
(Wf−PMf )(MTBFf/(MTTRf+MTBFf ))Ef

T

PRepro = PRpro/

(∑
f

Af ςprof

)
σ2
PRepro

= c2PRproPRe
2
pro + 2PRepro

∑
f

MTTRf (1−Af ) ςprof

The availability of capacity depends on the characteristics of the required machinery at facility f , i.e. the Mean-
Time-To-Repair (MTTRf ), the Mean-Time-Between-Failures (MTBFf ), the number of working time units (Wf ),
the number of time units for preventive maintenance (PMf ) and the factor Ef to deal with the residual efficiency
losses. Likewise, one could state more generally that availability depends on the number of potential working time
units (Wf ) minus the planned interruptions e.g. labor union meetings, multiplied by a correcting factor for unplanned
interruptions (MTBFf/(MTTRf +MTBFf )) and residual inefficiencies (Ef ). Note that all these characteristics
for route r are exactly the same as for route r + Rp because there is no difference in the remanufacturing process for
a refurbishment and an exchange strategy.

As with the arrival processes, we need to aggregate the processing characteristics of all the parts p at a facility level.
The expression for the average process time at facility f is a weighted average over all the parts across all the routings
and all the operations performed in facility f

PRf = 1/µf =

2P∑
p=1

Rp∑
r=1

Opr∑
o=1

(
λproςprof + λp(r+Rp)oςp(r+Rp)of

)
λf

PRepro (7)

while its SCV becomes

c2f =

[
2P∑
p=1

Rp∑
r=1

Opr∑
o=1

(λproςprof+λp(r+Rp)oςp(r+Rp)of)
λf

(PRepro)
2

]
µ2
f − 1+

2P∑
p=1

Rp∑
r=1

Opr∑
o=1

(λproςprof+λp(r+Rp)oςp(r+Rp)of)
λf

σ2
PRepro

(PRepro)
2

(8)

Apart from flow rates and processing times, the capacity level sf and the resulting utilization level ρf at a facility f
will also impact its lead time of remanufacturing parts. The facility utilization is determined by the following equation,
also known as the adapted traffic intensity

ρf =
λf
µfsf

=
2P∑
p=1

Rp∑
r=1

Opr∑
o=1

(
λproςprof + λp(r+Rp)oςp(r+Rp)of

)
PRepro/sf ≤ 1

(9)

The final input parameter for the queueing network model is the SCV of the aggregate interarrival times at facility f or
c2IAf . This can be derived if we know the variability of interdeparture times of parts leaving the lower echelon facility
f ′. Buzacott and Shanthikumar (1993) have presented several approximations for systems with multiple servers, but
we opt for the following linking equation (Hopp and Spearman 2000):

c2IDf′ ≈ 1 +
(
1− ρ2f ′

) (
c2IAf′ − 1

)
+

ρ2f ′√
sf ′

(
c2f ′ − 1

)
(10)
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which not only depends on the facility utilization, but also on its production and arrival process variability level.

Next, we use a result from Shanthikumar and Buzacott (1981) for the relationship between c2IDf′ and the SCV of the
aggregate interarrival time at facility f for units coming from facility f ′, represented by c2IAf′f . This depends on πf ′f ,
the fraction that is going from facility f ′ to f

c2IAf′f = πf ′fc
2
IDf′

+ (1− πf ′f ) (11)

The expression for c2IAf is the sum of a weighted average of c′2IAf and c2IAf′f

c2IAf =
∑
f ′

(
λf ′

λf
πf ′f

)
c2IAf′f +

λ′f
λf
c′2IAf

which, based on Equation 11 with c2IAf′f replaced by 1 (external Poisson arrivals), becomes

=
∑
f ′

(
λf ′

λf
πf ′f

)(
πf ′fc

2
IDf′

+ (1− πf ′f )
)
+
λ′f
λf

and when combined with Equation 10 results in

≈
∑
f ′

(
λf′

λf
πf ′f

)(
πf ′f

[
1 +

(
1− ρ2f ′

)(
c2IAf′ − 1

)
+

ρ2
f′√
sf′

(
c2f ′ − 1

)]
+ (1− πf ′f )

)
+

λ′f
λf

(12)

Reorganization of Equation 12 when expressed as an equality, leads to F linear equations with F unknown parameters
c2IAf

∀f : −
∑
f ′
λf ′π

2
f ′f

(
1− ρ2f ′

)
c2IAf′ + λfc

2
IAf

=
∑
f ′
λf ′πf ′f

(
πf ′fρ

2
f ′

(
1 +

c2
f′−1√
sf′

)
+ 1− πf ′f

)
+ λ′f (13)

To solve these equations and to find values for c2IAf , we have to obtain the transition matrix, which consists of

1. the proportion of units from outside the system (stage 0) and going to the first facility in the routing (stage f )

π0f = λ′f/
∑
f

λ′f

2. the proportion of units from facility f ′ (stage f ′) and going to the next facility in the routing (stage f )

πf ′f =

2P∑
p=1

2Rp∑
r=1

Opr−1∑
o=1

λpro (1− ωpro) ςprof ′ςpr(o+1)f/λf ′

3. the proportion of units from the last facility in the routing (stage f ) and leaving the system (stage 0)

πf ′0 =

2P∑
p=1

2Rp∑
r=1

λprOpr
(
1− ωprOpr

)
ςprOprf ′/λf ′

At this point we are able to estimate the expected lead time for part p at an operation o along route r, which takes place
at facility f , by using the approximation from Whitt (1993). It is an accurate GI/G/m-model with a correction factor φ
that applies to a system under heavy traffic conditions with multiple parallel servers (Hopp and Spearman 2000). We
refer to the Appendix A for more details about this factor φ. Equation 14 provides us with the relationship between
the expected lead time of an operation in function of the capacity decision.
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EWpro ≈
∑
f

EWQf ςprof + PRepro (14)

with

EWQf ≈ φ
(
ρf , c

2
IAf

, c2f , sf

)(c2IAf + c2f

2

)ρ
√

2(sf+1)−1
f

sf (1− ρf )

PRf (15)

Since the lead time clearly depends on capacity, the capacity decision can be linked with customer service and
inventory levels.

4.5 Inventory Sub-Model

At this point, the relationships between the facility location and the corresponding costs on the one hand and the
capacity decisions and lead times on the other hand have been explained. Now, appropriate inventory levels have to
be set in order to meet the service levels. We first determine the inventory level for the refurbishment strategy with an
exchange option. Next, we adapt the reasoning to provide the inventory level for the refurbishment strategy without
an exchange option.

When executing an exchange strategy, an inventory of parts that can be shipped directly to the customers is required.
Contrary to many settings described in the literature, our model deals with a network where this inventory is held at
the highest echelon of a selected route. This characteristic is motivated by the case-study. Consequently, all inventory,
except the inventory in process, resides at the highest echelon in a route. Each part ordered by a customer will be sent
from the highest echelon directly to the customer location. The shipment of the part is coordinated with the arrival
of a field technician at the customer site. Next, the technician disassembles the machine and replaces the used part.
The removed part is sent to a remanufacturing center to be processed and to replenish the inventory of as-new parts.
Therefore, there is an automatic replenishment of the inventory by the take-back of the used part. Consequently, the
inventory model can be considered to be a continuous review, one-for-one replenishment policy, i.e. an (S − 1, S)
inventory system, in which S is the order-up-to level. Note that in case the used part is scrapped, the inventory
is replenished by adding a newly produced part. Moreover, the assumption of a transportation quantity of one unit
further supports this type of inventory system. Figure 3 gives a graphical representation of the inventory residing in the
remanufacturing network. In essence three types of inventory can be identified in case of refurbishment with exchange
services (left hand side of Figure 3). First, some parts will be in transport or being remanufactured. Secondly, due to
limited capacity at the facilities some parts will be waiting at a facility until processing capacity becomes available.
Lastly, as exchange service includes the instantaneous exchange of the used part by an already remanufactured part,
a sufficient number of as-new parts must be available at the highest echelon for direct shipment to customer locations
(this inventory is indicated as "commercial inventory").

Figure 3: Representation of inventory across remanufacturing network.
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Similar to Nozick and Turnquist (2001)), we derive appropriate order-up-to levels S based on a target stock-out
probability. The order-up-to level S exists of two components: inventory to cover the expected demand during total
lead time, further referred to as µ̂DDLT , and additional inventory at the end of each routing r ∈ {Rp + 1, . . . , 2Rp}
to guarantee a specific service level, further referred to as safety stock (ŜS). So we have S = µ̂DDLT + ŜS, and to
estimate values for µ̂DDLT and ŜS, several steps are required.

The first step is determining the total expected lead time along a route r for each part p as

LTpr ≈
Opr∑
o=1

(TRpro + EWpro)

and its variance as

σ2
LTpr ≈

Opr∑
o=1

σ2
TRpro +

∑
f

σ2
WQf

ςprof + σ2
PRpro


where

σ2
TRpro

= c2TRproTR
2
pro

and where the transportation process related to each operation o is characterized by an expected transportation time
TRpro and an associated SCV c2TRpro . From these two parameters, its variance σ2

TRpro
can be derived. For the

variance of the facility waiting time σ2
WQf

, we opt for the approximation from Whitt (1993) (see Appendix B).

We recall that we have defined a part p as a unique combination of a SKU c and an entry point. Clearly, inventory is
held for each of the SKUs separately, but irrespectively of the entry point (demand origin). For example, if demand
for a specific part type exists in two regions which are both supplied by the same facility, both regions will obtain parts
from the same inventory at that facility. Therefore, the next step is to obtain an aggregated total expected lead time of
a SKU c. This is based on the total expected lead time of all parts p that belong to the SKU c, indicated by a parameter
υcp = 1. When part p does not belong to SKU c, we have υcp = 0. The lead time experienced by a SKU c when it
reaches the outbound of the highest echelon facility f (i.e. at operation Opr) equals

LTcf ≈
2P∑
p=1

υcp

2Rp∑
r=Rp+1

λprOpr
(
1− ωprOpr

)
ςprOprf

λcf
LTpr (16)

and its variance is

σ2
LTcf

≈
2P∑
p=1

υcp

2Rp∑
r=Rp+1

λprOpr
(
1− ωprOpr

)
ςprOprf

λcf

LT 2
pr + σ2

LTpr

(
LT 2

cf

LTpr

)2
− LT 2

cf

where

λcf =

2P∑
p=1

υcp

2Rp∑
r=Rp+1

λprOpr
(
1− ωprOpr

)
ςprOprf

We refer to Equation 8 to explain the derivation of this aggregate variance, knowing that c2cf = σ2
LTcf

/LT 2
cf .

Once the lead times are known, the final step is to determine the order-up-to level Scf that must be available to satisfy,
with a service level of xcf%, the demand for parts of SKU c, where facility f is used at the end of an ’exchange’-
routing. To this end, we need the distribution of the demand during the lead time. Nozick and Turnquist (2001) use
Palm’s Theorem to justify their choice for a Poisson distributed demand during lead time. However, Palm’s Theorem
relies on the assumption of ample (infinite) capacity. As we take capacity decisions explicitly into account, the use
of a Poisson distributed demand during lead time is in disagreement with the queueing relationships in our model.
The distribution of the demand during lead time is a convolution of the demand distribution, which we assume to be
Poisson, and the lead time distribution, which we assume to be lognormal. These assumptions are confirmed by Diaz
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and Fu (1997) for the Poisson arrivals and Lambrecht et al. (1998) for the lognormality of the lead times. In order
to identify a parametric distribution for the demand during lead time, we follow the approach of Tadikamalla (1984).
When the demand distribution and the lead time distribution are not known, they propose the lognormal, the gamma
and the Weibull as adequate distributions for the demand during lead time. When both distributions are known, which
is the case here (Poisson and lognormal respectively), they suggest a mathematical expression followed by the selection
of the best approximate distribution. Since a closed form for this mathematical expression is not guaranteed, we have
conducted a simulation study to find the general, best fit under our distribution assumptions. This approach is also
viable because of its computational simplicity. First, observations are sampled from both a Poisson and a lognormal
distribution with different parameters, i.e. Poisson arrivals with parameters {0.25, 0.5, 0.75, 1, 2, 4, 6, 8} for the
daily rates in combination with a lognormal lead time with a fixed mean of 10 days and standard deviation levels of
{1, 5, 10, 15} (in total 32 scenarios are considered). Next, the observations are convoluted to calculate the demand
during the lead time and a set of parametric distributions is fitted to the demand data. Figure 4 summarizes the results
for different distributions. Conform with the results of Tadikamalla (1984), we observe that the Weibull distribution
performs strongly, however, the Beta distribution has a even better and more stable performance. Consequently, we
opt to use the Beta distribution to approximate the distribution of the demand during lead time.

Figure 4: Summary of the experimental results for the demand during lead time distribution.

Two parameters αcf and βcf describe the mean µ̂DDLTcf and the variance σ̂2
DDLTcf

of the Beta distribution for the
demand during the lead time according to

µ̂DDLTcf =
αcf

αcf+βcf

σ̂2
DDLTcf

=
αcfβcf

(αcf+βcf )
2(αcf+βcf+1)

with µ̂DDLTcf ≈ λcfLTcf (Little’s law) and σ̂2
DDLTcf

≈ σ2
Dcf

LTcf + σ2
LTcf

λ2cf , and where σ2
Dcf

is the variance of
the demand for SKU cwith facility f at the highest echelon. For the Poisson distributed demand, we have σ2

Dcf
= λcf .

Solving both equations for αcf and βcf leads to

αcf = µ̂DDLTcf

(
µ̂DDLTcf (1−µ̂DDLTcf )

σ̂2
DDLTcf

− 1

)
βcf =

(
1− µ̂DDLTcf

)( µ̂DDLTcf (1−µ̂DDLTcf )
σ̂2
DDLTcf

− 1

)
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The xcf% quantile of the beta distribution qbeta(xcf%, αcf , βcf ) determines the level of Scf . Note that Scf is also
equal to µ̂DDLTcf + ŜScf , so we have ŜScf = qbeta(xcf%, αcf , βcf )− µ̂DDLTcf .

This S-level ensures that the output rate at the end of the system can be sustained with a service level of xcf%. It can
be split into two components: µ̂DDLTcf , which naturally arises at any facility f along a route r ∈ {Rp + 1, . . . , 2Rp},
and ˆSScf , which is held at the end of the system. Nevertheless, when there is scrap in a remanufacturing route, the
flow rates along this route are larger than its output rate. As a result, more inventory arises naturally along such a route.
If we define ENpro as the total expected number of parts p at each operation o in these routings r, we can determine
their value by applying their total expected arrival rates to the total expected delays (Little’s Law). These delays are
the transportation time TRpro and the lead time from Equation 14. We have

ENpro ≈ λpro (TRpro + EWpro) (17)

Finally, the total inventory costs IC1 in the refurbishment network with exchange becomes

IC1 ≈
2P∑
p=1

2Rp∑
r=Rp+1

Opr∑
o=1

HCproENpro +

C∑
c=1

F∑
f=1

HCcf ŜScf (18)

where HCpro and HCcf are defined as the cost to keep one unit in stock during planning period T . HCcf should be
interpreted as an aggregate unit inventory cost obtained by Equation 16 with LTpr replaced by HCprOpr . Note that all
ENpro units are part of µ̂DDLTcf when there is no scrap from this operation onwards in route r, while only a fraction
of ENpro is part of µ̂DDLTcf when that is the case.

In contrast to the refurbishment with exchange, the refurbishment without exchange does not require the service
provider to maintain an inventory of remanufactured parts (see also right hand side of Figure 3). Consequently, the
inventory in that network type is limited to work in process, which is equal to ENpro. The inventory costs can then be
written as

IC2 ≈
2P∑
p=1

Rp∑
r=1

Opr∑
o=1

HCproENpro (19)

with ENpro similar to Equation 17, but for routings r ∈ {1, . . . , Rp}.

Total inventory cost equals IC ≈ IC1 + IC2.

4.6 Profit Maximization Model

All the relationships discussed so far can be combined to characterize all trade-offs involved. As we want to take
a profit perspective, we still need to determine the expected revenue. It clearly depends on the extent to which the
refurbishment demand is fulfilled by a delivery strategy with or without an exchange option. We have

REV = T

2P∑
p=1

2Rp∑
r=1

(
1− ωprOpr

)
λprOprSPpr (20)

Revenue from part p (p = {1, . . . , 2P}) is generated in a routing r (r = {1, . . . , 2Rp}) by multiplying the part
specific unit selling price SPpr by its volume sold. This volume equals the departure rate at the last operation in route
r (
(
1− ωprOpr

)
λprOpr ) times the number of time units T . We know from Section 4.2 that the total volume delivered

to the market must match its total demand T ∗ Dp. As a results, also new parts p ∈ {P + 1, . . . , 2P} are delivered
to satisfy the demand that is not covered by remanufactured parts. The selling price SPpr can differ between parts
and even between routings. This is useful to distinguish between regional prices and to charge a price depending on
the service delivery strategy. We can argue that a customer’s willingness to pay is higher for refurbishment with an
exchange because of the faster response time (delivery from stock). For a refurbishment service without an exchanged
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part, the customer has to wait until the entire remanufacturing process is finished, leading to a prolonged machine
down time. However, a customer’s request to receive its own, initial part may result in a higher willingness to pay for
refurbishment without exchange.

In this work, we maximize profit for the remanufacturing business without taking into consideration the new equipment
business. Although in some settings it can be argued that increased remanufacturing services will negatively impact
new equipment sales, we do not consider this potential cannibalization of new sales. This assumption is justified in our
case study due to the intense competition in the remanufacturing business, i.e. if the company does not remanufacture
the part, the company’s competitors will perform the service.

Finally, another cost component of the objective function must still be established to cover cost differences between
refurbishment strategies with and without the exchange option. On the one hand, the exchange strategy is characterized
by higher inventory costs (Section 4.5), but on the other hand, it is characterized by a field technician process time that
is only half the time needed for a refurbishment without exchange. Whereas for an exchange the technician visits the
customer only once, two interventions are required for a refurbishment without exchange: one intervention to retrieve
the part and another intervention to re-install the part. Since the difference in inventory costs is already taken into
account, we formulate the transportation and labor costs of the technicians (TeC) here

TeC = T

2P∑
p=1

2Rp∑
r=1

(
1− ωprOpr

)
λprOprFTeCprOpr (21)

Since total volume to be uninstalled equals total volume to be installed, we focus on the net volume that exits the
last operation in each routing of part p. We distinguish between the different number of required field trips in both
refurbishment strategies by defining a fixed cost FTeCprOpr for a strategy without exchange that is twice the value of
FTeCprOpr for a strategy with exchange.Equations 3, 5,6, 18, 19, 20 and 21 can be summarized in the profit objective
function

Profit ≈ REV − FC − TC − PC − IC − TeC

We maximize the profit subject to equations 2, 4, 9 and the constraints 0 ≤ τpr ≤ 1 ∀τpr.

5 Model Optimization

The network optimization model that is described in Section 4 consists of three difficult sub-problems that are
simultaneously solved, subject to the goal of overall network profit maximization:

1. the facility location problem: binary variables Yf decide on the opening and closing of facilities

2. the capacity problem: integer variables sf decide on the number of servers in each facility

3. the inventory problem: the (S-1,S) parameters decide on the inventory position

The continuous variables τpr that decide on the flow of each part p to be assigned to each routing r, drive the overall
model towards a solution that is optimal from the perspective of the three sub-problems simultaneously. At the same
time an optimal mix is obtained of new and as-new parts as well as an optimal mix of refurbishment service policies
with and without exchange.

Moreover, we have a non-linear objective function and non-linear constraints. The queueing formulas for the expected
waiting times are not only non-linearly dependent on the utilization level ρf , which depends on the decision variables
sf and τpr, the numerous conditional relationships in the correction factor φ(ρf , c2IAf , c

2
f , sf ) make it difficult to

solve. As a result, the model can be classified as a mixed integer non-linear programming problem (MINLP). Finding a

15



global optimum for such problems is hard because all the difficulties of two NP-complete sub-problems are combined:
the combinatorial nature of discrete programs and the difficulty in solving non-linear programs. The computational
complexity not only grows exponentially with the number of discrete variables and the number of decisions within
each discrete variable, but also with the number of variables creating non-linearities into the model.

The methods for solving MINLP problems are usually divided into two main categories: deterministic and stochastic
solution methods. All these methods use a structured search process, but they differ in the way they run through
it. Deterministic methods, such as branch-and-reduce (Ryoo and Sahinidis 1995) and (Ryoo and Sahinidis 1996),
the αBB branch-and-bound (Adjiman et al. 1997) and (Androulakis et al. 1995), Barton’s branch-and-cut (Kesavan
and Barton 2000), interval analysis based methods (Vaidyanathan and El-Halwagi 1996) and the extended cutting
plane (Westerlund et al. 1998), run through the algorithm in a predefined way, which means that for a given set of
algorithm control parameters, the next step of computation is always exactly known and determined. On the other
hand, stochastic global optimization methods (also known as adaptive random search methods), such as Differential
Evolution (Storn and Price 1997), adaptive Lagrange-multiplier methods (Wah and Wang 1999), simulated and nested
annealing (Rajasekaran 2000), ant colony simulation (Mathur et al. 2000) and tabu search (Chelouah and Siarry 2000),
run through the algorithm in a way that is unknown in advance, which means that for a given set of algorithm control
parameters, the next step of computation is always unknown and undetermined.

After studying seven difficult design and control MINLP problems in chemical engineering, Babu and Angira (2002)
conclude that the technique of Differential Evolution (DE) heuristic, which is a member of the broader family of
genetic algorithms, is the best evolutionary computation method. According to Lampinen and Zelinka (1999), DE
outperforms any of the competing methods like branch & bound using sequential quadratic programming, integer-
discrete-continuous non-linear programming, simulated annealing, genetic algorithm, non-linear mixed-discrete
programming, etc., also for hard non-linear objective functions with multiple non-trivial constraints.

Lieckens and Vandaele (2007) have shown that DE also performs very well for a stochastic reverse logistics network
design model. As a result, we opt to use it as an appropriate solution method for our network design problem. This
choice is also motivated by the following DE characteristics (Storn and Price 1997)

– it is simple, fast and robust;

– it has a superior global optimization ability;

– it can easily be implemented in a parallel computing environment to speed up the optimization;

– it is effective in non-linear optimization and can be very easily adapted for mixed parameter optimization;

– it handles undifferentiable objective functions;

– it operates on flat surfaces;

– it can provide multiple solutions in a single run.

Briefly summarized, the first step of DE is the creation of an initial population of different elements. Each element
contains a value for each decision variable (Yf , sf and τpr), randomly selected between relevant lower and upper
bounds. Feasible solutions are initially not guaranteed, but it is the difference of randomly sampled population
elements in combination with a constraint handling procedure that drives the mutation and recombination process
towards better performing childs in the population. Different mutation schemes can be selected, but they all reflect
information of the objective function that is being optimized. Instead of using only local information for each
population element, DE mutates all elements with the same universal distribution. In this way, the whole search
space is covered and a global optimum can be found. Another advantage of DE for mixed integer problems is that
discrete variables (Yf and sf ) are treated as continuous values to create subsequent childs (this maintains the diversity
of the population), while they are rounded at the moment of objective function evaluation (this avoids sub-optimal
results because only feasible solutions give feedback to the optimization process). We refer to Lieckens and Vandaele
(2007) for more details about how the algorithm is applied.
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6 Case study

Our research is motivated by the challenge of designing a remanufacturing network at a worldwide manufacturer of
construction, mining and industrial equipment. We apply the model for a European setting of one of their business
areas. Due to confidentiality reasons all further specifications of company data have been omitted.

The questions to answer are the following: should refurbishment be promoted with or without the exchange option?
At which locations are investments in facilities required and what are the appropriate capacity levels in these facilities?
How high are the necessary inventory levels to support the service delivery strategy? Answering these questions also
includes determining the routing of the parts through the network.

In order to keep the problem traceable, we aggregate all SKUs into one aggregate SKU (C = 1). The structure of the
(potential) network is represented in Figure 5. The network contains two echelons with possible facility locations in
five regions (F = 5) and the option to use an existing centralized distribution center in the second echelon. Moreover,
customers who are served by traveling technicians are clustered into five customer locations corresponding to the five
regions. Although traveling time (and cost) for these technicians are considered, we assume that ample capacity is
available in the field. Furthermore, the transportation capacity for the products being transported between the different
echelons of the network is assumed to be infinite as it is the responsibility of a third party logistics company. The two
service delivery strategies are being offered across the network but prices differ between regions. As it is assumed that
a remanufactured part performs as good as a new part, customers are not charged additionally when they receive a new
part instead of a remanufactured one (SPpr = SP(p+P )r ∀p ∈ {1, ..., P}).

Figure 5: Case study network.

The five regions are characterized by different cost, demand and price structures. Clearly, it is difficult to estimate
customers’ sensitivity to pricing and marketing decisions of the company. Therefore, we search the optimal network
structure and delivery strategy for different scenarios of prices and volumes. The volumes and prices are based on
guidelines of the marketing department and an internal survey. As can be seen from Table 1, we allow for six demand
levels ranging from a minimal market penetration (level 1) to full market potential (level 6). At the same time, the
relative selling price of an exchange compared to a refurbishment alternates between three levels: low, intermediate
and high.

Table 1 gives an overview of the results obtained for the different instances tested. We observe that for each volume and
price setting, it is optimal to limit the network to a sole echelon, i.e. parts are transported directly form the customer to
an all-round facility and from this facility back to a customer. The possibility to use a dedicated centralized distribution
center is not selected by the model. The volume plays an important role in the level of centralization. Indeed, only two
facilities should be opened at the lowest volume level, while the number of facilities can go up to 4 and even 5 facilities
at the highest volume level. Nevertheless, we remark that the optimal profit level reduces only slightly when too few
or too many facilities are opened. This relationship is graphically represented in Figure 6. Moreover, opening too
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Table 1: Summary results of case study.

many facilities is less detrimental than opening too few of them. Growing volume also justifies hiring more operators
and the optimal utilization rates of the operators increases.

Figure 6: Relationship between profit and number of facilities.

As could be expected, the relative selling price of exchange service plays a key role to determine the optimal service
delivery strategy. Whereas the refurbishment without exchange strategy is to be preferred at low price levels for
exchange, regions will switch towards exchange service as the relative price of such service increases. If a high relative
selling price can be obtained, regions should unanimously opt for an exchange strategy. At the intermediate relative
price level, the refurbishment strategy should only be followed in one region. This particular region has the divergent
feature that customers have a strong preference to recollect their own part and as such value refurbishment without
exchange more strongly than customers in other regions. Furthermore, field technician costs are low in this region.
Recall that refurbishment without exchange requires an additional visit of a technician compared to the exchange
option. Both the lower wage cost of technicians and the higher willingness to pay for refurbishment explain the
high attractiveness of a refurbishment strategy in this region. Interestingly, as the exchange service becomes more
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popular due to its increasing selling price, the optimal utilization rate of the operators goes down. Here the queueing
dynamics are at play, lower utilization rates equal shorter lead times. Due to the higher inventory requirements of an
exchange policy, shorter lead times are especially advantageous as some inventory holding costs can be avoided. In
the exchange strategy, the potential savings in inventory advocate a higher investment in capacity and consequently
target lower utilization rates in order to reduce the lead time of the remanufacturing process.

7 Conclusions

Although remanufacturing networks have been primarily studied in a military context, many companies have
significant remanufacturing activities. Accordingly, in this paper we have taken a profit maximization perspective
when optimizing the remanufacturing network design and delivery strategy. The choice of a certain service delivery
strategy, either refurbishment with or without an exchange of the parts, has implications on the generated revenues and
the cost parameters to optimize the network. Next to the service delivery decision and resulting profit perspective of
the developed model, our contribution lies in the simultaneous solution of three related network design problems, i.e.
the facility location, capacity and inventory problem.

Our research is motivated by a real-life case study at a worldwide manufacturer of industrial, construction and mining
equipment. Within a multi-echelon repairable network structure, we determined the optimal number, type and location
of remanufacturing facilities. Taking into account the stochastic nature of both demand and processing times, queuing
theory was applied to set proper capacity and inventory levels, while upholding customer service. Due to the non-
linearity of the problem formulation, we solve the problem by applying a differential evolution search technique. The
case study results emphasize the importance of volume as a driver for decentralization. Indeed, we observe that in the
range of plausible volumes the number of remanufacturing facilities goes up from two to five as the volume increases.
Secondly, the selling price is the main driver for the choice for the service delivery strategy. More interesting however,
is the observation that the optimal network structure (capacity levels) is influenced by the choice of a service delivery
strategy. As the optimal network structure differs between service delivery strategies, we emphasize the need to
simultaneously analyze the network and service contract design.

The authors acknowledge that the insights retrieved from the case study need further backing by more case study
research and sensitivity analysis. Nevertheless, our research shows that a holistic approach in network optimization
is necessary. We also demonstrate that fundamental and applied research goes hand in hand. No need to say that the
model offers several possibilities to extend the work such as the introduction of transportation batches, limited field
technician capacity or non-Poisson distributed demand.

A Correction factor φ in the GI/G/m-model

φ
(
ρf , c̃

2
IAf

, c̃2f , sf

)
=



(
4
(
c̃2IAf

−c̃2f
)

4c̃2IAf
−3c̃2f

)
φ1 (sf , ρf ) +

(
c̃2f

4c̃2IAf
−3c̃2f

)
ψ
(
c2, sf , ρf

)
c̃2IAf ≥ c̃

2
f

(
c̃2f−c̃

2
IAf

2
(
c̃2IAf

+c̃2f

)
)
φ3 (sf , ρf ) +

(
c̃2f+3c̃2IAf

2
(
c̃2IAf

+c̃2f

)
)
ψ
(
c2, sf , ρf

)
c̃2IAf ≤ c̃

2
f

where
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φ1 (sf , ρf ) = 1 + γ (sf , ρf )

φ3 (sf , ρf ) = (1− 4γ (sf , ρf )) e
−

2(1−ρf)
3ρf

ψ
(
c2, sf , ρf

)
=


1 c2 ≥ 1

φ4 (sf , ρf )
2(1−c2) 0 ≤ c2 ≤ 1

with

γ (sf , ρf ) = min

{
0.24,

(1−ρf )(sf−1)[(4+5sf )
0.5−2]

16sfρf

}
c2 =

c̃2IAf
+c̃2f

2

φ4 (sf , ρf ) = min
{
1,

φ1(sf ,ρf )+φ3(sf ,ρf )
2

}

B Variance of the waiting time in the GI/G/m-model

If c2WQf
, the SCV of the waiting time in the queue at facility f , is known, its variance can be obtained according to

σ2
WQf

= c2WQf
(EWQf )

2

Whitt (1993) proposes the following relationship for c2WQf
, which is based on c2CWQf

, the SCV of the conditional
wait given that the facility f is busy

c2WQf
=
(
c2CWQf

+ 1− P (WQf > 0)
)
/P (WQf > 0)

To calculate c2CWQf
the exact formula for the M/G/1 model is used as an approximation for the M/G/m and G/G/m

model because the conditional delay should depend much more on the service time-distribution than on the interarrival
time distribution

c2CWQf
= 2ρf − 1 + 4 (1− ρf ) d̃3f/3

(
c̃2f + 1

)2
with

d̃3f =


3c̃2f

(
1 + c̃2f

)
if c̃2f ≥ 1

(
2c̃2f + 1

)(
1 + c̃2f

)
if c̃2f < 1

For the probability of delay, we have

P (WQf > 0) = P
(
WQ

(
ρf , c̃

2
IAf

, c̃2f , sf

)
> 0
)
= min {κ, 1}

where

κ =


κ1 if sf ≤ 6 ∨ γ ≤ 0.5 ∨ c̃2IAf ≥ 1

κ2 if sf ≥ 7 ∧ γ ≥ 1 ∧ c̃2IAf < 1

κ3 if sf ≥ 7 ∧ 0.5 < γ < 1 ∧ c̃2IAf < 1

with
κ1 = ρ2fκ4 +

(
1− ρ2f

)
κ5

κ2 = c̃2IAfκ1 +
(
1− c̃2IAf

)
κ6

κ3 = 2
(
1− c̃2IAf

)
(γ − 0.5)κ2 +

(
1− 2

(
1− c̃2IAf

)
(γ − 0.5)

)
κ1
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κ4 = min

1,
1−z

[
(1+c̃2f)(1−ρf)

√
sf

c̃2
IAf

+c̃2
f

]
1−z[(1−ρf )

√
sf ]

P
(
WQ (M/M/m)f > 0

)
κ5 = min

1,
1−z

[
2(1−ρf)√sf
c̃2
IAf

+1

]
1−z[(1−ρf )

√
sf ]

P
(
WQ (M/M/m)f > 0

)
κ6 = 1− z [γ]

γ = (sf − sfρf − 0.5) /

√
sfρf

(
c̃2IAf + c̃2f

)
/
(
1 + c̃2f

)
P
(
WQ (M/M/m)f > 0

)
= ((sfρf )

sf ) / (sf ! (1− ρf )) ζ

ζ ≡

(
(sfρf )

sf

sf !(1−ρf ) +
sf−1∑
k=0

(sfρf )
k

k!

)−1

and z [x] the standard normal cumulative distribution function.
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