


Quantum Hidden Markov Chains

Jeroen Wouters

Supervisor:
Prof. Dr. M. Fannes

Jury:
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Abstract

English abstract

In this thesis we study quantum mechanical processes with a Markovian character.
We focus on matters that are of interest for quantum information theory. There are
three main topics: capacity of memory channels, quantum correlations in bipartite
systems and asymptotic entropy densities.

Capacity is the amount of information that can reliably be sent through a
communication channel. In practical applications, it is an important problem
to understand the influence of noise on capacity. The simplest assumption on
the type of noise is that at each use of the channel it is independent of previous
transmissions. Here, however, we have studied a model channel that does have
noise correlations governed by a Markov process. The capacity of our channel
turns out to be related to the entropy density of a classical hidden Markov process.
We introduce a well-known method for calculating this density and describe an
efficient numerical method for determining the capacity. Finally, we analytically
study the effect of increasing noise correlations on the channel capacity.

A long term goal is to extend the method used for computing entropy densities
of classical hidden Markov process to quantum mechanical systems. To this end
we explore what could be understood by ”quantum Markov processes”. Similarly
to classical Markov processes this can be done by limiting the dependence of the
process on its history. To do this for quantum systems however, one needs to adapt
the notion of conditioning. We describe the concept of conditional state spaces and
explore its use to generate quantum correlations.

Finally, the calculation of the asymptotic entropy density that was introduced
for classical Markov processes is extended to certain quantum Markov processes.
We perform this calculation explicitly for free Fermionic Markov chains. For this
purpose we extend a well-known theorem by Szegö concerning the asymptotic
behaviour of the eigenvalues of Toeplitz matrices.
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Nederlandse abstract

In deze thesis bestuderen we kwantumprocessen met een Markoviaans karakter. We
leggen de nadruk op thema’s die van belang zijn in kwantuminformatietheorie. Er
zijn drie hoofdonderwerpen: de capaciteit van geheugenkanalen, kwantumcorrelaties
in tweeledige systemen en asymptotische entropiedichtheden.

Capaciteit is de hoeveelheid informatie die op een betrouwbare manier kan
verzonden worden door een communicatiekanaal. In de praktische toepassingen
is het van belang te weten hoe de capaciteit zich gedraagt onder invloed van ruis.
De eenvoudigste aanname over de aard van de ruis is dat deze bij elk gebruik
van het kanaal onafhankelijk is van eerdere verzendingen. Hier hebben we echter
een modelkannal bestudeerd dat wel ruiscorrelaties heeft die worden aangestuurd
door een Markovproces. De capaciteit van ons kanaal blijkt verbonden te zijn
aan de entropiedichtheid van een klassiek Markovproces. We introduceren een
bekende methode om deze dichtheid te berekenen en beschrijven een efficiënte
numerische methode om deze capaciteit te bepalen. Uiteindelijk bestuderen we op
een analytische wijze het effect van toenemende ruiscorrelaties op de capaciteit van
het kanaal.

Op de lange termijn is het een doel om de methode die gebruikt werd voor
het berekenen van de entropiedichtheid uit te breiden naar kwantummechani-
sche systemen. Om deze reden verkennen we wat men kan verstaan onder
”kwantummarkovprocessen”. Gelijkaardig aan klassieke Markovprocessen kan
dit gedaan worden door het beperken van de afhankelijkheid van het proces van
zijn geschiedenis te beperken. Om dit te kunnen doen voor kwantumsystemen,
moeten we echter eerst de notie van conditionering aanpassen. We beschrijven
het concept van conditionele toestandsruimtes en verkennen het nut hiervan om
kwantumcorrelaties te genereren.

Uiteindelijk breiden we de berekening van asymptotische entropiedichtheid die
we hebben ingevoerd voor klassieke Markovprocessen uit naar bepaalde kwan-
tummarkovprocessen. We voeren deze berekening expliciet uit voor Fermionische
Markovketens. Hiertoe breiden we een bekend theorema van Szegö over het
asymptotisch gedrag van de eigenwaarden van Toeplitz matrices uit.



Nomenclature

< . > expectation value

A(H) CAR algebra on H

E depolarizing channel

Ω classical configuration space

ω quantum state

‖.‖ operator norm

‖.‖cb norm of complete boundedness

ρ density matrix

H(X) Shannon entropy of X

H(X,Y ) joint Shannon entropy of X and Y

I(X,Y ) mutual information of X and Y

s entropy density

S(ρ) von Neumann entropy of ρ

C channel capacity

p, µ, ν probability distribution

CAR canonical anti-commutation relations (abbr.)

CP completely positive (abbr.)

GICAR guage-invariant canonical anti-commutation relations (abbr.)
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Chapter 1

Introduction

The invention of electronic means of information storage and transmission has
produced an entirely new branch of science during the second half of the twentieth
century. This branch of science is called information theory and it brings together
scientists from many different backgrounds, including computer science, physics,
mathematics and recently even biology.

The foundations of information theory were laid out by Claude Shannon in his 1948
paper ”A Mathematical Theory of Communication” [61]. However, as he noted in
this paper, this theory did not come into existence out of thin air. The example
he uses gives us a clear idea of one of the main goals of information theory: the
optimization of information transmission.

Imagine you are in the year 1845. You have just been employed as one of the first
operators to send messages on the recently invented telegraph. In order to get the
messages across, you have to agree on a system to use, such that the operator on
the receiving side will understand the signals you send down the line. As you do
not know beforehand exactly what messages you will be sending, you will have to
devise a model of this information, based on what you do know about the content.
Since you are sitting in a telegraph office in New York City, you can be fairly
certain the messages will be written in English. As a first approximation, you can
look at the sentence not as a sequence of words, but just as a sequence of individual
letters. You will notice that the letters ’e’ and ’t’ occur very often, whereas the
letters ’q’, ’x’, ’y’ and ’z’ occur much less frequently. An efficient way of encoding
the information into the telegraph’s alphabet of dots and dashes would then be to
assign a short code to the frequent letters and longer codes to the less frequent
letters. This idea is indeed reflected in the well-known Morse code (see Table 1).
The letters ’e’ and ’t’ are encoded as the two single-letter codes ’dot’ and ’dash’
respectively, while ’q’, ’x’, ’y’ and ’z’ are all assigned four-letter codes.

1



2 INTRODUCTION

A . - 8.2 H . . . . 6.1 O - - - 7.5 V . . . - 1.0
B - . . . 1.5 I . . 7.0 P . - - . 1.9 W . - - 2.4
C - . - . 2.8 J . - - - 0.2 Q - - . - 0.1 X - . . - 0.2
D - . . 4.3 K - . - 0.8 R . - . 6.0 Y - . - - 2.0
E . 12.7 L . - . . 4.0 S . . . 6.3 Z - - . . 0.1
F . . - . 2.2 M - - 2.4 T - 9.1
G - - . 2.0 N - . 6.8 U . . - 2.8

Table 1.1: The Morse code for letters in the English alphabet and their frequency
of occurrence in percentage.

Figure 1.1: Noiseless (top) and noisy (bottom) communication

The Morse code example already illustrates many crucial ideas of information
theory, although they were not explicitly described as such at the time. The
incoming information is modelled as a probability distribution by assigning a
probability of occurrence to the letters in the input alphabet (the English alphabet
in this case). This information has to be efficiently encoded into the alphabet of
the transmission device (dots and dashes) and finally be decoded by the receiver
into the alphabet of the original message so it can be interpreted by the receiver.
This situation is depicted in the upper part of Figure 1.1.

The Morse code system served its purpose well for about 100 years. With the
advance of technology however, it became apparent that an important factor had
to be taken into account. As the transmission of information became ever faster,
noise on the communication lines became more and more noticeable. One can think
for example of sending the letter ’a’, which corresponds to ’.-’ in Morse code. If by
a temporary glitch the long ’dash’ signal gets interrupted, it may be interpreted
as a short ’dot’ signal instead and the receiver would read the letter ’i’. Such a
scenario is shown in the lower part of Figure 1.1.



INTRODUCTION 3

An intuitive solution to combating noise is known to everyone who ever had to
get a message across over a bad phone line. One can simply repeat the message a
certain number of times and hope that the person on the other side can after a
while figure out what the message was. The number of times one has to repeat
depends on the intensity of the noise. How many times do we have to repeat the
message though? Repeat too few times and errors show up. Repeat too many
times and your expensive transatlantic communication line will be bogged down
by useless repeating messages. Besides, maybe there are better methods to combat
noise, for example by taking into account the noise in the coding system itself?
These questions are answered by Shannon’s coding theorem and are discussed in
more detail in Section 1.1.

During the 20th century, two important evolutions led to a new paradigm in
information science. The first one was the realization that there is a strong
connection between information and the physical system it is implemented on. An
example of this connection is the contained in Landauer’s principle, which he used
in 1961 to resolve a famous paradox called Maxwell’s demon [40, 6]. His principle
states that each time a bit of information is erased, a certain amount of heat has
to be generated. This shows a close connection between the rather abstract notion
of information and a very concrete, physical quantity as heat.

The second important discovery was the advent of quantum mechanics. This was a
new theory to explain experiments performed at the beginning of the 20th century
that could not be explained by the so-called classical theories that existed before.
The fact that information is connected to physical systems, combined with the
discovery of radically new behaviour of physical systems led to the establishment
of quantum information science.

One of the strange new ways in which quantum systems behave is encountered
in the counterintuitive notion of quantum superposition. For physical systems
in such a superposition of two outcomes (’on’ and ’off’, say) one cannot predict
which outcome a measurement will give, only assign a probability to each outcome.
Shannon’s studies were based on the so-called ’classical’ way of describing physical
systems, where such superpositions are not possible. Either the current of electrons
was flowing through the wire, or it was not. The photons of the signal lamp were
either being emitted or not. This means quantum systems give us more liberty to
encode information in these superpositions.

Then again there are other strange elements of quantum theory that restrict our
possibilities, such as the uncertainty relations that tell us we cannot measure
all properties of the system with high precision or the fact that measuring a
system alters its configuration. As measuring the transmitted particles is crucial
to receiving the message, how do these rules of quantum mechanics affect our
capability to transmit information? Besides, the effects of quantum mechanics
often only come into play when one looks at only a few particles. How does noise
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affect the transmission of such fragile messengers? These questions are some of the
questions quantum information scientists try to answer. We will review some of
the basic principles of quantum mechanics in Section 1.2 and then we will consider
the task of communication by means of quantum systems in Section 1.3.

1.1 Classical communication

Now we will have a closer look at the model of communication that Shannon used.
The message that is to be transmitted is represented as a string of characters
out of a certain alphabet. For our purposes it is not important what exactly the
characters in this alphabet are, so we can just as well denote them by a range of
numbers, e.g. an alphabet Ω consisting of d characters becomes

Ω = {1, . . . , d} .

1.1.1 Entropy

A crucial quantity in information theory is the entropy of the information source.
In a general sense entropy describes the information content of the source. It
describes the amount of strings that are likely to be generated out of all possible
strings. If we want to encode the information the source sends out, less code words
will be necessary to describe a source with lower entropy. Hence its information
content is lower.

To make this more precise, we will use a derivation in the vein of the one made in
[14]. Assume that the emission of characters is governed by a stochastic process X,
where character x ∈ Ω is emitted with a probability pX(x). If we assume successive
emissions are independent of each other, the probability of a string of k characters
w = (x1, . . . , xk) (also called a word) being emitted is given by

p
(k)
X (w) = pX(x1) . . . pX(xk) .

Rewriting this probability makes it possible to use the law of large numbers to see
what probability will be typical for long strings:

p
(k)
X (w) = pX(x1) . . . pX(xk) = 2−k(− 1

k

∑k

l=1
log pX(xl)) .

The law of large numbers tells us that an average of a random variable is very
likely to be close to the expectation value, for large k. In the exponent, we have an
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average, which converges (in probability) to the following quantity:

−1
k

k∑
l=1

log pX(xl)→ −
d∑
x=1

pX(x) log pX(x) =: H(X) := H(pX)

This quantity is called the Shannon entropy of the random variable X.

Let us look at the set of words whose probabilities are close to this typical value of
2−kH(X). The closeness is determined by a positive real number δ and we denote
this set as the δ-typical words of length k

T k,δ =
{
w ∈ Ωk

∣∣∣2−k(H(X)+δ) < p
(k)
X (w) < 2−k(H(X)−δ)

}
.

We can now state the result of the law of large numbers more precisely. It tells us
that for k large enough, the probability of being in T k,δ gets high:

∀ε > 0, ∃k0 such that ∀k > k0 : P (w ∈ T k,δ) > 1− ε .

We can use this outcome to get an estimate on the number of typical words:

1−ε < P (w ∈ T k,δ) =
∑

w∈Tk,δ
p

(k)
X (w) <

∑
w∈Tk,δ

2−k(H(X)−δ) = 2−k(H(X)−δ)(#T k,δ)

so the number of words in T k,δ is less than (1− ε)2k(H(X)−δ). By using P (T k,δ) < 1
we also get that there are at most 2k(H(X)+δ).

Now consider a code that only encodes the typical words and forgets about the
non-typical ones. If we use codewords of k(H(X) + δ) bits we are certain that we
have enough room to encode all the 2k(H(X)+δ) typical words. This code also has a
low error, as the non-typical words that are left out only amount to a probability
of ε.

If we use a code C of length less than k(H(X)− δ) however, the error probability
gets close to one for large k. The error rate is 1− P (C), where

P (C) = P (C ∩ T k,δ/2) + P (C ∩ T k,δ/2)

≤ (#C)2−k(H(X)−δ/2) + P (T k,δ/2)

≤ 2−kδ/2 + ε .

To avoid errors we should not use a coding system which size is smaller then 2kH(X)

and we know there are codes that do work for all sizes larger than this number.
This means the Shannon entropy H(X) is a measure of the size of an efficient
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description of the data and hence of the information content of the random variable
X.

It is easily seen that H takes values in [0, log d]. The minimum value of 0 corresponds
to the pure Dirac measures where there is no information content, the source always
emits the same character. The maximum value is attained when every character
has an equal probability of being emitted, i.e. the source is very unpredictable.
The entropy function is also a concave function on the state space:

H(λ1pX1 + λ2pX2) ≥ λ1 H(pX1) + λ2 H(pX2), λi ≥ 0, λ1 + λ2 = 1.

We see that when we introduce more randomness by mixing two measures, the
randomness and hence the information content increases.

1.1.2 Entropies of multiple variables

If we want to study more than one random variable, we can use entropy to study
the information content of the random variables together and also the influence
knowledge of one has on another. The concepts of joint entropy, conditional entropy
and mutual information are important quantities in this respect.

The joint entropy is simply the entropy of the joint distribution of the random
variables. Let’s say we have two random variable X and Y taking values in ΩX and
ΩY , with joint distribution pX,Y , then we denote the entropy of this distribution
by H(X,Y ):

H(X,Y ) = −
∑
x∈Ωx
y∈Ωy

pX,Y (x, y) log pX,Y (x, y) .

This entropy is the joint entropy of X and Y and expresses the information content
of the two random variables together. For example, it is easy to show that if X
and Y are independent (i.e. pX,Y (x, y) = pX(x)pY (y) the joint entropy H(X,Y ) is
the sum of the two entropies H(X) and H(Y ). If Y is a deterministic function of
X, Y does not add any randomness to X and thus the joint entropy of X and Y
together is equal to the entropy of X alone.

Restricting a distribution pX,Y on a composite system ΩX,Y = ΩX × ΩY to the
subsystem ΩX returns the first marginal of pX,Y

pX(x) =
∑
y

pX,Y (x, y).

The Shannon entropy behaves well with respect to restrictions

• monotonicity: H(X) ≤ H(X,Y ),
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• sub-additivity: H(X,Y ) ≤ H(X) + H(Y ), and

• strong sub-additivity: H(X,Y, Z) + H(Y ) ≤ H(X,Y ) + H(Y, Z).

We can also determine how knowledge of one random variable influences the other.
If we know the random variable Y to take some value y and if the variable X is
not independent of Y , the probability distribution of X will be influenced by this
knowledge. The probability distribution in this case is given by the conditional
probabilities

pX(x|Y = y) = pX,Y (x, y)
pY (y) .

The corresponding entropy we denote by H(X|Y = y):

H(X|Y = y) = −
∑
x

pX,Y (x, y)
pY (y) log pX,Y (x, y)

pY (y) .

If the value of Y is known, but we do not specify a specific value, we have to take
the average of the previous entropy:

H(X|Y ) =
∑
y

pY (y)H(X|Y = y) =
∑
x,y

p(x, y) log p(x, y)
p(y) = H(X,Y )− H(Y )

This is the conditional entropy of X conditioned on Y .

We see that to get the information content of X separately we subtract H(Y ) from
the joint information content of X and Y . In a similar manner one can look at the
amount of information that the two random variables share:

I(X,Y ) = H(X) + H(Y )− H(X,Y ) .

This quantity is called the mutual information of X and Y and plays an important
role in the theory of communication.

In a very loose way of speaking, one can think of the information of different random
variables as collections of data that have a certain overlap as well as information
unique to that random variable. The information content of different subsets is
given by the entropies described in this section. Figure 1.2 depicts the relation
between these different quantities.

Let us look at some examples to illustrate the quantities introduced in this section.

Example 1. As random variables X and Y we take the input and output of a
noisy communication channel with an alphabet of two symbols. At the input of the
channel the character 0 is generated with a probability µ and 1 is generated with
probability 1 − µ. During the transmission the characters are interchanged with
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Figure 1.2: Diagram showing the relations between different entropies of multiple
random variables.

Figure 1.3: Schematic representation of the binary symmetric channel.

probability p, i.e. 0 becomes 1 or 1 becomes 0. The process is represented in Figure
1.3.

The probabilities associated with the input process X are µ and 1−µ, so the entropy
of this random variable is

H(X) = −µ logµ− (1− µ) log(1− µ) =: h(µ) .

This entropy function h is called the binary entropy and is plotted in Figure 1.4.
When µ = 0 or µ = 1 there is no randomness at all and the entropy is 0. When
µ = 1/2 the string of ones and zeros is completely random with no bias towards
one or the other symbol. This is when the entropy reaches its maximum.

The joint probabilities of the variables X and Y are easily seen to be:

p(0, 0) = µ(1− p) p(0, 1) = µp

p(1, 0) = (1− µ)p p(1, 1) = (1− µ)(1− p) .

Using these probabilities we find that the joint entropy H(X,Y ) becomes a sum of
two terms:

H(X,Y ) = h(p) + h(µ) .

This is easily explained by looking at Y as the result of two independent processes,
namely the input process X and an error process Z which determines whether the
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Figure 1.4: The entropy of a binary random variable with parameter p.

input is altered or not. As in this special example the probability of error is the
same whether we input 0 or 1, X and Z are independent random variable and their
joint entropies is simply the sum of their entropies. The entropy of Y conditioned
on X then becomes the entropy of the error process:

H(Y |X) = H(X,Y )− H(X) = H(Z) .

This shows that the information that is unique to Y is the randomness added to it
by the noisy channel.

Example 2. Instead of limiting ourselves to two random variables, we can extend
to more variables. Going further we can even think of infinite chains of variables
that may be correlated. For example we can think of the subsequent characters
emitted by a communication channel. If the input characters are correlated, so will
the output (unless the noise completely destroys the correlations). But even when
the inputs are statistically uncorrelated the output can be correlated by correlations
in the noise that is applied. We will study this case in more detail in the next
chapter.

The most basic example of a correlated process is the stationary Markov process.
The outcomes at each time step lie in a configuration space Ω. The probability of n
subsequent outcomes is then given by a probability measure pn on Ω×n = Ω× . . .×Ω.
The Markov process has the characteristic of being correlated to the past only through
the most recent outcome:

p(xn|x1, . . . , xn−1) = p(xn|xn−1) .

This ensures that the probability of a sequence (x1, . . . , xn) can be decomposed into
transition probabilities:

pn(x1, . . . , xn) = p1(x1)p(x2|x1) . . . p(xn|xn−1) .
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In the case of an infinite Markov chain the entropy diverges to infinity:

lim
n→∞

Hn =∞ ,

where Hn is the entropy of pn. Hence we calculate the entropy density h instead:

h := lim
n→∞

Hn
n
.

Using the properties of the Markov process we can find its entropy density:

h = lim
n→∞

1
n

(∑
x

h(p(x)) + (n− 1)
∑
x,y

p(x)h(p(y|x))
)

(1.1)

=
∑
x,y

p(x)h(p(y|x)) , (1.2)

so we see that the entropy density of the Markov process is an average of the
entropies of the conditional probabilities.

As a side note we remark that the concepts of entropy and mutual information
have spread far beyond the subject of communication theory. As an example we
mention the use of mutual information in image processing, more precisely image
registration. Image registration is the task of deforming one image such that is
matches up as well as possible with a given target image.

Of course one needs to define what ”as well as possible” means. For this purpose the
mutual information between the intensity distributions of the images is often used.
This quantity has a major advantage over simple distances between intensities as
it can also align images made using different devices or under different conditions.
In such images, intensities may differ while still being correlated. Take for example
medical images made with X-ray computed tomography (CT) and magnetic
resonance imaging (MRI). Bone has a high intensity on CT, but a low intensity on
MRI. Even if the images are perfectly aligned, simply subtracting the high and low
intensities will result in a large distance. However, when the images are aligned
there is a high correlation between the high and low intensities of bone pixels,
resulting in high mutual information.

Figure 1.5 shows a patient image that is deformed to match up with a standard
target image. If in the target image an expert has delineated different organs or
regions, this information can now be automatically pulled back to the new image,
without requiring the expert to do this task again for the new image. For more
details see [69, 44, 43].
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Figure 1.5: The registration of 3D medical images. Left: slice of the original image.
Middle: slice of the deformed image. Right: slice of the target image

1.1.3 Shannon’s classical coding theorem

In the previous section we have seen an example of noisy communication. A
character was sent through a noisy channel, where it had a certain probability of
being altered by the noise during transmission. In this section we will generalize this
example and describe the results of Shannon concerning the information capacity
of such noisy channels.

Instead of the alphabet consisting of only two letters in the example, we can now
have any number of characters at the input or output. As the channel we are
sending information through is noisy, the characters on the input are not mapped
one-to-one to the output. There is a certain probability that an input character
is mapped to an output character. If x is on the input, we denote by p(y|x) the
probability of receiving y. Furthermore it is assumed that the noise is not influenced
by previous uses of the channel, i.e.:

p(y1, . . . , yn|x1, . . . , xn) = p(y1|x1) . . . p(yn|xn) .

Such channels are called memoryless channels.

Of course there is no reason for us to just send our message and hope it comes
through unharmed. As noted before, we can repeat the message or use more
advanced tricks. This is called coding the message. On the receiving end we
need to decode the message accordingly. The coding is done by choosing a set of
N codewords V = {v(1), . . . , v(N)} of length n. When these codewords are sent
through the channel, an output word of n characters in the output alphabet is
received. The receiver now has to guess which of the N codewords the sender
wanted to send to him. This is done by partitioning the set of all possible output
words into N sets {W (1), . . . ,W (N)}. If the output falls into the set W (j), it is
decided that the input should have been j. The choice of v(j) and W (j) is called
code of length n encoding N words and is denoted by Cn,N .
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The probability of decoding correctly is then given by p(W (j)|v(j)). The maximal
error probability is thus given by

Pe(Cn,N ) = max
1≤j≤N

(1− p(W (j)|v(j))) .

In order to communicate successfully, this maximal error probability should be
kept low. If there exists a code of length n such that we can send N characters
with low probability of error, we can successfully communicate log(N) bits per n
uses of the channel (as k bits require 2k codewords). The rate of communication
for this code is then given by R = log(N)/n, the number of bits sent per use of
the channel.

Now we can define the capacity of the channel. It is simply the highest rate that can
be successfully attained over the noisy channel. More precisely it is the maximal
rate for which the probability of error vanishes when we allow for arbitrarily long
codes.

Definition 1. A rate R is called achievable if there exists a series of codes
Cn,d2nRe for n ∈ N such that limn→∞ Pe(Cn,d2nRe) = 0. The capacity C of a
noisy memoryless channel is the maximal achievable rate.

The result Shannon obtained is a way to calculate this capacity for a given channel.
The Shannon coding theorem states that the capacity of a noisy memoryless channel
is given by

C = max
px

I(X,Y ) .

The maximum is taken over all the input probability distributions. For a proof
of this theorem, see for example the original proof by Shannon [61] or some more
recent books [13, 14].

Example 3. Let us look again at the binary symmetric channel. We use the
Shannon coding theorem to calculate its capacity:

I(X,Y ) = H(Y )− H(Y |X)

= H(Y )−
∑
x

p(x)H(Y |Y = x)

= H(Y )−
∑
x

p(x)h(p)

= H(Y )− h(p)

≤ 1− h(p)
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Equality is reached in the inequality when the input distribution is uniform, since
then the output is also uniform and has maximal entropy log(2) = 1. We see that
the capacity is maximal when p = 0 or when p = 1. In these cases there is no noise.
When the noise is maximal (p = 1/2) we get a uniform distribution at the output,
irrespective of the input. We can get no information through and the capacity is
zero. For other values of p the capacity behaves as one would expect, i.e. the more
noise, the lower the capacity. For more examples, see [13].

1.2 Quantum mechanics

The previous section was concerned only with the communication of classical
information. When we are dealing with quantum systems, the way we describe
systems and measurements of the system needs to be changed.

Previously we described the input and output of a communication channel by
probability distributions over a set of possible configurations. Let’s denote this
configuration space by X and the probability distribution by px. Then imagine
we want to measure a certain property f of the system. For every configuration x
there is a corresponding outcome of the measurement f(x). Hence, the expected
value of the measurement would be

〈f〉px =
∑
x∈X

p(x)f(x) .

The distribution px is what is called the state of the system, while the function f
is called an observable.

In the 1920’s physicist realized that this description in terms of probability
distributions did not fit some of the new experimental results of the time. Quantum
mechanics was proposed as a more fitting description. In this section we will
briefly describe the principles of quantum mechanics. For a detailed overview of
the quantum mechanics and its origins, see for example [26, 65, 49].

1.2.1 States and observables

The classical observables, which are functions over the configuration space, are
replaced in quantum mechanics by an algebra of operators, say A. A finite
dimensional algebra of observables can always be decomposed into a direct sum
of matrix algebras, so we will focus for now on the case where A is the algebra of
bounded operators on a finite-dimensional Hilbert space, i.e.

A = B(H) .
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A state is a mathematical object describing the properties of a system under study.
It is a function which takes in an observable and returns its expectation value under
this state of the system. In the classical case, a state was given by a probability
distribution. In the quantum setting a state ω is a linear functional on the algebra
of observables:

ω : A → C ,

such that ω(A) ≥ 0 for A ≥ 0 and ω(1) = 1.

The set of quantum states is a compact convex set, therefore there are distinct
states on its boundary that cannot be written as a mix of other states. These are
called pure states. Taking a convex combination of states physically corresponds
to statistically mixing different possible configurations. Hence the pure states
correspond to physical systems that are in a certain well-described configuration.
A pure quantum state on a matrix algebra corresponds to a normalized vector |φ〉
in a vector space H such that

〈φ|φ〉 = 1 .

Example 4. In a two-dimensional system, the pure states are linear combinations
of two basis vectors:

|φ〉 = α0|0〉+ α1|1〉 .

The requirement that |φ〉 is normalized boils down to

|α0|2 + |α1|2 = 1 .

Up to an unimportant global phase factor these states are determined by two angles
θ and ϕ:

|ψ〉 =
[
cos θ2e−ıϕ/2
sin θ

2e
ıϕ/2

]
0 ≤ θ ≤ π , 0 ≤ ϕ < 2π (1.3)

A physical observable in the case of a finite-dimensional quantum system is given by
a self-adjoint linear operator on the Hilbert space (in the finite dimensional case this
is just a Hermitian matrix). The possible outcomes of the measurement correspond
to the eigenvalues of the operator (hence the self-adjointness requirement).

Suppose we want to measure an operator A with eigenvalues ai and with projectors
Pi on the corresponding eigenspaces. The probability pi of measuring outcome ai
under a pure state |ψ〉 is then given by

pi = 〈ψ|Piψ〉 .

The expectation value of the measurement of A is thus

〈A〉|ψ〉 =
∑
i

aipi =
∑
i

ai〈ψ|Piψ〉 = 〈ψ|Aψ〉
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Example 5. The three spatial components of a spin 1
2 particle are given by the

following observables:

σx =
[
0 1
1 0

]
, σy =

[
0 −ı
ı 0

]
, σz =

[
1 0
0 −1

]
.

The state |0〉 for example has its spin pointing in the z direction:

〈σx〉 = 0 , 〈σy〉 = 0 , 〈σz〉 = 1

The meaning of the word ‘pure’ in ‘pure quantum state’ describes the case where
we know for certain that the quantum system is prepared in a certain state. Often
we cannot know this for certain and we can only say the system is in a statistical
mixture of pure states. Such a state is called a mixed quantum state. If for example
we have n possible states |ψi〉 which can appear with probability pi, the expectation
value of an observable A then becomes

〈A〉 =
n∑
i=1

pi〈ψi|Aψi〉 =
n∑
i=1

pi Tr(|ψi〉〈ψi|A) = Tr ρA .

The matrix ρ is called the density matrix of the system and it is given by

ρ =
n∑
i=1

pi|ψi〉〈ψi| .

This matrix is positive:

〈ψ|ρψ〉 ≥ 0 ∀|ψ〉

and it is normalized, i.e. its trace equals 1:

Tr ρ =
∑
i

λi = 1 ,

where the λi are the eigenvalues of ρi. Conversely any positive and normalized
linear operator on the vector space describes a quantum state.

Example 6. A mixed two-dimensional state is described by a 2× 2 density matrix.
It is useful to write this matrix using the Pauli matrices {σ0 = 1, σx, σy, σz} as
basis. As σ0 is the only Pauli matrix with trace different from zero, the following
characterization gives us all normalized Hermitian 2× 2 matrices:

ρ = 1
2(σ0 + rxσx + ryσy + rzσz) rx, ry, rz ∈ R .

As we already have normalization it suffices to have det ρ ≥ 0 for positivity. This
can be easily calculated:

det ρ = 1− r2
x − r2

y − r2
z ≥ 0 .
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Figure 1.6: The Bloch sphere

We see that the mixed states correspond to a point in the 3-dimensional unit ball.
This representation of the set of mixed 2×2 states is called the Bloch ball, as shown
in Figure 1.6. The pure states are the extreme points of the unit ball and lie on a
sphere, as we have seen before. The pure state in Equation 1.3 corresponds to the
parameters

(rx, ry, rz) = (sin θ cosϕ, sin θ sinϕ, cos θ) ,

which clarifies the choice of parameters in Equation 1.3.

The classical description can be recovered from the quantum case by assuming all
matrices commute. More precisely, the algebra of observables Ac is the algebra of
finite-dimensional real diagonal matrices:

Ac =
{

d∑
i=1

ai|i〉〈i|

∣∣∣∣∣ ai ∈ R
}
.

Taking the trace with a density matrix ρ, we get

〈A〉ρ = TrAρ =
d∑
i=1

aiρii ,

so the states on this observable algebra are essentially diagonal matrices. Since
the state is positive and normalized, the diagonal elements ρii form a probability
distribution. The diagonal elements ai correspond to a classical observable and
by the above equation, the expectation value reduces to the classical expectation
value of ai under the distribution ρii.

Image from Wikimedia Commons, by ‘Smite-Meister’, under the CC BY-SA 3.0 license



QUANTUM MECHANICS 17

1.2.2 Bipartite states

When we are studying two quantum systems that interact with each other, we need
a way of describing the two systems as one. In quantum mechanics this composition
is done through a tensor product. If we have one system with a Hilbert space H1
and another with a Hilbert space H2, the tensor product of the two is denoted by
H1 ⊗H2. The tensor product space H1 ⊗H2 is spanned by elements of the form
|ϕ〉 ⊗ |ψ〉 with |ϕ〉 ∈ H1, |ψ〉 ∈ H2, which satisfy the following equations:

(|ϕ1〉+ |ϕ2〉)⊗ |ψ〉 = |ϕ1〉 ⊗ |ψ〉+ |ϕ2〉 ⊗ |ψ〉 (1.4)

|ϕ〉 ⊗ (|ψ1〉+ |ψ2〉) = |ϕ〉 ⊗ |ψ1〉+ |ϕ〉 ⊗ |ψ2〉 (1.5)

α|ϕ〉 ⊗ |ψ〉 = |ϕ〉 ⊗ α|ψ〉 = α(|ϕ〉 ⊗ |ψ〉) (1.6)

If |ϕi〉 and |ψj〉 are vectors in H1 and H2 respectively, the inner product between
their tensor products is defined as follows:

〈ϕ1 ⊗ ψ1|ϕ2 ⊗ ψ2〉 = 〈ϕ1|ϕ2〉〈ψ1|ψ2〉

A bipartite pure state is then given by a normalized vector in the tensor product
space:

|ψ〉 ∈ H1 ⊗H2 such that 〈ψ|ψ〉 = 1 .

Correspondingly, a bipartite mixed state is given by a positive normalized linear
operator on the tensor product space:

ρ ∈ B(H1 ⊗H2) such that ρ ≥ 0 and Tr ρ = 1

For a composite system, restricting to a sub-system amounts to taking partial
traces over remaining parties

ρ1 = Tr2 ρ12.

The partial trace operation Tr2 is defined as follows by its operation on product
operators:

Tr2(A⊗B) = (TrB)A

It can then extended by linearity to B(H1 ⊗H2)

1.2.3 Entropy

The Shannon entropy as described for probability distributions needs to be adapted
to density matrices. It will be called the von Neumann entropy:

S(ρ) = −Tr ρ log ρ .



18 INTRODUCTION

It is equal to the Shannon entropy of the eigenvalue distribution of ρ.

The von Neumann entropy retains some of the properties of the Shannon entropy.
For example it is also concave:

S(λρ1 + (1− λ)ρ2) ≥ λS(ρ1) + (1− λ)S(ρ2)

Also subaddivity and strong subaddivity[42] remain true:

S(ρ12) ≤ S(ρ1) + S(ρ2) (1.7)

S(ρ123) + S(ρ2) ≤ S(ρ12) + S(ρ23) (1.8)

However, the most basic and perhaps most intuitive property of the Shannon
entropy, monotonicity, does not carry over. Consider for example the two-qubit
state |Φ+〉〈Φ+| with |Φ+〉 = (|00〉+ |11〉)/

√
2. Its entropy S(|Φ+〉〈Φ+|) is zero as

it is a pure state, while its restriction ρ1 is the maximally mixed state, which has
maximal entropy, so clearly S(ρ1) � S(ρ12).

1.2.4 Entanglement

The structure of quantum mechanical systems consisting of two parts has some
important consequences. Let’s look for example at a pure state µ1,2 on a classical
bipartite system Ω1 × Ω2. Classical pure states are Kronecker deltas:

µ1,2(i, j) = δ(c,d)(i, j) = δc(i)δd(j) .

It is clear that every classical pure state can be written as a product of pure states
on the components.

For quantum systems this is no longer the case. Let |ψ1,2〉 be a pure state vector
in H1 ⊗H2. We say that the state is separable if it can be written as a product of
pure states on the two components:

|ψ1,2〉 = |ψ1 ⊗ ψ2〉 ,

where ψ1 ∈ H1 and ψ2 ∈ H2. States that are not separable are called entangled.

Some quantum states can however not be written as such a product state. Let’s
assume that our bipartite pure state |ψ〉 can in fact be written as a product state
|ψ1 ⊗ ψ2〉. This would imply that the corresponding bipartite density matrix is
given by

ρ = |ψ〉〈ψ| = |ψ1〉〈ψ1| ⊗ |ψ2〉〈ψ2| .

The density matrix of the first part alone is given by the partial trace over the
second part of the bipartite density matrix:

ρ1 = Tr2 ρ = |ψ1〉〈ψ1|
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If the bipartite pure state is separable, the reduced density matrix ρ1 is also pure.

Example 7. Let’s look at the following bipartite pure state in a system consisting
of two 2-dimensional subsystems:

|ψ〉 = 1√
2

(|01〉+ |10〉)

The density matrix of the first subsystem now becomes

ρ1 = 1
21 .

This density matrix is not pure, so ψ is not separable. This state is an entangled
state.

The mixedness of the reduced density matrix ρ1 is thus a method of detecting
entanglement. As we have seen, von Neumann entropy measures the mixedness of
quantum states. Indeed, the entropy of the reduced density matrix is a so-called
entanglement measure for pure states [52]. In Chapter 6 we will study this quantity
for a specific class of states. For mixed states it is as yet unclear yet how to measure
entanglement. This is one of the reasons we study a geometric way to look at
quantum correlations in Chapter 5.

The definition of separable pure states can be extended to bipartite mixed states.
A density matrix ρ1,2 on H1 ⊗ H2 is called separable if there exists a classical
decomposition

ρ1,2 =
n∑
i=1

λρi,1 ⊗ ρi,2 ,

where ρi,j is a density matrix on Hj and the λi form a probability distribution.
Note that this definition operationally means that the state can be prepared by
generating numbers according to the classical distribution λi and then preparing
state ρi,1 in system 1 and ρi,2 in system 2. This means no quantum information
has to be exchanged between the two parts to construct the state. If a mixed state
cannot be constructed in this way, it is called entangled.

1.2.5 Quantum dynamics

Until now we have only looked at static quantum systems. To discuss communication
we need more than this. First of all quantum states evolve in time. Second of
all, the system under consideration often interacts with an environment that is
outside of the observer’s control. This is how noise is introduced in a quantum
communication channel. An isolated system is often called closed, while a system
that is in contact with an environment is called open.
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The evolution of a closed system in a pure quantum state is described by the
Schrödinger equation:

ı~
∂

∂t
|φ〉 = H|φ〉 ,

where H is the Hamiltonian describing the energy of the system. Integrating this
equation we get that after time t the state has evolved to

|φt〉 = e−ıtH/~|φ0〉 .

As we are not interested in the entire time evolution, but only the result at the
output of the transmission channel, we can fix the time at t and write

U(t) = e−ıtH/~ ,

which is a unitary operator.

From the evolution of closed systems in a pure state the evolution of a mixed state
can be derived. The evolution of a density matrix of a closed system is given by

ρt = U(t)ρ0U(t)∗ . (1.9)

It is however impossible to shield our communication device completely from the
environment. There will always be noise in realistic circumstances. Noise arises by
the system of interest interacting in an uncontrolled way with the environment.
This is the setting of open quantum dynamics.

Taking the system and environment together, we again have a closed system. The
communication channel is now modelled as follows:

Φ(ρ) = TrE U(ρ⊗ ρE)U∗ .

Here ρ is the density matrix of the system of interest, E denotes the environment
the system interacts with and ρE is its initial state. U is now the evolution under
the total system-plus-environment Hamiltonian. Linear maps of density operators
of this form are called completely positive maps.

A way to determine whether or not a linear map is completely positive is given by
the isomorphism due to Choi[11] and Jamio lkowski[32]. This isomorphism maps
completely positive maps into positive matrices. The map is completely positive if
and only if it is positive after applying the Choi-Jamio lkowski isomorphism. For a
given map Φ, the isomorphism is given by applying Φ on a maximally entangled
state:

ICJ(Φ) =
∑
i

|i〉〈i| ⊗ Φ(|i〉〈i|)
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Example 8. The qubit depolarizing channel E is a map that ’flips’ the 2×2 density
matrix ρ with probability 1− x:

E(ρ) = xρ+ (1− x)((Tr ρ)1− ρ) .
The Choi-Jamio lkowski isomorphism gives us:

ICJ(E) =


x 0 0 2x− 1
0 1− x 0 0
0 0 1− x 0

2x− 1 0 0 x

 .
This matrix has eigenvalues {3x− 1, 1− x, 1− x, 1− x}, so E is completely positive
if and only if 1

3 ≤ x ≤ 1. Note that the corresponding classical map does not have
such a restriction.

1.3 Quantum communication

We can now wonder how the quantum communication channels described in the
previous section can be used to transmit information. The first question we have
to answer is what kind of information we want to send. We can think for example
of a full quantum state ρ or of classical information in the form of a probability
distribution. We will focus in this section on the rate at which classical information
can be sent through a quantum channel. This rate is described by the quantum
counterpart of the classical coding theorem we have encountered before. For a
review of other possible capacities, see [63]. The layout of this section largely
follows that in [30].

With the classical information we want to send encoded using an input alphabet
A = {1, . . . , a}, we choose for every element i ∈ A an encoding quantum state
ρi on a Hilbert space H. This input state is then transmitted using a quantum
channel Λ : B(H)→ B(K). For the channel to be a valid quantum channel it must
be a completely positive trace preserving map.

Transmitting the element i ∈ A results in a quantum state Ri = Λ(ρi) being
received on the output side. On this side, the received quantum state is measured
using a resolution of identity in K. This resolution of identity is a set of positive
operators X = {Xi} on K such that

∑
iXi = 1.

The conditional probability of the receiver measuring j, when the input i was sent,
is given by p(j|i) = TrRiXj . If at the input side the element i is sent with a
probability πi, the amount of information that will be received is quantified by the
classical Shannon information,

IΛ,1(π, ρ,X) =
∑
i,j∈A

πip(j|i) log
(

p(j|i)∑
k∈A πkp(j|k)

)
. (1.10)
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If the sender is allowed to use the channel n times, the channel use can be described
by the product channel Λn = ⊗nΛ on ⊗nH = H⊗ . . .⊗ H. The input alphabet is
now An and the probability distribution of a word u = (i1, . . . , in) ∈ An being sent
is again denoted by πu. The codeword corresponding to the input u is given by

ρu = ρi1 ⊗ . . .⊗ ρin

and results in Ru = Ri1 ⊗ . . . ⊗ Rin being received. The conditional probability
and the Shannon information IΛ,n for the n-product of the channel can now be
introduced completely analogously to Eq. (1.10), with the summations over An
instead of A.

The maximum amount of information that can be sent with n channel uses is now
given by

Cn(Λ) = sup
π,ρ,X

IΛ,n(π, ρ,X) .

Due to the fact that Cn + Cm ≤ Cm+n, the limit

Cclass(Λ) = lim
n→∞

Cn(Λ)
n

exists. Using Shannon’s coding theorem, we see that Cclass is the least upper bound
of the rate of information that can be transmitted with asymptotically vanishing
error.

The HSW theorem [30, 59] gives an expression for this classical product state
capacity of noisy memoryless quantum channels,

Cclass(Λ) = χ∗ = sup
π,ρ

χ(Λ),

where χ is the Holevo χ quantity

χ({(πi,Λ(ρi))})

= S(
∑
i

πiΛ(ρi))−
∑
i

πiS(Λ(ρi)) .

Due to the convexity of the von Neumann entropy, the supremum can in fact be
taken over pure states ρi.

Example 9. Although the depolarizing channel is about the simplest quantum
channel one can think of, its classical capacity has been determined only quite
recently. See [36] for details.
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Outlook

The overview and examples in this chapter have introduced many of the aspects of
information theory that will be studied in more detail in this thesis.

In Chapter 2 we will demonstrate a new method to efficiently calculate the classical
capacity of a quantum depolarizing channel with memory. This is a channel similar
to the one introduced in Example 8, with the difference that the probability of error
is not constant across different uses of the channel. The amount of applied noise is
described by a classical Markov process. As we will show, the calculation of this
capacity boils down to the calculation of the entropy density of a so-called hidden
Markov chain, much like in Example 2. This calculation relies on a method to
calculate entropy densities first used by Blackwell[8]. The difference with Example
2 is that in the case of a hidden Markov process such a direct calculation is no
longer tractable. Instead of the asymptotic entropy density limn→∞ Sn/n, the
asymptotic entropy rate limn→∞ Sn+1 − Sn can be calculated here. Using the
strong subadditivity property (Eq. 1.8), one can demonstrate that these quantities
are equal for stationary processes.

The method used to calculate the entropy density relies on the asymptotic equality
of entropy density and rate. The properties that appear in the proof of this equality
are the strong sub-additivity and stationarity. Strong sub-additivity is also valid
for quantum processes, so as long as the process is stationary, the same proof can
be used for both the classical and quantum cases. The obvious question then arises
whether it is possible to do a calculation similar to the Blackwell calculation for
quantum processes. The Blackwell calculation makes use of the hidden Markov
structure of the process. To apply this method successfully in the quantum case,
we need a quantum counterpart with similar properties. Such states are the finitely
correlated states and are introduced in Chapter 3.

The entropy density calculation is worked out in this thesis for a specific class of
states, namely the free Fermionic states. These states are fermionic versions of
Gaussian states. These states form a nice class of quantum states that are true
quantum states, but where computations are still tractable. These states and some
of their properties are introduced in Chapter 4.

The construction of the finitely correlated states in Chapter 3 will show us the
importance of so called conditional state spaces. These conditional state spaces
show the influence of one subsystem on another. Otherwise stated, they show
the correlations between two subsystems. It will be no surprise then that the
’finitely correlated’ in ’finitely correlated states’ actually means having a finite-
dimensional conditional state space. Two different methods to characterize the
possible conditional state spaces of free Fermions are described in Chapter 5.

Finally, we calculate the entropy density of the free Fermionic finitely correlated
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states in Chapter 6. As we have demonstrated, the entropy density of a subsystem
is an important measure of entanglement for pure states. As is demonstrated in
Chapter 2 however, it also arises in the calculation of the capacity of memory
channels. Furthermore the entropy density measures the mixedness of mixed
states and therefore is an important quantity in statistical mechanics. For the
case of free Fermionic finitely correlated states the density matrices correspond to
Toeplitz matrices. By calculating the entropy density and rate we obtain a new
Szegö theorem for Toeplitz matrices.



Chapter 2

Classical hidden Markov chains

2.1 Introduction

In Section 1.2.5, we have seen how the transfer of information using quantum
systems can be modelled by a quantum channel. The capacity of such channels
can be calculated using the Holevo-Schumacher-Westmoreland (HSW) theorem.

To derive this theorem the assumption has been made that the channel we are
using returns to the state it was in before we had used it. In other words, the noise
that affects our message during transmission is the same every time we use the
channel. Such a channel is called a memoryless channel, as it has no memory of
what has happened to it in the past.

In reality this will seldom be the case. The channel will retain some memory of
what state it was in previously. If the channel returns to its initial state on a time
scale that is much shorter than the interval between our uses of the channel, the
memoryless approximation is justified. This is however an idealized situation. In
real-world applications, we need to consider memory effects.

Two examples of quantum systems where memory effects play a role are spin
chains [9] and micromasers [20]. In spin chains, particles that behave as miniature
magnets are positioned on a one dimensional chain. The sender interacts with one
end of the chain and manipulates it in such a way that the receiver on the other
end of the chain can decode the message. After the message has been propagated
from one end to the other, the particles will be in a different configuration than
the one they started out in. By applying a strong magnetic field to particles, they
are then reset to the initial configuration. In practice they will however never be
perfectly aligned with the magnetic field and retain a memory of their previous

25
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configuration.

In a micromaser a beam of atoms with a transition in the microwave regime is sent
through an optical resonator. This resonator has a resonance mode at the same
frequency as the transition in the atoms. The atoms are excited to one of the higher
atomic level involved in the transition prior to entering the resonator. They emit
photons inside the resonator and in this way a microscopic maser or micromaser
is created. Since the cavity is a rather delicate instrument, no measurement can
be performed on it directly. Instead, the particles coming out of the cavity are
measured. If the lifetime of the photons inside the cavity is longer than the time it
takes for a new atom to enter the cavity, the atoms will be correlated when they
leave the cavity.

In this chapter we study a channel that has similar correlations between successive
uses. We do not study memory channels in all their full glory though. We still
make an assumption on the correlations in the noise. We look at channels that
only remember the last particle that has passed through it. Such processes are
called Markovian, as we have encountered in Example 2. The type of noise that
is applied at each time step is also of a specific form. We employ a very simple
model of the channel noise here, namely the depolarizing channel from Example
8. With a certain probability, the input is perfectly copied to the output. In the
other cases, the output is a completely random signal, independent of the input.
So there are two possibilities: either we have perfect transfer of information or the
input information is completely erased. We use two different erasure probabilities
or noise levels here. At each channel use, one of the two noise levels is chosen. The
channel has a memory of which level of noise was applied the last time, i.e. the
switching between different erasure probabilities is a classical Markov process.

As a new result, we derive an efficient method for numerically computing the
classical capacity of the quantum depolarizing channel with memory. This work
has been published in [70, 1].

Intuitively, we can expect that correlations in the noise make the noise more
predictable. The sender could use this to his advantage as he has more information
about what errors to expect and thus can better counter them. This has been
demonstrated in some classical and quantum memory channels [15, 48]. This is
one of the properties we will look at using our numerical method.

This chapter is structured as follows. In Section 2.2, we look at how the calculation
of the capacity of memoryless quantum channels can be extended to certain channels
with memory. The class of channels that will be considered is the class of forgetful
channels. We introduce some recent results that allow us to rewrite the classical
capacity of this quantum memory channel in terms of the capacity of a classical
channel. In Section 2.3, we construct our model memory channel with Markovian
noise correlations. In Section 2.4, algebraic measures are introduced, which are
used in Section 2.5 to further simplify the calculation of the channel capacity.
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Finally, in Section 2.6, we show how this reformulation allows us to easily calculate
the capacity of the channel numerically.

2.2 Classical capacity of quantum memory channels

In Section 1.3, we have looked at the capacity of a memoryless quantum channel
for communicating classical information. As this setting is not appropriate in
many real-world applications, it has to be relaxed. In [39], the channel capacity is
determined for forgetful channels. These channels do have memory, but the effects
of the initializing memory essentially disappear after a number of time steps.

Recall that a memoryless channel in the Schrödinger picture is a completely
positive trace preserving map that maps the state space S(A) on an algebra A
corresponding to the sender to S(B), the state space on B, at the receiving end.
Successive applications are uncorrelated and are given by a tensor product of the
channel:

Γn = Γ⊗ Γ⊗ . . .⊗ Γ︸ ︷︷ ︸
n

A general memory channel is then constructed as follows. When the channel has
a memory, we add a third system that represents the state of the memory. The
operator algebra of the memory is denoted by S(M). The memory channel then
transforms states from S(A) to S(B), while also transforming the memory. We
have

Λ : S(M⊗A)→ S(B ⊗M) . (2.1)
Successive applications of the memory channel result in the following channel Λn
from S(M⊗A⊗n) to S(B⊗n ⊗M):

Λn = (idn−1
B ⊗Λ) ◦ (idn−2

B ⊗Λ⊗ idA) ◦ . . . ◦ (Λ⊗ idn−1
A )

This construction is represented in Figure 2.2. At each time step the channel takes
in a part of the input (seen at the bottom of the figure), propagates it to the output
(top of the figure) and transforms the memory (on the horizontal axis of the figure).
Obviously the channel uses are correlated in this case.

The forgetful channels are a special class of memory channels. These are channels
where for large n, the initial state of the memory has no effect. More concretely, for
large n we can model the behaviour of the memory by a set of quantum channels
that do not depend on the initial state of the memory.

The behaviour of the memory can be described by disregarding the output of the
channel:

Λ̂n : S(M⊗A⊗n)→ S(M) : ρ 7→ TrB⊗n(Λn(ρ))
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Figure 2.1: Memory channel construction

A forgetful channel is a channel where this behaviour of the memory is close to a
model of the memory that does not depend on the initial memory configuration.

In order to talk about channels being close to one another, we need a distance
measure. A norm that is convenient when talking about channels is the norm of
complete boundedness, defined for a general linear operator T : B(H)→ B(H):

‖T‖cb = sup
n
‖T ⊗ idn ‖

where ‖.‖ is the operator norm. The norm of complete boundedness is used because
of its nice properties, namely multiplicativity (‖T1 ⊗ T2‖cb = ‖T1‖cb‖T1‖cb) and
unitality for any channel T : ‖T‖cb = 1. It can be shown to be equivalent to several
other norms used for channels [38].

Now we can define what it means for a channel to be forgetful.

Definition 2. A memory channel Λn is forgetful iff there exists a set of quantum
channels Λ̃n : S(A⊗n)→ S(M) such that

lim
n→∞

‖Λ̂n − Λ̃n ◦ TrM ‖cb = 0

For these forgetful channels the classical product state capacity has been shown
[39] to be given by

C∗ = lim
n→∞

Cclass(Λn)
n

, (2.2)

Example 10. The simplest memory channel is the identity channel, where the
input and output algebras A and B are equal:

I : S(M⊗A)→ S(A⊗M) : ρM ⊗ ρ 7→ ρ⊗ ρM .

This channel is not forgetful, the memory stays in it initial state, so we cannot
write the evolution of the memory as a map depending only on the inputs.
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Note that although the map in itself it not the usual identity map, due to the
construction of memory channel we have used, the map interchanges algebras by
default (see Eq. 2.1). Therefore, this channel has no effect on the memory state
and the output is equal to the input.

Example 11. A second simple example is the switch channel, where the input,
output and memory algebras A,B and M are equal:

Λs : S(A⊗A)→ S(A⊗A) : ρM ⊗ ρ 7→ ρM ⊗ ρ .

Although the map in itself is the usual identity map, it interchanges memory and
input states at each use. Hence, after one use the memory state will be replaced
by the first input state and at the second use the evolution of the memory will no
longer depend on the initial memory state. Therefore this is a forgetful channel.

2.3 The depolarizing memory channel

We will now look at one specific class of forgetful channels, namely depolarizing
channels with noise correlations determined by a classical Markov process. If the
Markov process determining the memory is irreducible and aperiodic, the state of
the memory will converge to the stationary distribution, independent of the initial
state and the channel is a forgetful one. We can then apply the tools from the
previous section. Other cases can be recovered by using the results from [17].

2.3.1 Construction of the channel

The forgetful channel is constructed by combining two memoryless single qubit
depolarizing channels (E0 and E1), each with its own error statistics, switching
between them using a two-state Markov chain (Q = (qij), i, j ∈ {0, 1}). Q is the
2× 2 Markov transition matrix with qij being the probability of switching from
channel i to channel j. Hence, qij ≥ 0 and qi0 + qi1 = 1 for i, j ∈ {0, 1}. The
channel is forgetful when the Markov chain is aperiodic and irreducible.

The depolarizing channels, which we encountered before in Example 8, can be
written as

Ei(ρ) = x0
i ρ+ x1

i (1− ρ) ,

where x0
i +x1

i = 1. These single qubit channels can be thought of as probabilistically
mixing the identity channel id(ρ) = ρ (with probability x0

i ) and the ‘bit flip’
F (ρ) = 1 − ρ (with probability x1

i = 1 − x0
i ) acting on a single qubit density

operator ρ. This channel is only completely positive for 1/3 ≤ x0
i ≤ 1. This can be

verified by writing out the Choi matrix of the channel and checking its positivity.
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The channel memory is represented by a classical two-level state space. The
transformation of the memory is determined by the Markov transition matrix
Q and at each time step the channel Ei is applied according to the probability
distribution of the memory:

Λ(ν ⊗ ρ) =
∑
i

Ei ⊗ (Qν)iδi

The classical memory of this channel converges exponentially fast to the stationary
state of the Markov process. As we are only interested in asymptotic quantities
as the channel capacity, this evolution towards stationarity will have no influence,
as it is finite in time. The initial memory configuration will hence be of no
importance. Therefore, we can set ν equal to the stationary state γ from the
beginning. Furthermore, we are only interested in the information input-output
properties of the channel. When we trace out the memory output, the channel Λn
built up from Λ, corresponding to n successive uses is

Λn = ρ1 ⊗ . . .⊗ ρn 7→∑
i1,...,in

γi1qi1i2 . . . qin−1inEi1(ρ1)⊗ . . .⊗ Ein(ρn) .

The sum is over all possible paths (i1, . . . , in) ∈ {0, 1}n and each term is a tensor
product of the selected sub-channels weighted by the probability of occurrence
(γi is the initial probability of selection set to the stationary distribution of the
Markov process: QT γ = γ).

2.3.2 Classical capacity

We calculate the capacity with this n-use form of the channel and regularize by
taking the limit n→∞ as in Eq. (2.2). We will see that the capacity is equivalent
to the capacity of the classical Gilbert-Elliott channel [48]. However, due to the
quantum nature of the channel, we had to impose complete positivity and this
restricts the choice in switching probability to the interval [ 1

3 , 1], in contrast to the
classical case, where any probability is allowed.

We restrict ourselves to the product state capacity, meaning we do not allow
entanglement across channel inputs at different times. We choose the input to the
channel as

ρi = ρ
(n)
l

= ρ
(n)
(l1,...,ln) := |l1〉〈l1| ⊗ . . .⊗ |ln〉〈ln| ,

where the li are arbitrary pure qubit states.
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Applying the channel Λn, we get

Λn(ρ(n)
l

) =
∑

i1,...,in

γi1qi1i2 . . . qin−1in

(x0
i1 |l1 ⊕ 0〉〈l1 ⊕ 0|+ x1

i1 |l1 ⊕ 1〉〈l1 ⊕ 1|)⊗ . . .

⊗ (x0
in |ln ⊕ 0〉〈ln ⊕ 0| + x1

in |ln ⊕ 1〉〈ln ⊕ 1|) ,

where (li ⊕ 1) denotes the qubit state with a flipped Bloch vector with respect to
li = (li ⊕ 0)

|li ⊕ 1〉〈li ⊕ 1| = 1− |li ⊕ 0〉〈li ⊕ 0|

By expanding the product above we see that the eigenvalues of the output state
are given by

λn(k) =
∑

i1,...,in

γi1qi1i2 . . . qin−1inx
k1
i1
. . . xknin . (2.3)

Note that these eigenvalues are independent of the choice of the input state.

The channel output can now be written as

Λn
(
ρ

(n)
l

)
=
∑
k

λn(k)ρ(n)
l⊕k

.

Hence, if we calculate the first term in the Holevo χ quantity taking π to be the
uniform distribution (πl = 1/2n) over the set of input states ρ(n)

l
, we see that

ρout :=
∑
l

1
2nΛn

(
ρ

(n)
l

)

= 1
2n
∑
k

λn(k)
∑
l

ρ
(n)
l⊕k

.

Since l goes over all possible combinations, so does l ⊕ k, so we can relabel them

Φout = 1
2n
∑
k

λn(k)
∑
l
′

ρ
(n)
l′

.
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Since the eigenvalues in Eq. (2.3) sum to one, we see that ρout is the maximally
mixed state

ρout = 1
2n
∑
l
′

ρ
(n)
l′

(2.4)

= 1
2n (
∑
l1

|l1〉〈l1|)⊗ . . .⊗ (
∑
ln

|ln〉〈ln|) (2.5)

= 1
2n1⊗ . . .⊗ 1; . (2.6)

Thus, S(ρout) is maximal and is equal to log2(2n) = n.

The second term in the Holevo χ quantity is

−
∑
l

πlS
(
Λn(ρl)

)
.

Since the eigenvalues λn(k) of Λn(ρl) do not depend on the choice of ρl, this term
does not influence the maximization. Hence our choice of π and ρ maximizes the
Holevo χ quantity.

Thus, the final expression for the regularized capacity Eq. (2.2) is

C∗ = lim
n→∞

1
n
Cclass(Λn)) = 1− lim

n→∞

1
n

S(Λn(ρ)) . (2.7)

If we were to calculate the output entropy using the eigenvalues in Eq. (2.3),
the calculation would be exponentially long in n. Therefore, other techniques are
needed. The way we approach the problem is by using a formula due to Blackwell
[8] to calculate the entropy of a hidden Markov process. The eigenvalues of the
output state correspond to the probabilities of such a process.

A hidden Markov process can be defined as follows. If we have a translation-
invariant measure ν with the Markov property on ΩZ

H , where ΩH is a finite set,
then a hidden Markov measure can be constructed on ΩZ through a function
Φ : ΩH → Ω, with the following local densities

µ((ωm, . . . , ωn)) =
∑

εm,...,εn∈ΩH
Φ(εm)=ωm...Φ(εn)=ωn

ν((εm, . . . , εn)) , (2.8)

where ωm, . . . , ωn ∈ Ω. For obvious reasons, these processes are also called functions
of Markov processes.
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2.4 Algebraic measures

An algebraic measure µ is a translation-invariant measure on a set {0, . . . , q − 1}Z,
with probabilities determined by matrices Ea with positive entries, one for each
of the q states. The probability of a sequence is obtained by applying a positive
linear functional σ to a matrix product of the corresponding matrices of the states
of the sequence: µ(i1, . . . , in) = σ(Ei1 . . . Ein). This matrix algebraic construction
is the reason for the name algebraic measure, studied in detail in Ref. [21]. As we
shall see, the hidden Markov processes correspond to a set of algebraic measures
with a specific positivity structure and the converse holds as well.

2.4.1 Manifestly positive measures

In [21] it was shown that hidden Markov processes correspond to manifestly positive
algebraic measures. The local densities of such a manifestly positive algebraic
measure on an infinite chain ΩZ of classical state spaces Ω = {0, . . . , d− 1} are of
the form

µ((ω1, . . . , ωn)) = 〈τ |Eω1 . . . Eωnσ〉 ,

where ωi ∈ Ω, τ and σ are vectors in Rd with non-negative elements (denoted
(Rd)+) and the Ei are d × d real matrices with non-negative elements (denoted
M+
d ). In order to have a well-defined and compatible measure, we require that

E|σ〉 = |σ〉, E∗|τ〉 = |τ〉 where E =
∑
ω Eω and that 〈τ |σ〉 = 1. By compatible, we

mean that by tracing out one site, we recover the measure on the remaining sites:∑
ωn∈Ω

µ((ω1, . . . , ωn)) = µ((ω1, . . . , ωn−1))

Example 12. A regular Markov chain µ((ωm, . . . , ωn)) on {0, . . . , q − 1}Z can be
written as an algebraic measure. If we choose τ , σ and the Ei as

σ ∈ (Rd)+ : σa = 1 for a ∈ Ω ,

τ ∈ (Rd)+ : τa = µ((a)) for a ∈ Ω ,

Ea ∈M+
d : (Ea)b,c = δa,b

µ((b, c))
µ((b)) for a, b, c ∈ Ω ,

one can check that 〈τ |Eωm . . . Eωnσ〉 indeed gives the correct densities.

From this example it is easy to see that if we have a hidden Markov process on ΩZ

defined by a map Φ : ΩH → Ω and a Markov measure µ on ΩH with corresponding
matrices Ea, the manifestly positive algebraic measure corresponding to the hidden
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Markov measure is given by the same vectors σ and τ as before and the following
matrices:

Fa ∈M+
d : Fa =

∑
ε∈ΩH ,Φ(ε)=a

Eε for a ∈ Ω . (2.9)

For a proof of the converse, namely that every manifestly positive algebraic measure
corresponds to a hidden Markov measure, we refer to [21].

2.4.2 Entropy density

In this section we present a method for calculating entropy densities of hidden
Markov processes due to Blackwell [21, 8].

An important step in this method is to use strong subadditivity of the entropy to
show that the entropy density of the process is equal to its asymptotic entropy
production. Strong subadditivity for a process means that

SΛ1∩Λ2(µ) + SΛ1∪Λ2(µ) ≤ SΛ1(µ) + SΛ2(µ)

where SΛ is the entropy of the process restricted to the set of indices Λ:

SΛ(µ) = −
∑

ωΛ∈ΩΛ

µ(ωΛ) logµ(ωΛ) .

We are looking at a translationally invariant measure, so we can always assume the
first index of a set to be 0 and denote the entropy of n consecutive points by Sn.

Using the strong subadditivity of the entropy, one can show for translation-invariant
measures that [2, 35, 66]

s := lim
n→∞

Sn
n

= lim
n→∞

(Sn+1 − Sn) ,

which means that the entropy density equals the asymptotic entropy production.

Theorem 1. Given a shift-invariant state ω on quantum spin chain AZ, denote
by Sn the von Neumann entropy of its restrictions to n consecutive spins. We then
have

lim
n→∞

Sn
n

= lim
n→∞

Sn+1 − Sn (2.10)

Proof. Let S[k,l] denote the von Neumann entropy of the restriction of the spin
chain to the interval [k, l]. By translation invariance we have

Sn = S[0,n−1] = S[x,n+x] .
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Together with strong sub-additivity on the partition A⊗n+2 = A⊗A⊗n ⊗A this
gives us that the sequence of entropy increments is decreasing:

Sn+2 − Sn+1 ≤ Sn+1 − Sn

By the triangle inequality for the von Neumann entropy, we also have that

Sn+1 ≥ Sn − S1 .

The sequence is decreasing and bounded from below, so the limit exists.

If we denote this limit by s, we now have that for a small ε > 0 there exists an
n0 ∈ N such that |Sn+1 − Sn − s| ≤ ε whenever n ≥ n0. We then have

|Sn − Sn0 − (n− n0)s|

= |(Sn − Sn−1 − s) + (Sn−1 − Sn−2 − s) + . . .+ (Sn0+1 − Sn0 − s)|

≤ |Sn − Sn−1 − s|+ . . .+ |Sn0+1 − Sn0 − s| ≤ (n− n0)ε

By dividing by n− n0, we get that the limit of Sn/n exists and is equal to s.

Example 13. First, let us use this relation to calculate the entropy density of a
regular Markov process on ΩZ with transition matrix Q and stationary measure γ:

h = lim
n→∞

(Hn+1 − Hn)

= lim
n→∞

∑
i1,...,in+1∈Ω

[−µ(i1, . . . , in+1) logµ(i1, . . . , in+1)

+µ(i1, . . . , in+1) logµ(i1, . . . , in)]

= lim
n→∞

∑
i1,...,in+1∈Ω

µ(i1, . . . , in)(−µ(in+1|i1 . . . in) logµ(in+1|i1 . . . in))

= lim
n→∞

∑
in,in+1∈Ω

µ(in)(−µ(in+1|in) logµ(in+1|in))

=
∑
a,b∈Ω

γ(a)(−Qa,b logQa,b) .

By rewriting the entropy production in terms of conditional probabilities, the entropy
density calculation splits into two parts. One is a probability distribution at time
step n, which converges to the invariant measure γ. The other part is an entropy
associated to the transition from one time step to the next.
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A similar calculation as in the example above can be done for hidden Markov
processes, although the more complicated conditional probabilities make it more
involved in this case.

As we noted in the previous section, the probability distribution of a hidden Markov
process can be expressed as an algebraic measure:

µ(i1, . . . , in) = 〈τ |Fi1 . . . Finσ〉

with the Fi, τ and σ manifestly positive matrices and vectors. The entropy
production calculation now becomes:

s = lim
n→∞

∑
i1,...,in+1∈Ω

µ(i1, . . . , in)(−µ(in+1|i1 . . . in) logµ(in+1|i1 . . . in)) .

Since

µ(in+1|i1 . . . in) =
〈F ∗i1 . . . F

∗
in
τ |Fin+1σ〉

µ((i1, . . . , in)) ,

this limit can be written as

s = lim
n→∞

∫
Bσ
φn(dν)hF (ν) ,

where

Bσ = {ν ∈ (Rd)+| 〈ν|σ〉 = 1}

hF (ν) = −
∑

in+1∈Ω
〈ν|Fin+1σ〉 log〈ν|Fin+1σ〉

φn(dν) =
∑

i1,...,in∈Ω
µ((i1, . . . , in))δ F∗

in
...F∗

i1
τ

µ((i1,...,in))

(dν) .

The calculation again turns into a dynamical system of measures φn and an
entropy function that is related to the transition from one point to the next on the
underlying Markov process.

The transformation Tµ from one measure φn to the next is given by:

(Tµf)(ν) =
∑
i∈Ω
〈ν|Fiσ〉f

(
F ∗i ν

〈ν|Fiσ〉

)
This transformation is expressed on functions Bσ, but can also be seen as a
transformation of measures on Bσ through Tµ(φ)(f) = φ(Tµ(f)). We then have
φn+1 = Tµ(φn).
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This transformation can be shown [21] to be a contraction, so a fixed point argument
can be used to show that φn converges to a unique measure φ that is invariant
under Tµ

φ(Tµf) = φ(f) .

This measure allows us to calculate the entropy density

s =
∫
B
φ(dν)hF (ν) . (2.11)

2.5 Algebraic measure of the channel

Our goal in the remaining part of the chapter is to translate the switching
depolarizing channel into the setting of algebraic measures. We characterize the
invariant measure that allows us to calculate the entropy density using Blackwells
entropy density formula.

2.5.1 The manifestly positive matrices Fi

The relationship between a hidden Markov measure, say µ′ on ΩZ, and the
underlying Markov measure ν with the Markov property on ΩZ

H is through a
‘tracing’ function Φ : ΩH → Ω, as is shown in Eq. (2.8).

The underlying Markov process for the overall quantum channel has a four state
configuration space corresponding to channel selection and error occurrence: ΩH =
{(0, 0), (0, 1), (1, 0), (1, 1)}. The first index indicates which depolarizing channel
has been chosen and the second indicates whether a bit flip occurred. The elements
of the transition matrix, E, for this process are then given by

(E){(i,j)(i′,j′)} = qii′x
j′

i′ , (2.12)

so we have a transition matrix

E =


q00x

0
0 q00x

1
0 q01x

0
1 q01x

1
1

q00x
0
0 q00x

1
0 q01x

0
1 q01x

1
1

q10x
0
0 q10x

1
0 q11x

0
1 q11x

1
1

q10x
0
0 q10x

1
0 q11x

0
1 q11x

1
1

 .

The probability of going from (i, j) to (i′, j′) is given by the switching probability
qii′ from channel i to i′, multiplied by the probability xj

′

i′ that channel i′ produces
the error-occurrence j′.
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The function that produces the correct hidden Markov process is then given by

Φ((i, j)) = j .

This function reflects the fact that we are unaware of the choice of channel that
has been made. The only effect that is visible from the outside is whether or not
an input qubit has been flipped. Thus, Φ has to ‘trace out’ the choice of channel.
Φ maps into the two-state error configuration space containing ‘no flip’ and ‘flip’:
Ω = {0, 1} .

Using the fact that the matrices E(i,j) defining the algebraic measure of a Markov
process ((Sec. 2.4.1, Pg. 33), a = (i, j) ∈ ΩH) have only one non-zero row and Eq.
(2.9), we get the matrices F0 and F1 that define the algebraic measure corresponding
to µ′. The matrix corresponding to 0, the first element of Ω, is given by

F0 =
∑

(i,k),Φ′((i,k))=0

E(i,k) =
∑
i

E(i,0)

=


q00x

0
0 q00x

1
0 q01x

0
1 q01x

1
1

0 0 0 0
q10x

0
0 q10x

1
0 q11x

0
1 q11x

1
1

0 0 0 0


and similarly for 1, the second element of Ω.

The hidden Markov process then gives us the same probabilities as the eigenvalues
in Eq. (2.3)

p((k1, . . . , kn)) = 〈τ |Fk1 . . . Fknσ〉

=
∑

i1,...,in

τi1,k1qi1i2 . . . qin−1inx
k2
i2
. . . xknin .

Note that according to our discussion in Section 2.4, the vector τ is the stationary
distribution of the full matrix E. Using Eq. (2.12), one can see that the invariant
distribution τ is in fact τ(i,k) = γix

k
i , so the probabilities of the hidden Markov

process coincide with the eigenvalues in Eq. (2.3).

2.5.2 Support of φ

Having constructed the correct algebraic measure, we can determine Tµ explicitly
and use it to simplify the corresponding invariant measure φ.

The expression for Tµ, as can be found in [21], is

(Tµf)(ν̂) =
∑
a∈Ω
〈ν̂|Fa1〉f

(
F ∗a ν̂

〈ν̂|Fa1〉

)
,
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where ν̂ is any 4-dimensional vector such that 〈ν̂|1〉 = 1, |1〉 is a vector with all
elements equal to 1 and f is a continuous real-valued function on the set of such
vectors. For the case of our hidden Markov measure, the form of this transformation
can be greatly simplified. Due to the stochasticity of the matrix E, we have the
following:

F0|1〉 =


1
0
1
0

 and F1|1〉 =


0
1
0
1

 .

If we furthermore denote the four row vectors of E by µ̂0, µ̂1, µ̂2 and µ̂3, we can
write

F ∗0 ν̂ = ν0µ̂0 + ν2µ̂2 and F ∗1 ν̂ = ν1µ̂1 + ν3µ̂3 .

On top of this, µ0 = µ1 and µ2 = µ3, so the total form of the transformation
becomes

(Tµf)(ν̂) =(ν0 + ν2)f
(
ν0µ̂0 + ν2µ̂2

ν0 + ν2

)

+ (ν1 + ν3)f
(
ν1µ̂0 + ν3µ̂2

ν1 + ν3

)
.

From this form of the transformation, we can already deduce a restriction on the
support of φ. The support of φ is restricted to the set of convex combinations of
µ̂1 and µ̂3

supp(φ) ⊂ {aµ̂0 + (1− a)µ̂2 | a ∈ [0, 1]} := S .

To show this, let’s suppose that ν̂ ∈ supp(φ) and ν̂ 6∈ S. Take ζν̂ a function such
that ζν̂(ŝ) = 0 for all ŝ ∈ S and ζν̂(ν̂) 6= 0. As φ has non-zero weight in ν, we have
φ(ζν̂) 6= 0. However, if we apply the invariance of φ under Tµ, we get

0 6=φ(ζν̂) = φ(Tµζν̂) =
∫
φ(dν)Tµ(ζν̂(ν))

=
∫
φ(dν)

[
(ν0 + ν2)ζν̂

(ν0µ̂0 + ν2µ̂2

ν0 + ν2

)
+ (ν1 + ν3)ζν̂

(ν1µ̂0 + ν3µ̂2

ν1 + ν3

)]
= 0 ,
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since the arguments to ζν̂ run over the set S, where the function is zero.

As the measure is non-zero only on S, the convex combinations of µ̂0 and µ̂2, we
can write it as a measure on the interval [0, 1]:

φ(f) =
∫ 1

0
dλ(a)f(aµ̂1 + (1− a)µ̂3) . (2.13)

The transformation Tµ now acting on the measure λ becomes:

φ(Tµf) =
∫
φ(dν)

[
(ν1 + ν3)f

(ν1µ̂1 + ν3µ̂3

ν1 + ν3

)
+ (ν2 + ν4)f

(ν2µ̂1 + ν4µ̂3

ν2 + ν4

)]
=
∫ 1

0
dλ(a)

[
(µ̂a,1 + µ̂a,3)f

( µ̂a,1µ̂1 + µ̂a,3µ̂3

µ̂a,1 + µ̂a,3

)

+ (µ̂a,2 + µ̂a,4)f
( µ̂a,2µ̂1 + µ̂a,4µ̂3

µ̂a,2 + µ̂a,4

)]
(2.14)

=
∫ 1

0
dλ(a) α1(a)fS(β1(a)) + α2(a)fS(β2(a)) , (2.15)

where

µ̂a = aµ̂1 + (1− a)µ̂3

α1(a) = µ̂a,1 + µ̂a,3

α2(a) = µ̂a,2 + µ̂a,4

β1(a) = µ̂a,1
µ̂a,1 + µ̂a,3

β2(a) = µ̂a,2
µ̂a,2 + µ̂a,4

and

fS(a) = f(µ̂a)

The action of Tµ on fS can be seen as taking two subintervals of fS , scaling the
function on these intervals to the unit interval and taking convex combinations
of the resulting functions, where the weights depend on the variable a. Likewise,
the dual action of Tµ on the measure λ is a contraction of the measure to two
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subintervals. By repeated applications of this transformation, we get the invariant
measure: φ = limn→∞(Tµ)nφ0. Repeated application means that at each iteration
the support of φ is further restricted to finer subsets. Thus the support of φ will
be on a Cantor-like set. These iterated function systems have been studied in more
detail in [62].

2.6 Numerics

The invariant measure can numerically be approached by taking any initial
probability measure and applying the transformation Tµ a sufficiently large number
of times. Any measure will converge to the invariant measure, but some choices
will give a lower computational complexity. A convenient choice is a sum of Dirac
delta measures as these can easily be represented numerically by their weights and
positions.

Figure 2.2 shows a plot of the capacity of a memory depolarizing channel, where
the switching between the channels is taken to be symmetric and parametrized by
a parameter s, the eigenvalue of the transition matrix different from 1:

Q =
( 1+s

2
1−s

21−s
2

1+s
2

)
(2.16)

Secondly, we parametrize the error probabilities by their average and difference:
x0

0 = a+ d, x0
1 = a− d. In this plot a is varied over the allowed interval [ 1

3 , 1] and
d is taken as the largest possible value such that both error probabilities still lie in
this interval.

The expected increase in channel capacity with increasing noise correlations is
evident. The results were compared to a Monte Carlo calculation of the capacity
and while the results were the same, the dynamical system calculation takes only a
fraction of the time of a full Monte Carlo calculation.

2.7 Memory dependence

Explicitly determining the invariant measure of the dynamical system proves to be
very difficult due to its fractal nature. Nevertheless it is possible to prove more
general characteristics of the measure.

In the numerical simulation, we observe an increase of capacity with a stronger
correlated memory. This behaviour has been analytically proven for the binary
symmetric channel [48]. Here we present an alternative proof of this property that
generalizes easily to the more general setting of algebraic measures.
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Figure 2.2: Capacity for maximally different sub-channels increases with memory

The rationale behind the proof is that by probabilistically interrupting the memory
of the channel, we get a new hidden Markov measure with a memory that correlated
less strongly. Since the process is a probabilistic mix, the entropy can be shown
to increase and hence the capacity is lower. Hence less strongly correlated gives a
lower channel capacity.

Proposition 1. Given an algebraic measure µ generated by manifestly positive
matrices Ei and manifestly positive vectors |σ〉 and |τ〉. Let A the manifestly
positive matrix

A = α1+ (1− α)|σ〉〈τ | .

For the algebraic measure µ′, generated by E′i =
√
AEi
√
A and |σ′〉 =

√
A|σ〉 = |σ〉

and |τ ′〉 = (
√
A)∗|τ〉 = |τ〉, we have

S(µ′n) ≥ S(µn) ∀n ∈ N0 .

Proof. The probability of a path (ω1, . . . , ωn) in the new process µ′ is given by

µ′n((ω1, . . . , ωn)) = 〈σ′|E′ω1
. . . E′ωn |τ

′〉 (2.17)

= 〈σ|AEω1A . . . AEωnA|τ〉 (2.18)
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This can be written as a mix of product states, for example for the length two
probabilities

µ′2((ω1, ω2)) = 〈σ|Eω1AEω2 |τ〉

= α〈σ|Eω1Eω2 |τ〉+ (1− α)〈σ|Eω1 |τ〉〈σ|Eω2 |τ〉 .

In the general case the probabilities can be written as a sum over all partitions πn
of the set {1, . . . , n}:

µ′n =
∑
πn

p(πn)µ|πn(1)| × . . .× µ|πn(k)| , (2.19)

where πn(i) denotes the i-th subset in the partition and |πn(i)| denotes its cardinality.
The convex coefficients p(πn) are determined by the number of times we switch
between different processes µ|πn(i)|. There are k − 1 such switches in a partition
with k subsets, so

p(πn) = (1− α)(k−1)α(n−k) .

By using the concavity and the sub-additivity of the Shannon entropy, we get the
desired result:

S(µ′n) ≥
∑
πn

p(πn)
(
S(µ|πn(1)|) + . . . S(µ|πn(k)|)

)
≥
∑
πn

p(πn)S(µn)

= S(µn)

Corrolary 1. For the memory channel we have considered in this chapter, the
classical capacity increases as the absolute value of the memory parameter s.

Proof. What we will show is that the process µ′ constructed in the proof of
Proposition 1 is in fact the hidden Markov process corresponding to the memory
channel with memory parameter αs. The smaller the mixing parameter α, the
higher the entropy by Proposition 1 and hence the lower the capacity.

The probabilities of the original process µ are given by (cf. Eq. 2.3)

µ((ω1, . . . , ωn)) =
∑

i1,...,in

γi1qi1i2 . . . qin−1inx
ω1
i1
. . . xωnin
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By Eq. 2.19, the new process has probabilities

µ′((ω1, . . . , ωn))

=
∑

i1,...,in

(∑
πn

p(πn)pQ((i1, . . . , i|π(1)|)) . . . pQ((in−|π(k)|+1, . . . , in))
)

xω1
i1
. . . xωnin ,

where pQ are the Markov channel switching probabilities

pQ((i1, . . . , il)) = γi1qi1i2 . . . qil−1il

It is not difficult to see that the sum of switching probabilities between brackets in
the previous equation is in fact the expansion of Markov switching probabilities
with transition matrix

Q′ = αQ+ (1− α)
[
γ0 γ1
γ0 γ1

]
.

Take for example the length 3 probabilities:

α2γi1qi1i2qi2i3 + α(1− α)γi1qi1i2γi3

+ (1− α)αγi1γi2qi2i3 + (1− α)2γi1γi2γi3

= γi1(αqi1i2 + (1− α)γi2)(αqi2i3 + (1− α)γi3)

In the case of a transition matrix of the form of Eq. 2.16, this mixing simply means
scaling the memory parameter s by α.

2.8 Non-forgetful limit

To complete the discussion concerning correlations we need to look at the two
extreme cases: s = 1, corresponding to the case where a sub-channel is selected
and used for every channel use afterwards, and s = −1, corresponding to the case
where the choice of sub-channel is flipped with every channel use. Therefore, in
constructing the overall channel and taking into account the initial random channel
selection, we just have the mixing of two n-use channels. Specifically, in the s = 1
case, we have the mixing of the two n-fold tensor products of the two sub-channels
separately and in the s = −1 case we have the mixing of two n-use channels where
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each deterministically alternates between the sub-channels but starting with a
different sub-channel.

Both these extreme cases are non-forgetful since the initial sub-channel selection
(the initial noise) is remembered and the forgetful Holevo capacity theorem no
longer applies (the Markov selection matrix is periodic in the s = −1 case and
reducible in the s = 1 case). For s = −1 the capacity can be calculated using [17]
and agrees with the limit of the forgetful approach, the capacity is the average
capacity of the two sub-channels separately. However, for s = 1 case there is a
discontinuity and the capacity suddenly drops to the minimum capacity of the
sub-channels [16].

The intuition is that in the s = −1 case the deterministic flip can be used to
determine ‘on-the-fly’ which sub-channel is being used and then it is the same as
using the two channels separately each half the time, so the capacity must be the
average capacity. For the s = 1 case once you have the poorer channel you are
stuck with it forever and so because of the mixture you can only guarantee the
lower capacity.

2.9 Conclusion

We have constructed a simple forgetful quantum memory channel. Using results on
the capacity of quantum memory channels, we can turn the capacity calculation
into a calculation of the entropy density of a hidden Markov process. The entropy
density of this hidden Markov process can be studied through a dynamical system
defined by its conditional probabilities. The entropy of the process is calculated
from the invariant measure of the dynamical system.

By studying the transformation involved in this dynamical system, it is possible
to greatly reduce the complexity of the problem. This allows for easy numerical
calculations of the channel capacity.

A possibility for further research on this topic is the study of memory channels
where the memory state process is a quantum Markov process instead of a classical
process. The entropy density calculation of some quantum Markov processes is
worked out further on in this thesis.





Chapter 3

Quantum Markov chains

3.1 Introduction

In the previous chapter a classical hidden Markov process appeared in the context
of quantum memory channels. The method used to calculate the entropy density
of such hidden Markov processes relies only on the strong sub-additivity of the
entropy and the translation-invariance on the one hand and the structure of the
correlations in the state on the other. The first two properties ensure that the
entropy density equals the asymptotic entropy rate. The last property then is used
to simplify the calculation of this entropy rate.

The strong sub-additivity and translation-invariance are properties that translate
directly to quantum systems. A good candidate for a quantum Markov process is
less clear however. In this chapter we will try to explain some of the issues that
arise in translating correlation properties to the quantum case.

There are several different ways to single out the Markov processes from among
the set of classical processes. First of all, the Markov processes are those processes
where the dependence on the past is limited to one time step. Another possibility
is the well-known transfer matrix construction, where the transfer matrix holds
the transition probabilities. Yet another way is looking at extensions of two-site
probability distributions that agree on one site. Such distributions can be extended
to processes, leading to a convex set of processes. The extension with maximal
entropy corresponds to the Markov process.

These constructions can however not be put into a quantum context in a
straightforward manner. The first two descriptions rely on the use of conditional
states, for which there is no clear extension to quantum systems [64, 51]. As we will

47
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show in the next section, the state extension construction is also not generalizable
to quantum systems. To introduce quantum Markov processes, we will use another
tool, called the conditional state space. This is a very general construction that
allows to characterize correlations between two quantum parties.

The main application of the conditional state spaces lies in the construction of so
called finitely correlated states on a spin chain [22]. These are translation-invariant
states on the chain that have a finite dimensional conditional state space with
respect to the division of the chain into two semi-infinite parts. When restricted to
the classical case, these states correspond exactly to the hidden Markov processes.

It can be shown that all finitely correlated states can be constructed using a
completely positive map that plays the role of the transition matrix [22]. In this
chapter we will look at a specific example of such finitely correlated states for qubit
chains, where we impose a lot of symmetry on the defining completely positive
map. In the following chapters we will work out constructions similar to the ones
presented in this chapter for fermions.

Finitely correlated states are interesting states to study for many different reasons.
First of all the pure states among them are ground states of quantum spin systems
that can be explicitly constructed [22]. Not a lot of states with these properties are
known. Secondly, finitely correlated states can be used to quantify the randomness
of its corresponding completely positive map. The randomness is given by the
randomness of the produced state, determined by its entropy density. This is the
analogue of measuring randomness of a transition matrix by the entropy density of
the corresponding Markov measure. This method of measuring the randomness of
a quantum channel can be seen as an alternative to minimal output entropy[37].
Finally, pure finitely correlated states also have been used to numerically simulate
spin systems in the so called density matrix renormalization group method [58],
but this will not be discussed here.

Finitely correlated states are well-known in quantum information theory and solid
state physics. The pure finitely correlated states are also known as matrix product
states. In recent years a lot of progress has been made on topics such as their
entanglement [46], finite-dimensional and non-translation-invariant generalizations
[50] and their applicability as trial states for numerical calculations of ground state
properties. Here we present a new view emphasising the importance of conditional
state spaces. The thorough investigation of conditional state spaces and possible
applications to other concepts such as entanglement is a new contribution.

The ideas presented in this chapter have been published in [25, 24].



STATE EXTENSIONS 49

Figure 3.1: The classical state extension problem.

3.2 State extensions

In this section we first describe some properties of classical Markov processes. We
look at their construction and the behaviour of the Shannon entropy. We then
describe some related questions that arise in the context of quantum systems.

3.2.1 Extending classical states

Let us first look at ways to construct classical Markov processes. The configuration
space of a classical register with d states is just a finite set Ω = {1, 2, . . . , d}. The
states are length-d probability vectors

µ = {µ(1), µ(2), . . . , µ(d)}, µ(ε) ≥ 0,
∑
ε

µ(ε) = 1.

The state space is a simplex and the extreme points are the Dirac measures δε
assigning probability 1 to the configuration ε. The Shannon entropy

H(µ) := −
∑
ε

µ(ε) logµ(ε)

quantifies the randomness in the state.

We can now consider the following state extension problem. Suppose that we
are given two probability vectors µ12 and ν23 that agree on the middle system:
µ2 = ν2. Can we find a joint extension for µ12 and ν23? More explicitly: can we
find a state ξ123 on Ω123 that restricts to µ12 on Ω12 and to ν23 on Ω23?

This is indeed possible and clearly the set of joint extensions ξ123 is convex and
compact. We can therefore refine the question and ask for a joint extension of
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maximal entropy. A straightforward computation yields this extension:

ρ123(ε1, ε2, ε3) := µ12(ε1, ε2)ν23(ε2, ε3)
µ2(ε2) = µ12(ε1, ε2)ν23(ε2, ε3)

ν2(ε2) . (3.1)

Actually, ρ123 saturates the strong sub-additivity inequality:

H(ρ123) + H(ρ2) = H(ρ12) + H(ρ23).

Unsurprisingly, there is a direct connection with thermal equilibrium states. If we
introduce Hamiltonians

µ12 = e−h12 , ν23 = e−h23 , and µ2 = ν2 = e−h2

then

ρ123 = e−(h12+h23−h2).

Let us start with a two-party probability vector µ that is shift-invariant in the
sense that∑

ε2

µ(ε, ε2) =
∑
ε1

µ(ε1, ε) for all ε. (3.2)

We can repeatedly apply the Markov extension procedure (3.1) to get a stationary
process

ω(ε0, ε1, . . . , εn) = µ(ε0, ε1)µ(ε1, ε2) · · · µ(εn−1, εn)
µ(ε1)µ(ε2) · · · µ(εn−1) . (3.3)

Another procedure is to start with a d× d stochastic matrix T . The entry Tε1ε2 is
the probability for jumping from state ε1 to ε2, therefore

Tε1ε2 ≥ 0 and
∑
ε2

Tε1ε2 = 1. (3.4)

The invariant state µ is a row vector determined by µT = µ. The Markov process
is now obtained by putting

ω(ε0, ε1, . . . , εn) = µ(ε0)Tε0ε1 · · · Tεn−1εn . (3.5)

Both constructions (3.3) and (3.5) agree if we put

Tε1ε2 = µ(ε1, ε2)
µ(ε1) .
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The randomness of the Markovian evolution T can be quantified by the minimal
output entropy.

Hmin(Γ) = min
({

H(Γ(ρ))
∣∣ ρ state

})
.

The amount of randomness in the Markov process ω up to time n is quantified by
the entropy

Hn = H
(
ω{0,1,...,n}

)
.

The rows of a stochastic matrix T are probability vectors. The minimal output
entropy of T is simply

Hmin(T ) = smallest entropy of rows of T

while the entropy of the process is a smooth version of this quantity

h = µ-average of entropies of rows of T

=
∑
ij

µ(i)(−Tij log Tij) ,

as we have seen in Section 2.4.2.

3.2.2 Extending quantum states

When turning to quantum state extension the situation gets more complicated.
Quantum states allow for more freedom, as they exhibit correlations that are not
present in classical systems, but this also makes it more difficult to have two states
agree on a common part, as we did with classical states in the previous section.

States on a full matrix algebra Md can be identified with density matrices: non-
negative matrices with trace one. The convex set of density matrices is very unlike
a simplex. A density matrix that is not an extreme point of the state space, i.e.
that is not a one-dimensional projector, allows many decompositions in extreme
states. In contrast with classical systems such a state can therefore not be seen
as a well-defined ensemble of pure states. We need d2 − 1 real parameters to
describe the state space of Md while 2d− 2 parameters suffice to label the pure
states. This means that the boundary of the state space contains many flat subsets.
Nevertheless the pure states form a very nice smooth manifold. The case of a single
qubit is exceptional: its state space is affinely isomorphic to the Bloch ball by the
standard parametrization

ρ = 1
2 (1 + x · σ), x ∈ R3, |x| ≤ 1. (3.6)
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In this case, every point of the boundary is also an extreme point. For higher d, a
smooth parametrization of the pure states does not define a boundary of a convex
set.

An important property that holds both for classical and quantum systems is that if
the marginal ρ1 of a bipartite state is pure then ρ12 = ρ1⊗ρ2. This is an important
ingredient of the theory: namely it allows a system to be isolated from the rest of
the universe. At the same time it is also a severe constraint on quantum systems
because there are plenty of pure states of a composite system. In particular the
restriction of an entangled pure state can never be pure and we can therefore not
separate a party of an entangled system from the outside world.

Factorisation of extensions of pure states has also a bearing on joint extensions of
states as considered in the previous section [68]. Indeed, suppose that ρ12 and ρ23
are pure and agree on the middle system,

Tr1 ρ12 = Tr3 ρ23 ,

which is easily feasible. A joint extension ρ123 can then only exist for ρ12 and
ρ23 pure product states. Therefore a generic pure two-party state with inner
shift-invariance as in (3.2) cannot be extended.

Suppose that density matrices ρ12 and σ23 agree on the middle system and can
be jointly extended. The set of extensions is still convex and compact and so we
can still look for the maximal entropy extension. Finding the maximal entropy
extension is hard, however, because generally[

ρ12 ⊗ 13 , 11 ⊗ σ23
]
6= 0

or, equivalently, if ρ12 and σ23 are equilibrium states corresponding to Hamiltonians
h12 and h23

Tr3 exp
(
h12 + h23

)
6≈ exp

(
h12 + h2

)
.

Moreover, the maximal entropy extension will not saturate the strong sub-additivity.

Actually, a nice characterisation of equality in strong sub-additivity for a state ρ123
on a space H1 ⊗H2 ⊗H3 in terms of decompositions of the middle space has been
obtained in [29]. The necessary and sufficient condition is that the middle Hilbert
space H2 decomposes as

H2 =⊕
α
Hαleft ⊗Hαright and ρ123 =⊕

α
λα ρ

α
12 ⊗ ρα23

with {λα} convex weights.

A Qubit Example with SU(2)-symmetry

An example of the limitations imposed on quantum state extensions can be worked
out for qubits with a SU(2)-symmetry. We look at the amount of entanglement
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that can be achieved between two subsequent spins in a chain that is invariant
under SU(2) transformations. We compare the amount of entanglement that can
be theoretically be attained in the general case and the amount attainable in some
cases where an explicit state is given. The general case gives a significantly higher
value, showing the need for a more extensive class of explicit translation-invariant
quantum chains.

In order to impose SU(2)-symmetry on single qubit observables we use the adjoint
representation of SU(2)

Ad(U) : A 7→ U AU∗, U ∈ SU(2), A ∈M2.

This is a reducible representation that decomposes into a spin 0 and a spin 1 irrep:

M2 = C1⊕ Cσ.

The action of the adjoint Ad(U) on the Bloch ball is a rotation about an arbitrary
axis. Hence the only SU(2)-invariant state on M2 is the uniform state

ρ = 1
2 1,

at the center of the ball.

For 2 qubits Ad(U ⊗ U) decomposes into 2 spin 0, 3 spin 1 and 1 spin 2 irrep.
There exists now a one parameter family of SU(2)-invariant states

ρ = 1
3 (1− λ)(1− p) + λp, 0 ≤ λ ≤ 1.

Here p is the projector on the singlet vector 1√
2 (|10〉 − |01〉) in C2 ⊗ C2. This

projector commutes with every unitary of the form U ⊗ U and every two-qubit
observable that is SU(2)-invariant is a linear combination of p and 1. Clearly,
SU(2)-invariant two-qubit states satisfy

0 ≤ 〈p〉 = λ ≤ 1.

The two-qubit state ρ is separable for 0 ≤ λ ≤ 1
2 and entangled for 1

2 < λ ≤ 1.
Hence the expectation value of this projector for a certain process tells us how
much bipartite entanglement between two neighbouring spins is attainable.

For 3 qubits the SU(2)-invariant states can still easily be determined but things
become more complicated with increasing number of parties. Let

p1 = p⊗ 1 and p2 = 1⊗ p and put

q = 4
3
(
p1 + p2 − p1p2 − p2p1

)
.

The algebra of three-qubit observables that are SU(2)-invariant is not Abelian. It
can be decomposed into a direct sum of C andM2 where C is identified with Cq and
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M2 with the algebra generated by p1 and p2, not including 1. An SU(2)-invariant
three-qubit state is of the form

ρ = 1
4 (1− λ)(1− q) + λ

(
ap1 + bp2 + cp1p2 + cp2p1

)
with

0 ≤ λ ≤ 1, a, b ∈ R, c ∈ C, 2a+ 2b+ <e(c) = 1, and |c|2 ≤ 4ab.

If we look for a SU(2)-invariant three-party state with partial shift-invariance, then
we find the following constraint on the expectation of p

0 ≤ 〈p1〉 = 〈p2〉 ≤ 3/4. (3.7)

SU(2) and shift-invariant states on more parties will satisfy stronger upper bounds
on the expectations of p, see (3.7). Ultimately, if we look for a shift-invariant
extension on the full half-chain then, using the Bethe Ansatz [7, 34, 33], one can
show that

0 ≤ 〈p〉 ≤ log 2 ≈ 0.69. (3.8)

We may look for the largest expectation value of p that can be obtained within
classes of shift-invariant states that can easily be handled. Consider as a first
example point-wise limits of shift-invariant product states. Such states are actually
invariant under arbitrary finite permutations of sites on the half-chain and are
usually called exchangeable. Using the Bloch parametrization (3.6) and

p = 1
4 (1− σ1 · σ2) with σ1 = σ ⊗ 1 and σ2 = 1⊗ σ

we have to maximize

x ∈ R3 7→ 1
16 Tr

[
(1+ x · σ1)(1+ x · σ2)(1− σ1 · σ2)

]
,

subject to the constraint |x| ≤ 1. It is easily seen that the maximum is reached for
x = 0 for which value 〈p〉 = 1

4 . Hence

〈p〉 ≤ 1
4 for all exchangeable states. (3.9)

The largest expectation for p that can be reached within the class of product states
is

max
(

1
16 Tr

[
(1 + x1 · σ1)(1+ x2 · σ2)(1− σ1 · σ2)

])
subject to the constraint |x1|, |x2| ≤ 1. The maximum 1

2 is attained for x1 =
−x2 = x where x ∈ R3 is an arbitrary vector of length 1. Therefore

〈p〉 ≤ 1
2 for any separable state.
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Moreover, this maximum is attained for shift-invariant separable states that are
equal weight mixtures of period-2 product states

1
2 |e0〉〈e0|⊗ |e1〉〈e1|⊗ |e0〉〈e0|⊗ · · ·+ 1

2 |e1〉〈e1|⊗ |e0〉〈e0|⊗ |e1〉〈e1|⊗ · · · , (3.10)

where {e0, e1} is any orthonormal basis in C2. Hence

〈p〉 ≤ 1
2 for all shift-invariant separable states

is an optimal upper bound. States of the form (3.10) are extreme shift-invariant
states which allow a convex decomposition in clustering period-2 states. This
is called Néel order of period 2. The value of 1

2 for shift-invariant separable
states is still not close to the maximum value of log 2. One can get closer by
constructing more general quantum processes. A possible class of more general
quantum processes is the class of finitely correlated states. They are states on the
spin chain for which the correlations across any link can be modelled by a finite
dimensional vector space. The way to study such correlations between two parts
of a quantum state is introduced in the next section. In Section 3.4 the finitely
correlated states are then introduced. We will then return to this example and
demonstrate that a higher value can indeed be obtained using such states.

3.3 Conditional state spaces

In the previous sections we have seen how difficult it can be to explicitly construct
translation-invariant processes that have non-trivial correlations. Surely, to describe
translation-invariant states in general is hopeless. An approach that has proven to
be successful is restricting the correlations between two semi-infinite halves of the
process to be finite. This is quite a severe restriction, as both halves of the process
are infinite, but they nevertheless have finite correlations.

First of all, we need a way of describing correlations between two parties. To study
these correlations we consider the influence of perturbations of one party on the
other. The states that arise in this way could be called conditional states even if
the classical notion of conditioning cannot be extended to the quantum [64]. We
first describe the general recipe for constructing these conditional states and work
out some applications. We then derive a different description of the conditional
state space that has some useful positivity properties.

3.3.1 Construction

We consider here mostly finite dimensional algebras of observables A. These can
always be taken to be unital sub-algebras of some complex matrix algebra M,
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closed under Hermitian conjugation. Such algebras are direct sums of full matrix
algebras and therefore encompass both classical systems with finite state spaces
and fully quantum systems with a finite number of accessible levels. The space
of complex linear functionals on A is denoted by A∗ and the pairing between
a functional ϕ and an observable A by ϕ · A. Because of the finite dimensions
(A∗)∗ = A. The state space of A is the convex subset S(A) of normalized, positive,
linear functionals. The term state therefore means expectation functional rather
than wave function as in standard quantum mechanics.

We now consider bipartite systems. The observables of both parties form algebras
A1 and A2 and of the composite system A12 = A1 ⊗A2. Generally, subsystems
will be correlated and this is encoded in conditional state spaces

S1 :=
{
A1 7→ 〈A1 ⊗A2〉12 | A2 ∈ A+

2 , 〈11 ⊗A2〉12 = 1
}

and

S2 :=
{
A2 7→ 〈A1 ⊗A2〉12 | A1 ∈ A+

1 , 〈A1 ⊗ 12〉12 = 1
}
. (3.11)

Si is a compact convex subset of S(Ai).

We may also consider the linear spaces of functionals

V1 :=
{
A1 7→ 〈A1 ⊗A2〉12 | A2 ∈ A2

}
and

V2 :=
{
A2 7→ 〈A1 ⊗A2〉12 | A1 ∈ A1

}
. (3.12)

As any element in a C*-algebra is a linear combination of at most four positive
elements, Vi is spanned by Si. Mostly, Si is a proper subset of the space of positive
normalized functionals in Vi. Our main goal is to describe S1 preferably in terms
of a manifestly positive model. This means that we want to generate the elements
of S1 in terms of manifestly positive objects such as states and completely positive
maps, see (3.22) for an example of a bipartite finite-dimensional quantum system
and Chapter 5 for free Fermionic states.

A state 〈 〉12 of a composite system is a linear map from A2 to A∗1

S : A2 ∈ A2 7→
(
A1 ∈ A1 7→ 〈A1 ⊗A2〉

)
∈ A∗1. (3.13)

This map is, moreover, positive. The transposed map ST from A1 to A∗2

ST(A1) ·A2 = S(A2) ·A1, Ai ∈ Ai (3.14)

simply swaps the parties. As the rank of a map and its transpose are equal

dim
(
V1
)

= dim
(
V2
)

=: n. (3.15)

The natural number n is the correlation dimension of 〈 〉12.
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The conditional state A1 7→ 〈A1 ⊗A2〉 on A1 can now be written in the form

〈A1 ⊗A2〉12 = ST(A1) ·A2 = ST(A1) ·B (3.16)

for a suitably chosen B from ST(A1)∗, i.e., we have modelled the conditional states
on A1 by a n-dimensional space. However, B does not have to be positive which
makes (3.16) not very useful.

3.3.2 Applications

Classical states

The conditional state space defined previously corresponds to the usual conditional
probabilities for classical systems. The observablesA andB are continuous functions
on the configuration space and the state ω is a measure p12. The requirement on
B that ωB(1) = 1 becomes

ω(1⊗B) =
∑
ij

p12(i, j)B(j) =
∑
j

p2(j)B(j) = 1 .

So by defining λ(j) := p2(j)B(j), λ is a probability distribution since B ≥ 0.

The conditional states are now given by

ωB(A) =
∑
ij

p12(i, j)A(i)B(j) =
∑
i

∑
j

λ(j)p12(i|j)

A(i) .

Hence the conditional state space is a simplex with the usual conditional probability
distributions at the vertices.

Product states

A product state is a state with no correlations. The expectation value factors into
a product

ω(A⊗B) = ω1(A)ω2(B) .

For the conditional state ωB to be a unital, we need that ω2(B) = 1. This gives us
that for every such B, the conditional state equals ω1

ωB(A) = ω1(A)ω2(B) = ω1(A)

Hence, the conditional state space of a state with trivial correlations is a trivial set
with only one point.
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Separable states

Separable states are states that can be constructed by local operations and classical
communication. They don’t exhibit quantum correlations and this property is
mirrored in the geometry of the conditional state space.

By Caratheodory’s theorem [55], a separable state ρ of a bipartite systemM1⊗M2
can always be decomposed into a mixture of d pure product states where d ≤ d2

1d
2
2:

ρ =
d∑

α=1
λα|ϕα〉〈ϕα| ⊗ |ψα〉〈ψα|. (3.17)

Here λ = (λα) is a probability vector and the ϕα and ψα are normalized but
generally non-orthogonal vectors in Cd1 and Cd2 . The conditional states are then
of the form

A1 7→
∑
α

µα〈ϕα , A1ϕα〉 (3.18)

where the probability vector µ = (µα) varies in a closed convex subset of the
classical state space of probability vectors of length d. I.e., the conditional state
space of a separable state admits a classical model.

Werner states

A 2× 2 Werner state ρW is a state on M2 ⊗M2 which is a mixture between the
completely mixed state 14/4 and the maximally entangled state |Ψ−〉〈Ψ−|, where
|Ψ−〉 = 1√

2 (|01〉 − |10〉):

ρW = (1− λ)14 + λ|Ψ−〉〈Ψ−|

Depending on the mixing parameter λ the state ρW is entangled or separable [67].
For 0 ≤ λ ≤ 1

3 it is separable and for 1
3 < λ ≤ 1. We can now look what influence

this parameter has on the geometry of the conditional state space.

For the Werner state the restriction to one party Tr1 ρW is the maximally mixed
state 1/2. For the conditioning operator B, the requirement of unitality is then

Tr ρW1⊗B = Tr2(Tr1(ρW )B) = Tr B2 = 1 ,

so B = 2ρ′ for some qubit state ρ′. The state conditioned on B then becomes

ωB(A) = Tr ρWA⊗B = (1− λ) Tr 12A+ λ〈Ψ−|A⊗ 2ρ′|Ψ−〉
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If ρ′ has a Bloch vector r then the second term on the right hand side is a state
with Bloch vector −r. Hence the possible conditional states are mixes of all qubit
states with 1/2 with a parameter λ. The conditional state space is then a Bloch
ball with radius λ.

For qubits it is known that a separable state can always be decomposed as a mix of
at most 4 separable pure states [57]. Note that this is lower than the 16 given by
Caratheodory’s theorem. This means that the conditional state space will lie inside
a polygon with 4 vertices, i.e. a tetrahedron. Therefore, if the conditional state
space cannot be put inside of a tetrahedron, the bipartite state must be entangled.
This corresponds to what we see for the Werner state. The largest ball centered on
the origin that can fit inside of a tetrahedron has radius 1/3. Hence, if the radius
of the conditional state space, equal to the mixing parameter λ, becomes larger
than 1/3, the Werner state must be entangled.

Bipartite quantum systems

It is possible to work out a description of the conditional state space for general
bipartite quantum states. The description that is derived here consist of a quantum
state space which is transformed by a completely positive map. This model fits
in the general setting of generalized subsystems of [3]. Generalized subsystems
describe quantum systems where only a subalgebra of the observables is accessible
to the observer. In this case the observer only has access to one part of a bipartite
state.

Consider a bipartite system with fully quantum parties, i.e., Ai =Mi where Mi

is a full matrix algebra of dimension di. The general finite dimensional situation
can be handled by decomposition in a direct sum of full matrix algebras. A state
of the composite system is given by a density matrix ρ12 of dimension d1d2

〈A12〉12 = Tr
(
ρ12A12

)
, A12 ∈M1 ⊗M2. (3.19)

Let d3 be the dimension of the range of ρ, then the GNS-construction [41] yields an
essentially unique (up to unitary equivalence) normalized vector Ω ∈ Cd1⊗Cd2⊗Cd3

such that

〈A12〉12 = 〈Ω , A12 ⊗ 13 Ω〉, A12 ∈M1 ⊗M2. (3.20)

We now perform the Schmidt decomposition of Ω with respect toM2 andM1⊗M3

Ω =
m∑
j=1

cj Ω2 j ⊗ Ω13 j . (3.21)

Here cj > 0 and {Ω2 j} and {Ω13 j} are orthonormal families in Cd2 and Cd1 ⊗Cd3 .
Thus, the conditional states on M1 are convex combinations of conditional states
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defined by a rank one operator in M2. These are of the form

A1 7→ 〈Ω , A1 ⊗ |η〉〈η| ⊗ 13 Ω〉

=
m∑

k,`=1
〈Ω2 k , η〉 〈η , Ω2 `〉 〈Ω13 k , A1 ⊗ 13 Ω13 `〉

= 〈ξ , A1 ⊗ 13 ξ〉.

Here ξ is a normalized vector in span
(
{Ω13 j}

)
. Moreover, any normalized ξ can

be reached by an appropriate choice of η. Therefore, the conditional states are of
the form

A1 7→ 〈ξ , A1 ⊗ 13 ξ〉, ξ ∈ span
(
{Ω13 j}

)
.

Picking an isometry V from span
(
{Ω13 j}

)
to Cm we obtain the following model

for the conditional states

S1 =
{
A1 7→ Tr

(
ρΓ(A1)

)
| ρ density matrix on Cm

}
(3.22)

with

Γ(A1) = V A1 ⊗ 13 V
∗. (3.23)

The map Γ is completely positive and identity preserving. The model is manifestly
positive, i.e. the complete positivity of the map and the positivity of the density
matrix guarantee that the conditional state is positive. In Section 3.3.1 we described
a specific conditional state by picking an operator in the inaccessible party, but
this operator could not be chosen freely due to the positivity requirement. This
difficulty is lifted in this model because of this manifest positivity.

Pure bipartite states

For a pure state 〈 〉12 on M1 ⊗ M2 defined by a normalized vector Ω12 the
forms (3.16) and (3.22) are actually very similar. We can identify the dual of M
with M and use the pairing

ϕ ·A = Tr(ϕA). (3.24)

Writing the Schmidt decomposition

Ω12 =
p∑
i=1

r
1
2
i ei ⊗ fi, ri > 0, (3.25)
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we easily compute for A1 ∈M1

ST(A1) =
p∑

k,`=1
r

1
2
k r

1
2
` 〈ek , A1e`〉 |f`〉〈fk|. (3.26)

It is now not hard to verify that

S2 =
{
ST(A1)

∣∣ A1 ≥ 0 and 〈A1 ⊗ 12〉12 = 1
}

(3.27)

is affinely isomorphic to the state space of the p-dimensional complex matricesMp.
We see therefore that the correlation dimension n is p2. A general conditional state
on A1

A1 7→ 〈A1 ⊗A2〉12, A2 ≥ 0 and 〈11 ⊗A2〉12 = 1 (3.28)

can then be written as

A1 7→ Tr
(
ST(A1)B

)
(3.29)

for a suitable B ∈
(
ST(A1)

)∗. As ST(A1) is the full state space of the n-dimensional
matrices we must have that

B ≥ 0 and Tr
(
ST(11)B

)
= 1. (3.30)

This means that (3.29) is manifestly positive. To obtain the equivalence with the
form (3.22) we use the transposition with respect to the basis {fj} of Cp:

Tr
(
ST(A1)B

)
= Tr

(
BT(ST(A1)

)T) = Tr
(
BTΛ(A1)

)
= Tr

(
Λ(11) 1

2BTΛ(11) 1
2 Γ(A1)

)
(3.31)

with

Λ(A1) =
∑p
k,`=1 r

1
2
k r

1
2
` 〈ek , A1e`〉 |fk〉〈f`| and

Γ(A1) = Λ(1)− 1
2 Λ(A1)Λ(11)− 1

2 . (3.32)

It is clear that Γ(1) = 1, i.e. Γ is unity preserving. Since Γ(A1) = B∗A1B with
B = Λ(1)− 1

2
∑p
k=1 r

1
2
k |ek〉〈fk| it is also completely positive.
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3.4 Constructing processes

We have introduced the conditional state space in the previous section in order to
build quantum processes that have Markovian properties, i.e. finite correlations.

Here we construct such classical and quantum processes using as initial data a unity
preserving CP map Γ :Md →Md with invariant state ρ. In the classical case this
reduces to a stochastic matrix T with invariant measure µ. The construction is
based on finitely correlated states [22], also called matrix product states. These
states are more general than the ones we have considered up until now and are
well-defined in the thermodynamic limit by construction, unlike the Bethe Ansatz
states.

Finally we will show that the states that are constructed in this way are indeed the
states we are looking for, namely states with finite dimensional conditional state
spaces.

The starting point is a unity preserving CP map

Λ :Md ⊗Md →Md

that is compatible with the given Γ in the following sense

Λ(A⊗ 1) = Λ(1⊗A) = Γ(A), A ∈Md. (3.33)

A process ω is now generated by repeatedly contracting the local observables on
the half-chain. Consider a sequence of unity preserving CP maps

Λ(0) =Λ :Md ⊗Md →Md

Λ(1) =Λ ◦ (Λ⊗ id) :
(
Md ⊗Md

)
⊗Md →Md

...

Λ(n) =Λ ◦
(
Λ(n−1) ⊗ id

)
:
(
Md ⊗ · · · ⊗Md︸ ︷︷ ︸

(n+ 1) times

)
⊗Md →Md.

(3.34)

The expectation of a local observable An ∈ ⊗n0Md is then computed as

ω
(
An
)

= Tr
{
ρΛ(n)(1⊗An)

}
. (3.35)

Instead of looking at Λ(n) as a map contracting observables, we can also regard the
conjugate maps as constructing ever larger local density matrices with the help of
an ancillary algebra. The local density are then obtained by tracing out the ancilla:

ρn = Tr1 Λ(n)∗(ρ) .
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To define a stationary process, (3.35) must satisfy a number of requirements. The
definition should be consistent in the first place, namely ω(An⊗1) = ω(An). This
follows from the compatibility (3.33) and the invariance of ρ

ω(An ⊗ 1) = Tr
{
ρΛ(n+1)(1⊗An ⊗ 1)

}
= Tr

{
ρ
(

Λ ◦
(
Λ(n) ⊗ id

))
(1⊗An ⊗ 1)

}
= Tr

{
ρΛ
(

Λ(n)(1⊗An)⊗ 1
)}

= Tr
{
ρΓ
(

Λ(n)(1⊗An)
)}

= Tr
{
ρΛ(n)(1⊗An)

}
= ω(An).

Next, we need positivity. This follows immediately from the complete positivity of
Λ. The compatibility condition implies that Λ maps the identity on Cd ⊗ Cd to
the identity on Cd. This implies the normalization and stationarity of ω.

It is important to observe that compatibility (3.33) imposes a severe restriction on
Γ. Not every CP transformation Γ ofMd admits a compatible extension. Moreover,
the compatible extensions of Γ, whenever such extensions exist, form a compact
and convex set and one may wonder about particular extensions.

The following theorem characterizes the finitely correlated states in terms of their
conditional state space. Classical Markov processes have the property that the
future evolution is only conditioned on the present state and not the past. This
theorem shows that finitely correlated states have a similar property, namely that
their dependence on the past is finite. For a proof of the theorem, see [22].

Theorem 2. Let ω be a translationally invariant state on the chain algebra MZ
d .

ω is a finitely correlated state as in (3.35) if and only if its correlation dimension
is finite:

dimV <∞

with

V :=
{
A ∈MN

d 7→ ω(X ⊗A) | X ∈MZ\N
d

}
We shall now turn to some classes of examples.
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A qubit example with SU(2)-symmetry cont.

Here we return to the example with SU(2)-symmetry we have explored before. We
will see that by considering the finitely correlated states, we can get more elaborate
correlations while still being able to easily describe the translation-invariant states
explicitly.

In order to have manifest SU(2)-invariance of the process we impose SU(2)-
covariance both on the CP transformation of M2 and on its compatible extensions
from M2 ⊗M2 to M2. Let G 7→ Ug be a unitary representation of a group G on a
Hilbert space H. The adjoint representation lifts it to a representation of G on the
bounded linear transformations B(H) of H:

Ad(Ug)(A) = UgAU
∗
g , g ∈ G, A ∈ B(H).

Given two unitary representations U (1) and U (2) of G on H1 and H2 a map
Γ : B(H1)→ B(H2) is covariant if

Γ ◦Ad(U (1)) = Ad(U (2)) ◦ Γ (3.36)

The Choi-Jamio lkowski encoding of a linear map Γ :Md1 →Md2 is very convenient
for handling complete positivity

C(Γ) =
∑
i,j

|i〉〈j| ⊗ Γ(|i〉〈j|),

Γ is completely positive if and only if C(Γ) is positive semi-definite. The encoding
depends on the chosen basis through the matrix units |i〉〈j| but only up to unitary
equivalence as

C(Γ ◦Ad(U)) = Ad(UT ⊗ 1) ◦ C(Γ) and

C(Ad(U) ◦ Γ) = Ad(1⊗ U) ◦ C(Γ).

The covariance condition (3.36) for Γ : Md1 → Md2 translates for its Choi-
Jamio lkowski encoding into[

U
(1)
g ⊗ U (2)

g , C(Γ)
]

= 0, g ∈ G.

Here A is the complex conjugate of the matrix A. For SU(2) there is an additional
simplification because the conjugate of SU(2) is unitarily equivalent to SU(2).

It turns out that there is a one-parameter family of SU(2)-covariant unit preserving
CP transformations of M2

Γ(σ) = µσ, − 1
3 ≤ µ ≤ 1.
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The SU(2)-covariant CPUP maps Λ : M2 ⊗M2 → M2 compatible with Γ are
parametrized by three real parameters

Λ(σ1 · σ2) = α1,

Λ(σ1) = Λ(σ2) = Γ(σ) = µσ, and

Λ(σ1 × σ2) = ησ.

(3.37)

Complete positivity imposes constraints on α, µ, and η

|6µ− α| ≤ 3 and 3− 2α− α2 + 12µ− 12αµ− 9η2 ≥ 0. (3.38)

These conditions can be obtained by imposing positivity on the Choi matrix of Λ.
The allowed region is a piece of a cone in R3. We then compute the expectation of
p

〈p〉 = 1
4 −

1
4 〈σ1 · σ2〉 = 1

4 −
1
8 Tr

∑
γ

Λ
(
σγ ⊗ Λ(σγ ⊗ 1)

)
= 1

4 −
1
8 µTr Λ(σ1 · σ2) = 1

4 (1− αµ).

The maximum in the allowed parameter region is attained for α = − 3
2 and µ = 1

4
and is independent of η (all η with |η| ≤

√
5

2 fulfil positivity for these α and µ).
Therefore

〈p〉 ≤ 11
32 (3.39)

for 〈 〉 a stationary and SU(2)-invariant process as in (3.34). This should be
compared with (3.9).

In passing from exchangeable to shift-invariant separable states we actually allowed
product states of period 2. This can also be applied to processes of the type (3.37).
Considering σ1 · σ2 as the contribution to the energy of two neighbouring spins, a
minimal value of 〈σ1 ·σ2〉 corresponds to a maximal value of 〈p〉 and this is expected
to happen for spins as anti-parallel as possible. Therefore the second requirement
in (3.37) is inappropriate and we should consider general SU(2)-covariant maps
Λ :M1 ⊗M2 →M2. These are determined by four real parameters

Λ(σ1 · σ2) = α1,

Λ(σ1) = µσ, Λ(σ2) = ν σ, and

Λ(σ1 × σ2) = ησ.

(3.40)

Complete positivity imposes the constraints

|3µ+ 3ν − α| ≤ 3 and

3− 2α− α2 + 6(1− α)(µ+ ν)− 9(µ− ν)2 − 9η2 ≥ 0.
(3.41)
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We now introduce two SU(2)-covariant maps Λi :M2 ⊗M2 →M2 as in (3.40)
with defining parameters (αi, µi, νi, ηi). The expectation of p in the equal weight
average of these period-2 processes is given by

〈p〉 = 1
4 −

1
8 (α2µ1 + α1ν2).

Maximizing this in the allowed parameter region yields

〈p〉 = 5
8 = 0.625

which is within 10% of the optimal bound and well within the entangled shift-
invariant states.

Classical hidden Markov processes

There is good reason to consider the finitely correlated states as quantum Markov
states. Indeed, when restricting the observable algebras to be Abelian, we recover
the classical hidden Markov processes.

A classical observable, i.e. a R-valued function f on configuration space Ω =
{1, 2, . . . , d} is naturally tabulated into a vector f =

(
f(1), f(2), . . . , f(d)

)T ∈ Rd
and identified with a diagonal matrix in Md through the map

dia(f) =
∑
ε

f(ε) |ε〉〈ε|.

The relation between a (completely) positive transformation Γ of Md and a
stochastic d× d matrix is then

Γ
(
dia(f)

)
= dia(T f).

This allows to rewrite the compatibility equation (3.33): a stochastic matrix
S : Rd ⊗ Rd → Rd is compatible with a stochastic matrix T : Rd → Rd if∑

ε2

Sϕ,(ε,ε2) =
∑
ε1

Sϕ,(ε1,ε) = Tϕ,ε, ∀ ϕ, ε.

Let us introduce d matrices of size d× d with non-negative entries

E(ε)ϕ,η = Sϕ,(η,ε).

The process generated by S is then seen to be

ω(ε0, ε1, . . . , εn) = 〈µ , E(ε0)E(ε1) · · ·E(εn)1〉,

where 1 ∈ Rd has all its entries equal to one and µ is the invariant probability
vector for T .
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A stochastic matrix T always allows the extension

Sϕ,(η,ε) = δη,ε Tϕ,ε.

The corresponding process is the usual Markov process (3.5). More general
extensions ω are hidden Markov processes: there exists a larger configuration
space Ω1, a function F : Ω1 → Ω and a Markov process ω1 on Ω1 such that

ω(ε0, ε1, . . . , εn) =
∑

F (ϕj)=εj

ω1(ϕ0, ϕ1, . . . , ϕn).

The entropy of hidden Markov processes can be computed using the method due
to Blackwell [21] that we have explained in the previous chapter. The starting
point is the asymptotic entropy production formula (2.10). The construction of
the process, adding one point at a time, see (3.34) and (3.35), defines a dynamical
system on the length-d probability vectors. The entropy of the process is then
obtained as an average over entropies of probability vectors with respect to the
invariant measure of the dynamical system. Numerical evidence suggests that the
Markov extension has the smallest entropy amongst all.

3.5 Conclusion

In this chapter we have looked for a generalization of classical Markov processes.
As a first step, we have looked at some of the ways to construct a classical Markov
process, for example through a transfer matrix or an extension of overlapping
states. We have also seen that due to the intricacies of quantum correlations, these
constructions cannot be straightforwardly transported to quantum systems.

A construction that can be carried out for quantum systems is that of conditional
state spaces. For classical systems these conditional state spaces correspond to
regular conditional states. Through a series of applications, we have also looked
deeper into what can be said about conditional state spaces of quantum systems.
The geometry and dimension of the conditional state space tells us about the nature
and strength of the correlations in the system.

The final goal is then to construct quantum Markov processes. As was demonstrated
in [22], an appealing way to construct such processes is the set-up of finitely
correlated states. These are states where the conditional state space is finite-
dimensional, hence the name finitely correlated. An interesting property of this
construction is that it exactly coincides with the set of hidden Markov processes
when restricted to Abelian algebras, as we have demonstrated.

The general concept of conditional state spaces has been studied in some detail for
certain classes of states. These hint at possibilities to study quantum correlations
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using this tool. It may also prove interesting to study these conditional state spaces
in the setting of quantum phase transitions and DLR-like equations [23].

Conditional state spaces and finitely correlated states will be studied for a particular
class of physical systems, the fermionic quasi-free states, in the following chapters.



Chapter 4

Free Fermions

4.1 Introduction

Quantum states are mostly indirectly given, typically as ground or equilibrium
states for a given interaction and are hence difficult to work with as there is
for example no explicit density matrix. Also, in general one has to deal with an
enormous amount of parameters when the number of particles grows. As the number
of components grows, typically the number of parameters grows exponentially. Free
Fermionic states [60, 53, 5] are exceptional in both respects. These states describe
systems of non-interacting fermions. They are given by an explicit recipe, reducing
the calculation of higher order correlation to a simple combinatorial combination
of second order correlations. Hence not only can they be calculated explicitly, they
are also fully described by their second order correlation, resulting in a significant
reduction in parameters.

For these reasons free states form an interesting class of quantum states.
Constructions that are intractable in general quantum systems due to the high
dimensionality can often be carried out for free fermions.

Although they allow for a simple description, the free Fermionic states nevertheless
contain enough complexity to describe interesting quantum behaviour. They arise
for example in the description of the free electron gas in quantum statistical
mechanics [10] and in Hartree-Fock approximations in solid state physics [45].

This chapter gives an overview of some of the properties of free states, most of
which are known in the literature. A new contribution is a lemma for rewriting
certain expectation values.

69
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4.2 Fermions

Assume we have two indistinguishable particles described by pure state vectors
|ϕ1〉 and |ϕ2〉 in a Hilbert space H. The state |ϕ1〉 ⊗ |ϕ2〉 is a possible description
of the combined particles. However, due to the particles being indistinguishable,
|ϕ2〉 ⊗ |ϕ1〉 is also a perfectly reasonable description. The possibilities for the state
vector of a system of two indistinguishable particles are thus

|φ±〉 = |ϕ1〉 ⊗ |ϕ2〉 ± |ϕ2〉 ⊗ |ϕ1〉 .

These states remain the same or pick up a minus sign upon the interchange of
particles. Let’s denote by U(12) the operation that interchanges the two particles:

U(12)|ψ1〉 ⊗ |ψ2〉 = |ψ2〉 ⊗ |ψ1〉 .

Then

U(12)|φ±〉 = ±|φ±〉 .

The particles that are symmetric under particle interchange are called bosons. The
ones that are anti-symmetric are called fermions. We will only be concerned about
the latter here.

If there are more than two particles, we need to consider more permutations than
just the interchange of two particles. Denote by π a permutation of n elements.
This permutation works on a number of particles as

Uπ (|ψ1〉 ⊗ . . .⊗ |ψn〉) = |ψπ(1)〉 ⊗ . . .⊗ |ψπ(n)〉 .

Any permutation π can be written as a number of interchanges and when this
number is even, its sign ε(π) is 1, otherwise it is −1. As every interchange will
make the fermion state vector pick up a factor (−1), the sign change under the
permutation will be (−1)ε(π):

Uπ|ψ〉 = (−1)ε(π)|ψ〉 .

One can see that all possible combinations of n indistinguishable particles ψ1, . . . , ψn
that obey these rules are given by

ψ1 ∧ ψ2 ∧ . . . ∧ ψn = 1
n!
∑
σ

ε(σ)ϕσ(1) ⊗ ψσ(2) ⊗ . . .⊗ ψσ(n) ,

where σ runs over all permutations of n elements. The space spanned by these
anti-symmetric vectors is denoted by H∧n = H ∧ . . . ∧H.

When the number of particles is not fixed as we have assumed until now, we get
what is called the Fermionic Fock space:

F(H) = C⊕H⊕ (H ∧H)⊕ . . . =
∞⊕
n=0
H∧n .
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We can go from a system of n fermions to one with n+ 1 fermions by the creation
operator

a∗(ϕ)(ψ1 ∧ . . . ∧ ψn) = ϕ ∧ ψ1 ∧ . . . ∧ ψn ,

which inserts a particle in the state ϕ. The conjugate operator removes a particle
and is called the annihilation operator

a(ϕ)(ψ1 ∧ . . . ∧ ψn) =
∑
i

(−1)i〈ϕ|ψi〉(ψ1 ∧ . . . ∧ ψi−1 ∧ ψi+1 ∧ . . . ∧ ψn)

These operators satisfy the following anti-commutation relations:

{a(ϕ) , a(ψ)} = 0 and {a(ϕ) , a∗(ψ)} = 〈ϕ , ψ〉1. (4.1)

In fact, every linear transformation of the Fermionic Fock space F(H) can be
written as a linear combination of products of a and a∗. This is why we use the
algebra generated by the creation and annihilation operators to describe observables
of Fermionic systems.

Instead of looking at a specific physical realization of the algebra of creation and
annihilation operators (in terms of the Fermionic Fock space), we can look at the
abstract algebra describing the behaviour of these operators. This algebra is called
the CAR-algebra A(H) — CAR stands for canonical anti-commutation relations —
with single-mode Hilbert space H. It is the C*-algebra generated by an identity 1

and by creation and annihilation operators a∗ and a that satisfy

ϕ ∈ H 7→ a∗(ϕ) is complex linear

{a(ϕ) , a(ψ)} = 0 and {a(ϕ) , a∗(ψ)} = 〈ϕ , ψ〉1. (4.2)

The physical predictions that one makes for Fermionic systems described by the
CAR-algebra should remain the same when we introduce an unimportant phase
factor. This leads us to the gauge-invariant CAR algebra, which is a subalgebra of
the CAR algebra. There is a representation from U(1) in the group {αz | z ∈ U(1)}
of gauge automorphisms of A(H)

z ∈ U(1) 7→ αz with αz(a∗(ϕ)) = za∗(ϕ). (4.3)

It’s fixed point algebra is the GICAR-algebra — gauge-invariant CAR —, it is
generated as a linear space by monomials in creation and annihilation operators of
the form a∗(ϕ1) · · · a∗(ϕn)a(ψn) · · · a(ψ1). The states we will look at are defined
on this GICAR algebra.
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4.3 Free fermions

A gauge-invariant free state ωQ on A(H) is determined by a symbol which is a linear
operator Q on H satisfying 0 ≤ Q ≤ 1. The ωQ-expectations of all monomials
vanish except for the elements of the GICAR-algebra:

ωQ
(
a∗(ϕ1)a∗(ϕ2) · · · a∗(ϕn)a(ψn) · · · a(ψ2)a(ψ1)

)
= det

([〈
ψk , Qϕ`

〉])
. (4.4)

Positivity holds if and only if 0 ≤ Q ≤ 1. The set of symbols

Q(H) = {Q | Q bounded linear operator on H such that 0 ≤ Q ≤ 1} (4.5)

is convex and weakly compact. Convexity at the level of symbols is very different
from convexity at the level of the free states. Nevertheless it can be shown that
a free state is pure, i.e. extreme in the full state space of A(H), if and only if its
symbol is an orthogonal projector, i.e. an extreme point of Q(H) [2].

Important quantities like the entropy of free states are expressible in terms of
symbols, e.g.

S(Q) = −TrQ logQ− Tr(1−Q) log(1−Q). (4.6)

This formula is an example of the reduction of complexity in free fermionic states.
Although the ωQ is a state on the CAR algebra A(H), its properties are defined
by an operator on the single particle Hilbert space H.

A state ω onA(H) is even if it vanishes on all monomials in creation and annihilation
operators with an odd number of factors. Gauge-invariant states are automatically
even. If ωi is an even state on A(Hi) for i = 1, 2, then there exists a unique state
ω1 ∧ ω2 on A(H1 ⊕H2) such that

(ω1 ∧ ω2)(X1X2) = ω1(X1)ω2(X2), Xi ∈ A(Hi). (4.7)

For a proof, see [2].

A symbol Q induces an orthogonal decomposition

H = H0 ⊕ H̃ ⊕H1 (4.8)

where

H0 = ker(Q) and H1 = ker(1−Q) (4.9)

and ωQ factorizes into

ωQ = ω0 ∧ ωQ̃ ∧ ω1 with Q̃ = Q
∣∣
H̃. (4.10)
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The states ω0 on A(H0) and ω1 on A(H1) are pure, they are Fock and anti-Fock
states. The Fock state ω0 is the pure state |Ω〉 which describes the vacuum:

a(ϕ)|Ω〉 = 0 .

The anti-Fock state or Dirac sea is the state with all modes occupied:

ω(a(ϕ)a∗(ϕ)) = 0 .

Equilibrium states

To prove our first proposition we rely on the equilibrium properties of free states.
The free states can be described as equilibrium states for a suitably chosen
Hamiltonian.

For finite dimensional systems, equilibrium states are Gibbs states:

ωβ(x) = Tr(xρβ) ,

where

ρβ = e−βH

Z
and Z is a normalizing factor:

Z = Tr e−βH .

By looking at the time evolution of the density matrix (see Eq. 1.9), it is clear that
this state is invariant. Denoting the time evolution of observables by αt, we have

αt(x) = eıtHxe−ıtH ,

and

ωβ(αt(x)) = ωβ(x) .

Using the structure of the Gibbs state ρβ we can derive a property of the expectation
values called the KMS-condition. For Gibbs states, this condition amounts to

ωβ(αt(x)y) = 1
Z

Tr e−βHeıtHxe−ıtHy

= 1
Z

Tr e−βHye−βHeıtHxe−ıtHeβH

= ωβ(yeı(t+ıβ)Hxe−ı(t+ıβ)H)

= ωβ(yαt+ıβ(x))
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Similarly, one can characterize an equilibrium state ωβ on a C*-algebra A by the
KMS-condition corresponding to a dynamics in Heisenberg picture. Let {αt | t ∈ R}
be a continuous group of automorphisms of A, then ωβ is an α-KMS-state at inverse
temperature β > 0 if there exists for any pair of observables x, y ∈ A a function

z ∈ C 7→ Fx,y(z) ∈ C (4.11)

that is analytic inside the strip 0 < =mz < β, that extends continuously to the
closure of the strip, and such that

Fx,y(t) = ωβ(αt(x)y) and Fx,y(t− iβ) = ωβ(yαt(x)), t ∈ R. (4.12)

It is straightforward to check that the KMS-states on a finite dimensional quantum
system precisely coincide with the canonical Gibbs states.

Let 0 < Q < 1 whereby we mean that for 0 6= ϕ

0 < 〈ϕ , Qϕ〉 and 0 < 〈ϕ , (1−Q)ϕ〉. (4.13)

The free state ωQ is then the unique α KMS state on A(H) at inverse
temperature β = 1 where α is the strongly continuous one-parameter group
of automorphisms [54]

αt
(
a∗(ϕ)

)
= a∗

(
eithϕ

)
, t ∈ R (4.14)

with

h = ln(1−Q)− lnQ. (4.15)

Exponential elements

An interesting approach when working with free states is the use of so-called
exponential elements. These exponential elements provide us with a way to write
down the density matrix of a free Fermionic state ωQ in terms of its defining symbol
Q. Studying the spectrum of such operators then for example allows to determine
the entropy of a free Fermionic state; see [18, 19] for more details. Due to this form
of the density matrix, a free Fermionic state can also easily be characterized by its
action on these exponential elements, a property we will make use of later on.

The second quantization map

Γ : T1(H)→ A(H) : Γ(A) :=
∑
k,`

〈ek , A e`〉 a∗(ek)a(e`) (4.16)

takes a trace class single-particle operator A ∈ T1(H) to an element Γ(A) in the
CAR-algebra A(H). This operator is independent of the chosen orthonormal basis
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{ei} of H. It acts on vectors in the Fermionic Fock space as

Γ(A)ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕn =
n∑
j=1

ϕ1 ∧ ϕ2 ∧ . . . ∧Aϕj ∧ . . . ∧ ϕn .

This map is complex-linear, continuous, and satisfies
1
2 ‖A‖1 ≤ ‖Γ(A)‖ ≤ ‖A‖1 . (4.17)

Here ‖X‖ denotes the operator norm of X and ‖X‖1 = Tr
√
X∗X is the trace norm.

This map is, moreover, completely positive and for a positive operator A ∈ T1(H)

‖Γ(A)‖ = TrA. (4.18)

In [19] a map E from the Fredholm operators 1 + T1(H) to A(H) is considered
that satisfies

E(X)E(Y ) = E(XY ),

E(X)∗ = E(X∗),

Tr E(X) = det(1+X), and

E(expA) = exp
(
Γ(A)

)
, A ∈ T1(H). (4.19)

On the fermionic Fock space, it is given by

E(A)ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕn = Aϕ1 ∧Aϕ2 ∧ . . . ∧Aϕn

The operators of the form E(X) are called exponential elements. The span of the
exponential elements is in fact the entire GICAR algebra, so one can characterize
gauge-invariant states by their action on the exponential elements. In the case
of the free Fermionic states, this greatly simplifies calculations since the density
matrices are given by exponential elements as well.

The map E obeys for positive trace-class A the bounds

1 + ‖A‖1 ≤ ‖E(1+A)‖ ≤ exp
(
‖A‖1

)
and

‖E(1 +A)− 1‖ ≤ exp
(
‖A‖1

)
− 1. (4.20)

One can check that the density matrix ρQ of a free Fermionic state ωQ with symbol
Q is given by

ρQ = det(1−Q)E( Q

1−Q
) .
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A gauge-invariant free state ωQ can then be characterized by

ωQ(E(X)) = Tr ρQE(X) = det(1−Q+QX), X ∈ 1+ T1(H). (4.21)

Rearranging expectation values

Free states are the fermionic version of classical Gaussians. For Gaussians,
expectations of a given function f multiplied by a Gaussian variable can be
expressed as expectations of the derivative of the function with respect to the
random variable. If 〈〉σ are the expectation values under a Gaussian measure then

〈xf(x)〉σ = 〈x2〉σ〈
∂f

∂x
〉σ

and

〈x2f(x)〉σ = 〈x2〉2σ〈
∂2f

∂x2 〉σ + 〈x2〉σ〈f〉σ .

The following lemma provides such a formula in the fermionic context. Note that
the classical second derivative becomes a combined commutation anti-commutation.

Lemma 1. For any Y ∈ A(H) and ϕ ∈ H, we have

ωQ(a∗(ϕ)Y a(ϕ)) = ωQ(a∗(ϕ)a(ϕ))ωQ(Y ) +ωQ
({
a(Qϕ) ,

[
a∗(ϕ) , Y

]})
(4.22)

Proof. We may limit ourselves to gauge-invariant Y due to the gauge-invariance
of the free state. Since we can approximate Y by linear combinations of
gauge-invariant monomials in A(H), it suffices to show the lemma for Y =
a∗(ψ1) · · · a∗(ψn)a(ηn) · · · a(η1). For such Y , using the fact that ωQ is free, the
expression ωQ(a∗(ϕ)Y a(ϕ)) expands to

ωQ
(
a∗(ϕ)a(ϕ)

)
ωQ
(
a∗(ψ1) · · · a∗(ψn)a(ηn) · · · a(η1)

)
+
∑
k,`

εk,` ωQ
(
a∗(ϕ)a(η`)

)
ωQ
(
a∗(ψk)a(ϕ)

)
× ωQ

(
a∗(ψ1) · · · â∗(ψk) · · · a∗(ψn)a(ηn) · · · â(η`) · · · a(η1)

)
. (4.23)

Here εk,` = ±1, depending on the parity of the permutation needed to put the
modes in the original order and â∗(ψk) means that the factor a∗(ψk) is removed
from the product a∗(ψ1) · · · a∗(ψn).
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We now compute by repeated application of (4.2)

a∗(Qϕ)a(ηn) · · · a(η1)

= 〈ηn , Qϕ〉a(ηn−1) · · · a(η1)− a(ηn)a∗(Qϕ)a(ηn−1) · · · a(η1)

=
∑
`

ε` ωQ
(
a∗(ϕ)a(η`)

)
a(ηn) · · · â(η`) · · · a(η1)± a(ηn) · · · a(η1)a∗(Qϕ),

(4.24)

with the upper sign for n even and the lower sign for n odd, therefore

∑
`

ε` ωQ
(
a∗(ϕ)a(η`)

)
a(ηn) · · · â(η`) · · · a(η1) =

[
a∗(Qϕ) , a(ηn) · · · a(η1)

]
∓.

(4.25)

Using this relation, its conjugate and the anti-commutation relations (4.2), we get
the desired result for gauge-invariant monomials and hence for all gauge-invariant
elements∑

k,`

εk,` ωQ
(
a∗(ϕ)a(η`)

)
ωQ
(
a∗(ψk)a(ϕ)

)
× a∗(ψ1) · · · â∗(ψk) · · · a∗(ψn)a(ηn) · · · â(η`) · · · a(η1)

= −
∑
`

ε` ωQ
(
a∗(ϕ)a(η`)

)
×∓

[
a(Qϕ) , a∗(ψ1) · · · a∗(ψn)

]
∓a(ηn) · · · â(η`) · · · a(η1)

= ±
∑
`

ε` ωQ
(
a∗(ϕ)a(η`)

)
×
{
a(Qϕ) , a∗(ψ1) · · · a∗(ψn)a(ηn) · · · â(η`) · · · a(η1)

}
= ±

{
a(Qϕ) , a∗(ψ1) · · · a∗(ψn)

[
a∗(Qϕ), a(ηn) · · · a(η1)

]
∓

}
=
{
a(Qϕ) ,

[
a∗(Qϕ), a∗(ψ1) · · · a∗(ψn)a(ηn) · · · a(η1)

]}
. (4.26)
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4.3.1 Bipartite free states

We have seen that in the case of distinguishable particles the composition of two
subsystems amounts to taking the tensor product of the corresponding Hilbert
spaces (see Section 1.2.2). For indistinguishable particles composition is done at
the level of the single particle Hilbert space. The direct sum is the natural way of
composing fermionic subsystems. Two free states on different CAR algebras A(H1)
and A(H1) define a unique product state on A(H1 ⊕H2) (see Eq. 4.7). Here we
look at more general states on composed CAR algebras.

Let P be an orthogonal projection of H, then the restriction of the free state ωQ on
A(H) is a free state on the sub-CAR algebra A(PH) with symbol PQP . Conversely,
an orthogonal decomposition H = H1 ⊕H2 turns A(H) into a composite system
with parties A(Hi) up to a minor modification: A(Hi) sits as a graded tensor
factor in A(H) through the natural identification a∗(ϕi) 7→ a∗(ϕi ⊕ 0). This is due
to the fact that odd elements in A(H1 ⊕ 0) anti-commute with odd elements in
A(0⊕H2). To simplify notation we shall often write a∗(ϕ) instead of a∗(ϕ⊕ 0).

We now consider a free state on a bipartite fermionic system A(H1 ⊕H2) defined
by a symbol Q with block matrix structure

Q =
[
A B
B∗ C

]
. (4.27)

The positivity of the bipartite state imposes restrictions on its constituent matrices
A, B and C. For example it is obvious that

0 ≤ A ≤ 1 and 0 ≤ C ≤ 1 .

Furthermore, from the positivity conditions Q ≥ 0 and Q ≤ 1 of the symbol (4.27)
on H1 ⊕H2 it follows that

B ker(C) = B ker(1− C) = 0. (4.28)

By restricting H2 to ker(C), we can assume C = 0 and then the requirement Q ≥ 0
becomes

Q =
[
A B
B∗ 0

]
≥ 0 .

This means that det(Q) = −det(BB∗) ≥ 0, which is only possible if B = 0 on
ker(C).

In the following chapter we will be interested in computing expectation values of
the form ωQ(XY ), where X and Y are gauge-invariant elements of A(H1) and
A(H2) respectively. In this case the subalgebras A(ker(C)) and A(ker(1− C)) of
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A(H2) are irrelevant for computing the expectation values. There is therefore no
loss in generality to assume that the kernels of C and 1 − C are trivial. In this
case the positivity conditions can be restated as

0 < C < 1, BC−1B∗ ≤ A and B(1− C)−1B∗ ≤ 1−A. (4.29)

In these inequalities, even if C−1 or (1 − C)−1 are unbounded, BC−1B∗ and
B(1−C)−1B∗ extend to bounded operators on H1. The positivity conditions (4.29)
can be recast into the requirement that

0 ≤ A ≤ 1 and 0 ≤ C ≤ 1 (4.30)

and that there exist operators

Di : H2 → H1, |Di| ≤ 1, i = 1, 2 such that

B = A
1
2D1C

1
2 = (1−A) 1

2D2(1− C) 1
2 . (4.31)

4.3.2 Free maps

There is a notion of gauge-invariant, free, completely positive, identity preserving
maps between CAR algebras that naturally extends that of free states. These maps
preserve the free nature of a state, i.e. a free state is mapped into a free state.
Such a map ΓR,S : A(H)→ A(K) is determined by operators

R : H → K and S : H → H (4.32)

that satisfy

0 ≤ S ≤ 1−R∗R. (4.33)

The free map acts on monomials by

ΓR,S(a∗(ϕ1) . . . a∗(ϕm)a(ψn) . . . a(ψ1))

:=
∑
p1,p2

ε1ε2ωS(a∗(ϕk1) . . . a∗(ϕkr )a(ψlr ) . . . a(ψl1))

× a∗(Rϕi1) . . . a∗(Rϕim−r )a(Rψjn−r ) . . . a(Rψj1)
(4.34)

Here p1 = {{k1, . . . , kr}, {i1, . . . , im−r}} is a partition of {1, . . . ,m} and p2 =
{{l1, . . . , lr}, {j1, . . . , jm−r}} is a partition of {1, . . . , n}. ε1 is the sign of the
permutation corresponding to p1 and ε2 the sign corresponding to p2.
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Example 14. An almost trivial example of a free map is the identity map written
as id = Γ1,0.

Example 15. The action of the map ΓR,S on a∗(ϕ) is simply

ΓR,S(a∗(ϕ)) = a∗(Rϕ) .

The action on a gauge-invariant monomial of order two is given by

ΓR,S(a∗(ϕ)a(ψ)) = a∗(Rϕ)a(Rψ) + 〈ψ , S ϕ〉, ϕ, ψ ∈ H. (4.35)

For a third order monomial like a∗(ϕ1)a∗(ϕ2)a(ψ) for example we get

ΓR,S(a∗(ϕ1)a∗(ϕ2)a(ψ)) =a∗(Rϕ1)a∗(Rϕ2)a(Rψ)

+ 〈ϕ1, Sψ〉a∗(Rϕ2) + 〈ϕ2, Sψ〉a∗(Rϕ1) ,

and so on.

The quasi-free map ΓR,S can be shown [19] to be a concatenation of three simple
completely positive maps. First there is the injection a∗(ϕ) 7→ a∗(ϕ⊕0) from A(H)
to A(H⊕H). Then A(H⊕H) is mapped into A(K⊕K) by a∗(ϕ⊕ψ) 7→ a∗(U(ϕ⊕ψ))
with U the unitary operator

U =
[

R
√
1−R∗R

−
√
1−R∗R R

]
.

Finally A(K ⊕K) is mapped back into A(K) by a∗(ϕ⊕ ψ) 7→ a∗(ϕ).ωS(a∗(ψ)).

Furthermore it was shown there that the Jamio lkowski state corresponding to the
free map ΓR,S is unitarily equivalent to the free state with symbol

QJ = 1
2

[
1 R
R∗ R∗R+ 2S

]
.

Note that this again gives the complete positivity of the map since positivity of
QJ corresponds to 0 ≤ S ≤ 1−R∗R.

As for free states, we introduce the set

CP(H,K) =
{

(R,S)
∣∣R : H → K and S : H → H bounded linear

operators such that 0 ≤ S ≤ 1−R∗R
}
.

(4.36)

We use CP(H) for CP(H,H). The set of free CP maps extends that of free states
by putting

Q ∈ Q(H) 7→ (0, Q) ∈ CP(H,K). (4.37)
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Another special distinguished class of maps are the free homomorphisms from A(H)
to A(K)

{(V, 0) ∈ CP(H,K) | V : H → K isometric}. (4.38)

The set CP(H,K) is also convex and weakly compact.

Free CP maps transform free states into free states and one checks from (4.4)
and (4.35) that

ωQ ◦ ΓR,S = ωR∗QR+S . (4.39)

For more details, we refer to [19].





Chapter 5

Fermionic conditional state
spaces

5.1 Introduction

In Chapter 3 we have seen how conditional state spaces can be used to study the
correlations between two subsystems. In this chapter we characterize the possible
conditional state spaces that arise in bipartite free fermionic states.

Two different characterizations are given. One is in terms of bounds on the
operator describing the two-point correlations of the free fermionic state. A second
characterization is in terms of a completely positive map, similar to what was
described in Section 3.3.2.

All results presented in this chapter are new contributions and have been published
in [24].

5.2 Correlation bounds

In Chapter 3 we have introduced the conditional state spaces for composed systems
of distinguishable particles. These conditional state spaces describe the states that
can be obtained on one subsystem by perturbing another. Here we will do the
same for composed Fermionic systems. The aim is to characterize all free states on
A(H1) that arise as conditional states of bipartite free states. More precisely, to

83
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characterize

Sfree
1 =

{
ωÃ

∣∣∣ ωÃ is a free state on A(H1) and

∃ a gauge-invariant Y ∈ A(H2) such that

Y ≥ 0 and ωÃ(X) = ωQ(XY ), X ∈ A(H1)
}
. (5.1)

In this section we derive a description of the conditional state space Sfree
1 in terms

of bounds on the two point correlations Ã. A first proposition bounds the two-point
correlation matrix of a conditional state. A second proposition shows the converse
for free Fermionic states, i.e. if the symbol satisfies the given bounds then it can
be obtained as a conditional state.

First we show that if a state is obtained by conditioning with a certain gauge-
invariant operator Y , then an operator Ã that contains its second order moments
fulfils certain bounds, depending on the operators that make up the composed
state ωQ. Note that here we do not yet restrict the conditional state to be a free
one.

Proposition 2. With the assumptions and notations of above there exists for any
positive, gauge-invariant Y ∈ A(H2) with ωQ(Y ) = 1 a bounded operator Ã on H1
such that

ωQ
(
a∗(ϕ)a(ψ)Y

)
= 〈ψ , Ãϕ〉, ϕ, ψ ∈ H1 (5.2)

and

A−BC−1B∗ ≤ Ã ≤ A+B(1− C)−1B∗. (5.3)

Proof. Ã is the single particle reduced density operator of the state ωQ,Y conditioned
on Y : ωQ,Y (X) = ωQ(XY ). It can be defined through its elements:

〈ei|Ã|ej〉 = ωQ(a∗(ej)a(ei)Y ) ,

where the ei form a basis of H1. To prove the matrix inequalities, we determine
bounds for 〈ϕ|Ãϕ〉.

Since Y commutes with a(ϕ) and ωQ(Y ) = 1, we can use Lemma 1 to get

〈ϕ , Ãϕ〉 = ωQ(a∗(ϕ)Y a(ϕ))

= 〈ϕ , Aϕ〉+ ωC
({
a(B∗ϕ) ,

[
a∗(B∗ϕ) , Y

]})
. (5.4)
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The next step consists in rewriting this identity in such a way that we can use
the information ωC(Y ) = 1. This can be achieved through the KMS-condition.
Using an approximation argument we may assume that a∗(B∗ϕ) and Y are analytic
elements for the automorphism group α of A(H2) defined by C. For an analytic
element x we have(

αz(x)
)∗ = αz(x∗), z ∈ C and

ωC(xY ) = ωC
(
xY

1
2Y

1
2
)

= ωC
(
α−i(Y

1
2 )xY 1

2
)

= ωC
(
α− i

2
(Y 1

2 )α i
2
(x)α i

2
(Y 1

2 )
)
, (5.5)

and similarly

ωC(Y x) = ωC
(
α− i

2
(Y 1

2 )α− i
2
(x)α i

2
(Y 1

2 )
)
,

ωC(xY y) = ωC
(
α− i

2
(Y 1

2 )α− i
2
(y)α i

2
(x)α i

2
(Y 1

2 )
)
. (5.6)

This allows us to rewrite (5.4) as

〈ϕ , Ãϕ〉 = 〈ϕ , Aϕ〉+ ωC
(
α− i

2
(Y 1

2 )uα i
2
(Y 1

2 )
)

(5.7)

with

u =
〈
B∗ϕ ,

(
1+e−h

)
B∗ϕ

〉
−a∗

(
eh2B∗ϕ+e−h2B∗ϕ

)
a
(
eh2B∗ϕ+e−h2B∗ϕ

)
. (5.8)

Here h is the single mode Hamiltonian as in (4.15) replacing Q by C. Using

0 ≤ a∗(ζ)a(ζ) ≤ |ζ|21 (5.9)

we obtain the statement of the proposition

A−BC−1B∗ ≤ Ã ≤ A+B(1− C)−1B∗. (5.10)

Obviously, since the states in Sfree
1 are also obtained as conditional states, their

two-point correlations satisfy the bounds in this proposition. Since the two-point
correlations of a free state ωQ are encoded in its symbol Q, the operator Q will
satisfy the bounds given for Ã in Proposition 2. In Proposition 3, we show that the
converse is also true, i.e. that every free state whose two-point correlations satisfy
the given bounds is contained in the weak∗-closure of Sfree

1 .

To prove this statement, we first look at conditional states generated by conditioning
an exponential element Y in A(H2).
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Lemma 2. If ωQ is a free state on A(H) with symbol Q as in (4.27) and
Y = E(L)/ωQ(E(L)) is an exponential element in A(H2) with L ≥ 0, then the
conditional state ω̃ : X 7→ ωQ(XY ) is a free state on A(H1) with symbol

Ã = A−B(L− 1)(1− C + CL)−1B∗. (5.11)

Proof. We calculate the expectation value of elements X = E(K) with K an
operator on H1 in the state ω̃. Since these elements E(K) span the gauge invariant
CAR algebra [19], these values determine the state ω̃.

First we determine the normalization factor ωQ(E(L)) by using (4.21)

ωQ(E(L)) = det(1−Q+Q(1⊕ L))

= det
[
1 −B +BL
0 1− C + CL

]
= det(1− C + CL). (5.12)

Likewise, we have that

ωQ(E(K)E(L)) = det(1−Q+Q(K ⊕ L))

= det
[
1−A+AK −B +BL
−B∗ +B∗K 1− C + CL

]
= det(1− C + CL) det(1− Ã+ ÃK) (5.13)

with

Ã = A−B(L− 1)(1− C + CL)−1B∗. (5.14)

Hence, ω̃ is a free state with symbol Ã

ω̃(E(K)) = ωQ(E(K)E(L))
ωQ(E(L)) = det(1− Ã+ ÃK) = ωÃ(E(K)). (5.15)

Now that we have an expression for the conditional states formed from exponential
elements, we can use it to show that almost all symbols fulfilling the correlation
bounds can be recovered by choosing the exponential element.
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Lemma 3. Let 0 < ε < 1 and let Ã be an operator on H1 such that A− Ã is of
finite rank and such that

A− (1− ε)BC−1B∗ ≤ Ã ≤ A+ (1− ε)B(1− C)−1B∗, (5.16)

then there exists a positive Y ∈ A(H2) such that

ωÃ(X) = ωQ(XY ), X ∈ A(H1). (5.17)

Proof. We consider the set of operators

Ã = A+BKB∗ (5.18)

with K a finite rank operator on H2 such that Ã satisfies the bounds (5.16). This
is the case if

−(1− ε)C−1 ≤ K ≤ (1− ε)(1− C)−1. (5.19)

Using Lemma 2, we obtain the free state with symbol Ã as the conditional state
X 7→ ωQ(XY ) with

Y = E(L)
ωQ(E(L)) ∈ A(H2) (5.20)

if we are able to find a positive operator L on H2 such that

K = (1− L)(1− C + CL)−1 and 1− L finite rank. (5.21)

Rewriting this in terms of a finite rank operator N , such that L = 1+N , we have

K = −N(1+ CN)−1. (5.22)

If 1+ CK is invertible, this equation is solved by

N = −K(1+ CK)−1. (5.23)

To show that 1+ CK is invertible, assume that ϕ ∈ ker
{
1+KC

}
. This implies

that

〈Cϕ,ϕ〉+ 〈Cϕ,KCϕ〉 = 0 (5.24)

and

0 ≥ 〈Cϕ,ϕ〉 − 〈Cϕ, (1− ε)C−1Cϕ〉 = ε〈ϕ,Cϕ〉. (5.25)

Hence ker
{
1+KC

}
=
{

0
}

. Therefore, as CK is of finite rank, ran(1+CK) = H2.
Furthermore ker

{
1+ CK

}
=
{

0
}

as well and so 1+ CK is invertible.
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Proposition 2 gives us bounds that the symbol of states in S free
1 has to fulfil.

Lemma 3 tells us that almost all the symbols that fulfil these bounds are in S free
1 .

Taken together, this gives us a characterization of S free
1 in terms of bounds on the

symbol.

Proposition 3. The weak∗-closure of the set S free
1 of conditioned free states on

A(H1) coincides with the set of free states on A(H1) whose symbols Ã satisfy

A−BC−1B∗ ≤ Ã ≤ A+B(1− C)−1B∗. (5.26)

Proof. For free states, weak∗-convergence is equivalent to weak convergence of their
symbols. The proof then immediately follows from Proposition 2 and Lemma 3.

Example 16. As a trivial example consider a product state, i.e. a state with
B = 0. From Proposition 3 it then follows that the conditional state space is
zero-dimensional as we have seen in the general case in the Section 3.3.2.

Example 17. Another application of this characterization of the conditional state
space can be made for pure states. A quasi-free state is pure if and only if its
symbol Q is a projector [19], i.e. Q2 = Q. For a bipartite state with symbol

Q =
[
A B
B∗ C

]
(5.27)

this means that

A2 +BB∗ = A

B∗B + C2 = C

AB +BC = B

B∗A+ CB∗ = B∗

Through the polar decomposition of B, we get from the first equation that B =√
A(1−A)U for some unitary U . Using this in the third equation, we get C =

U∗(1−A)U . From Proposition 3 it now follows that 0 ≤ Ã ≤ 1. The conditional
state space becomes a full quasi-free state space, as in the general case of Section
3.3.2. The role of the Schmidt number is played here by the dimension of the image
of A.
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5.3 Manifestly positive model

As in (3.22), we can write the free conditional states as generalized subsystems,
using a free completely positive map to a suitable operator algebra and free states
on the target algebra.

Proposition 4. There exists a unique, free, minimal, identity preserving,
completely positive map Γ such that the weak∗-closure of S free

1 is the pull-back
of the free states by Γ.

Proof. Let K = ran(B) ⊂ H1. We construct operators

R : H1 → K and S : H1 → H1 (5.28)

such that

0 ≤ S ≤ 1−R∗R. (5.29)

These operators define a completely positive, free, identity preserving map Γ from
A(H1) to A(K) as in (4.35). The pull-back of the free states on A(K) consists of
the free states on A(H1) with symbols

{Ã = R∗T R+ S | 0 ≤ T ≤ 1}. (5.30)

We need to show that the set (5.30) coincides with (5.26). This is the case if and
only if

R = U
√
BC−1B∗ +B (1− C)−1B∗ and S = A−BC−1B∗. (5.31)

In this expression U is an arbitrary unitary on K.

This manifestly positive model of the conditional state space corresponds to the
general model of Section 3.3.2. As was the case there, the model consists of a full
quasi-free state space and a completely positive map.

Example 18. Let’s consider the simple case where H1 = H2 = C. The symbol of
the bipartite free state then takes the form

Q =
[
a b
b∗ c

]
,

with a, b, c ∈ C. Positivity of the state ωQ means 0 ≤ Q ≤ 1, from which we see
that 0 ≤ a ≤ 1, 0 ≤ a ≤ 1, |b|2 ≤ ac and |b|2 ≤ (1− a)(1− c).

Proposition 3 tells us that the conditional states are all ωã with

a− |b|
2

c
≤ ã ≤ a+ |b|2

1− c .
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Note that the positivity requirements on a, b and c ensure that 0 ≤ ã ≤ 1. It is
evident that if the symbols a and c are fixed, the correlations are determined by b
and that the conditional state space increases accordingly with larger values of |b|.

It is clear that by taking R = eıθ
√
|b|2
c + |b|2

1−c and S = a − |b|
2

c that this interval
coincides with that prescribed by Proposition 4.

5.4 Conclusion

In this chapter we described the correlations in bipartite quantum states in terms
of a space of conditional states. These states are restrictions of the global state
to one party after perturbing the other. For finite dimensional systems one can
always find a manifestly positive model of the conditional states in terms of an
auxiliary system and a completely positive map. Separable states correspond to
classical models.

The main result of this chapter is to work out the details of the manifestly positive
model in the setting of Gaussian Fermionic systems. This greatly simplifies the
analysis as Gaussian structures are characterized by one-particle objects or, stated
differently, tensor constructions are replaced by direct sums. This allowed us to
fully carry out the description of conditional state spaces in this chapter. The
conditional state space has been characterized by two inequalities on the quasi-free
symbol describing the conditional state and also by a manifestly positive description
in terms of a quasi-free state space and a completely positive map.



Chapter 6

Fermionic Markov chains

6.1 Introduction

In Chapter 2, the entropy density of a hidden Markov process was calculated by
determining the entropy rate instead of the entropy density, as these quantities
are equal for translation-invariant processes. In Chapter 3 we then put forward
a quantum counterpart for classical Markov processes. Finally in Chapter 4 we
introduced a class of quantum states for which explicit calculations can be made,
the free Fermions.

In this chapter we will put these ingredients together; we will do an entropy density
calculation for free Fermionic Markov processes, based on the entropy rate approach
that has proven successful for classical hidden Markov processes.

In the first part of the chapter we repeat the construction of quantum Markov states
for the free Fermionic case. The operators describing the two-point correlations,
the symbol of the state, will be in this case a Toeplitz matrix, a matrix where the
elements along diagonals are equal.

In the second part we calculate the entropy rate of the Fermionic Markov process.
For the states we propose in this chapter, a direct calculation of the entropy density
is possible. This calculation is based on Szegö’s theorem for densities of trace
functions of Toeplitz matrices. We first give a new generalization of this theorem
to block Toeplitz matrices before moving on to the calculation of rate functions
for matrices. We then present a new theorem on the asymptotic behaviour of the
eigenvalues of Toeplitz matrices, much like Szegö’s theorem, but then focused on
asymptotic rates rather than densities.

91
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6.2 Constructing processes

In Section 4.3.1, we have encountered bipartite free Fermionic states. The symbol
operators Q that define such states are 2× 2 block matrices, where the submatrices
describe the correlations in the different parties and the correlations between them
(see Eq. 4.27). There are natural embeddings

a(ϕ) 7→ a(ϕ⊕ 0) and a(ψ) 7→ a(0⊕ ψ) (6.1)

of A(H) and A(K) into A(H⊕ K). Both factors together generate the large algebra
and they satisfy graded commutation relations as creation operators in different
factors anticommute.

Now we construct a semi-infinite chain on an infinite number of Fermionic parties.
We can transport the construction of the quantum Markov chain (3.35) to the free
Fermionic setting. The spin chain algebra ⊗NMd is replaced by a semi-infinite
Fermionic chain A(⊕N

H) where A(H) is now the one site algebra. Hence the
symbol will be a semi-infinite block matrix. As the construction presented here
is analogous to that in Section 3.4 the state is also translation-invariant. For free
Fermions this will mean that the symbol is a block Toeplitz matrix.

6.2.1 Extending free maps

The basic ingredient of the construction for distinguishable parties was a completely
positive map Λ : Md ⊗ Md → Md that allowed us to contract multi-partite
observables to the single-party observable algebra Md. This map was constructed
to be compatible with a single-party CP map Γ :Md →Md (see Eq. 3.33). In the
free Fermionic setting, this map turns into a free completely positive transformation
ΛC,D from A(H⊕H) to A(H) such that ΛC,D extends the single-party free CP-map
ΛA,B of A(H):

ΛC,D ◦ 1 = ΛC,D ◦ 2 = ΛA,B . (6.2)

Here, 1 and 2 are the natural embeddings of A(H) into the first and second factor
of A(H⊕ H)

1(a(ϕ)) = a(ϕ⊕ 0) and 2(a(ϕ)) = a(0⊕ ϕ). (6.3)

This compatibility condition on the map corresponds to the one given for
distinguishable particles in Eq. 3.33.

Applying the compatibility condition (6.2) to a(ϕ) we see that

a(C(ϕ⊕ 0)) = a(C(0⊕ ϕ)) = a(Aϕ)
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and so

C =
[
A A

]
. (6.4)

Doing the same for a∗(ϕ)a(ψ) we get

a∗(C(ϕ⊕ 0))a(C(ψ ⊕ 0)) + 〈ψ ⊕ 0, D(ϕ⊕ 0)〉

= a∗(C(0⊕ ϕ))a(C(0⊕ ψ)) + 〈0⊕ ψ,D(0⊕ ϕ)〉

= a∗(Aϕ)a(Aψ) + 〈ψ,Bϕ〉

from which we get

D =
[
B X
X∗ B

]
,

where X is as of yet undetermined and allows for some freedom in the choice of D.

Because of the structure of free CP maps, the compatibility conditions (6.4) are not
only necessary but also sufficient and we can rephrase the whole construction on the
level of symbols. Doing so, the graded tensor products in the case of distinguishable
particles become direct sums in the case of free Fermions.

6.2.2 Invariant states

The construction of the quantum Markov process consists of using a completely
positive map to contract the observable and then applying a single-party state that
is invariant under ΛA,B . We have the following lemma concerning the existence of
such invariant states.

Lemma 4. Let ΛA,B be a completely positive free transformation of A(H) as
in (4.35) and assume that dim(H) <∞, then ΛA,B has a unique invariant state
if and only if |A| < 1. Moreover, the unique invariant state is free with symbol Q
determined by

Q = A∗QA+B. (6.5)

Proof. The condition |A| < 1 is equivalent to the non-existence of non-trivial
solutions to the homogeneous equation Q = A∗QA. It has to be satisfied to have
uniqueness of the solution of the invariance condition (6.5) for symbols. Conversely,
suppose that |A| < 1, then there exists by the fixed point theorem for contractions
a unique Q such that

Q = A∗QA+B. (6.6)
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This Q satisfies 0 ≤ Q ≤ 1 as we may obtain Q by iterating the map X 7→
A∗X A+B with initial value 0. It is then easily checked that

lim
n→∞

ΛnA,B = ωQ (6.7)

which guarantees both the uniqueness of the invariant state and its free character.

6.2.3 Markov construction

We now have all necessary components to construct free Fermionic Markov processes.

Starting from a single-party CP map ΛA,B : A(H)→ A(H) defined by operators
A and B, and with an invariant free state ωQ, we first have to extend it to an
CP map ΛC,D : A(H⊕H)→ A(H) compatible with ΛA,B . This involves fixing a
choice for X such that ΛC,D is still completely positive. We will shortly see what
the requirements are on A and B for this to be possible.

Using the map ΛC,D we can then pull multi-partite operators down to the level of
the state ωQ. On the other hand, we can also look at this as the dual map of ΛC,D
pulling the state ωQ up to the level of the multi-partite observables. This will give
us ever larger free states, with block symbols Qn that increase dimensions at each
step.

Construction. Let (A,B) ∈ CP(H) and let Q ∈ Q(H) be such that ωQ is invariant
under ΛA,B:

Q = A∗QA+B. (6.8)

Let X : H → H satisfy the compatibility condition

(C,D) ∈ CP(H⊕H,H) with C and D as in (6.4). (6.9)

The free Markov chain defined by X and Q is the symbol

Q∞ = w-lim
n→∞

PnRnP
∗
n on ⊕N H (6.10)

where

Pn : H⊕
(
⊕n−1
k=0H

)
→
(
⊕n−1
k=0H

)
: ϕ⊕ ψn 7→ ψn (6.11)

R0 = Q and Rn+1 =
(
C∗ ⊕ (⊕n1)

)
Rn

(
C ⊕ (⊕n1)

)
+
(
D ⊕ (⊕n0)

)
.

(6.12)

We can also explicitly calculate the block elements of the symbol Q∞.
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Proposition 5. The symbol Q∞ in (6.10) is an Hermitian block Toeplitz matrix
with entries(

Q∞
)
i i

= Q and
(
Q∞

)
i i+n = (A∗)n(Q−B +X). (6.13)

Here i = 0, 1, 2, . . . and n = 1, 2, 3, . . .

Proof. The proof consists in a straightforward computation of the consecutive Rn
in (6.12) combined with the invariance equation (6.8).

For example, we have that R0 = Q, so

R1 = C∗QC +D =
[
A∗QA+B A∗QA+X
A∗QA+X∗ A∗QA+B

]
.

Using the invariance A∗QA+B = Q this becomes

R1 =
[

Q Q−B +X
Q−B +X∗ Q

]
.

The next step gives

R2 = (C∗ ⊕ 1)R1(C ⊕ 1) + (D ⊕ 0)

=

 Q Q−B +X A∗(Q−B +X)
Q−B +X∗ Q A∗(Q−B +X)

(Q−B +X∗)A (Q−B +X∗)A Q

 ,
and so on.

The projections Pn cut off the first row and column, giving in the limit the given
result for Q∞.

Q∞ =


Q A∗(Q−B +X) (A∗)2(Q−B +X) · · ·

(Q−B +X∗)A Q A∗(Q−B +X) · · ·
(Q−B +X∗)A2 (Q−B +X∗)A Q · · ·

...
...

... . . .

 ,

6.2.4 Extendability

As we have mentioned earlier, there is a freedom in choosing the channel ΛC,D.
The operator X has to chosen such that the ΛC,D is completely positive, i.e.

0 ≤ D ≤ 1− C∗C .
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One may wonder if and when this is possible. Let’s look at the simplest case, where
the single-particle space is A(C).

Example 19. In the case where H = C, we have

D =
[
b x
x b

]
and C =

[
a a

]
,

with a, x ∈ C and b ∈ R. From the complete positivity of Λa,b, we know that
0 ≤ b ≤ 1− |a|2. The complete positivity conditions for C and D limit the choice
for x. From 0 ≤ D we see that

|x| ≤ b .

From D ≤ 1− C∗C on the other hand, we get that

|x+ |a|2| ≤ 1− |a|2 − b .

These two inequalities means that x has to lie in the intersection of two circles in
the complex plane, one centred around 0 with radius r1 = b and another one centred
around −|a|2 with radius r2 = 1− |a|2 − b. These two circles have an intersection
when the distance between the centres is smaller than the sum of the radii. Hence,
the channel is extendible if

|a|2 ≤ 1
2

For the general case we get the following lemma.

Lemma 5. The compatibility condition (6.9) is satisfiable if and only if

A∗A ≤ min
(
{ 1

2 1,1−B}
)
. (6.14)

Proof. We look for the necessary and sufficient conditions for the existence of a
X : H → H such that[

B X
X∗ B

]
≥ 0 and

[
1−A∗A−B −A∗A−X
−A∗A−X∗ 1−A∗A−B

]
≥ 0. (6.15)

Clearly 0 ≤ B ≤ 1−A∗A as (A,B) ∈ CP(H). The remaining positivity conditions
are then the existence of S and T with

|S| ≤ 1, |T | ≤ 1, X = B
1
2SB

1
2 , and

A∗A+X = (1−A∗A−B) 1
2T (1−A∗A−B) 1

2 .

(6.16)

Replacing S and T by their Hermitian parts, we may restrict to Hermitian X and
so we need

[−B , B] ∩ [−1+B , 1− 2A∗A−B] 6= ∅ (6.17)
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or, equivalently, that

[1 , 1+ 2B] ∩ [2B , 21− 2A∗A] 6= ∅. (6.18)

But this is the case if and only if

max
(
{1, 2B}

)
≤ 21− 2A∗A or A∗A ≤ min

(
{ 1

2 1,1−B}
)
. (6.19)

6.3 Entropy density

In this section we compute the entropy h for our chain, see (6.21). We can associate
an entropy to a Fermionic Markov chain using (4.6)

h(X,Q) := lim
n→∞

1
n

S(PnRnP ∗n) (6.20)

:= lim
n→∞

1
n

(
−TrPnRnP ∗n log(PnRnP ∗n)

− Tr(1− PnRnP ∗n) log(1− PnRnP ∗n)
)
. (6.21)

A first method to compute this relies directly on the expression (4.6) for the entropy
of a free state in terms of its symbol and on the structure of the symbols Q∞ in
Proposition 5. A second way is to rewrite the entropy as the asymptotic rate of
disorder, as in the classical case, see Section 2.4.2. This last approach was used
in [8, 21] to compute the entropy of a hidden Markov process. The first method
uses the full local restrictions of the state while the second relies on the incremental
structure of the local states given by a transfer matrix like construction, see (3.35)
and (6.12).

6.3.1 Direct approach

The first approach to calculating the entropy density uses an extension of Szegö’s
theorem to block Toeplitz matrices T̂ . This theorem allows to calculate asymptotic
densities of trace functions of Toeplitz matrices. A block Toeplitz matrix is a block
matrix T̂ where the blocks along diagonals are equal

T̂i,j = T̂i+k,j+k ,

where T̂i,j denotes a block elements. Using Szegö’s theorem, we can write densities

lim
n→∞

Tr f(T̂n)
n
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of a matrix function f and the finite projections T̂n = PnT̂Pn in terms of a
generating function T (θ). The Fourier coefficients of this T (θ) are the elements on
the diagonals of T̂ . We will now formulate this more precisely.

Let T : [−π, π[→Md be an essentially bounded measurable matrix-valued function
on the circle and denote its Fourier coefficients by

T̂ (k) := 1
2π

∫ π

−π
dθ T (θ) e−ikθ ∈Md.

A function T is essentially bounded if there exist a constant M such that |T (θ)| ≤M
almost everywhere. The operator

T̂ =


T̂ (0) T̂ (1) T̂ (2) . . .

T̂ (−1) T̂ (0) T̂ (1) . . .

T̂ (−2) T̂ (−1) T̂ (0) . . .
...

...
... . . .


defined on `0(N)⊗ Cd extends to a bounded linear transformation of `2(N)⊗ Cd.
Operators of this type are block Toeplitz matrices and one has

|T̂ | = |T |∞ = ess sup
θ
|T (θ)| ,

where the essential supremum of T is the infimum of all constants M that bound
|T (θ)| almost everywhere.

The Toeplitz matrices we are interested in are symbols and hence self-conjugate.
For such Toeplitz matrices, we have that T̂ ∗ = T̂ if and only if the function T takes
values in the Hermitian matrices.

Szegö’s theorem

An extension of Szegö’s theorem to block Toeplitz matrices characterizes the limiting
spectrum of principal submatrices PnT̂ Pn in terms of the generating function T ,
see [47]. Here Pn projects on the first n blocks in `2(N)⊗ Cd. We obtain here a
more general characterization of such limiting submatrices.

Let us denote for a simply connected compact subset K of C by H(K) the set
of continuous functions f : K → C that are holomorphic in the interior

◦
K of K.

Mergelyan’s theorem [56] asserts that the complex polynomials in the indeterminate
z are dense in H(K): for any f ∈ H(K) and ε > 0 there exists a polynomial pε such
that

max
z∈K

∣∣f(z)− pε(z)
∣∣ ≤ ε.
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Finally, let us denote by En the conditional expectation from B
(
`2(N)

)
⊗Md →Md

which traces out the first n blocks

En(X) := 1
n

n−1∑
j=0

Xjj ∈Md.

We get the following generalization of Szegö’s theorem [27].
Theorem 3. Let {T1, T2, . . . , Tk} ⊂ L∞

(
[−π, π[,Md

)
be such that every Tj(θ) is

θ-a.e. diagonalizable, let fj ∈ H
(
{z ∈ C | |z| ≤ |Tj |∞}

)
for j = 1, 2, . . . , k and let

Aj ∈Md, j = 1, 2, . . . , k + 1, then

lim
n→∞

En
(

(1⊗A1) f1
(
PnT̂1Pn

)
(1⊗A2) · · · fk

(
PnT̂kPn

)
(1⊗Ak+1)

)
= 1

2π

∫ π

−π
dθ A1 f1(T1(θ))A2 · · · fk(Tk(θ))Ak+1.

(6.22)

Proof. The proof relies on a continuity argument combined with a standard counting
argument. First remark that given ε > 0 every fj can be approximated by a suitable
complex polynomial pεj

max
|z|≤|Tj |∞

∣∣fj(z)− pεj(z)∣∣ ≤ ε.
Next, as |Tj(θ)| ≤ |Tj |∞ a.e., we can use von Neumann’s inequality [28] to get

|fj(Tj(θ))| ≤ max
|z|≤|Tj |∞

|fj(z)| and (6.23)

∥∥fj(Tj(θ))− pεj(Tj(θ))∥∥ =
∥∥(fj − pεj)(Tj(θ))∥∥

≤ max
|z|≤|Tj(θ)|

(
fj − pεj

)
(z) ≤ max

|z|≤|Tj |∞

(
fj − pεj

)
(z) ≤ ε. (6.24)

These estimates allow to replace the fj in (6.22) by polynomials. It then remains
to verify the statement for monomials, but this reduces to a standard counting
argument.

In the case where there is only one function f(X) = Xk and Aj = 1, the density
limit can be worked out as follows:

lim
n→∞

1
n

Tr(PnT̂Pn)k = lim
n→∞

1
n

n∑
i1,...,ik=0

T̂i1,i2 T̂i2,i3 . . . T̂ik,i1 (6.25)

= lim
n→∞

1
n

n∑
i1,...,ik=0

T̂ (i2 − i1)T̂ (i3 − i2) . . . T̂ (ik − i1)

(6.26)
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By substituting v1 = i2 − i1 , . . . , vk−1 = ik − ik−1, this sum becomes:

lim
n→∞

1
n

n∑
v1,...,vk−1=−n

∑
i1∈Sn(v1,...,vk−1)

T̂ (v1) . . . T̂ (vk−1)T̂ (−v1 − . . .− vk−1) ,

where Sn(v1, . . . , vk−1) is the set of indices i such that v1 + i, v1 + v2 + i, . . . , v1 +
. . . vk−1 + i ∈ [0, n]. The number of elements in this set increases by exactly one
when n goes to n+ 1, so in the limit we get

lim
n→∞

∞∑
v1,...,vk−1=−∞

T̂ (v1) . . . T̂ (vk−1)T̂ (−v1 − . . .− vk−1) .

This is exactly the zeroth Fourier coefficient of T (θ)k, so we get that the density
equals

1
2π

∫ π

−pi
dθf(T (θ)) .

The general case of the theorem can be worked out in a similar manner.

To deal with entropy we don’t need the full amalgamated extension of Theorem 3 of
Szegö’s theorem but we may restrict ourselves for an Hermitian T to the asymptotic
eigenvalue distribution of the principal blocks PnT̂Pn. Taking the trace of (6.22)
with a single f and all Aj = 1 we recover the result [47]. We denote by inf(T ) and
sup(T ) the largest and smallest real numbers such that

inf(T ) ≤ T ≤ sup(T ) a.e. (6.27)

The increasingly ordered eigenvalues
(
τ1(θ), τ2(θ), . . . , τd(θ)

)
of T (θ) are measurable

functions of θ that satisfy

inf(T ) ≤ τ1(θ) ≤ · · · ≤ τd(θ) ≤ sup(T ). (6.28)

The eigenvalue distribution of PnT̂Pn is the atomic probability measure

δn = 1
nd

∑
λ∈σ(PnT̂Pn)

δλ. (6.29)

Theorem 4. With the assumptions of above

w∗- lim
n→∞

δn = δ∞, (6.30)

where

δ∞
(
]−∞, t]

)
= 1
d

d∑
k=1

1
2π

∫
τk(θ)≤t

dθ. (6.31)
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An equivalent way to express this result is saying that for any continuous complex
function f on [inf(T ), sup(T )]

lim
n→∞

1
nd

Tr f(PnT̂Pn) = 1
2π

∫ π

−π
dθ

1
d

Tr f(T (θ)). (6.32)

This version is in some sense more natural as it doesn’t involve the reordering of
the eigenvalue functions τk used in the definition of the distribution function of
the limiting eigenvalue distribution (6.31).

We can apply Theorem 4 to the computation of the entropy, replacing the Toeplitz
operator T by Q∞ in Proposition 5 and choosing in (6.32)

f(λ) = −λ log(λ)− (1− λ) log(1− λ) on (0, 1). (6.33)

The generating function T becomes

θ 7→ Q+(Q−B +X)Aeıθ(1−Aeıθ)−1

+A∗e−ıθ(1−A∗e−ıθ)−1(Q−B +X∗).

6.3.2 Entropy rate approach

The second approach expresses the entropy as an asymptotic rate. Let ω be a
translation invariant state on a quantum spin chain ⊗ZMd and denote by ρ(0,n−1)
its reduced density matrices, i.e.

ω(X) = Tr
(
ρ(0,n−1)X

)
for X ∈ ⊗n−1

k=0Md. (6.34)

As we have seen before, subadditivity combined with translation invariance
guarantee the existence of the mean entropy of ω for intervals

s(ω) = lim
n→∞

1
n

S(ρ(0,n−1)). (6.35)

Moreover, strong subadditivity in conjunction with translation invariance also
guarantees that

n 7→ S(ρ(0,n−1)) is monotonically increasing and (6.36)

s(ω) = lim
n→∞

1
n

S(ρ(0,n−1)) = lim
n→∞

(
S(ρ(0,n))− S(ρ(0,n−1))

)
. (6.37)

Both properties (6.36) and (6.37) fail for general quantum states or for general
finite local regions [35]. These results for quantum spin chains extend to Fermionic
lattices using the natural embeddings (6.1) and restricting to even states [4]. The
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equality of both limits in (6.37) can be seen as a discrete version of de l’Hôpital’s
rule. Obviously, the existence of the limit of the differences is a much stronger
requirement than that of the averages.

For free Fermionic states we can work at the level of symbols. E.g., strong
subadditivity of entropy amounts to

S(Q123) + S(Q2) ≤ S(Q12) + S(Q23) (6.38)

where S is defined in (4.6) and where the symbols in the inequality are as follows

Q123 =

Q1 T S
T ∗ Q2 R
S∗ R∗ Q3

 , Q12 =
[
Q1 T
T ∗ Q2

]
, and Q23 =

[
Q2 R
R∗ Q3

]
. (6.39)

Below, we extend the equality of the limit of differences with that of averages, as
in (6.37), to a much wider class of functions than the entropy of a symbol (4.6).
The argument relies on regularity of the functions and not on subadditivity or
convexity which rarely hold. Szegö’s theorem follows as a consequence.

We first show that the theorem holds for polynomials.

Lemma 6. With the notation and assumptions on an Hermitian Toeplitz operator
at the beginning of this section, for any polynomial p

lim
n→∞

(
Tr p(PnT̂Pn)− Tr p(Pn−1T̂Pn−1)

)
= 1

2π

∫ π

−π
dθ Tr p(T (θ)). (6.40)

Proof. It suffices to consider p(λ) = λk for k ∈ N. We have

lim
n→∞

Tr(PnT̂Pn)k − Tr(Pn−1T̂Pn−1)k

= lim
n→∞

n∑
i=1

Tr
(
(PnT̂Pn)k

)
ii
−
n−1∑
i=1

Tr
(
(Pn−1T̂Pn−1)k)

)
ii

= lim
n→∞

( n∑
i1,...,ik=1

−
n−1∑

i1,...,ik=1

)

Tr
{

(PnT̂Pn)i1i2 · · · (PnT̂Pn)ik−1ik(PnT̂Pn)iki1
}

= lim
n→∞

( n∑
i1,...,ik=1

−
n−1∑

i1,...,ik=1

)
T̂ (i2 − i1) . . . T̂ (i1 − ik) ,

where (Q)ij denotes the block at position (i, j) inside of a block matrix Q.
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By substituting v1 = i2 − i1 , . . . , vk−1 = ik − ik−1, this sum becomes:

lim
n→∞

n∑
v1,...,vk−1=−n

( ∑
i1∈Sn(v1,...,vk−1)

−
∑

i1∈Sn−1(v1,...,vk−1)

)

T̂ (v1) . . . T̂ (vk−1)T̂ (−v1 − . . .− vk−1) ,
where Sn(v1, . . . , vk−1) is the set of indices i such that v1 + i, v1 + v2 + i, . . . , v1 +
. . . vk−1 + i ∈ [0, n]. For fixed v1, . . . , vk−1, the number of elements in these sets
increases by exactly one when n goes to n + 1. Hence, the difference of sums
between brackets equals one and we arrive at the expression prescribed by the
lemma.

We can now use this lemma and an approximation argument to prove the general
case.
Theorem 5. With the notation and assumptions on an Hermitian Toeplitz operator
at the beginning of this section, for any function f that is absolutely continuous on
the interval [inf(T ), sup(T )]

lim
n→∞

(
Tr f(Pn+1T̂Pn+1)− Tr f(PnT̂Pn)

)
= 1

2π

∫ π

−π
dθ Tr f(T (θ)). (6.41)

Proof. By the continuity of the eigenvalues of a matrix and by the minimax
principle [12] we can label the eigenvalues of PnT̂Pn as

{τnk j | k = 1, 2, . . . , d, j = 1, 2, . . . , n} with

inf(T ) ≤ τn1 j ≤ τn2 j ≤ · · · ≤ τnd j ≤ sup(T ) and τn+1
k j ≤ τ

n
k j ≤ τn+1

k j+1. (6.42)
See [31] for a proof of this interlacing property.

Let f : [inf(T ), sup(T )]→ C be absolutely continuous with integrable derivative g,
then for any λ, τ ∈ [inf(T ), sup(T )]

f(λ) = f(τ) +
∫ λ

τ

dx g(x). (6.43)

Therefore
1

2π

∫ π

−π
dθ f(τ(θ)) = 1

2π

∫ π

−π
dθ
{
f(τ) +

∫ τ(θ)

τ

dx g(x)
}

(6.44)

= f(τ) + 1
2π

∫ π

−π
dθ

∫ τ(θ)

τ

dx g(x) (6.45)

= f(τ) +
∫ sup(T )

inf(T )
dx g(x) 1

2π

∫ π

−π
dθ η(τ, x, θ). (6.46)
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Here, η is defined as

η(τ, x, θ) =


1 τ < x < τ(θ)
−1 τ(θ) < x < τ

0 otherwise
. (6.47)

By (6.46) we rewrite the increment of traces of f(PnT̂Pn) as

Tr f(Pn+1T̂Pn+1)− Tr f(PnT̂Pn) (6.48)

=
d∑
k=1

{n+1∑
j=1

f(τn+1
k j )−

n∑
j=1

f(τnk j)
}

(6.49)

= 1
2π

∫ π

−π
dθ

d∑
k=1

f(τk(θ))−
d∑
k=1

∫ sup(T )

inf(T )
dx g(x) 1

2π

∫ π

−π
dθ

{n+1∑
j=1

η(τn+1
k j , x, τk(θ))−

n∑
j=1

η(τnk j , x, τk(θ))
}

(6.50)

= 1
2π

∫ π

−π
dθ Tr f(T̂ (θ))−

d∑
k=1

∫ sup(T )

inf(T )
dx g(x) 1

2π

∫ π

−π
dθ hnk (x, θ), (6.51)

with

hnk (x, θ) =
n+1∑
j=1

η(τn+1
k j , x, τk(θ))−

n∑
j=1

η(τnk j , x, τk(θ)). (6.52)

The functions hnk are piecewise constant with values -1, 0 or 1 due to the
interlacement (6.42) of the τnk j . As any integrable g on [inf(T ), sup(T )] can be
arbitrarily well approximated in L1-norm by polynomials, the theorem follows from
Lemma 6.

6.4 Conclusion

We have studied a free Fermionic version of the quantum Markov processes from
Chapter 3. The nature of the free Fermionic states allows us to fully characterize
all possible Markov processes that one can construct. The density matrices of these
states can be fully described by a Toeplitz matrix. By studying the behaviour of the
eigenvalues of subsequent Toeplitz matrices, we have proved a new Szegö theorem
that allows us to calculate the asymptotic entropy rate. This is what corresponds
in the free Fermionic case to the method proposed by Blackwell [8].
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It would be interesting to look for other quantum Markov processes for which an
explicit calculation of the entropy rate is possible. Processes with a high symmetry
are obvious first choices. The process with SU(2) symmetry presented in Chapter
3 is a good candidate. Hopefully, such calculation can lead to a quantum version
of the Blackwell dynamical system.





Chapter 7

Conclusion

The main goal of this thesis is to generalize an existing approach of calculating
entropy densities as rates to quantum systems. Along the way we have from time to
time strayed off into related topics, such as determining dependence of the entropy
density on a parameter in Chapter 2 or the use of conditional state spaces to
study correlations in quantum systems. We will conclude by reviewing the results
discussed in the text and proposing some possible future research.

First of all, one may wonder why it is interesting to calculate the entropy density
of quantum states. This question we tried to tackle in the introduction. We have
explored two major topics in quantum information science where entropies play
a crucial role, namely the determination of entanglement in pure states and the
information capacity of a quantum channel. Besides these topics one can think of
applications in statistical physics, but they have not been addressed here.

We then introduced in Chapter 2 the method of calculating entropy densities as
rates for classical hidden Markov processes in the context of channel capacities.
The cornerstone of the entropy rate method is the following relation for translation-
invariant processes:

lim
n→∞

Sn
n

= lim
n→∞

(Sn − Sn−1) . (7.1)

One can think of this relation as a discrete de l’Hôpital’s rule, where the derivative
has been replaced by a difference. Using the structure of probabilities of hidden
Markov processes, the entropy rate calculation simplifies into an entropy of an
invariant measure of a dynamical system.

This dynamical system was worked in detail for a so-called depolarizing channel
with memory. It turned out that the invariant measure is too complex to fully
characterize due to its fractal nature. By employing some numerical tricks to
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approximate the invariant measure, it is however possible to calculate the channel
capacity efficiently. Of course, it is not the invariant measure itself that is really of
interest here, but averaged quantities of this measure and their dependence on the
parameters in the problem. We have shown that it is possible to say something
about this general behaviour by proving the increase of channel capacity as the
noise correlations between subsequent uses becomes stronger.

As the goal of this work is to generalize an entropy calculation method that uses
the specific structure of classical hidden Markov processes, it is necessary to specify
what we consider to be hidden Markov processes in the quantum case. This
was reviewed in Chapter 3. The crucial property proves to be the fact that the
correlations between two semi-infinite halves of the chain remains in a sense finite.
This is a property that can be compared to the standard definition of a Markov
process as depending on the past through only one past configuration.

This is where we side-tracked to have a closer look at the way correlations are
described in the definition of these finitely correlated states. This leads to the
definition of conditional state spaces. We have then tried to determine the usefulness
of this concept in characterizing correlations in general quantum states. From the
applications we have worked out here, one can conclude that the dimension and
the geometry of the conditional state space is an indicator of the strength and
nature of the correlations in the state under study.

We then introduced our main object of study for the remainder of the text, namely
the free Fermionic states. These are states with a simple structure that fulfil the
Fermionic anti-commutation relations. Due to this structure, calculations on these
states remain manageable. As we want to look at correlations between subsystems
and construct processes consisting of many subsystems, we have explored briefly
what we mean by a subsystem in a Fermionic setting.

The first application worked out for these free Fermionic states is the characteri-
zation of the conditional state spaces for such states. This was done in Chapter
5. We highlighted some analogies with the discussion of conditional state spaces
for distinguishable particles of Chapter 3 and gave some applications of this
characterization.

By Chapter 6, we are then finally ready to do the entropy rate calculation for
a quantum system, the free Fermions. First of all, we used the construction of
Chapter 3 to construct a Fermionic Markov chain. It turns out that there is a
direct way to calculate the entropy density in this case, allowing us to verify the
result of the entropy rate calculation. It is in this case possible to do the entropy
rate calculation by studying the behaviour of eigenvalues of large Toeplitz matrices.
As a by-product we proved equality 7.1 a large class of functions without using
strong sub-additivity.

There remain a number of open questions concerning the topics presented in this
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thesis. For example, in Chapter 2 we have seen that the channel capacity of a
quantum channel with classical memory was related to the entropy density of a
classical hidden Markov process. It would be interesting to investigate whether
the entropy density calculation we have carried out for quantum Markov chains
can also be used to determine the channel capacity of memory channels. Also
concerning conditional state spaces more research is warranted. Although we have
found compelling evidence that support the use of these spaces as a means to
study quantum correlations, it is as of yet unclear whether the example showing
entanglement in Werner states can be extended to other quantum states. Finally,
the entropy rate calculation should be extended to other finitely correlated states.
Other states with high symmetry, such as Bosonic Gaussian states or SU(2) invariant
states are obvious candidates.
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