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The purpose of this paper is to propose models for project scheduling when there
is considerable uncertainty in the activity durations, to the extent that the decision
maker cannot with confidence associate probabilities with the possible outcomes of a
decision. Our modeling techniques stem from robust optimization, which is a theoret-
ical framework that enables the decision maker to produce solutions that will have a
reasonably good objective value under any likely input data scenario. We develop and
implement a scenario-relaxation algorithm and a scenario-relaxation-based heuristic.
The first algorithm produces optimal solutions but requires excessive running times
even for medium-sized instances; the second algorithm produces high-quality solu-
tions for medium-sized instances and outperforms two benchmark heuristics.
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1 Introduction

Both in production and in service sectors, project management is a discipline of particular
interest. Project-based organization and work is encountered within a very wide variety
of applications: research and development (R&D), software development, construction,
public infrastructure, process re-engineering, maintenance operations, . . . A project itself
can be informally defined as a unique undertaking, consisting of a set of precedence-related
activities that have to be executed using diverse and mostly limited company resources.
Project management deals with the selection and initiation of projects, as well as with
their operation and control. Project scheduling, as a part of project management, is aimed
at deciding when in time to start (and finish) which activities, and at the allocation of
scarce resources to the project activities.

Unfortunately, project parameters such as activity durations and resource require-
ments are seldom precisely known and usually subject to estimation errors. Uncertainty
is the prime cause of incomplete and unreliable data. This uncertainty can originate
from a great number of potential sources. As some of the most frequently encountered
causes, we can cite activities that take more or less time than originally estimated, ma-
chines breakdowns, materials that arrive behind schedule, worker absenteeism, delays
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due to bad weather. . . Although the sources of variability in the project environment are
manifold, the main scheduling objectives are mostly related to the activities’ starting (or
ending) times, with the project makespan being the single most studied objective, next
to other ones such as weighted earliness-tardiness and net present value of the project.
This justifies a restriction to the study of uncertainty in processing times only, although
many different sources may be at the basis of this variability.

Uncertainty in key project parameters is usually modeled in terms of probability
theory [31]. Malcolm et al. [44] seem to have been the first in 1959 to recognize that ran-
domness in the duration of a project’s individual activities can be modeled by a stochastic
variable. Subsequently, a large number of stochastic models for evaluating project du-
ration have been developed, see for instance [1, 26, 37, 43]. All these studies neglect
(renewable) resource constraints and assume that proper resource allocation decisions
have already been made at a higher decision level. As coherently described by Stork
[52], an important new aspect comes into play on moving from the deterministic to the
stochastic case: what is a solution? A solution should define for each possible ‘event’
that occurs during the execution of the project an appropriate ‘action’, typically the
start of new activities. To make such decisions, one may want to exploit the informa-
tion given by the current state of the project. One schedule does not contain enough
information to make decisions in all possible execution scenarios of the project. Stork (in
line with Igelmund and Radermacher [30], among others) uses the term ‘policy’ to refer
to a suitable set of decision rules that constitutes a solution. In the absence of resource
constraints, the minimum-makespan objective requires no real scheduling effort: it is a
dominant choice to start each activity as soon as its predecessors are completed. We for-
mally define scheduling policies and related concepts in Section 3; most of the material
on scheduling policies developed for stochastic scheduling can be transferred to robust
optimization without major alterations.

Decision theory distinguishes between risk, uncertainty and ignorance. In a risk sit-
uation, the distribution of the outcomes under study is known with certainty. This is
to be contrasted with ‘unmeasurable’ uncertainty, in a decision-theoretic context often
simply termed ‘uncertainty’, in which it is not possible to attribute probabilities to the
possible outcomes of a decision [27, 32, 50]. The case where even the possible outcomes
are not known is usually referred to as ‘unawareness’, ‘ignorance’ or ‘incomplete state
space’; Loch et al. [42] speak of ‘unk unks’ (unknown unknowns). Rosenhead et al. [50]
note that “it may be possible to convert an uncertainty problem into a risk problem, for
example by the subjective estimation of probabilities, and used appropriately this can be
a valuable simplification. However, some aspects of the future are genuinely unknowable,
even in the probability sense. To insert notional probabilities may make the decision
maker more comfortable, but that is not necessarily the objective in tackling a decision
problem.”

In this article, we study the resource-constrained project scheduling problem (RCPSP)
(see [24, 34, 48] for surveys). Our purpose is to propose models for this scheduling problem
that are useful when there is considerable uncertainty in the activity durations, and when
the decision maker does not have sufficient confidence in the subjective probabilities that
can be attributed to the different duration scenarios. Our modeling techniques stem from
robust optimization, which is a theoretical framework that enables the decision maker to
produce solutions that will have a reasonably good objective value under any likely input
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data scenario [2, 36].
The contributions of this article are threefold: (1) we describe how robust optimiza-

tion can be applied to project scheduling under uncertainty; (2) we develop a scenario-
relaxation algorithm to solve the optimization problem at hand; and (3) based on the
scenario-relaxation algorithm, we develop a heuristic procedure that produces better re-
sults than two benchmark heuristics for medium-sized instances.

The remainder of this paper is organized as follows. First, we survey the literature on
decision making under uncertainty in Section 2, with a particular focus on the objectives
that are examined in the remainder of this paper. Subsequently, we give a number
of definitions and a detailed problem statement in Section 3. The evaluation of the
adopted objective function is discussed in Section 4, followed by a description of an
optimization routine (Section 5) and of a heuristic procedure (Section 6). The results of
our computational experiments on larger datasets are presented in Section 7. Finally, a
summary and some conclusions are provided in Section 8.

2 Decision making under uncertainty

French [27] describes four criteria for decision making under uncertainty, which for a
minimization problem amount to (1) minimax : minimize the worst makespan realization
that can occur, (2) minimin: minimize the best outcome that can occur, which is an
optimistic approach, as opposed to the pessimistic minimax, (3) minimax regret : mini-
mize the largest possible difference in makespan between the policy to be selected and
the optimal makespan for a given realization, and (4) minimize the objective in expecta-
tion. Within the context of this paper, the objectives (1) and (2) can be solved via the
classic RCPSP, since the duration realizations of the different activities will be assumed
to be independent of each other. The most-studied objective for the so-called stochastic
RCPSP [5, 12, 52], where a probability distribution is known for the duration scenarios,
is to select a policy that minimizes the expected value (4) of the project makespan within
a specific class of policies. In the context of this article, however, probability distributions
are not available and so expected values cannot be computed.

Assavapokee et al. [6] state that, because of incomplete information about the joint
probability distribution of the uncertain parameters in the problem, decision makers are
often unable to search for decisions with the best long-run average performance. Instead,
they look for robust decisions, which perform well across all possible input scenarios with-
out attempting to assign a fixed probability distribution to any ambiguous parameter.
Daniels and Kouvelis [21] motivate the choice of regret-based objectives as follows: “a
decision maker may be rightfully concerned not only with how a schedule’s performance
varies with the actual realizations of the task parameters, but also with how actual per-
formance compares with the optimal performance that could have been achieved if perfect
information had been available prior to scheduling. Such comparisons against optimal
performance focus the decision maker on opportunities to free short-term capacity by
reducing uncertainty and efficiently utilizing resources through scheduling, . . . ”. Com-
parable regret-based objectives have recently been examined for various combinatorial
optimization problems [6–8, 10, 38, 45]. Scheduling with regret-based objectives is stud-
ied in references [21, 35, 36] in a machine environment, with two objective functions: the
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absolute-deviation robust scheduling problem and the relative-deviation robust scheduling
problem. The underlying deterministic machine problems studied in these references are
easy (solvable in polynomial time). Aissi et al. [2] also point out that they prefer to study
robust versions only of problems that are solvable in polynomial or pseudo-polynomial
time, in the hope that they could preserve the complexity. The RCPSP, however, is
strongly NP-hard [19].

Other approaches to robust optimization can be found in the literature; we briefly
discuss some of these in the following lines. An extensive survey is given by Nikulin [49].
Ben-Tal and Nemirovski [13–15] find robust solutions to convex optimization problems
with data uncertainty, when the data are drawn from ellipsoids; they produce solutions
such that the constraints are respected whatever the realization of the data. A practical
drawback of this approach is that it leads to non-linear, although convex, models, which
are computationally rather demanding. Bertsimas and Sim [16, 17] propose an approach
to address data uncertainty for discrete optimization and network-flow problems that
allows the degree of conservatism of the solution to be controlled: protection is provided
for the case where only a pre-specified number of the input coefficients changes from its
base value, which allows to reduce the ‘price of robustness’ when the protection required
is not too high. Finally, Mulvey et al. [46] present an approach that integrates goal-
programming formulations with a scenario-based description of the problem data; they
distinguish between solutions that remain close to optimal and those that remain ‘almost
feasible’ and use the terms ‘solution robust’ and ‘model robust’, respectively.

3 Definitions and problem statement

In the following subsections, we provide some general definitions (Section 3.1), we outline
the concept of scheduling policies (Section 3.2) and we give a detailed problem statement
(Section 3.3). Section 3.4 discusses the difficulty of the evaluation of the objective func-
tion, Section 3.5 describes a dominance result and Section 3.6 contains our findings for
an example project.

3.1 Project scheduling

We examine the scheduling of a single project. The project consists of a set V =
{0, 1, . . . , n + 1} of activities that need to be performed. We associate with each ac-
tivity i ∈ V a set Pi ⊂ R+ containing the possible realizations of the duration of
activity i (with R+ the set of non-negative reals). This set Pi can be a discrete set
{pi1, pi2, pi3, . . . , pi|Pi|} or an interval [pmin

i ; pmax
i ]; in the first case, we also write pmin

i ≡
minPi

pik and pmax
i ≡ maxPi

pik. The (dummy) activities 0 and n + 1 have zero duration
(meaning that P0 = Pn+1 = {0}). We use a lowercase vector p = (p0, p1, . . . , pn+1) with
pi ∈ Pi for all i ∈ V , to represent one particular scenario of the durations (also called sam-
ple or realization). The set containing all scenarios is denoted by P = P0×P1×. . .×Pn+1:
the possible durations for one activity are not dependent on the values chosen for the
other activities.

When each |Pi| = 1, we are in the case of the deterministic RCPSP. Since each
duration is a constant in this case, we also use the vector notation p = (p0, . . . , pn+1)
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for the durations. A solution to the RCPSP is a schedule s, i.e., an (n + 2)-vector of
starting times (s0, s1, . . . , sn+1) with si ≥ 0 for all i ∈ V . In most projects, some of
the activities can only be started once other activities are completed. Such precedence
relationships between the activities are represented by a binary relation E ⊂ V × V . We
assume that E is a (strict) partial order on V , i.e. an irreflexive and transitive relation.
The activities 0 and (n + 1) represent the start and the end of the project, respectively,
meaning that ∀i ∈ V \ {0} : (0, i) ∈ E, and ∀i ∈ V \ {(n + 1)} : (i, n + 1) ∈ E,
or in other words, 0 and (n + 1) are predecessor, respectively successor, of all other
activities. A so-called precedence graph G(V,E) is inferred, where the nodes correspond
to activities and arcs represent precedence relations. For a binary relation A on V , we
let T (A) denote its transitive closure, defined as the minimal transitive relation on V
that contains A. Since E is transitive and irreflexive, G does not contain a cycle, and all
precedence networks G(V, A) with the same transitive closure G(V, T (A)) represent the
same scheduling instance. The schedule s is said to be precedence feasible if si + pi ≤ sj

for all (i, j) ∈ E. Without loss of generality, we usually set s0 = 0.
The project activities are to be scheduled on a set R of renewable resource types with

availability bk for each k ∈ R (e.g., groups of equivalent workers or machines). Each
activity i ∈ V occupies a fixed number bik ∈ N units of each resource type k during
its execution. The activities 0 and n + 1 do not use resources: b0k = bn+1,k = 0 for
all k ∈ R. A schedule s is said to be resource feasible if, at any time t and for each
resource type k ∈ R, it holds that

∑
i∈A(s,t) bik ≤ bk, where the active set A(s, t) =

{i ∈ V |si ≤ t < si + pi} contains the activities in V \{0, n + 1} that are in progress at
time t. The objective of the RCPSP is to find a precedence-feasible and resource-feasible
schedule s that minimizes the project makespan sn+1.

In this article, we examine the following problem: at the start of the project, the
decision maker does not know which activity duration scenario will occur, and yet a
number of sequencing decisions need to be made already (at least, he/she needs to decide
which activities to release for execution at the start of the project horizon). We assume
that an activity’s duration realization is known only when the activity finishes (although
this may implicitly be discovered earlier in the discrete case, namely as soon as the last-
but-one scenario is exceeded). Sequencing decisions take the form of scheduling policies,
which are the subject of the next subsection.

Figure 1(a) represents a precedence network for a small project with n = 5 non-dummy
activities, so V = {0, 1, . . . , 6} (the dummy nodes 0 and 6 are omitted for brevity). In
our example project, the resource availability of a single resource type (|R| = 1) is
b1 = 3 units. All remaining data are provided in Figure 1(b). The schedule graphically
represented in Figure 2 is a feasible schedule for this project when the activity durations
are the components of the vector p1 = (0, 2, 2, 2, 1, 2, 0).

3.2 Scheduling policies

The execution of a project with uncertain activity durations is a dynamic decision process.
A solution is a policy, which defines actions at decision times. Decision times are typically
the start of the project and the completion times of activities. An action can entail the
start of a set of activities that is both precedence feasible and resource feasible. A schedule
is thus constructed gradually through time. A decision at time t can only use information

5



1

2 3

4 5

(a) Project network

i Pi bi1

0 {0} 0
1 {1, 2, 8} 1
2 {2, 3} 2
3 {2} 1
4 {1, 3} 2
5 {1, 2} 1
6 {0} 0

(b) Other activity data

Figure 1: Example project network and activity data.

0                    1                    2                   3                    4                    5                   6

2

time

3

4 51

Figure 2: A feasible schedule for the example project under scenario p1.

that has become available before or at time t; this requirement is often referred to as
the non-anticipativity constraint. As soon as all activities are completed, the activity
durations are known, yielding a realization p.

A set of activities F ⊂ V is a forbidden set of a precedence relation A if it is an anti-
chain of A (a stable set in graph G(V, A)) and if

∑
i∈F bik > bk for at least one k ∈ R: these

sets can give rise to resource conflicts during project execution. A subset-minimal forbid-
den set is called a minimal forbidden set or mfs (see for instance [53]). The set of mfss for
precedence relation A is written as F(A). For the example project presented in the pre-
vious subsection, we have E = {(2, 3)} and F(E) = {{1, 2, 5}, {1, 3, 4}, {2, 4}, {3, 4, 5}}.
Several scheduling policies for projects with stochastic activity durations were presented
by Igelmund and Radermacher [30] based on the concept of forbidden sets. In this article,
we study the set of earliest-start policies (ES-policies), which can be applied also when
the probability distributions are not known. An ES-policy is characterized by a set of
activity pairs X ⊂ (V × V ) \ E, such that for the extended set of activity pairs E ∪X
it holds that F(T (E ∪ X)) = ∅. The implication is that we can ignore the resource
constraints if we respect the precedence constraints corresponding with E ∪ X; in line
with Balas [11], we call X a selection. The policy is feasible if G(V,E∪X) is still acyclic.
A selection X of activity pairs that leads to a feasible ES-policy is called a sufficient set
or sufficient selection.

An ES-policy parameterized by a sufficient selection X can be interpreted [30, 52] as
a function Rn+2

+ 7→ Rn+2
+ : p 7→ s(X,p) that maps given samples p of activity durations

to feasible schedules s. Let G(V, E ∪ X,p) denote the weighted graph where each arc
(j, k) ∈ E ∪X is valued by pj. The starting time si(X,p) is the length of a longest path
from 0 to i in G(V, E∪X,p), which can be determined recursively (via standard longest-
path calculations in acyclic graphs). The optimal makespan s∗n+1(p) for the RCPSP with
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durations p equals
s∗n+1(p) = min

X∈X
sn+1(X,p), (1)

where X is the set containing all sufficient selections. For known durations, this model
is an extension of the disjunctive-graph representation of the classical job-shop schedul-
ing problem [51], and has been known for quite some time already (see Balas [11], for
instance).

In what follows, will use transshipment networks that represent the flow of resource
units between activities; these networks are subsequently referred to as (resource) flow
networks. Such networks have recently been proposed by various sources [4, 20, 41, 47, 48].
In this article, the word flow usually refers to a resource flow, unless noted otherwise. A
flow f assigns to each triple (i, j, k) ∈ V ×V ×R a value f(i, j, k) ≡ fijk ∈ N, representing
the number of resource units of type k that are transferred from the end of activity i to
the start of activity j. These values must satisfy the following constraints, which are
flow-conservation constraints as well as lower and upper bounds on the flow through
intermediate nodes (not the start or end node):

∑

j∈V,j 6=i

fjik =
∑

j∈V,j 6=i

fijk = bik, ∀i ∈ V \ {0, n + 1},∀k ∈ R.

For each resource type k ∈ R, bk resource units are sent into the network from the start
node and collected at the end node:

∑

j∈V,j 6=0

f0jk =
∑

j∈V,j 6=(n+1)

fj,n+1,k = bk, ∀k ∈ R.

We are most interested in the flow-carrying arcs that are not in E, which do not coincide
with technological precedence constraints; these are gathered in the set C(f) = {(i, j) ∈
V × V : f(i, j, k) > 0 for at least one k ∈ R} \ E. A flow f entails a detailed resource
allocation decision for the individual units of each resource type, and induces additional
precedence constraints via the elements of C(f) under the condition of invariant resource
allocation (see Bowers [20] for a discussion). We say that a flow f is feasible when
G(N,E∪C(f)) is acyclic, in which case the project can be implemented with the resource-
allocation decisions inherent in f .

It is obvious that for a feasible flow f , X = C(f) is a sufficient set; conversely, if the
selection X defines a feasible ES-policy, then a feasible flow f exists with E ∪ C(f) ⊆
T (E∪X). A further discussion of the equivalence between ES-policies and resource flows
can be found in [39–41].

For the example project, the schedule depicted in Figure 2 does not provide informa-
tion on the detailed allocation of the activities to the individual resources. Two possible
allocations corresponding with the same schedule are depicted in Figures 3(a) and 3(b),
where each horizontal band corresponds with a resource unit (e.g., one machine); the
resource units are denoted by mi (i = 1, 2, 3). The resource flow networks corresponding
with Figures 3(a) and 3(b) are depicted in Figures 4(a) and 4(b). The dummy activities
0 and 6 function as source and sink for the three resource units of the single resource
type: the three units are dispatched into the network from activity 0 and gathered at
node 6. Obviously, if more than one resource type is considered (|R| > 1), there will be
a separate flow network for each resource type.
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(a) Allocation 1

0              1             2              3             4              5    time
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4
5
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m2
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(b) Allocation 2

Figure 3: Two possible resource allocations for the example project; the durations
correspond with scenario p1.
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2 3

4 5

1
1

1
1

(a) Flow f1

1

2 3

4 5

1

1
2

(b) Flow f2

Figure 4: Flow networks corresponding with the resource allocations in Figures 3(a)
and 3(b). Flow quantities are indicated next to each arc.

In the flow networks, some resource units are transported between activities that are
not originally precedence-related (e.g., from activity 4 to 1 in case of f1). If we decide
to maintain the same resource allocation throughout the execution of the project then
arcs such as (4, 1) in the flow network induce additional ‘hard’ precedence constraints. In
fact, once a decision has been made regarding the allocation of resources and as long as
all (original and extra) precedence constraints are respected, we can disregard resource
constraints altogether and still produce a resource-feasible schedule. The schedule in
Figure 2, for instance, is the result of starting all activities as early as possible subject to
the original precedence constraints augmented with the extra arcs from either Figure 4(a)
or 4(b).

3.3 Problem statement

In this paper, we examine the minimax absolute-regret robust resource-constrained project
scheduling problem or AR-RCPSP. The objective of the AR-RCPSP is to find an ES-
policy that minimizes the maximum absolute regret over all scenarios. The absolute
regret ρ(X,p) for a sufficient selection X and duration vector p is the difference between
the makespan sn+1(X,p) obtained by selection X and the optimal makespan s∗n+1(p) for
p, or

ρ(X,p) = sn+1(X,p)− s∗n+1(p)

= sn+1(X,p)−min
Y ∈X

sn+1(Y,p)

= max
Y ∈X

{sn+1(X,p)− sn+1(Y,p)} .
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If we define the regret of a policy X relative to a policy Y as ρ(X, Y,p) = sn+1(X,p)−
sn+1(Y,p) then ρ(X,p) = maxY ∈X ρ(X, Y,p).

The maximum regret ρmax(X) for a given sufficient selection X is

ρmax(X) = max
p∈P

ρ(X,p)

= max
p∈P,Y ∈X

{sn+1(X,p)− sn+1(Y,p)} = max
p∈P,Y ∈X

ρ(X, Y,p).

The optimization problem that we wish to solve can now be stated as follows:

(AR-RCPSP) ρ∗ = min
X∈X

ρmax(X) = min
X∈X

max
p∈P

ρ(X,p) = min
X∈X

max
p∈P,Y ∈X

ρ(X,Y,p).

A problem closely related to AR-RCPSP is the minimax relative-regret robust resource-
constrained project scheduling problem RR-RCPSP. For given X and p, the relative
regret ρ̃(X,p) is given by:

ρ̃(X,p) =
sn+1(X,p)− s∗n+1(p)

s∗n+1(p)
= max

Y ∈X
sn+1(X,p)

sn+1(Y,p)
− 1 = max

Y ∈X
ρ̃(X, Y,p),

where the last equality serves as a definition for ρ̃(·, ·, ·). The maximum relative regret
can be written as follows:

ρ̃max(X) = max
p∈P,Y ∈X

ρ̃(X, Y,p).

The RR-RCPSP then amounts to the following problem:

(RR-RCPSP) ρ̃∗ = min
X∈X

ρ̃max(X) = min
X∈X

max
p∈P

ρ̃(X,p).

3.4 Objective-function evaluation

The RCPSP, which has known durations p, is strongly NP-hard [19], and RCPSP reduces
to the evaluation of the regret for a known selection X and duration vector p: ρ(X,p)
is the difference between sn+1(X,p) and s∗n+1(p), where the first term can be obtained
by a longest-path computation in G(V, E ∪ X,p) and the second term is the optimal
solution to the RCPSP instance. Consequently, once we know ρ(X,p), we also know
s∗n+1(p). Hence, since the RCPSP is NP-hard, computing ρ(X,p) is also NP-hard. A
similar reasoning shows the NP-hardness of evaluating the relative regret.

Since computing the regret for a fixed ES-policy and duration vector is itself NP-hard,
the computation of the maximum regret is not easy either. More precisely, evaluating the
maximum absolute regret ρmax(X) as well as the maximum relative ρ̃max(X) is NP-hard
for a given ES-policy defined by X: if the set of possible durations Pi is a singleton for
each activity i ∈ V then |P| = 1 and the evaluation of ρmax(X), respectively ρ̃max(X),
is equivalent to the evaluation of ρ(X,p∗), respectively ρ̃(X,p∗), where P = {p∗}. In
project scheduling, when activity durations are decision variables, one deals with a so-
called multi-mode scheduling problem. The problem of evaluating the maximum regret
of a given ES-policy amounts to a multi-mode resource-constrained project scheduling
problem.

By similar arguments, we also see that the computation of ρ∗ and ρ̃∗ is hard: when
|P| = 1, minimizing the maximum regret amounts to finding a policy X with critical-
path length of the extended network equal to the minimal RCPSP makespan, which is
equivalent to solving the RCPSP.
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3.5 Extreme duration scenarios

A duration scenario p is said to be extreme if pi = pmin
i or pi = pmax

i for all i ∈ V .
According to [9], for the category of subset-type combinatorial optimization problems,
the maximum regret can always be attained at an extreme scenario, and this for both
the absolute and the relative maximum regret. In this section, we show that this is also
the case for ρmax(X) but not for ρ̃max(X).

Theorem 1. There is always an extreme duration scenario in which the maximum ab-
solute regret of an ES-policy X is reached.

Proof: For a duration vector p, let E(p) denote the set of activities with a duration that
is strictly between its extreme values, so E(p) = {i ∈ V |pmin

i < pi < pmax
i }. We let p∗

and Y ∗ represent a duration scenario and an ES-policy that achieve the maximum regret,
i.e.

ρ(X, Y ∗,p∗) = sn+1(X,p∗)− sn+1(Y
∗,p∗) = ρmax(X).

Suppose that p∗ is not an extreme scenario (i.e., |E(p∗)| ≥ 1) and that |E(p∗)| is minimal.
We choose an activity j ∈ E(p∗), so pmin

j < p∗j < pmax
j . Recall that sn+1(X,p∗) is equal to

the length of LX,p∗ , which denotes the longest path in G(V, E∪X,p∗), while sn+1(Y
∗,p∗)

is the length of LY ∗,p∗ , the longest path in G(V, E ∪ Y ∗,p∗). Changing the duration of j
from p∗j to a different value in Pj preserves the feasibility of ES-policies X and Y ∗. Let
Y ′ denote an ES-policy of minimal makespan for a modified duration vector p′, we have
necessarily

sn+1(Y
′,p′) ≤ sn+1(Y

∗,p′). (2)

The following four possibilities are mutually exclusive and jointly exhaustive:

1. if j ∈ LX,p∗ and j ∈ LY ∗,p∗ , let p′ such that p′i = p∗i for i 6= j and p′j = pmax
j . LX,p∗

and LY ∗,p∗ remain the longest paths in the respective graphs with new lengths
sn+1(X,p′) = sn+1(X,p∗) + pmax

j − p∗j and sn+1(Y
∗,p′) = sn+1(Y

∗,p∗) + pmax
j − p∗j .

2. if j /∈ LX,p∗ and j /∈ LY ∗,p∗ , let p′ such that p′i = p∗i for i 6= j and p′j = pmin
j .

LX,p∗ and LY ∗,p∗ remain the longest paths with unchanged lengths sn+1(X,p′) =
sn+1(X,p∗) and sn+1(Y

∗,p′) = sn+1(Y
∗,p∗).

3. if j ∈ LX,p∗ and j /∈ LY ∗,p∗ , let p′ such that p′i = p∗i for i 6= j and p′j = pmax
j .

This keeps LX,p∗ as the longest path in G(V, E ∪X,p′) and its length is increased,
so sn+1(X,p′) = sn+1(X,p∗) + pmax

j − p∗j . If a path in G(V,E ∪ Y ∗,p′) becomes
longer than sn+1(Y

∗,p∗), its length increases by at most pmax
j − p∗j . Hence we have

sn+1(Y
∗,p′) ≤ sn+1(Y

∗,p∗) + pmax
j − p∗j .

4. if j 6∈ LX,p∗ and j ∈ LY ∗,p∗ , we let p′ such that p′i = p∗i for i 6= j and p′j = pmin
j .

This keeps LX,p∗ as the longest path in G(V, E ∪X,p′) and its length is unchanged
with sn+1(X,p′) = sn+1(X,p∗). The length of the longest path in G(V, E ∪ Y ∗,p′)
decreases (by at most p∗j−pmin

j time units), so we have sn+1(Y
∗,p′) ≤ sn+1(Y

∗,p∗).
For each of the four listed cases together with expression (2), the new regret verifies
sn+1(X,p′) − sn+1(Y

′,p′) ≥ sn+1(X,p∗) − sn+1(Y
∗,p′). Hence, the value of pj can be

changed to pmin
j or pmax

j without decreasing ρ(X,Y ∗,p∗), which reduces |E(p∗)| and con-
tradicts the hypothesis of minimality. In conclusion, p∗ and Y ∗ always exist such that
E(p∗) = ∅. ¤
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Unfortunately, the foregoing property does not hold for the relative regret. Con-
sider a two-activity example with P1 = {2, 3, 6} and P2 = {1, 3, 5}, without precedence
constraints and with a resource usage such that the two activities can be scheduled in
parallel. For any of the nine scenarios, the optimal makespan is max{p1, p2}. Suppose
we want to evaluate the maximum regret of ES-policy X1 = {(1, 2)}. For any scenario
p = (p1, p2) (we omit the dummy activities, for brevity), we have sn+1(X1,p) = p1 + p2.
The relative regret of ES-policy X1 for duration scenario p is equal to

ρ̃(X1,p) =
p1 + p2

max{p1, p2} − 1

=
min{p1, p2}
max{p1, p2} .

It is easily verified that the unique maximizer of this value is the duration scenario
(3, 3), which is not an extreme scenario. For this reason as well as due to the non-
linearity inherent in the relative regret, we will focus only on the absolute regret in the
remainder of this article. Note that the absolute regret ρ(X1,p) of policy X1 is equal to
p1 + p2 − max{p1, p2} = min{p1, p2}, which is maximized by the extreme scenario with
p1 = 6 and p2 = 5.

3.6 Example project

For the example project presented in Section 3.1, define X1 = C(f1) and X2 = C(f2),
with f1 and f2 as described in Figure 4. The regret of X1 is maximized for duration vector
p2 = (p01, p13, p21, p31, p42, p52, p71) = (0, 8, 2, 2, 3, 2, 0), with an optimal selection for this
scenario being Y = {(2, 5), (4, 2)}, which isolates activity 1 on a separate resource unit
because this activity may have a high duration (namely 8); the regret in this case is equal
to the highest possible duration of activities 4 and 5, which are successors of activity 1
according to X1. We have ρmax(X1) = ρ(X1,p

2) = s6(X1,p
2) − s6(Y,p2) = 13 − 8 = 5.

Similarly, the maximum regret of X2 equals 2, which is the duration of activity 3 (which
has only one possible value).

The maximum regret ρmax(·) is minimized by both the policies Y and X2 and equals 2
(so ρ∗ = 2). A maximum-regret scenario for Y is p3 = (0, 1, 3, 2, 3, 1, 0), with s6(Y,p3) = 8
while s6(Z,p3) = 6, where Z = {(1, 3), (2, 1), (2, 4), (5, 4)}. The value of ρmax(Z), on the
other hand, is 5.

4 Evaluation of the maximum regret of an ES-policy

The absolute maximum regret of an ES-policy X is given by:

ρmax(X) = max
p∈P,Y ∈X

{sn+1(X,p)− sn+1(Y,p)} = max
p∈P

{
max

c∈C(X,p)
l(c)−min

Y ∈X
max

c∈C(Y,p)
l(c)

}
,

where C(Z,p) denotes the set of paths from 0 to (n + 1) in G(V,E ∪Z,p) for a selection
Z and l(c) is the length of the path c in the appropriate graph. The determination of
each of these longest-path lengths can be cast into a linear formulation. Since the path
lengths appear in the objective function with a positive sign for graph G(V, E ∪ X,p)
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and with a negative sign for G(V, E ∪ Y,p), we opt for the ‘event-oriented’ formulation
for G(V, E ∪ X,p) and for the ‘flow-oriented’ formulation for G(V,E ∪ Y,p); see Wiest
and Levy [54] for more details. This leads to

ρmax(X) = max
p∈P






 ∑

(i,j)∈E∪X

piφij


− S∗(p)





subject to

∑

(i,j)∈E∪X

φij =
∑

(j,i)∈E∪X

φji ∀i ∈ V \ {0, n + 1}
∑

(0,j)∈E∪X

φ0j =
∑

(j,n+1)∈E∪X

φj,n+1 = 1

φij ≥ 0 ∀(i, j) ∈ E ∪X

S∗(p) = min
Y ∈X

Sn+1

subject to Sj ≥ Si + pi

S0 = 0
∀(i, j) ∈ E ∪ Y

By replacing the longest-path lengths by their linear-programming expressions, the max-
imum regret ρmax(X) of a given selection X is the optimal objective value of a bi-level
mathematical program with, in our case, an RCPSP instance at the lower level. The
variables φij search for the longest path in G(V,E ∪X) by routing a unit flow through
the network. An integration of the two levels of optimization is easily achieved:

ρmax(X) = max
p∈P






 ∑

(i,j)∈E∪X

piφij


− Sn+1



 (3)

subject to

∑

(i,j)∈E∪X

φij =
∑

(j,i)∈E∪X

φji ∀i ∈ V \ {0, n + 1} (4)

∑

(0,j)∈E∪X

φ0j =
∑

(j,n+1)∈E∪X

φj,n+1 = 1 (5)

φij ≥ 0 ∀(i, j) ∈ E ∪X (6)

Sj ≥ Si + pi ∀(i, j) ∈ E ∪ Y (7)

S0 = 0 (8)

Y ∈ X (9)

We neglect for a moment the variable duration vector p and focus only on the RCPSP
formulation with variable Y (cfr. (1)). The RCPSP formulation can be linearized using a
resource-flow formulation, which has the benefit that it contains only a polynomial num-
ber of constraints and that it does not require the explicit determination of all minimal

12



forbidden sets [22]. In particular, we add the following constraints:

∑

j∈V,j 6=i

fjik =
∑

j∈V,j 6=i

fijk = bik ∀i ∈ V \ {0, n + 1},∀k ∈ R (10)

∑

j∈V,j 6=0

f0jk =
∑

j∈V,j 6=(n+1)

fj,n+1,k = bk ∀k ∈ R (11)

fijk ≥ 0 ∀(i, j) ∈ V × V, ∀k ∈ R (12)

The sufficient selection Y in the optimization problem is replaced by the set C(f), with
f a flow satisfying the above constraints (10)–(12) as well as acyclicity of G(V, E∪C(f)).
We replace the constraints (7) and (9) by the following:

0 ≤ fijk ≤ Myij ∀(i, j) ∈ V × V, ∀k ∈ R (13)

Sj ≥ Si + pi −M(1− yij) ∀(i, j) ∈ V × V, i 6= j (14)

yij = 1 ∀(i, j) ∈ E (15)

yij ∈ {0, 1} ∀(i, j) ∈ V × V (16)

The constraint sets (13) and (14) both contain ‘big-M’-type constraints. The large number
M can be chosen more specifically for each particular value of the indices i, j and k, a
convenient choice is min{bik, bjk} in (13) for i, j /∈ {0, n + 1}, with replacement of bik

by bk in this min-expression for i = 0, n + 1. In (14), M can be an upper bound on
the project makespan with durations pmax. When combined with the constraint sets
(13)–(16), acyclicity of G(V,E ∪ C(f)) is not an issue when the activity durations are
non-zero.

Reverting to the optimization over P in (3), we should remove the non-linearity in
the first term of (3) caused by the multiplication of pi and φij in order to obtain a
linear model. According to Theorem 1, we need only consider two values pmin

i and pmax
i

for pi, with pmin
i = pmax

i = 0 for i = 0, n + 1 (these zero values can be substituted
immediately). We introduce n binary variables ai (i = 1, . . . , n), where ai = 0 means
that duration pmin

i is selected for activity i, while ai = 1 indicates that pi = pmax
i . In

Equation (14), we replace pi by (1−ai)p
min
i +aip

max
i . The non-linear terms piφij in (3) are

replaced by pmin
i φmin

ij + pmax
i φmax

ij and each occurrence of φij in the constraints is replaced
by φmin

ij +φmax
ij , in which φmin

ij fulfills the role of φij when ai = 0 and φmax
ij functions as φij

in the cases where ai = 1. This is achieved by adding the following two equation sets to
the formulation:

∑

(i,j)∈E∪X

φmax
ij ≤ ai ∀i ∈ V \ {0, n + 1} (17)

∑

(i,j)∈E∪X

φmin
ij ≤ 1− ai ∀i ∈ V \ {0, n + 1} (18)

Summarizing the foregoing, we find that the determination of the maximum regret of an
ES-policy X reduces to an instance of a multi-mode RCPSP with a composite objective
function consisting in the maximization of the difference between the length of the longest
path in G(V,E∪X) and the optimal makespan Sn+1. We call this formulation integrated,
because it simultaneously finds an optimal duration vector (an optimal scenario) and an
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optimal selection for the scenario (Y in the above). The full integrated formulation is
included in the Appendix.

As an alternative, we propose a scenario-based formulation, in which some interme-
diate results are to be computed beforehand. We have

ρmax(X) = max
p∈P

{
sn+1(X,p)− s∗n+1(p)

}

= min ρ (19)

subject to

ρ ≥ sn+1(X,p)− s∗n+1(p) ∀p ∈ P (20)

If the longest-path length sn+1(X,p) and the RCPSP solution s∗n+1(p) are known for each
scenario p then (19)–(20) is a linear formulation.

5 Absolute minimax-regret optimization

In this section, we present a procedure for finding an optimal solution to the problem
AR-RCPSP, which was defined in Section 3.3. The procedure is based on an extension
of the scenario-based formulation for evaluation of a given policy (see Section 4). In
principle, we could also extend the integrated formulation. This, however, would lead to a
rather cumbersome model, and the main interest of the scenario-based solution procedure
lies in its modifications that will lead to an effective heuristic for the AR-RCPSP, as will
be set out in Section 6.

When we plug the scenario-based model (19)–(20) into the definition of the absolute-
regret objective, we obtain the following bi-level formulation of AR-RCPSP:

ρ∗ = min
X∈X

ρmax(X)

= min
X∈X





min ρ
subject to
ρ ≥ sn+1(X,p)− s∗n+1(p) ∀p ∈ P





Again, we can assume that P contains only the extreme duration scenarios. The two
levels of optimization are easily integrated and we resort to an event-based formulation
for the longest-path computations in the graph G(V, E ∪ X). Let P = {p1, . . . ,p|P|}.
This leads to

ρ∗ = min ρ (21)

subject to

ρ ≥ Sh
n+1 − s∗n+1(p

h) h = 1, . . . , |P| (22)

Sh
j ≥ Sh

i + ph
i −M(1− xij) ∀(i, j) ∈ V × V, i 6= j, h = 1, . . . , |P| (23)

Sh
i ≥ 0 ∀i ∈ V, h = 1, . . . , |P| (24)

together with the following scenario-independent constraints, which are similar to (10)–
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(13) and (15)–(16) (substituting xij for yij):

∑

j∈V,j 6=i

fjik =
∑

j∈V,j 6=i

fijk = bik ∀i ∈ V \ {0, n + 1},∀k ∈ R (25)

∑

j∈V,j 6=0

f0jk =
∑

j∈V,j 6=(n+1)

fj,n+1,k = bk ∀k ∈ R (26)

fijk ≥ 0 ∀(i, j) ∈ V × V, ∀k ∈ R (27)

0 ≤ fijk ≤ Mxij ∀(i, j) ∈ V × V, ∀k ∈ R (28)

xij = 1 ∀(i, j) ∈ E (29)

xij ∈ {0, 1} ∀(i, j) ∈ V × V (30)

In the worst case, we have |P| = 2n. Hence, the MILP (mixed-integer linear program)
includes an exponential number of variables Sh

i and constraints (22)–(24). Furthermore,
for each duration vector ph the optimal RCPSP solution s∗n+1(p

h) has to be computed.
We therefore investigate the possibility of solving a relaxed version of the foregoing for-
mulation by only incorporating the constraints corresponding with a subset P̂ ⊂ P ,
iteratively adding scenarios until it can be guaranteed that the solution obtained for P̂
has the same objective as the full model with P . Following Assavapokee et al. [6], we
will refer to this approach as scenario relaxation. We call the resulting MILP the master
problem, by analogy with Benders’ decomposition, with objective function value ρ∗(P̂)
for set P̂ . Clearly, ρ∗(P̂) is a lower bound of ρ∗ ≡ ρ∗(P). The variables Sh

i = 0 for
scenarios ph ∈ P \ P̂ can be removed from the model without any influence.

In [6], a scenario-relaxation method is proposed to solve a general absolute min-max
regret optimization problem with two-stage variables. The first stage-variables are binary
“choice” variables, corresponding to our f and x representing the ES-policy. The second-
stage variables are continuous “recourse” variables, in our case the variables Sh. To
overcome the implementation problems caused by an exponential number of constraints,
Assavapokee et al. [6] propose a three-stage algorithm, based on the iterative solution
of the model on a restricted scenario set. The first stage consists in solving the master
problem with a restricted scenario set so as to obtain a lower bound and the corresponding
values for the first-stage decision variables. For a general optimization problem, these
values can be infeasible for some scenarios excluded from the scenario set. For this reason,
the second stage consists in finding such ‘infeasible’ scenarios, which are added to the
scenario set and the algorithm returns to the first stage. If no infeasibilities are found, the
algorithm proceeds to the third stage, which aims to identify a scenario in P\P̂ achieving
the largest regret for the candidate robust solution x and f . In this paper, each ES-policy
produced by the master problem will be feasible for all scenarios: the feasibility of an ES-
policy is independent of the activity durations. A comparable iterative solution approach
for an inventory model has recently been examined by Bienstock and Özbay [18].

We propose the framework described by Algorithm 1, in which LB and UB constitute
a lower and upper bound on ρ∗, which are stepwise tightened over the course of the
algorithm. Since an extreme duration vector is generated at each iteration, the solution
framework converges within at most 2n iterations. The restricted set of scenarios is
updated at each iteration; we consider P̂q at iteration q. At initialisation (Step 1),

|P̂1| = 1 (although any number is possible). Bienstock and Özbay [18] call the master
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Algorithm 1 scenario relaxation for AR-RCPSP

1: (initialisation)
Consider duration-vector set P̂1 containing a single duration vector p1. Set q = 1,
LB = 0 and UB = +∞. Compute s∗n+1(p

1).
2: (master problem)

Solve the restricted master problem (21)–(30) to obtain LB = ρ∗(P̂q) and the corre-
sponding ES-policy Xq. If LB = UB then stop.

3: (maximum-regret computation)
Evaluate the maximum regret ρmax(Xq) of policy Xq using the integrated formulation
of Section 4 and obtain the corresponding worst-case duration vector pq+1 and the
associated optimal RCPSP makespan s∗n+1(p

q+1). Set UB = min{ρmax(Xq); UB}.
4: (optimality check)

If LB = UB then stop; else set q = q + 1, P̂q = P̂q−1 ∪ {pq} and go to Step 2.

problem (Step 2) the ‘decision maker’s problem’, where the decision maker makes a first-
stage decision (the ES-selection) while accounting for only a subset of the scenarios,
and Step 3 is the ‘adversarial problem’, in which the worst scenario is generated for the
candidate solution from Step 2, to verify its objective function against the full set of
scenarios. Put differently, Step 3 looks for a scenario ph that is not currently in P̂ and
for which constraint (22) does not hold.

Computationally, the multi-mode-like instances in Step 3 of Algorithm 1 turn out to
be especially hard. We can slightly modify the procedure by noting that at Step 3, it
is not necessary to solve the maximum-regret evaluation to optimality. Let z represent
the objective function of the subproblem; the correct functioning of the algorithm only
requires that a duration vector pq+1 be found such that z ≥ LB +1. If one such duration
vector exists then it can be included in the master problem, otherwise LB is optimal. To
that purpose, we replace the objective function in the integrated formulation of Section 4
by

b∗(X) = min b

and we add the constraints

z + b ≥ LB + 1

z ≤

 ∑

(i,j)∈E∪X

pmin
i φmin

ij + pmax
i φmax

ij


− Sn+1

z, b ≥ 0

The resulting model has a solution b∗(X) = 0 if and only if there exists z ≥ LB + 1.
The drawback of this approach is that for the value S∗n+1 corresponding to a duration
vector p∗ output by this new subproblem, there is no guarantee that it equals the optimal
makespan. Consequently, we additionally need to solve a standard RCPSP instance to
obtain s∗n+1(p

∗) (in Step 3) before adding p∗ to P̂ (in Step 4). We refer to the resulting
subproblem as scenario generation with bounded contribution.
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Algorithm 2 heuristic framework for AR-RCPSP

1: (initialisation)
Consider duration-vector set P̂1 containing a single duration vector p1, set q = 1 and
compute ŝ∗n+1(p

1).
2: (generate new solution)

Use ŝ∗n+1(p
q) and P̂q to produce a new approximate solution (ES-policy) Xq.

3: (generate new duration vectors)
Generate one or more new duration vectors pq+1 that represent scenarios under which
policy Xq performs badly, together with an RCPSP upper bound ŝ∗n+1(p

q+1).
4: (iterate)

Set q = q + 1, P̂q = P̂q−1 ∪ {pq} and go to Step 2.

6 A heuristic for AR-RCPSP

Our computational results (see Section 7) indicate that the execution of the standard
scenario-relaxation procedure (Algorithm 1) until convergence may take an inordinate
amount of time even for medium-sized instances. We will therefore proceed with the
development of heuristic solution procedures in this section, with the framework provided
by Algorithm 1 as a basis. A first obvious such heuristic is the variant of Algorithm 1
that is not run until the stopping criterion LB = UB is met, but rather until LB and
UB are ‘reasonably close’ to each other, for instance when (UB −LB)/LB < ε, with for
example ε = 5%.

However, even this truncated run of Algorithm 1 will sometimes require very high
running times, mainly due to the computational effort needed for performing Steps 2 and
3. We therefore propose a different approach, still following the same overall algorithmic
structure but with significant efficiency gains also in each execution of Step 2 and 3;
the main steps are presented as Algorithm 2. The essential drawback is that we again
abandon the guarantee of finding an optimal solution: a number of approximations are
inserted throughout the procedure. In the general variant of the algorithm, ŝ∗n+1(p

h) is
a heuristic solution (upper bound) to the RCPSP instance with optimal objective value
s∗n+1(p

h).
Step 2 produces a new solution, which is hopefully better than the current best so-

lution. In our implementation, for the current scenario (duration vector ph), we solve
the deterministic RCPSP to optimality (so ŝ∗n+1(p

q) is actually s∗n+1(p
q+1) in our com-

putations). With this schedule, we associate an activity list L that orders the activities
in non-decreasing starting times (subsequently referred to as ‘associated list’). This list
is then compared to the list L∗ associated with the current best solution. If the two
are identical, the algorithm returns to Step 3 to obtain a new scenario, otherwise we
consider all intermediary lists obtained by modifying the list L∗ step-by-step until L is
obtained. To each intermediary list, we apply a serial schedule generation scheme [33] to
find a new schedule, which then in turn is used to produce a new solution (ES-policy)
via the algorithm of [3]. This solution will be used as current best solution if it per-
forms better (based on its regret) than the latter on the scenarios already generated. Let
L∗ = (L∗1, L

∗
2, . . . , L

∗
n) and L = (L1, L2, . . . , Ln); notice that L∗0 = L0 and L∗n+1 = Ln+1.

The intermediary lists between L∗ and L are generated as follows. Let i be the lowest
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index for which L∗i 6= Li. We consider the list L′ obtained from L∗ by moving the activity
Li from its current position in L∗ to position i in L′. Hence, the activities between posi-
tion i and the current position of Li in L∗ are shifted. Next, we set L∗ = L′ and repeat
the procedure until L′ = L. This step constitutes a path-relinking procedure [28, 29],
generating feasible policies on a neighborhood path from an optimal policy (in terms of
makespan for a given scenario) to another one.

In Step 3, a new scenario is generated by running the integrated formulation for
evaluation of the current ES-policy X (as described in the Appendix) but from which
all the yij-variables are removed (apart from those corresponding to (i, j) ∈ E): we
effectively solve the problem

max
p∈P

{sn+1(X,p)− sn+1(∅,p)} ,

which delivers an upper bound for the actual regret of policy X and so also an upper
bound for the minimax regret. This upper-bound formulation is handed to a MIP solver,
which yields a new scenario. If the addition of this scenario does not lead to a solution
different from the current best solution, we have a cycling phenomenon. In that case,
we identify a longest path in the graph G = (V, E ∪ X), where X is the current best
solution, to generate a new scenario: the activities on the path are set at their maximum
durations, all other activities receive the minimum duration. In case this scenario also
leads to cycling, a new scenario is generated randomly.

When solving the example project described in Section 3.1 using the basic implemen-
tation of Algorithm 1, the optimal value of 2 is obtained after three iterations and a
running time of 0.03s. Using the implementation with bounded contribution, four itera-
tions are used and the running time is only 0.02s. Finally, Algorithm 2 finds an optimal
solution after six iterations, but its running time is 0s.

7 Computational results

All algorithms have been coded in C using Visual Studio C++ 2005; all the experiments
were run on a Dell Optiplex 760 personal computer with Pentium R processor with
3.16 GHz clock speed and 3.21 GB RAM, equipped with Windows XP. CPLEX 10.2 was
used for solving the MIP instances. Below, we first provide some details on the generation
of the datasets, then we discuss some implementation details, and subsequently we present
the computational results. Throughout this section, computation time is referred to as
time and is expressed in seconds.

7.1 Data generation

The algorithms are tested on randomly generated instances of AR-RCPSP with n non-
dummy activities, for n = 10, 20 and 30. We use the software RanGen [25] to generate
instances of the deterministic RCPSP. Using this software, we can choose different values
for the number of activities n, the order strength (OS), the resource factor (RF) and the
resource constrainedness (RC) (for more information on these parameters, see [25]). For
our experiments, we have chosen three different values for OS and two values for RF and
RC, as follows. OS takes its value in the set {0.4, 0.6, 0.8}, RF is chosen from {0.45, 0.9}
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and RC is a value in {0.3, 0.6}. For each combination of n, OS, RF and RC, we randomly
generate ten instances of the deterministic RCPSP. From each RCPSP instance, we create
an instance of AR-RCPSP by randomly choosing for each activity i with processing time
pi an integer δi between zero and pi − 1. In the AR-RCPSP instance, the lower (upper)
bound on the processing time of activity i is pi − δi (respectively pi + δi). In total, there
are 3× 2× 2× 10 = 120 instances for each value of n.

7.2 Implementation details

In this section, we describe some of the implementation details for the algorithms proposed
in Sections 5 and 6. We also present two simple heuristics that will serve as benchmarks in
Section 7.3 for evaluation of the performance of the algorithms on the generated instances.

7.2.1 Algorithm 1

The implementation of Algorithm 1 follows the pseudocode of Section 5 with the following
details and adaptations: we start with P̂1 containing only p1 = pmin, the scenario in
which the processing time of each activity is minimal. We use the branch-and-bound
algorithm developed in [23] to solve the resulting deterministic RCPSP. Subsequently,
the first master problem is set up but instead of solving it, we use the algorithm proposed
in [3] to find a feasible resource flow and hence an ES-policy. The master problem is
solved using CPLEX starting from the second iteration. We wish to underline that this
implementation was chosen after preliminary experiments with other variants, among
which an implementation where the initial scenario is chosen randomly, a variant where
we initially add the two extreme scenarios (minimum and maximum durations) and one
that initially adds three scenarios (minimum and maximum durations, and the third
scenario is selected randomly).

Since Algorithm 1 is an exact procedure, we have investigated the bottleneck of its
CPU time on the set of 10-activity instances. The CPU time of this algorithm is mainly
made up of the time spent solving the master and the time needed to evaluate a given
policy; we study the contribution of each of these two computations to the overall CPU
time. In Table 1, we report the average CPU time for the master problem, for the evalu-
ation procedure and the total average running time. We also report the average number
of iterations (itr.) and the number of instances solved to guaranteed optimality within
a time limit of 30 minutes (opt.). Each reported value in the table is the average of ten
values, except in the last column (opt.). “Algorithm 1 (I)” refers to the “basic” imple-
mentation while “Algorithm 1 (II)” is the implementation “with bounded contribution”.
In general, the second implementation outputs results that are slightly better than those
produced by the first implementation. Further, the implementation with bounded con-
tribution cannot optimally solve one instance while the implementation without bounded
contribution fails to solve two instances to optimality. We observe, however, that for one
group (OS = 0.6, RF = 0.9 and RC = 0.6) the average CPU time of the implementa-
tion with bounded contribution is larger than the standard implementation. In fact, for
that group of ten instances, there are two instances for which the implementation with
bounded contribution takes substantially more time than the implementation without
bounded contribution.
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parameters Algorithm 1 (I) Algorithm 1 (II)
time itr. opt. time itr. opt.OS RF RC Master Evaluation Total Master Evaluation Total

0.4
0.45 0.3 0.03 0.04 0.07 2.7 10 0.02 0.02 0.04 2.7 10

0.6 0.12 1.15 1.27 2.1 10 0.12 0.71 0.83 2.1 10

0.9 0.3 11.30 15.27 26.57 9.0 10 10.23 9.15 19.38 15.40 10
0.6 16.48 882.59 899.07 1.6 8 19.06 734.84 753.90 4.25 9

0.6
0.45 0.3 0.01 0.02 0.03 2.1 10 0.01 0.02 0.03 2.8 10

0.6 0.06 0.12 0.18 2.1 10 0.06 0.07 0.13 2.8 10

0.9 0.3 0.15 0.40 0.55 3.4 10 0.17 0.24 0.41 4.3 10
0.6 0.20 11.17 11.37 1.2 10 0.22 14.77 14.99 1.7 10

0.8
0.45 0.3 0.01 0.02 0.03 1.2 10 0.01 0.00 0.01 1.2 10

0.6 0.01 0.02 0.03 1.2 10 0.01 0.02 0.03 1.2 10

0.9 0.3 0.03 0.05 0.08 1.8 10 0.03 0.04 0.07 1.8 10
0.6 0.05 0.14 0.19 1 10 0.05 0.14 0.19 1 10

Table 1: Distribution of average CPU time of Algorithm 1.

As mentioned, among the 120 instances, there is only one (for variant II) or two (for I)
that are not solved within the time limit (for these two instances, the optimal solution was
actually found but a certificate of optimality could not be produced within the time limit).
These two instances belong to the same group with OS = 0.4, RF = 0.9 and RC = 0.6,
which also has the highest average CPU time. We also observe that very few iterations
are usually needed to arrive at an optimal solution: the average is never higher than
16, and in most cases even below 4; the algorithm with bounded contribution generally
uses more iterations than the basic variant. When we compare the running times for
evaluation and for the master problem, the former come out considerably higher than the
latter.

7.2.2 Algorithm 2

The implementation of Algorithm 2 also follows its pseudocode. We again start with
P̂1 = {pmin}. For this minimum scenario, the deterministic RCPSP is solved and an
ES-policy is constructed following [3]; this solution is set as the current best solution and
is optimal for the scenario set P̂1. In the first iteration, we can therefore skip Step 2 and
immediately go to Step 3.

The stopping criteria for the algorithm are a limit on the computing time (30 minutes),
a maximum number of scenarios generated (100) and a maximum number of consecutive
scenarios giving rise to cycling (10). This implementation was chosen after preliminary
experiments with different values for the maximum number of scenarios generated and
the maximum number of consecutive scenarios engendering cycling.

7.2.3 Two simple heuristics

We present two additional heuristics that will be used as benchmarks for our two main
algorithms. The rationale behind the choice for these simple heuristics is the fact that it
is extremely difficult to provide meaningful bounds for AR-RCPSP even for medium-sized
instances. The first heuristic is referred to as Heuristic 1 and is described in pseudocode
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below. As before, the deterministic RCPSP is solved using the branch-and-bound algo-
rithm developed in [23].

Heuristic 1

1: determine the average duration pi = bpmin
i +pmax

i

2
c for each activity i

2: solve the corresponding deterministic RCPSP
3: impose a resource flow on this deterministic schedule with the algorithm of [3]
4: output the solution found

The second heuristic is named Heuristic 2 and is outlined below. The problem encountered
in Step 2 is formulated as a MIP where the objective is to minimize the number of arcs
in the transitive closure, which is solved using CPLEX. We refer to [39] for a motivation
for this choice of objective function.

Heuristic 2

1: ignore the activity durations
2: find a solution (ES-policy) with a transitive closure having the minimum number of arcs

7.3 Computational experiments

Below, we present our computational results for instance sets with 10, 20 and 30 activities.

7.3.1 Comparison of the algorithms for 10-activity instances

Table 2 displays for every algorithm the average CPU time (time), the number of instances
for which the algorithm finds an optimal solution (opt.) and the average gap (gap∗) for
the set of instances with ten non-dummy activities. We opt for variant II of Algorithm 1.
In the table, each value reported in the columns time and gap∗ is the average of ten
values. Since the optimal objective value can be zero, the usual ‘gap’ is not well defined.
Therefore, throughout this section, we use gap∗ defined as follows. For an instance, let
f(H) be the value of the solution found by the considered algorithm and f(opt) be the
optimal objective value (for n = 10, this optimal value is found by Algorithm 1). Further,
let δ be the average difference between minimum and maximum duration of activities, so
δ = 1

n

∑n
i=1

(
pmax

i − pmin
i

)
. We define gap∗ = 100× f(H)−f(opt)

δ
.

Table 2 shows that Algorithm 1 optimally solves all the instances; this, however, is
sometimes coupled with a high average CPU time. Among the remaining algorithms,
Algorithm 2 solves 82 instances out of 120 to optimality, while Heuristic 1 finds optimal
solutions for 47 instances and Heuristic 2 provides optimal solutions for only 40 instances.
Further, Algorithm 2 usually produces the smallest average gap∗ for this dataset. How-
ever, the average CPU time of Algorithm 2 is higher than Heuristic 2, which, in turn, is
higher than Heuristic 1.

7.3.2 Comparison for 20-activity instances

In this section, we focus on the set of instances with 20 non-dummy activities. For these
instances, attempts to provide optimal solutions by solving the mixed-integer formulation
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parameters Algorithm 1 Algorithm 2 Heuristic 1 Heuristic 2
OS RF RC time gap∗ opt. time gap∗ opt. time gap∗ opt. time gap∗ opt.

0.4
0.45 0.3 0.04 0.00 10 2.03 17.78 5 0.00 26.09 2 0.02 75.98 2

0.6 0.83 0.00 10 2.53 31.37 5 0.00 80.21 3 0.04 90.12 2

0.9 0.3 19.38 0.00 10 3.88 44.87 4 0.00 59.71 3 0.02 62.35 3
0.6 753.90 0.00 9 2.58 25.00 5 0.00 138.70 0 0.06 45.60 3

0.6
0.45 0.3 0.03 0.00 10 1.36 28.21 7 0.00 21.65 6 0.02 52.57 5

0.6 0.13 0.00 10 2.44 25.00 7 0.00 30.93 4 0.04 38.56 3

0.9 0.3 0.41 0.00 10 2.24 30.51 4 0.00 52.07 3 0.07 91.88 2
0.6 14.99 0.00 10 1.86 11.90 8 0.00 20.41 6 0.44 33.15 4

0.8
0.45 0.3 0.01 0.00 10 0.21 0.00 10 0.00 7.32 7 0.01 94.59 4

0.6 0.03 0.00 10 0.00 0.00 10 0.00 13.96 7 0.13 47.53 6

0.9 0.3 0.07 0.00 10 1.22 17.50 7 0.00 75.02 0 0.46 199.15 0
0.6 0.19 0.00 10 0.73 0.00 10 0.00 11.10 6 0.90 10.40 6

Table 2: Comparison for n = 10.

with CPLEX produced extremely poor results within the time limit of 30 minutes: when
interrupting CPLEX after 30 minutes, the best lower bound is usually zero and the best
upper bound is very large. Without an optimal value nor a good lower bound, gap∗ defined
in the previous section is meaningless. Therefore, to compare the different algorithms we
first report the average CPU time and the number of optimal solutions found in Table 3.
In fact, each algorithm may have found more optimal solutions than what is reported in
Table 3 because we count only the number of optimal solutions with objective value zero.

parameters Algorithm 1 (I) Algorithm 1 (II) Algorithm 2 Heuristic 1 Heuristic 2
OS RF RC time opt. time opt. time opt. time opt. time opt.

0.4
0.45 0.3 629.22 8 542.31 8 2.00 1 0.00 0 14.72 1

0.6 2201.50 0 1947.81 1 3.22 0 0.00 0 1207.69 1

0.9 0.3 2340.17 0 2247.11 0 3.59 0 0.00 0 1800.00 0
0.6 1985.90 0 1830.47 1 5.18 0 0.00 0 1800.00 0

0.6
0.45 0.3 56.42 10 61.00 10 1.63 2 0.00 2 0.21 1

0.6 1990.98 0 1559.89 0 2.57 1 0.00 1 36.24 0

0.9 0.3 2208.07 0 1466.95 0 2.58 3 0.00 1 1153.71 0
0.6 1800.10 0 2081.57 1 1.87 0 0.00 0 1800.16 0

0.8
0.45 0.3 1.27 10 0.68 10 0.84 5 0.00 1 0.06 3

0.6 190.95 10 133.15 10 1.10 4 0.00 1 0.37 2

0.9 0.3 183.94 10 177.56 10 1.41 2 0.00 0 0.56 1
0.6 1799.99 4 1808.54 7 0.29 0 0.00 0 113.78 0

Table 3: Comparison for n = 20.

Variant I of Algorithm 1 provides guaranteed optimal solutions to 52 instances out
of 120 within the time limit of 30 minutes; this number goes up to 58 for the bounded-
contribution implementation. The average CPU time of this algorithm is very large for
both implementations. We observe that for most unsolved instances, the time limit is
reached before two iterations are fully completed. This confirms that solving both the
master problem and the evaluation problem in an exact fashion is simply overly time-
consuming. Algorithm 2 produces optimal solutions for 18 instances, with a maximum
average CPU time less than six seconds. Heuristic 1 is the fastest algorithm but obtains
optimal solutions for only six instances, while Heuristic 2 provides such solutions for nine
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instances but needs more time.
In order to further compare the quality of the outputs of the algorithms, we have

performed a pair-wise comparison, the results of which are reported in Table 4. For
a given instance of AR-RCPSP, let X and Y be the solutions output by two different
algorithms. Using CPLEX, we compute the quantity

LB(X, Y ) = max
p∈P

{
sn+1

(
X, p

)− sn+1

(
Y, p

)}
,

which entails the maximum regret of the output of the first algorithm with respect to
the output of the second algorithm over all the scenarios; LB(X,Y ) is a lower bound
for ρmax(X) for any feasible Y . The quantity LB(Y,X) represents a similar comparison
of the second algorithm with respect to the first one; LB(X,Y ) and LB(Y, X) need not
be the same. In Table 4, we denote Algorithm 1 (with bounded contribution) by A1,
Algorithm 2 by A2, Heuristic 1 by H1 and Heuristic 2 by H2. Observe that any number
in this table is the average of ten values. We conclude that Algorithm 1 achieves the
best comparison for those instances where it regularly finds optimal solutions. Overall,
Algorithm 2 tends to display the smallest difference with respect to the output of the other
algorithms. Between Heuristic 1 and Heuristic 2, however, there is no clear domination
of one over the other.

parameters Algorithm 1 (A1) Algorithm 2 (A2) Heuristic 1 (H1) Heuristic 2 (H2)
OS RF RC A2 H1 H2 A1 H1 H2 A1 A2 H2 A1 A2 H1

0.4
0.45

0.3 0.00 0.00 0.00 31.48 12.73 8.22 42.87 23.37 46.70 87.12 62.26 32.25
0.6 49.29 46.31 30.66 33.12 22.70 12.10 42.38 28.49 38.12 49.75 121.16 73.56

0.9
0.3 80.63 45.34 72.98 38.10 10.63 28.95 119.21 164.25 46.11 71.08 135.26 58.63
0.6 89.45 22.39 66.87 4.56 0.20 0.00 92.08 178.24 47.32 21.70 166.96 65.45

0.6
0.45

0.3 0.00 0.00 0.00 36.21 26.12 47.87 76.36 46.85 0.00 55.18 65.14 23.90
0.6 79.05 39.23 54.65 42.92 32.61 0.00 68.49 155.15 45.17 32.57 75.51 33.80

0.9
0.3 77.81 64.52 39.06 42.65 78.93 96.35 69.84 131.16 37.54 49.01 124.32 62.64
0.6 51.26 25.79 49.07 33.64 52.68 72.95 44.98 73.63 64.94 27.23 59.10 37.24

0.8
0.45

0.3 0.00 0.00 0.00 33.29 15.23 13.25 67.66 47.56 12.52 38.11 31.50 11.86
0.6 0.00 0.00 0.00 75.42 23.56 36.45 92.35 45.68 25.23 74.00 40.27 39.60

0.9
0.3 0.00 0.00 0.00 47.38 25.12 24.65 109.22 78.54 23.69 164.47 66.45 46.10
0.6 18.04 8.59 13.37 68.00 39.24 27.45 99.65 64.52 45.63 139.80 64.00 31.50

Table 4: Pair-wise comparison for n = 20.

7.3.3 Comparison for 30-activity instances

We have performed comparisons for the set with 30 non-dummy activities similar to the
previous sections. We do not, however, include the exact algorithm (Algorithm 1) because
within the imposed time limit, this algorithm is unable to perform even a single iteration.
In Table 5, we compare the average CPU time and the number of solutions with zero
objective value found by each of the three remaining algorithms. Algorithm 2 obtains
solutions with zero objective value for nine instances while Heuristic 1 and Heuristic 2
do so for only one instance. Again, it is important to note that this does not mean that
these algorithms did not solve more instances until optimality, since we do not know the
optimal objective value. From Table 5, we also observe that (somewhat logically) the
average CPU time of each algorithm has increased compared to Table 3. The pair-wise
comparison of the three algorithms is described in Table 6. For this dataset, Algorithm 2
displays the smallest values when compared to the other two heuristics.
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parameters Algorithm 2 Heuristic 1 Heuristic 2
OS RF RC time opt. time opt. time opt.

0.4
0.45 0.3 4.99 2 0.00 0 0.27 0

0.6 6.89 1 0.00 0 105.54 1

0.9 0.3 25.79 0 0.00 0 703.85 0
0.6 17.59 0 0.00 0 1800.17 0

0.6
0.45 0.3 21.15 1 0.00 1 976.51 0

0.6 17.30 1 0.00 0 1800.06 0

0.9 0.3 52.18 0 0.01 0 1800.03 0
0.6 53.07 0 0.00 0 1800.04 0

0.8
0.45 0.3 14.74 2 0.01 0 1753.83 0

0.6 11.62 1 0.01 0 1800.07 0

0.9 0.3 31.81 1 1.19 0 1800.05 0
0.6 32.46 0 0.00 0 1800.02 0

Table 5: Comparison for n = 30.

parameters A2 H1 H2
OS RF RC H1 H2 A2 H2 A2 H1

0.4
0.45

0.3 36.90 41.65 150.30 57.24 239.00 77.62
0.6 39.20 43.70 403.50 108.31 344.00 94.87

0.9
0.3 15.50 18.80 381.80 163.44 310.10 124.64
0.6 55.20 58.80 420.10 122.18 390.70 210.23

0.6
0.45

0.3 34.20 39.40 244.40 132.52 197.00 97.56
0.6 39.80 54.90 332.00 142.10 304.60 56.78

0.9
0.3 34.60 56.50 354.80 180.30 365.10 169.23
0.6 73.70 86.90 467.30 156.34 444.80 274.59

0.8
0.45

0.3 18.50 28.10 206.60 93.24 169.30 73.52
0.6 57.00 86.40 376.00 196.03 358.80 216.76

0.9
0.3 59.70 90.50 406.70 215.73 400.80 91.08
0.6 80.20 100.80 445.20 106.07 490.30 134.27

Table 6: Pair-wise comparison for n = 30.

8 Summary and conclusions

In practical project management, a project’s parameters such as activity durations and
resource requirements are seldom precisely known and usually subject to estimation er-
rors. In this article we have proposed a robust optimization approach to project schedul-
ing with uncertain activity durations, assuming that the decision maker cannot with
confidence associate probabilities with possible activity durations. The resulting robust
project scheduling problem that we have studied, has turned out to be exceptionally dif-
ficult, in that even exact objective-function evaluation is intractable and computationally
overly demanding, even for medium-sized instances. We have developed and implemented
a scenario-relaxation algorithm and a scenario-relaxation-based heuristic. The first algo-
rithm produces optimal solutions but requires excessive running times even for medium-
sized instances; the second algorithm produces high-quality solutions for medium-sized
instances, which are significantly better than those produced by two benchmark heuristics
– although the latter consume less CPU time.

Further research should be oriented towards the formulation and solution of more prac-
tical variants of the AR-RCPSP, for instance by considering an objective function that can
be evaluated in polynomial time for a given scheduling policy, so that the corresponding
decision problem is at least in NP. This could be the case for the minimization of the up-
per bound of the minimax regret of a policy X defined as maxp∈P {sn+1(X,p)− sn+1(∅,p)},
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the complexity status of which, to the best of our knowledge, is open.
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Appendix

The full integrated formulation for evaluation of the maximum regret of a policy X, which
was presented in Section 4, is given below.

ρmax(X) = max






 ∑

(i,j)∈E∪X

pmin
i φmin

ij + pmax
i φmax

ij


− Sn+1





subject to

∑

(i,j)∈E∪X

φmin
ij + φmax

ij =
∑

(j,i)∈E∪X

φmin
ji + φmax

ji ∀i ∈ V \ {0, n + 1}
∑

(0,j)∈E∪X

φmin
0j + φmax

0j =
∑

(j,n+1)∈E∪X

φmin
j,n+1 + φmax

j,n+1 = 1

0 ≤ fijk ≤ Myij ∀(i, j) ∈ V × V, ∀k ∈ R

Sj ≥ Si + (1− ai)p
min
i + aip

max
i −M(1− yij) ∀(i, j) ∈ V × V, i 6= j∑

j∈V,j 6=i

fjik =
∑

j∈V,j 6=i

fijk = bik ∀i ∈ V \ {0, n + 1},∀k ∈ R

∑
j∈V

f0jk =
∑
j∈V

fj,n+1,k = bk ∀k ∈ R

∑

(i,j)∈E∪X

φmax
ij ≤ ai ∀i ∈ V \ {0, n + 1}

∑

(i,j)∈E∪X

φmin
ij ≤ 1− ai ∀i ∈ V \ {0, n + 1}

φmin
ij , φmax

ij ≥ 0 ∀(i, j) ∈ E ∪X

yij = 1 ∀(i, j) ∈ E

yij ∈ {0, 1} ∀(i, j) ∈ V × V

S0 = 0

fijk ≥ 0 ∀(i, j) ∈ V × V, ∀k ∈ R

ai ∈ {0, 1} ∀i ∈ V

a0 = an+1 = 0
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