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Abstract

The quest for a good estimator of a certain focus or target is present regardless of
the dimensionality of the data. Obtaining such a good estimator with low mean squared
error, or a prediction with low prediction error often proceeds via a variable selection or
model selection search. Estimators can also be averaged to enlarge the space of possible
estimators in an attempt to further lower the mean squared error. While these methods
are being studied mostly in situations with the number of variables much smaller than
the sample size, this paper concentrates on the additional difficulties and challenges
when applying these methods in a context of high-dimensional data, i.e. data with
more parameters than observations. Items discussed in the paper include focused
model selection with squared error loss and methods addressed towards best squared
prediction loss.

Keywords: variable selection, focused information criterion, penalized estimation,
lasso, model averaging, efficiency, prediction loss.
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1 Introduction

In variable selection problems we can make a distinction between two types of research

questions. The first type is where the main emphasis is on identifying important variables

within a possibly large group of variables. Often this identification proceeds by estimating

the effects of these variables and using some type of threshold procedure to decide on which

variables to keep and which to omit. One example is to identify genes that are related to a

certain characteristic or pathology. In such case one wants to select from a large set of genes

those that ‘are expressed’, that have a nonzero effect.

Another group of research questions is more concerned with the quality of a particular

estimator of a quantity of interest, we call this the focus. The estimated focus depends on

the variables that are in the model on which the estimator is based. For these questions there

is less emphasis on precisely which variables are used to construct the estimator, rather, of

importance is that the estimator is accurate. As a particular example, let us consider a study

that investigates the effects of a climate change. A large number of variables are measured

(weather related variables such as temperature, precipitation, wind, humidity, measures at

the oceans, on land, . . . ). Several focus quantities can be phrased: what is the expected

change in temperature on earth within ten years from now, within 50 years, within 100

years? What is the probability of a certain type of extreme weather situation (for example

a large flood), which might be of interest to insurance companies. For all of these examples

it is less important to know whether or not, say, a measure of crop moisture is used in the

model to estimate the expected temperature change, of more importance is to get a good

estimator of this expected temperature rise. The current paper deals with this type of model

selection questions that relate to a focus and to the quality of its estimator.

In particular, we will address the question of selecting a model that gives us a good estimator

of the focus (where ‘good’ will be defined later) in a setting with a large number of variables

p that might exceed the sample size n.

Since a good estimator is the main goal, computing this estimator in several models and
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then taking a weighted average, might lead to an even better estimator. This is the concept

of model averaging. By averaging estimators obtained in different models, we enlarge the

space of possible estimators, which might be beneficial from an accuracy point of view.

In this paper we give an overview of the existing approaches for a more targeted or directed

model search and we introduce some focused model selection methods and techniques for

model averaging for high dimensional data. A large amount of the literature already deals

with the identification of single variables, we only briefly touch upon that issue here and

rather concentrate on the focus aspect. Hence, an overview of variable identification methods

is beyond the scope of this paper. A recent overview on penalized estimation methods for

variable selection is given by Fan and Lv (2010).

The purpose of this paper is to present an overview of related results, rather than precise

mathematical statements for each specific case. While more research is ongoing within this

area, a detailed study of other interesting questions, such as for example which type of

penalty function yields the smallest risk for a focus estimator, or how to determine and to

define optimality of weights for model averaging, is not treated here.

2 Simultaneous selection and estimation

For situations where the number of variables exceeds the sample size, traditional maximum

likelihood methods fail and penalties or constraints on the parameters are introduced in order

to find estimators of the unknowns. Currently, the most often used methods are the lasso

(Tibshirani, 1996), the adaptive lasso (Zou, 2006), a smoothly clipped absolute deviation

penalty (SCAD, Fan and Li, 2001) and the Dantzig selector (Candes and Tao, 2007). These

methods have in common that the estimation problem with more unknowns than there are

observations is dealt with by setting a number of parameters to zero and by using shrinkage

methods to estimate the remaining parameters. We discuss each of them in turn.
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2.1 Penalized estimation methods

Suppose we have independent data (x̃i, Yi) representing a vector covariate x̃i and a response

variable Yi, for i = 1, . . . , n, which we model by means of a density function f(yi | x̃i, βn),

where the unknown parameter vector βn has a length that is of order o(na) with potentially

a ≥ 1.

For simplicity of notation, in the remaining part of the paper we will continue to use likelihood

models, although the terminology can be extended to other types of estimating equations.

Fan et al. (2009) use a quasi-likelihood or a loss function such as the hinge loss or `1 loss

instead of the log-likelihood as their criterion function, while Caner (2009) uses a generalized

method of moments objective function with a lasso penalty. To accommodate the situation

where the length of βn is larger than the sample size n, a penalty function qλ is added to

the criterion function used for estimating βn,

`n(βn) =
1

n

n∑
i=1

log fi(yi | x̃i,βn)− qλ(βn). (1)

A simultaneous selection of the components in βn and estimation of these components is

achieved by using a penalty function which satisfies the ‘sparsity’ condition. This means that

coefficients are not only shrunk but some of them are effectively set to equal zero. Penalty

functions of the form qλ(βn) = λ‖βn‖α with 0 ≤ α ≤ 1 and with ‖·‖α denoting the `α-norm,

satisfy the sparsity constraint. Taking α = 1 corresponds to the popular ‘lasso’ estimator

(Tibshirani, 1996). Variations on this theme exist, for example adding an `2 penalty to the

`1 penalty corresponds to the elastic net estimator (Zou and Hastie, 2005), weights may

be included in the norm such as for the adaptive lasso (Zou, 2006), or variables may be

grouped in order to include or exclude them as a group rather than one by one (Yuan and

Lin, 2006), e.g. for indicator variables used to model categorical data. For an overview on

several `1 penalized approaches and the lars-algorithm (Efron et al., 2004), see Hesterberg

et al. (2008).
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An at the outset different looking estimator is the Dantzig selector (Candes and Tao, 2007),

β̂ = arg min ‖βn‖1 under the constraint ‖ 1

n
X t(Y −Xβn)‖∞ ≤ λ

which shows similarities in theoretical and practical behaviour to the lasso, and has been

shown to be equivalent in some situations (Efron et al., 2007; Bickel et al., 2009; James

et al., 2009). A study of the Dantzig selector for Cox proportional hazard regression models

is presented in Antoniadis et al. (2010).

The minimax concave penalty approach of Zhang (2010) tries to remedy some of the bias of

the lasso estimator by using a different penalty. The method requires an additional tuning

parameter ν for which holds that when ν →∞, the penalty approaches the `1 penalty, while

for ν ↘ 0 the penalty approaches the `0 form. More precisely, the estimator is obtained by

minimizing with respect to βn,

1

2n
‖Y −Xβn‖2 + λ

p∑
j=1

∫ |βn,j |

0

(1− x/(νλ))+dx,

with p the length of βn.

The smoothly clipped absolute deviation (SCAD) penalty of Fan and Li (2001) is designed

with the goal to achieve sparsity of the estimator in combination with continuity and a

reduced bias. The SCAD penalty is defined through the derivative and also requires an

additional tuning parameter ν > 2,

q′λ(t) = λ

{
I(t ≤ λ) +

(νλ− t)+

(ν − 1)λ
I(t > λ)

}
. (2)

As a penalty one takes
∑p

j=1 qλ(|βn,j|). This approach has been further studied and applied

in various situations. For use in ultra-high dimensions, see Fan and Lv (2008).

2.2 Optimality in which sense?

Since the above penalized approaches combine selection with estimation of the unknown

parameter vector βn, it is no surprise that it does not for each and every of a wide range of

possible uses of the estimator β̂n lead to optimality properties (in some prespecified sense) .
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For the situation of the use of a lasso penalty, Meinshausen and Bühlmann (2006) show, while

working with graphs, that the choice of the value of λ in the penalty that is used to achieve

the minimal squared prediction error for a new independent observation, is not optimal in

terms of variable selection consistency. This means that using the ‘optimal’ penalty in terms

of prediction error leads to including redundant components of βn in the model. Leng et al.

(2006) and Zhao and Yu (2006) come to a similar conclusion for linear models.

Kim et al. (2008) start the other way around and search for conditions under which the SCAD

estimator is consistent for β∗, the true parameter value in a linear model. They compare the

SCAD estimator to the ‘best’ estimator in terms of minimizing ‖Y −Xβn‖2 with respect

to βn, for the given sample (this is called the oracle estimator in their terminology). Under

some conditions it is obtained that the probability that the SCAD estimator is equal to

this oracle estimator converges to one. However, when turning to prediction accuracy, they

conclude that the SCAD estimator is inferior to the oracle estimator.

It is expected that similar statements hold for the other type of penalized estimators.

In the next section we construct an approach where estimation and model/variable selection

is disentangled in order to select that estimator which has the minimal estimated mean

squared error for one situation. The construction can be redone when searching for a model

which leads to the best prediction at a certain focus point. It cannot be asked to come up

with a single estimator that is omnibus and best for all purposes in all respects.

3 Separating model selection from estimation

3.1 Specifying the focus and the loss function

While the penalized estimation methods such as lasso (with its variations), elastic net, SCAD

penalties, the Dantzig selector,. . . all advocate simultaneous selection and estimation of the

regression coefficients, it is clear that this might not be optimal from the standpoint of

estimating a specific functional of those regression coefficients in terms of a specified loss
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function. With focused model selection we separate the selection and estimation part with

the goal of selecting that model for which the estimated loss of the estimator of the focus, a

targeted function of the model coefficients, is the smallest of the considered models.

The quality of a parameter estimator, say µ, may be summarized via its mean squared error

(MSE). Different estimators, in general, have different values for the mean squared error.

Obviously, the value of the mean squared error depends on the model that is used to con-

struct the estimator, since the model determines the bias and the variance. When irrelevant

variables are included in a model, the variance of the estimator will, in general, increase.

On the other hand, when important variables are left out of the model, the estimator might

be biased. A good estimator has a small mean squared error. One version of the focused

information criterion (FIC) estimates the mean squared error of the focus estimator in the

different models under consideration. Since the criterion uses directly the estimator of the

focus parameter, we really direct the criterion towards searching for the best model in mean

squared error sense for this focus. Other versions of the FIC can be constructed for use with

other loss functions such as the error rate for predictions of binary variables (Claeskens et al.,

2006). The FIC has been introduced by Claeskens and Hjort (2003) (see also Claeskens and

Hjort, 2008b, Ch. 6), and further studied in various situations, such as for Cox proportional

regression models (Hjort and Claeskens, 2006), linear hazard models (Hjort, 2008), capture-

recapture models (Bartolucci and Lupparelli, 2008), volatility forecasting (Brownlees and

Gallo, 2008), optimal hedge ratios (Lien and Shrestha, 2005) and autoregressive time series

(Claeskens et al., 2007). Minimizing an estimator of averaged mean squared error instead of

at a specified focus point is studied by Claeskens and Hjort (2008a).

3.2 Penalized estimation under local misspecification

We study the risk properties of estimators in penalized likelihood-based models for further

use in the construction of focused variable selection. Similar to the situation of models with a

small number of variables relative to the sample size (Claeskens and Hjort, 2003), the starting
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assumption is that the true model is in a local neighborhood of a certain fixed model. More

precisely, suppose we have independent data (x̃i, yi) = (xi,zi, yi), with i = 1, . . . , n, where

the covariates xi are part of all models, while the covariates zi are subject to a variable

selection search. Under local misspecification, the true p = (pθ + pγ)-dimensional parameter

vector βn = (θ0, γ0 + n−1/2δ), where θ0 is a vector of length pθ consisting of the parameters

that are common to all considered models. The last pγ components of βn are parameters

which will be searched over. We define β0 = (θ0,γ0) the parameter vector of the minimal,

or null model. The vector δ determines the size of the neighborhood, with δ = 0 reducing

the model to the minimal model.

Throughout this paper we work with a setting where pθ < n is not depending on the sample

size, while pγ may be strictly larger than n. To accommodate the setting with pγ > n, a

penalty is introduced in the estimation of the parameters βn. An estimator β̂n is obtained

by maximizing the penalized log-likelihood objective function (again, other than likelihood

functions could be used)

`n(θ, γ) =
1

n

n∑
i=1

log fi(yi | x̃i, θ,γ)− qλ(γ). (3)

Since the length of θ is always strictly smaller than n, we do not penalize these parameters in

the estimation procedure. Similarly, with lasso-estimation the intercept parameter is usually

left unspecified. An interesting extension is to investigate the case when pθ is also allowed

to grow with n, which will require a penalty on these coefficients θ as well.

Rather than working with an `1 penalty, as in the lasso approach, for which the mean

squared error has no available explicit expression as yet, we here suggest using ψ(x) as an

approximation to |x|, with for ε a small number such as 10−10,

ψ(x) = (x2 + ε)1/2 and qλ(γ) =
λ

n

pγ∑
j=1

ψ(γj − γj0). (4)

The use of this approximation has two advantages: (i) the criterion function in (3) is differ-

entiable and (ii) the expressions for the squared bias and variance of the resulting estimators

can be unbiasedly estimated, which is not the case when using an absolute value.
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The majority of the current research on lasso-type estimators works under the assumption of

a fixed true model. One exception is Knight and Fu (2000) who include local asymptotical

results in their study. The results obtained so far do not write the asymptotic distribution

in a form that can be used for minimizing the risk since it is only proven that the estimator

converges in distribution to the minimizer of another objective function, with no available

explicit expressions for the bias and variance of the estimator under local misspecification.

Similarly for other type of penalized estimation methods, bounds on the mean squared error

(MSE) are known, though not the MSE itself.

3.3 Mean squared error of the focus estimator

Let (θ̂, γ̂) denote the maximizers of (3) with respect to (θ,γ) when using (4) as a penalty.

The focus is denoted by µ(θ,γ). The variable selection will proceed by estimating the mean

squared error of µ̂ = µ(θ̂, γ̂) in various models, specified by leaving out some or all of the

components of the vector γ, and by selecting that model for which the estimated MSE is the

smallest. The true value of the focus is denoted as µtrue = µ(θ0,γ0 + n−1/2δ). Let S denote

any subset of {1, . . . , pγ}. The estimator of the focus in the model containing the common

variables θ and the optional variables in subset S is defined as µ̂S = µ(θ̂S, γ̂S,γ0,Sc) where

γ0,Sc consists of those γ0,j for which j /∈ S, and γ̂S is a vector of length |S|, the cardinality

of S. Note that also the estimator θ̂ receives a subscript S to indicate that its value might

depend on the specific set S, the length of θS is always fixed to pθ and does not change across

the different models. Mathematically, taking a subset of size |S| of a vector v of length pγ

is denoted by premultiplying this vector by a projection matrix πS with dimension |S| × pγ,

to result in πSv = vS, a vector consisting of those vj for j ∈ S.

We assume that the penalty constant satisfies λn/
√

n → λ0 > 0 and that the Fisher infor-

mation matrix at the full model, evaluated at β0, is nonsingular. This matrix is defined

as

J = Var
(

∂
∂βββ

`n(β0)
)

=


J00 J01

J10 J11


 with inverse J−1 =


J00 J01

J10 J11


 ,
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where J11 = (J11 − J10J
−1
00 J01)

−1. We denote by JS the Fisher information matrix for the

submodel S. The proof of the following theorem is placed in the appendix.

Theorem 1. Let ftrue = f(Yi|x̃i; θ,γ0 + δ/
√

n), f is two times continuously differentiable

in a neighbourhood of (θ0,γ0), the matrix J is nonsingular and λn√
n
→ λ0 > 0 as n → ∞.

Define ct = λ0ψ
′(δ)t = λ0

(
δ1√
δ2
1+ε

, . . . , δq√
δ2
q+ε

)
. Then it holds that there is

(i) convergence of the score vector



√

n ∂
∂θθθ

`n(βn)
√

n ∂
∂γγγ

`n(βn)


 →d


U

V


 +


 J01δ

J11δ + c


 ,

where (U t,V t)t ∼ Np(0,J);

(ii) convergence of the parameter estimators



√

n(θ̂S − θ0)
√

n(γ̂S − γ0,S)


 →d


BS

CS


 = J−1

S


 J01δ + U

J11,Sδ + V S + cS




∼ Npθ+|S|


J−1

S






 J01

J11,S


 δ



 +


0p

cS


 ,J−1

S


 ;

(iii) convergence of the focus estimator. For µ̂S = µ(θ̂, γ̂S), µtrue = µ(θ0,γ0 + δ/
√

n),

µ continuously differentiable with respect to (θ,γ) in a neighborhood of (θ0,γ0), and with

ω = J10J
−1
00

∂µ
∂θ
− ∂µ

∂γ
,

√
n(µ̂S − µtrue) →d ΛS = (∂µ

∂θ
)tBS + (∂µ

∂γ S
)tCS − (∂µ

∂γ
)tδ

= (∂µ
∂θ

)tJ−1
00 U + ωt(δ −GSD − J11,S,0c),

where GS = J11,S,0(J11)−1, J11,S,0 = πt
SJ11,SπS, D ∼ Nq(δ,J11) and all partial derivatives

are evaluated at the null model (θ0,γ0).

The limiting distributions are characterized by two bias components, a first one arising

because of the local misspecification framework when δ is non-zero, and a second bias com-

ponent due to the penalization during the estimation (with a nonzero c under the assumed
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condition on λn). Under the stronger assumption that λn/
√

n → 0, it follows that c = 0

and the same asymptotic distribution results as for non-penalized estimators.

With a non-random model S the limiting distribution ΛS is normal ΛS ∼ N{E(ΛS), Var(ΛS)},
with mean and variance

E(ΛS) = ωt{(Iq −GS)δ − J11,S,0c}
Var(ΛS) = (∂µ

∂θ
)tJ−1

00
∂µ
∂θ

+ ωtJ11,S,0ω = τ 2
0 + ωtJ11,S,0ω.

(5)

A variance–bias tradeoff is clearly visible. Indeed, for larger models (|S| large) the variance

of µ̂S will in general be larger than for models with less parameters, where the bias due to

model misspecification will be larger.

Adding the squared bias and the variance of ΛS gives that the mean squared error of µ̂S at

model S is given by

mse(S) = τ 2
0 + ωtJ11,S,0ω + ωt{(Iq −GS)δ−J11,S,0c}{(Iq −GS)δ−J11,S,0c}tω. (6)

3.4 Estimation of the mean squared error

The idea of focused model selection (FIC) is to estimate mse(S) in (6) for each of the

considered models S and to choose that model which gives the smallest estimated mean

squared error m̂se(S). Thus, FIC(S) = m̂se(S). We select that estimator µ̂S for which the

estimated risk (mean squared error) is the smallest.

The approximation of |x| by (x2 + ε)1/2 in the penalty has not only as an advantage that

the criterion function is differentiable, but also that the expressions for the squared bias and

the variance can be unbiasedly estimated. Plugging in empirical matrices for population

Fisher information matrices, and inserting parameter estimates (e.g. at the biggest model)

for unknown parameters, leaves us with the estimation of δδt in the squared bias component,

the third term in (6). Since δ̂ =
√

n(γ̂full − γ0) → D ∼ Npγ (δ,J11), we use as an estimator

δ̂δ̂
t− Ĵ

11
when this results in a positive value for the estimated squared bias, otherwise the

squared bias is estimated by zero.

11



We rewrite c = δ¯a, with ¯ denoting the componentwise multiplication. The bias estima-

tion then results in using δ̃
2

= max{0, diag(δ̂δ̂
t − Ĵ

11
)} as an estimator for (δ2

1, . . . , δ
2
pγ

) in

the denominator of the vector a, leading to the estimator â.

The squared bias and variance terms are estimated by (with ⊗ denoting the Kronecker

product)

FIC.bias.sq = max{0, ω̂t · bias-comp · (δ̂δ̂
t − Ĵ

11
) · bias-compt · ω̂}

bias-comp = {(Iq − Ĵ
11,S,0

(Ĵ
11

)−1)− Ĵ
11,S,0 ¯ (1pγ ⊗ â)}

FIC.var = τ̂ 2
0 + ω̂tĴ

11,S,0
ω̂.

This results in

FIC(S; λ) = ̂mse(S; λ) = FIC.var + FIC.bias.sq. (7)

The subset S for which the FIC value in (7) is the smallest gives the best index set. By not

leaving out constants that are the same for each model, this expression for FIC keeps its

interpretation as an estimate of the mean squared error.

To deal with the construction and inversion of a high-dimensional information matrix J , we

use a Nyström approximation to J (for details, see Belabbas and Wolfe, 2007). This results

in a symmetric positive semi-definite matrix of dimension pγ × pγ for which we find the best

rank k-approximation, with k = min(n, |S|).
The selection of the tuning parameter λ proceeds by minimizing the estimated mean squared

error. Thus the selected model S and value λ are chosen to reach

min
λ

min
S

FIC(S; λ).

In practice, a grid search may be performed to find the best λ.

4 Simulation study

In a limited simulation study we compare variable selection by FIC to the simultaneous

estimation and selection procedures of the lasso and SCAD, see Section 2.1. For simplicity
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we assume a linear model Yi = X iβtrue + εi with εi ∼ N(0, 1). Common to all models

are the unknown intercept and error variance (thus pθ = 2). The data are generated, first

with a sample size n = 25. With (i) pγ = 20, this gives a situation with a large number

of parameters though not exceeding the sample size, (ii) pγ = 100, which creates a setting

where the number of parameters largely exceeds the sample size. For sample size n = 100

we create an easier setting with pγ = 20.

The true model is generated according to four settings.

Setting 1 : None of the generated coefficients is zero and all regression variables are indepen-

dent. βtrue = (1,−1/2, 1/3,−1/4, 1/5, . . . ,±1/pγ)/
√

n, for i = 1, . . . , n: X i ∼ Npγ (0pγ , Ipγ ).

Setting 2 : None of the generated coefficients is zero, as in setting 1, though the regression

variables are dependent with a covariance matrix Σ, where σjj = 1 and σjk = 0.5 when

j 6= k, for i = 1, . . . , n: X i ∼ Npγ (0pγ ,Σ)

Setting 3 : Except for the first 5 coefficients, the remaining coefficients are zero and all

regression variables are independent, βtrue = (1,−1, 1,−1, 1, 0, . . . , 0)/
√

n, for i = 1, . . . , n:

X i ∼ Npγ (0pγ , Ipγ ).

Setting 4 : The coefficients are taken as in setting 3, the regression variables are dependent

as in setting 2.

As focus points for which we wish to obtain an estimator with small mean squared error,

we take µj(β) = β0 + x0jβ, where x01 consists of pγ randomly chosen values in the interval

[−1, 1], x02 takes the first three components of x01 and as last components it takes randomly

generated values within the interval [4, 8], while x03 has as first three components randomly

generated values in the interval [4, 8] and its last (pγ − 3) components correspond to those

of x01, thus, randomly generated from the interval [−1, 1].

Three methods are used in the comparison (i) FIC with penalty (4) where λ has been chosen

to minimize FIC, (ii) lasso where 10-fold cross-validation is applied to determine λ, the

estimated coefficients are found via

min
β

n∑
i=1

(Yi − β0 −X iβ)2 + λ

pγ∑
j=1

|βj|,
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Table 1: Averaged squared error of the estimators for three different focus parameters over 1000

simulated data sets using FIC, lasso and the SCAD penalty. The sample size is equal to n = 25,

the number of variables pγ = 20.

Focus: µ1 µ2 µ3

x01k ∈ [−1, 1] x02k(k>3) ∈ [4, 8] x03k(k≤3) ∈ [4, 8]

Setting 1 FIC 0.180 0.084 1.802

Lasso 0.105 4.353 2.762

SCAD 0.510 8.351 2.571

Setting 2 FIC 0.222 0.072 1.846

Lasso 0.108 2.348 2.875

SCAD 0.528 4.651 3.484

Setting 3 FIC 0.222 0.308 2.231

Lasso 0.131 6.740 3.803

SCAD 0.818 12.098 3.747

Setting 4 FIC 0.082 0.126 1.200

Lasso 0.078 0.323 1.137

SCAD 0.799 5.225 3.872

and (iii) the SCAD approach with the penalty defined by (2) and 10-fold cross-validation

to determine the value of λ. For the lasso, the R-library glmnet has been used, the SCAD

values have been computed via the R-library SIS.

Tables 1–3 give the averaged squared errors of the estimators µj(β̂0+xt
0jβ̂) for j = 1, 2, 3 over

1000 simulation runs, computed via the estimates that are obtained by the three methods.

Table 1 presents the averaged squared errors of the estimates of the focus parameters over

the 1000 simulation runs for the case where n = 25 and pγ = 20. For all four settings,

the best results for FIC are obtained for the second and third focus (µ2, µ3) where some of

the covariate values are large (within the interval [4, 8]). For these two focus points, for all
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Table 2: Averaged squared error of the estimators for three different focus parameters over 1000

simulated data sets using FIC, lasso and the SCAD penalty. The sample size is equal to n = 25,

the number of variables pγ = 100.

Focus: µ1 µ2 µ3

x01k ∈ [−1, 1] x02k(k>3) ∈ [4, 8] x03k(k≤3) ∈ [4, 8]

Setting 1 FIC 0.083 0.243 0.242

Lasso 0.113 4.500 0.522

SCAD 0.235 5.350 0.557

Setting 2 FIC 0.071 0.217 0.267

Lasso 0.124 2.422 0.637

SCAD 0.245 2.514 0.542

Setting 3 FIC 0.094 0.344 0.177

Lasso 0.133 7.212 0.680

SCAD 0.280 7.883 0.806

Setting 4 FIC 0.088 0.343 0.178

Lasso 0.149 2.999 0.816

SCAD 0.298 2.957 0.782

settings, the lasso method ranks second and SCAD third, concerning the averaged squared

error. For the first focus µ1 for which all xj0 values are small, within the interval [−1, 1],

lasso and FIC yield comparable numbers, while those of SCAD are again larger.

The results of the more interesting setting where the number of variables pγ = 100 > n = 25

are summarized in Table 2. For all settings and all three focus parameters, the FIC yields

the estimator with the smallest mean squared error, with an obvious difference for µ2, for

all settings. Both for µ1 and µ2, lasso gives slightly better MSE values than SCAD, though

the results are comparable, and SCAD performs slightly better than lasso in the case of

dependent covariates, see setting 2 (µ3) and setting 4 (µ2, µ3).
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Table 3: Averaged squared error of the estimators for three different focus parameters over 1000

simulated data sets using FIC, lasso and the SCAD penalty. The sample size is equal to n = 100,

the number of variables pγ = 20.

Focus: µ1 µ2 µ3

x01k ∈ [−1, 1] x02k(k>3) ∈ [4, 8] x03k(k≤3) ∈ [4, 8]

Setting 1 FIC 0.030 0.013 0.611

Lasso 0.030 0.346 0.635

SCAD 0.131 0.771 0.399

Setting 2 FIC 0.031 0.013 0.610

Lasso 0.032 0.200 0.625

SCAD 0.135 0.588 0.434

Setting 3 FIC 0.077 0.125 1.195

Lasso 0.068 0.538 1.132

SCAD 0.273 1.277 0.667

Setting 4 FIC 0.082 0.126 1.200

Lasso 0.078 0.323 1.137

SCAD 0.291 0.814 0.680

An easier setting from the point of view of estimation is when n = 100 and pγ = 20, a

situation where penalization is not strictly needed (see Table 3). For focus µ1, FIC gives

about the same performance in terms of mean squared error than the lasso, while FIC

performs better in the case of µ2. In this setting, for µ3, the SCAD now gives the best

results, while FIC and lasso again have a similar behavior.
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5 Looking for a best prediction

5.1 Minimum risk methods

Another method that aims at unbiased risk estimators is Stein unbiased risk estimation

(SURE) where the expected squared prediction error plays the central role. This is in

common use in wavelet estimation where the number of parameters (wavelet coefficients)

equals the sample size. Donoho and Johnstone (1995) determine the threshold parameter

for wavelet estimation via SURE. A study of SURE, generalized cross-validation, Mallow’s

Cp and AIC in a setting of sparseness, where it is known that only a few coefficients will

be non-zero, is performed by Jansen (2010). One of the conclusions of that paper is that a

combination of adaptive minimum risk methods with bias-free hard threshold selection out-

performs methods with minimax risk properties, such as the false discovery rate (Benjamini

and Hochberg, 1995) in practical situations. This research links the ‘classical’ criteria that

are usually only investigated with p much smaller than n to settings with sparsity, which are

common in high-dimensional situations.

5.2 The concept of persistency

When proving that a method is best in terms of predictive properties, persistency can be

shown. Greenshtein and Ritov (2004) define persistency of an estimator in a random design

linear regression model. The data are denoted (Yi, X1i, . . . , Xpi), i = 1, . . . , n with distribu-

tion Fn ∈ Fn, a set of distribution functions for n i.i.d random vectors of length p + 1. The

number of variables p = na with a > 1. The quality of the estimator for β is measured by

the expected squared prediction error:

LFn(β) = EFn [(Y −
p∑

j=1

βjXj)
2],

where the expectation is with respect to the true finite sample distribution of the random data

vector. Denoting β∗ the value of the parameter vector β where LFn obtains its minimum,

an estimator β̂n is called persistent when LFn(β̂n)− LFn(β∗) P→ 0, n →∞.
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Greenshtein (2006) extends the setting towards general nonnegative prediction loss functions

instead of squared error and towards predictors that are not necessarily linear functions of

the random covariates. Under certain conditions it has been shown that the lasso estimator

is persistent when taking the expected squared prediction error (Greenshtein and Ritov,

2004; Greenshtein, 2006; Bartlett et al., 2009). The prediction error of the lasso estimator

is also studied by van der Geer (2008). The persistency property should be interpreted as

giving results on the squared prediction error, on average. It does not say anything about

the quality of the prediction for an individual point.

If we specify the loss function to use within the persistency for a specific focus, such as

estimation or prediction at a certain point µ(β) = xt
0β, we take LF (β) = (xt

0β − xt
0βtrue)

2.

Since the design point where the focus is evaluated is fixed, this is a non-random quantity.

The optimal value β∗ that minimizes this risk is equal to βtrue. Requiring for this example

that LFn(β̂n)−LFn(β∗)
P→ 0 turns out equivalent to asking for consistency of the estimator.

5.3 Efficiency versus persistency

Efficiency concerns the ratio of the squared prediction error at the selected model with

that of the optimal model for which the squared prediction error is minimized. With this

concept, the model selection or variable selection process itself is investigated, rather than

the estimated coefficients. Thus, while in the persistency criterion the estimator β̂ is the

random variable determining the convergence (or not) in probability, for efficiency it is the

randomness in the selected model Ŝ that determines the convergence (or not). For efficiency

we look at

Rn =

∑n
i=1 E[(

∑
j∈Ŝ β̂jxj − Ytrue,i)

2|Ŝ]
∑n

i=1 E[(
∑

j∈S∗ β̂jxj − Ytrue,i)2]
,

where the set of variables S∗ is such that it gives the smallest possible denominator. A

variable selection mechanism is called efficient if Rn converges in probability to one when

the sample size grows to infinity. Note that the numerator is random in the choice of the

set Ŝ, which is determined by the data. There are several differences with the study of
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persistency. (i) A ratio of risk values is studied instead of a difference. Since risk values are

often related to scales, the ratio might have interpretational advantages. (ii) The covariates

are taken as fixed, rather than random. (iii) The randomness of the estimator β̂ is accounted

for with the calculation of the expected value, the randomness in Rn is determined by the

randomness in the selection of the set Ŝ. For persistency one does not perform a separate

selection step, there only is estimation where it may happen that certain components are

set to zero (e.g. when using an `1-penalty). (iv) Efficiency has so far only been investigated

for regression models where the number of non-zero coefficients is of the order o(na) with

0 < a ≤ 1. Persistency has only been investigated for models with a large number of variables

(a > 1) where selection and estimation take place with a single action.

For models with a large number of variables it could be of interest to investigate the behaviour

of estimation and selection methods conditional on the design, for application to the given

design points or to a new value where prediction should take place. Efficiency results for the

case where a > 1 would be useful.

5.4 Transductive learning

The search for good predictions at specific points rather than trying to predict a complete

function in all of its possible domain points is referred to as transductive learning in the

machine learning literature (see e.g. Vapnik, 1995). For a discussion between semisupervised

learning and transduction, see chapter 25 of Chapelle et al. (2006). The idea behind trans-

duction is to solve an as simple as possible problem, if you only need a prediction at one

point, do not first construct an estimator for prediction at the whole covariate space, but

rather do it only for the single point of interest. In this regard, there is a similarity to the

focused selection of Section 3.

While a large part of the literature is involved with classification problems, transduction

regression is concerned with the prediction of response values at certain given covariate

vectors. Cortes et al. (2008) investigate the stability of several transduction algorithms. Let
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the prediction of the response Y at a covariate vector x be denoted by Ŷx = ĥ(x). Denote

by x0j, j = 1, . . . , n0 the new covariate vectors at which predictions of the response are to

be obtained. The local transductive regression algorithms minimize an objective function of

the form

‖ĥ(x)‖2
K + λ1

1

n

n∑
i=1

{ĥ(xi)− Yi}2 + λ2
1

n0

n0∑
j=1

{ĥ(x0j)− Ỹ0j}2,

where Ỹ0j (j = 1, . . . , n0) are called pseudo-target values, since the true response values are

unknown. The local transductive algorithms use local weighted regression to determine the

Ỹ0j. The norm ‖ · ‖K is defined by a kernel function K in a kernel reproducing Hilbert

space. We could interpret this term as being a cost (or a penalty) for the complexity of the

prediction function ĥ. This method involves two further tuning parameters λ1 and λ2.

Another type of algorithms are called unconstrained regularization methods, which search

for the vector h with length n + n0 to minimize the following objective function

htQh + (h− Ỹ )tC(h− Ỹ ),

with explicit solution h = (C−1Q+In+n0)
−1Ỹ . The matrix Q is a symmetric regularization

matrix, while C contains empirical weights, both matrices have dimension (n+n0)×(n+n0).

The vector Ỹ consists of the observed response values (Y1, . . . , Yn) together with the pseudo-

target values (Y01, . . . , Y0n0). Several algorithms can be written in this form, for an overview

and discussion, see Cortes et al. (2008).

The method of transduction is not immediately guided towards risk minimization starting

from the risk of the used estimator (or predictor). The statistical properties regarding

e.g. minimum prediction risk, efficiency or consistency largely remain to be investigated.

6 Model averaging with large numbers of variables

When an estimator with a small mean squared errors is sought amongst a collection of

models in which these estimators are computed, one can potentially obtain an even better

estimator in terms of mean squared error, or prediction error, by taking a weighted sum
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of the estimators in the considered models. The model averaged estimator with a set of

weights {wS; S ∈ S} is defined as µ̂ =
∑

S∈S wSµ̂S. In high-dimensional models, each of the

estimators µ̂S could be obtained through a penalization approach for estimation. Different

sets S could represent different types of penalties, or different subsets of variables in the

model.

For models with the number of parameters less than the sample size, a study of model aver-

aged estimators (in a non-Bayesian sense) has been performed by several authors, including

Yang (2001), least squares model averaging is studied by Hansen (2007), Magnus et al.

(2010) compare Bayesian model averaging to weighted-average least squares (WALS). In a

local misspecification setting, Claeskens and Hjort (2003) and Hjort and Claeskens (2006)

study asymptotic properties of model averaged estimators for parametric and Cox regression

models respectively. Zhang and Liang (2011) study frequentist model averaging (as well as

a focused information criterion) for generalized additive partial linear models using polyno-

mial spline estimators. See Claeskens and Carroll (2007) for model averaging estimators in

semiparametric models using local linear estimators.

By cleverly chosen weights, it is possible that the averaged estimator has a smaller mean

squared error than any of the µ̂S separately.

One difficulty with model averaged estimators is the limiting distribution of the estimators,

which is needed to perform tests, to make confidence intervals,. . . . In case the weights are

data-driven (and thus random) the limiting distribution is non-trivial. Especially in the case

of high-dimensional data, it is not yet well understood how to correctly perform inference

with these estimators in a frequentist framework.

This is easier with Bayesian model averaging (BMA) where the posterior probability of a

focus µ (now treated as a random variable) is written as a weighted average of the posterior

probabilities of µ in each of the considered models S ∈ S,

P (µ |Data) =
∑
S∈S

P (µ |Data, S)P (S |Data).

Annest et al. (2009) use such BMA with high-dimensional micro-array data. By working
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with the full posterior distribution the model uncertainty is automatically taken into account,

which owes to the succes of BMA methods, though comes often with a price of a high

computational cost.

7 Conclusions

Building and selecting a good model for use with high-dimensional data is at least as difficult

as in the low-dimensional case. Several aspects (both theoretical and practical) have been

investigated already, but many more research needs to be done. In this paper we present

several approaches that aim for a directed model search, a model that is good for a pre-

specified purpose. This ‘purpose’ may indicate a certain loss function, such as the averaged

prediction error, or it may indicate a focus point at which prediction or estimation is to

be performed (as with the FIC and transductive learning). As already indicated by several

authors, one method cannot be optimal for both prediction accuracy at given points and

variable consistency. This indicates that one can do better by guiding the model search by

prespecifying the focus and the risk function. In other words, adding a penalty does not by

itself give estimators with the smallest mean squared error or with the smallest prediction

error.

Along with the growth of the literature on this topic, more will be understood about the

statistical properties of such estimators, and of estimators that are constructed in such

selected models. The concept of model averaging with random weights is closely related.

The randomness of the selected model, or with penalization methods such as SCAD and

lasso, the randomness of precisely which coefficients are set to zero, is a difficult topic to

understand and to come up with solutions for practical use when conducting inference. This

paper points to some issues and challenges that need further study, the full picture is as yet

to be drawn.
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A Appendix

A.1 Proof of Theorem 1

The main steps in the proof follow the same line of thought as in Hjort and Claeskens (2003)

and Claeskens and Hjort (2003).

(i) Via a Taylor series expansion, for j = 1, . . . , pγ,

√
n ∂

∂θθθ
`n(βn) =

√
n ∂

∂θθθ
`n(β0) + ∂2

∂θθθ∂γγγt `n(β̃)δ

√
n ∂

∂γj
`n(βn) =

√
n ∂

∂γj
`n(β0) + ∂2

∂γj∂γγγt `n(β̃)δ − λn√
n

ψ′( δj√
n
)

with β̃ in between βn and β0. By the convergence of the average of the negative of the

second derivatives to the corresponding part of the matrix J , together with the definition of

the constant c, the convergence of the score vector is proven.

(ii) We start with a Taylor-series expansion and denote the subvector βS = (θ,γS), and let

Sc denote the index set complementary to S, that is Sc = {j : j /∈ S},

√
n ∂

∂βββS
`n(β) =

√
n ∂

∂βββS
`n(βn) + ∂2

∂βββS∂βββt
S
`n(β̃)




√
n(θ − θ0)

√
n(γS − γS,0 − δS/

√
n)




− ∂2

∂βββS∂γγγt
Sc

`n(β̃)δSc ,

with β̃ in between βn and β0. For the second and third terms on the right-hand side we use

the convergence condition on the penalty λn together with convergence of the negative of the

second derivatives of the objective function to the corresponding elements of the matrix J .

This, together with result (i) allows to obtain the convergence of the parameter estimators.
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(iii) This follows via an additional Taylor series expansion of µ(β̂S) about µtrue, together

with the result of (ii). ¤

A.2 Mean and variance of the limiting distribution ΛS in (5)

We explicitly work out the expressions of the random variables BS and CS,

BS = J00
S (U + J01δ) + J01

S πS(c + V + J11δ)

CS = J10
S (U + J01δ) + J11

S πS(c + V + J11δ).

Inserting expressions of the blocks of the partitioned matrix J−1, with J11,S = (πS(J11)−1πt
S)−1,

and superscripts denoting blocks of the inverse matrix, gives that, with W = V −J10J
−1
00 U ,

E(BS) = J−1
00 J01

(
(Iq − πt

SJ11,SπS(J11)−1)δ − πt
SJ11,SπSc

)

E(CS) = J11,SπS((J11)−1δ + c)

Var(BS) = Var(J−1
00 U ) + Var(J−1

00 J01π
t
SJ11,SπSW )

= J−1
00 + J−1

00 J01π
t
SJ11,SπSJ10J

−1
00 = J00

S

Var(CS) = Var(J11,SπSW ) = J11,S

Cov(BS, CS) = −Cov(J−1
00 J01π

t
SJ11,SπSW , J11,SπSW ) = −J−1

00 J01π
t
SJ11,S.

Using part (iii) of Theorem 1 and the expressions above yields the expressions in (5). ¤
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Magnus, J. R., Powell, O., and Prüfer, P. (2010). A comparison of two model averaging

techniques with an application to growth empirics. J. Econometrics, 154(2):139–153.
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