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In studies of shape perception, the detection of contours and the segregation of regions enclosed by these
contours have mostly been treated in isolation. However, contours and surfaces somehow need to be
combined to create a stable perception of shape. In this study, we used a 2AFC task with arrays of oriented
Gabor elements to determine whether and to what extent human observers integrate information from
the contour and from the interior surface of a shape embedded in this array. The saliency of the shapes
depended on the alignment of Gabors along the shape outline and on the isolinearity of Gabors inside the
shape. In two experiments we measured detectability of shapes defined by the contour cue, by the sur-
face cue, and by the combination of both cues. As a first step, we matched performance in the two single-
cue conditions. We then compared shape detectability in the double-cue condition with the two equally
detectable single-cue conditions. Our results show a clear double-cue benefit: Participants used both cues
to detect the shapes. Next, we compared performance in the double-cue condition with the performance
predicted by two models of sensory cue combination: a minimum rule (probability summation) and an
integration rule (information summation). Results from Experiment 2 indicate that participants applied a
combination rule that was better than mere probability summation. We found no evidence against the
integration rule.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Perceptual grouping of local elements into a more global config-
uration is an important task for our visual system. It guides the
process of segregating an ambiguous retinal image into separate
regions belonging to an object or to the background. To detect a
visual shape, vision relies on the boundaries between different
regions and on the surface properties of these regions. Although
boundary detection and surface segregation involve different
grouping mechanisms (i.e., contour integration versus region
grouping), they both contribute to the detection of a visual shape.
In the present study, we apply two-dimensional signal detection
theory to estimate how well human observers integrate congruent
contour and surface information.

1.1. Contour grouping

To detect the outline contour of a shape our visual system
makes use of regularities in the input image. Adjacent elements
of a shape outline are usually locally aligned. Detection of this col-
linearity serves as a cue to the presence of a contour (Geisler, Perry,
ll rights reserved.
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Super, & Gallogly, 2001). Perceptual grouping of collinear elements
closely relates to the Gestalt principle of good continuation (Wert-
heimer, 1923). The importance of good continuation in contour
grouping is illustrated in the pathfinder paradigm, in which partic-
ipants have to detect a straight or curved path in a cluttered back-
ground (reviewed by Hess, Hayes, and Field (2003)). The spacing
and orientations of elements relative to the path orientation influ-
ence the grouping strength (Claessens & Wagemans, 2005; Field,
Hayes, & Hess, 1993; Li & Gilbert, 2002). Contour integration also
depends on more global stimulus properties, such as path length
and curvature (Field et al., 1993; Pettet, 1999; Watt, Ledgeway, &
Dakin, 2008), and contour closure (Hess, Beaudot, & Mullen,
2001; Kovács & Julesz, 1993; Pettet, McKee, & Grzywacz, 1998).
1.2. Region grouping

The relevance of contour grouping in shape perception is clear:
It helps to define the boundaries of a visual shape. However, con-
tour grouping is not the only means to detect a shape. Shapes
can also be segregated from a background by region grouping
based on regularities within a textured area. Psychophysical stud-
ies on texture segregation have revealed the importance of local
discontinuities in orientation, size, or density at the boundary be-
tween two textures (Julesz, 1981; Nothdurft, 1991, 1992). How-
ever, texture segregation is not only influenced by local
orientation contrast at the border between textured areas; the
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homogeneity of orientations within a textured region (i.e., away
from the texture border) also affects texture segregation (Giora &
Casco, 2007; Harrison & Keeble, 2008).

1.3. Contour information more important than surface information

Elder and Zucker (1998) argued that a grouping algorithm based
on the interior surface of a visual shape requires a degree of surface
homogeneity that is usually not present in natural images. Group-
ing based on the outline of a shape is much more robust against
fluctuations in brightness and color inherent to natural images.
The relative importance of contour grouping over surface segrega-
tion is confirmed by neurophysiological studies on figure-ground
organization. Lee, Mumford, Romero, and Lamme (1998) found
that the interior enhancement effect – i.e., V1 cells responding
more vigorously to the interior of a texture-defined figure than
to identical stimulation coming from the background (Lamme,
1995) – declines with increasing distance from the boundary. They
argued that this is caused by a smoothing-in of the boundary
signals.

1.4. Contour detection precedes surface segmentation

Scholte, Jolij, Fahrenfort, and Lamme (2008) used both ERP and
fMRI to reveal the spatiotemporal dynamics of contour detection
and surface segregation. They were able to dissociate between con-
tour detection and surface segregation by comparing homoge-
neously oriented texture displays to similar displays in which a
central region within a frame did or did not group with the back-
ground. Their results show that early visual areas code for texture
boundaries around 92 ms after stimulus onset. The first signals re-
lated to surface segregation appear 112 ms after stimulus onset in
temporal areas. The surface segregation signal appears in occipital
areas only after 172 ms. This finding is in agreement with the neu-
ral network model of Roelfsema, Lamme, Spekreijse, and Bosch
(2002) in which boundary detection is accomplished in a feedfor-
ward sweep, while surface filling-in results from reentrant
processes.

1.5. Combining contour and surface information

The literature on border-ownership stresses the importance of
combining contour information and surface information: A border
between two image regions normally belongs to only one image.
Once a boundary is detected the visual system still has to decide
on which side of the boundary the figure is situated. This issue is
nicely illustrated in the famous Rubin vase-faces figure: The bista-
ble perception of either a vase or two face silhouettes depends on
whether the borders are perceived as owned by the inner vase or
outer face regions of the image (Rubin, 1921). According to Palmer
and Brooks (2008), the notion of border-ownership suggests that
borders are perceptually grouped with the region to which they
belong. In a series of experiments they showed that boundaries
and textures with common features (color, motion, blur, . . .) are
grouped together.

The importance of both contour and surface information is also
evident from the literature on illusory contours (e.g., Fulvio &
Singh, 2006; Stanley & Rubin, 2003). A recent neuro-computational
model of illusory contours (Kogo, Strecha, Van Gool, & Wagemans,
2010) suggests that the illusory perception of a contour in Kanizsa-
type figures emerges as the result of a border-ownership computa-
tion that indicates the presence of an illusory surface. In this mod-
el, contour completion is not established independently from
surface filling-in, but results from constructing surfaces in depth
through which the ownership of the contours is defined.
The picture that emerges from the literature is one in which
contour information is extracted first, followed by a filling-in of
the interior surface. The underlying temporal dynamics indicate
that the processes of contour detection and surface filling-in are
not independent: Shape perception arises from the grouping of
boundaries and regions.

In two psychophysical experiments we investigate how well
human observers integrate contour and surface information. With
the Gaborized stimuli we can define a shape by its contour, its inte-
rior surface, or by a combination of both cues. We equate the shape
information provided by the contour and surface cues, and apply
the framework of signal detection theory to predict detectability
of an embedded shape when both cues are available. By comparing
the performance predicted by two models of sensory cue combina-
tion with the actual performance in the double-cue condition, we
gain insight in how well human observers combine congruent con-
tour and surface information.
2. Methods

We will first provide details on stimulus construction and stim-
ulus presentation, and outline the common framework for the two
experiments. Specific details for each experiment will be given in
the respective method section.
2.1. Stimulus construction

We used arrays of nonoverlapping Gabor elements on a gray
background (Fig. 1). Artificial nonsense shapes were embedded in
the arrays. The arrays comprised 496 � 496 pixels. Each Gabor ele-
ment was defined as the product of an oriented sine-wave lumi-
nance grating (spatial frequency of 3 cycles per degree) and a
circular Gaussian envelope (standard deviation of 5.4 arc min).

The embedded shapes were generated by summing 5 radial fre-
quency components (each sine wave having a random phase an-
gle), and plotting the result in polar coordinates (for details see
Machilsen, Pauwels, & Wagemans, 2009). This method yielded
smoothly curved closed shapes. After rescaling the surface area
to one eighth of the array size we colocalized the center of mass
of each shape with the center of the array.

Next, we positioned 30 Gabors on equidistant locations along
the contour of the shape. These elements had orientations parallel
to the local tangent of the shape outline (curvilinear contour ele-
ments). Another 30 Gabors were placed in the interior of the shape.
Their orientation was parallel to the main axis of the shape (iso-
oriented or isolinear surface elements). Finally, we positioned
300 randomly oriented elements outside the shape (random back-
ground elements).

To ensure a homogeneous density throughout the Gabor arrays
we discarded arrays for which the local density, here defined as the
average Euclidean distance from each element to its five nearest
neighbors, differed significantly between surface, contour and
background elements (three unpaired t-tests, a = 0.2). No stimuli
were included for which differences in local density between sur-
face, contour, and background elements exceeded 1 arc min. Two
thousand arrays, each with a different shape embedded, were se-
lected for the experiment. The average center-to-center distance
between Gabor elements was 44 arc min.

The saliency of the embedded shapes could be manipulated by
rotating the elements on the contour or in the interior surface of
the shape away from their curvilinear resp. isolinear orientations.
The shapes were most salient when the orientation of each contour
element was parallel to its local tangent (curvilinearity, Fig. 2A), or
when the orientation of each interior surface element was parallel
to the main axis of the embedded shape (isolinearity, Fig. 2B).



Fig. 1. Example stimuli used in the experiment. In these examples the embedded shapes are defined by collinear contour elements and isolinear surface elements. For
illustrative purposes we adjusted the contrast of contour and surface elements to highlight the embedded shapes.

Fig. 2. Example stimuli used in the experiment. The top row depicts the relevant Gabor elements for each stimulus type. For target stimuli (A–B–C) the embedded shape is
defined by (A) curvilinearity of the contour elements, (B) isolinearity of the surface elements, or (C) a combination of both. For a non-target stimulus (D) all elements have
random orientations. Examples for each stimulus type without orientation jitter are shown in the middle row. The saliency of the embedded shape is reduced by adding
orientation jitter to the elements (bottom row, 20 degrees of orientation jitter).
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Harrison and Feldman (2009) have shown that texture segregation
improved when texture elements were aligned with the skeletal
axis of the shape. In the double-cue condition the shapes were de-
fined by both the curvilinearity of contour elements and the isolin-
earity of surface elements (Fig. 2C). For the non-target displays in
our 2AFC experiment the orientation of each element was sampled
from a Uniform distribution between 0� and 180� (Fig. 2D).
2.2. Stimulus presentation

Experiments were run in the MATLAB environment using the
Psychophysics Toolbox extensions (Brainard, 1997). Stimuli were
displayed on a 2100 Sony GDM-F520 CRT monitor with a spatial res-
olution of 1152 � 864 pixels and a temporal resolution of 85 Hz. At
a viewing distance of 57 cm the stimuli subtended approximately
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18 degrees of visual angle. The room was darkened during the
experiment.

2.3. Cue combination and signal detection theory

In signal detection theory one assumes that the internal repre-
sentation of sensory information always shows some amount of
uncertainty. Hence, the internal response to a signal is represented
by a distribution rather than by a single point. The central panel of
Fig. 3 illustrates this for the case of a compound signal defined by
two cues. In our double-cue condition the shape signal consists of
two congruent sources of shape information: contour and surface.
To discriminate between a compound target (signal) and non-tar-
get (noise) distribution (Fig. 3, central panel), an observer can ap-
ply different cue-combination rules. One strategy might be to
rely on one single cue, and ignore the other cue. This decision rule
(Fig. 3A and B) is called vetoing (Bülthoff & Mallot, 1988) or deci-
sional separability (Macmillan & Creelman, 1991).

Another strategy is to decide on the presence of a compound
signal if either of the two components exceeds its own decision
threshold (Fig. 3C). This rule can be regarded as a minimalistic ap-
proach to cue integration: The benefit from having a double-cue
signal is merely due to having two chances to discriminate the tar-
get from the non-target. This decision rule is therefore called prob-
ability summation (PS).

Finally, a more efficient way to discriminate the signal and
noise distributions would be to use the linear classifier shown in
Fig. 3D. This strategy is called the integration rule (Macmillan &
Creelman, 1991), or information summation (IS; Madison, Thomp-
son, Kersten, Shirley, & Smits, 2001). This classifier is the optimal
linear classifier under the assumption of equal variance between
the two distributions. The IS rule maximizes the hit rate (answer-
ing ‘signal’ when the trial was actually a signal trial), while mini-
mizing the false alarm rate (answering ‘signal’ when the trial was
actually a noise trial).

2.4. Task

We measured shape detectability in a 2AFC task, with one inter-
val showing a target stimulus defined by curvilinearity of contour
elements (single-cue contour condition), isolinearity of surface ele-
ments (single-cue surface condition), or a combination of both
Fig. 3. To discriminate the signal distribution from the noise distribution (central panel)
B: contour) to decide on the presence of a signal (colored area). Probability summatio
Information summation (IS): the diagonal line is the optimal linear classifier between the
figure legend, the reader is referred to the web version of this article.)
(double-cue condition), and the other interval showing a non-tar-
get stimulus with no visual shape.

Each trial consisted of a fixation cross, followed by a target and
a non-target stimulus, each presented for 150 ms, and separated by
300 ms visual masks (Fig. 4). The order of target and non-target
stimuli was random. After each trial the participant pushed a but-
ton to indicate the target interval containing the visual shape.
Auditory feedback was provided after each response. Stimuli were
presented in blocks of 50 trials. All trials within a block belonged to
the same condition. At the onset of each block participants were in-
formed about the condition of trials within that block. The order of
blocks was fully randomized.
2.5. Calibration of detection thresholds

Prior to the main experiment, detectability of the two single-
cue conditions was individually calibrated. For each participant
we ensured that the single-cue contour and single-cue surface
stimuli were equally detectable. In Experiment 1 we equated the
performance (percentage correct) for the two single-cue conditions
by adjusting the number of contour elements. In Experiment 2 we
used a staircase procedure to estimate the amount of orientation
jitter required to yield a pre-specified detection threshold. This
was done separately for the two single-cue conditions. The out-
come of this calibration (number of contour elements for Experi-
ment 1 and orientation jitter for Experiment 2) was used to
generate the stimuli for the main experiment. For the double-cue
stimuli the orientation jitter was a pairwise combination of the ori-
entation jitter added to the single-cue stimuli. Having equally
detectable cues avoids a vetoing strategy, and encourages observ-
ers to exploit both shape cues in the double-cue condition. A sim-
ilar approach was used by Meinhardt, Persike, Mesenholl, and
Hagemann (2006) to study the combination of spatial frequency
and orientation cues.
2.6. Estimating the probability summation and information
summation rules

The performance in the two single-cue conditions was used to
predict the performance on the double-cue trials when observers
apply the PS rule or the IS rule.
different decision rules can be employed. Vetoing: one single cue is used (A: surface;
n (PS): a signal is perceived if either cue exceeds its own decision threshold (C).

signal and noise distributions. (For interpretation of the references to color in this



Fig. 4. Time course of a single trial. We increased the contrast of the contour elements in the target stimulus for illustrative purposes.
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Under the PS rule, the expected hit rate H in the double-cue con-
dition was calculated as 1 � (1 � Hc)(1 � Hs), and the expected
false alarm rate F was calculated as 1 � (1 � Fc)(1 � Fs), with Hc

and Hs the observed hit rates for the contour and surface condition,
respectively (Macmillan & Creelman, 1991). With a known number
of signal trials (Ns) and noise trials (Nn), the predicted performance
under the PS rule was calculated as H�Nsþð1�FÞ�Nn

NsþNn
.

Under the IS rule, the expected signal detectability (d0) in the

double-cue condition was calculated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d0c
� �2 þ d0s

� �2
q

, with

d0c ¼ 1ffiffi
2
p ½zðHcÞ � zðFcÞ� detectability in the contour condition, and

d0s ¼ 1ffiffi
2
p ½zðHsÞ � zðFsÞ� detectability in the surface condition. Assum-

ing equal variance in the signal and noise distributions, Uðd0=
ffiffiffi
2
p
Þ

transformed the predicted d0 value to a proportion correct (Mac-
millan & Creelman, 1991).

2.7. Participants

Fourteen participants volunteered for this study. All had normal
or corrected-to-normal vision. Eight collaborators from our lab
participated in Experiment 1, five undergraduate students and
the first author participated in Experiment 2. All participants, ex-
cept the first author, were unaware of the purpose of the experi-
ment. Each participant gave informed consent for the study. The
study was approved by the KULeuven Ethics Committee.
Fig. 5. Results from Experiment 1. Proportion correct as a function of orientation
jitter for the two single-cue conditions and the double-cue condition, along with the
predictions from the PS and IS rule. The plotted data points are the observed
proportion correct for the three conditions, averaged over participants (n = 8).
Regression lines are fitted through these data points. For the PS and IS rules the
predicted data points are not plotted.
3. Experiment 1

3.1. Procedure

In the first experiment we added the same amount of orienta-
tion jitter to the contour elements and to the surface elements.
Nine different levels of orientation jitter were used, sampled from
a Gaussian distribution around 0 with a standard deviation of 15,
25, 30, 35, 40, 45, 50, 55, or 65 degrees of arc. To ensure equal
detectability in the contour and surface conditions, we ran a cali-
bration procedure in which the number of contour elements was
individually adjusted. We kept the number of surface elements
constant (30), while varying the number of contour elements be-
tween 26 and 34. Within this limited range we could avoid differ-
ences in local density between surface, contour and background
elements. Increasing the number of contour elements improves
the grouping of the contour elements (Field et al., 1993; McKend-
rick, Weymouth, & Battista, 2010). After a short demo, training
phase, and calibration, the main experiment was run with 2700 tri-
als per participant (9 � 100 per condition).

3.2. Analysis

A logistic regression analysis predicting detection performance
with condition and log-transformed orientation jitter as fixed
effects was performed on the data. The analysis allowed for a
random intercept and random slope for each participant. To ac-
count for occasional lapses the upper bound (1 � k) of detection
performance was estimated from the data, with k restricted be-
tween 0 and 0.05. In a first analysis we compared the two single-
cue conditions with the double-cue condition. The double-cue con-
dition was compared with the PS prediction and with the IS predic-
tion in two separate analyses. For illustrative purposes, the results
from all three analyses are plotted in a single graph. Whenever the
interaction between condition and orientation jitter did not reach
significance, we repeated the analysis without the interaction
term. All analyses were performed with SAS procedure NLMIXED
(SAS version 9.2).

3.3. Results

Fig. 5 displays the observed proportion correct for the two sin-
gle-cue conditions and the double-cue condition. Regression lines
were plotted through the data points. To emphasize the predictive
nature of the IS rule and PS rule, we did not plot the estimated data
points, but only the regression through these points.

No difference between the two single-cue conditions was found
(F(1, 6) = 0.04; p = 0.85), reflecting the validity of the calibration
method. Performance in the double-cue condition was significantly
better than in the two single-cue conditions (F(1, 6) = 48.21;
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p < 0.001). The double-cue condition yielded performance levels
which were in-between the two combination rules, but did not dif-
fer significantly from either the PS rule (F(1, 6) = 2.76; p = 0.15) or
the IS rule (F(1, 6) = 3.59; p = 0.11).

The results from Experiment 1 show a clear double-cue benefit.
Performance in the double-cue condition is significantly better
than in the two single-cue conditions. This indicates that congru-
ent information from the contour and the interior surface of a
shape is somehow combined to detect the shape in a cluttered
background. However, from the observed double-cue benefit we
cannot estimate how well the two cues are combined. For that,
we need benchmarks against which to compare the double-cue
performance. The minimalistic PS rule and the optimal IS rule, cal-
culated from the single-cue data, provide such benchmarks. The
double-cue performance falls in-between the predictions from
the PS and IS rule, but the results from Experiment 1 do not allow
us to differentiate between the two combination rules.
Fig. 6. Results from Experiment 2. Proportion correct as a function of detection
threshold for the two single-cue conditions and the double-cue condition (filled
circles, solid lines), along with the predictions from the PS and IS rule (open circles,
dotted lines). The plotted data points are the observed proportion correct for the
three conditions, averaged over participants (n = 6).
4. Experiment 2

To better discriminate between the two cue-combination rules,
we ran a second experiment, with a more flexible calibration pro-
cedure, and more trials per data point.

4.1. Procedure

In Experiment 1 the performance on contour and surface trials
was equated by varying the number of contour elements. In Exper-
iment 2 the number of contour elements was kept constant at 30
Gabors. To calibrate performance on surface and contour trials
we now allowed different jitter levels for surface and contour ele-
ments. By manipulating orientation jitter we could employ a more
flexible adaptive procedure.

In Experiment 1 we sampled the entire psychometric function.
In order to better discriminate between the two cue-combination
rules, we now only focus on the central region of the psychometric
function. For each participant we search for these jitter levels that
yield detection thresholds of 85%, 75%, and 65%. This is done
separately for the two single-cue conditions, using an adaptive
procedure (Watson & Pelli, 1983) with two interleaved staircases
involving 250 trials for each threshold and each condition.

In the main experiment each participant ran 4500 trials (500
trials per data point). For each detection threshold, the amount
of orientation jitter obtained in the calibration experiment was
used. For the double-cue stimuli, the orientation jitter added to
the elements matched that of the single-cue stimuli.

4.2. Analysis

A logistic regression analysis predicting detection performance
with condition and detection threshold as discrete predictors was
performed on the data. The analysis allowed for a random intercept
for participant. Again, we first compared the two single-cue condi-
tions with the double-cue condition, and the double-cue condition
with the estimates from the PS and IS rule.

4.3. Results

Fig. 6 displays the observed proportion correct for the two sin-
gle-cue conditions and the double-cue condition, as well as the
predicted proportion correct for the PS rule and the IS rule. Again,
the difference between the two single-cue conditions was not sig-
nificant (F(1, 5) = 0.03; p = 0.87), reflecting that performance on the
single-cue trials was calibrated prior to the main experiment. The
double-cue condition was again significantly better than the two
single-cue conditions (F(1, 5) = 42.00; p = 0.001), and did not differ
significantly from the IS rule (F(1, 5) = 0.11; p = 0.76). This time the
double-cue performance exceeded the prediction from the PS rule
(F(1, 5) = 10.58; p = 0.02). Note that the first author who partici-
pated in Experiment 2 was included in the above analysis. Repeat-
ing the analysis with only the five naive participants yielded
similar results. Again, there was no significant difference between
the two single-cue conditions (F(1, 4) = 0.14; p = 0.73). The double-
cue condition was significantly better than the single-cue condi-
tions (F(1, 4) = 43.68; p = 0.003), and better than the PS rule
(F(1, 4) = 14.57; p = 0.02). The difference between the double-cue
condition and the IS rule was not significant (F(1, 4) = 0.34;
p = 0.59).

From the results of Experiment 2, it is possible to differentiate
between the two cue-combination rules. Overall, observers do bet-
ter than mere probability summation when presented with con-
gruent surface and contour information. We find no evidence
against the IS rule.
4.4. Discussion

The present study investigated to what extent human observers
combine information from the contour and from the interior sur-
face of a shape. Although contour detection and surface segrega-
tion are important steps towards shape perception, most studies
have treated them in isolation. As already pointed out by Elder
and Zucker (1998), separating the roles of contour and surface cues
in shape detection is challenging because the two cues are usually
present together. In our stimuli we could disentangle contour and
surface information. Using the framework of signal detection the-
ory, we were able to test how well human observers combine con-
gruent contour and surface information.

Both experiments presented here showed a clear double-cue
benefit: Shape detectability was significantly better when the
two cues were presented together. The results from Experiment
1 did not allow us to differentiate between a probability summa-
tion rule and an information summation rule. In Experiment 2
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we increased the number of trials per data point and used a more
controlled approach to calibrate single-cue detectability. In this
experiment we did find evidence that information about the sur-
face and the contour of the embedded shape was combined more
optimally than predicted by probability summation. We did not
find evidence against optimal linear cue combination.

In the calibration phase that preceded the actual experiment,
we adopted the approach of Meinhardt et al. (2006) to individually
calibrate detectability in the two single-cue conditions. This en-
abled us to construct double-cue displays in which the two cues
were equally detectable. Having equally detectable cues increases
the potential gain of employing both cues. The necessity of an indi-
vidual calibration approach was reflected in the interindividual
variability in relative detectability of the two single cues. To equate
detection performance for the two cues, the required number of
contour elements in Experiment 1 ranged from 30 to 34 (with a
fixed number of 30 surface elements). In Experiment 2, all partici-
pants could tolerate more orientation jitter to the surface elements
than to the contour elements, probably due to the more peripheral
position of contour elements (Nugent, Keswani, Woods, & Peli,
2003). However, the relative tolerance to orientation jitter differed
a lot between participants. One participant could only tolerate 7
degrees of orientation jitter more on the surface elements than
on the contour elements to reach the detection threshold, while
another participant could tolerate an extra 22 degrees of orienta-
tion jitter on the surface compared to the contour elements.

One might argue that the surface and contour cues were only
partially disentangled in our stimuli. Indeed, in the single-cue
contour displays the contour elements still delineated the interior
surface of the shape, even when the surface elements were ran-
domly oriented. Similarly, in the single-cue surface displays, the
isolinear interior elements could also give rise to the perception
of an implicit boundary, even though the contour elements had
random orientations. However, this limitation does not invalidate
our main conclusions. Assuming that single-cue displays were in-
deed partly contaminated by the (implicit) presence of the other
cue, implies that the measured detectability of a single cue is an
overestimate of the true detectability. Hence, the predicted per-
formance for the PS and IS rules would also be overestimated.
When comparing the observed performance in the double-cue
condition with the overestimated PS and IS predictions, we would
still conclude that we have no evidence against optimal cue inte-
gration, and that performance in the double-cue condition is at
least equal to (Experiment 1) or better than (Experiment 2) prob-
ability summation.

The double-cue benefit observed in this study shows that
observers can combine surface and contour information to decide
on the presence of a shape in the display. Our results do not permit
us to draw strong conclusions about the mechanisms underlying
this cue combination. Some authors have argued that surface and
contour information is processed by distinct mechanisms (Elder
& Zucker, 1998; Rogers-Ramachandran & Ramachandran, 1998).
Our results are consistent with this view of independent process-
ing, assuming that participants employ an optimal combination
rule to integrate the two independent cues at a later stage of visual
processing. However, recent computational and imaging studies
rather suggest interactions between the processing of surface and
contour information (Kogo et al., 2010; Scholte et al., 2008). If sur-
faces and contours are not processed independently, i.e. if their
internal noise distributions are correlated, the performance pre-
dicted by an optimal linear combination rule under the indepen-
dency assumption, can be reached by assuming a non-linear
decision rule (in case of positively correlated noise distributions)
or a suboptimal linear decision rule (in case of negatively corre-
lated noise distributions). The present study does not allow us to
differentiate between these possibilities.
In short, our results show that participants do combine congru-
ent surface and contour information to decide on the presence of a
shape, at least when the individual cues are matched for detect-
ability, and that this combination is as good as (Experiment 1) or
better than (Experiment 2) predicted by a probability summation
rule.
5. Conclusion

By using a controlled set of artificial stimuli in which informa-
tion about the contour and interior surface was disentangled, we
were able to show that human observers use both sources of infor-
mation to detect a visual shape. The framework of signal detection
theory provided benchmarks against which to evaluate the perfor-
mance in the double-cue condition. We have shown that human
observers can integrate congruent information from the interior
surface of a shape and its surrounding contour more optimally
than predicted by a probability summation rule. We did not find
evidence against optimal linear combination of surface and con-
tour information.
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