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Abstract

Functional data that are not perfectly aligned in the sense of not showing peaks and valleys

at the precise same locations possess phase variation. This is commonly addressed by pre-

processing the data via a warping procedure. As opposed to treating phase variation as a

nuisance effect, we explicitly recognize it as a possible important source of information for

clustering. We illustrate how results from a multiresolution warping procedure can be used

for clustering. This approach allows to address detailed questions to find local clusters that

differ in phase, or clusters that differ in amplitude, or both simultaneous.

Keywords: Functional data, clustering, phase variation, amplitude variation, warping.

1. Introduction

Functional data analysis studies data structures which are believed to be generated by

underlying (smooth) functions. We consider samples of curves. Examples include growth

curves in biology (Gasser and Kneip, 1995) and market penetration in economy (Sood et al.,

2009).

Although there is an overlap between the analysis of curve data and the longitudinal

data framework (Hall et al., 2006), functional data focusses more on studying variation in a

sample of complex patterns, with several extremes and local amplitude variation (variation in

the response values), which would call for complicated structures for the random effects in a

longitudinal data analysis. Typical for functional data is phase variation, or misalignment of

the curves, that is, not all features of the curves occur at the same locations, which would, for

example, make a pointwise average of curve values become useless. Functional data analysis

has devoted a great deal of attention to this phenomenon known as registration (Ramsay
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Figure 1: Illustrative data set with three clusters. The five (blue) dashed lines represent curves for which the
distance between the peaks is larger than for the other curves. The six (red) dotted lines represent curves
that possess a higher second peak.

and Li, 1998), time warping in engineering (Rabiner et al., 1978) and curve alignment (Wang

and Gasser, 1997).

As opposed to treating phase variation as a nuisance effect and to ignoring in further

analysis that it even took place, we explicitly recognize it as a source of information for

clustering. The multiresolution warping method of Claeskens et al. (2010); Slaets et al.

(2010) summarizes the data in a relatively small number of interpretable phase and amplitude

components. These components are represented by a vector, one for each curve. We use

the well-studied multivariate partitioning around medoids (PAM) algorithm (Kaufman and

Rousseeuw, 1990) to cluster this multivariate data object.

We explain the new method via a simulated sample of curves, see Figure 1, that is

generated according to the simulation setting of Section 4.1. This sample of 17 curves

consist of three clusters. There is one group of five curves for which the distance between

the two peaks is larger than for the other curves. A second group is formed by the six curves
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for which the height of the second peak is larger than for the other curves. The remaining

six curves form the third cluster. Precise details about how this dataset is generated can

be found in Section 4. Clearly, the curves are not aligned and show variation both in phase

(horizontal) and in amplitude (vertical).

Clustering functional data received quite some attention already, e.g. in the regression-

mixtures framework (DeSarbo and Cron, 1988). The majority of the existing methods does

not take phase variation into account and hence assumes that its presence is only limited,

or else those works operate on the warped data under the assumption that the preprocess-

ing warping stage contains no cluster information. Examples of such approaches include a

functional version of k-means clustering by using functional principal components in Chiou

and Li (2007), k-means clustering on fitted B-spline coefficients (Abraham et al., 2003), a

robustification thereof (Garcia-Escudero and Gordaliza, 2005) and a flexible clustering model

especially for sparsely sampled data (James and Sugar, 2003). In Lopez-Pintado and Romo

(2005) the notion of functional depth is used as a way to robustly classify functional data.

More recently, timing differences across subjects are acknowledged, but seen as a nuisance

effect, rather than as a source of information. Liu and Yang (2009) incorporate shifted B-

splines in their clustering model to account for phase variation within clusters, but do not

use the information contained in the estimated shift coefficients in the clustering procedure.

Sangelli et al. (2010) present a k-means type clustering procedure based on a similarity index

between two curves, in which they optimize the similarity between strictly increasing affine

transformed (warped) curves within each cluster.

Ignoring phase variation for clustering may result in a possible loss of information. James

(2007) illustrates this using a weighted warping function together with the warped curves

for clustering coefficients of functional principal components. The problem of clustering in

the presence of complex phase variation, however, has not yet been studied.

While detecting curves with distinct functional shapes, e.g. some of the curves are missing

a peak, or being of completely different form, is relatively easy, even by eye, we focus our

research on samples of curves that look quite alike at a first glance, though, still contain

distinct groups of curves. Even within this more difficult setting, we are able to separate

clusters based on information on phase and amplitude variation. Moreover, our method

provides valuable information to the user by identifying the reason (phase or amplitude or

both) that clusters were formed.

The new method of this paper, the explicit incorporation of the warping function and

estimated amplitude coefficients in a clustering approach is evaluated and compared with

the methods by Chiou and Li (2007) and Liu and Yang (2009) in a simulation study in

Section 4. A data example concerning growth curves is included in Section 5.
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2. Clustering via multiresolution warping

2.1. Warplets

Multiresolution warping (Claeskens et al., 2010) uses warplets as building blocks. The

warplets (see below for a definition) are local warping functions that concentrate the warping

action to a certain domain and have a clear interpretation of the location and the intensity

of the warp. The final warping function consists of using function composition to combine

different warplets.

Warplets are strictly monotone increasing functions that deviate from the identity func-

tion in a smooth manner on the interval [a− r1, a + r2] = [wl, wu]. The following definition

corresponds to Def. 2.2 of Claeskens et al. (2010) for asymmetric warplets.

τ̃ (a, λ, wl, wu; t) = τ̃ (a, λ, a− r1, a + r2; t) (1)

=





a + r1 · g
(
λ r

r2
; (t− a)/r1

)
, t ∈ [a− r1, a− 3

√
3

8
λr]

a + r2 · g
(
λ r

r2
; (t− a)/r2

)
, t ∈ [a− 3

√
3

8
λr, a + r2]

t, otherwise,

with r1, r2 > 0, r = min(r1, r2), λ ∈ (−1, 1), g(λ; y) = z + λKq(z) in which z is the solution

to z − λKq(z) = y, and with Kq:

Kq(z) =





3
√

3
8

(1− z2)2, z ∈ [−1, 1]

0, otherwise.

When λ > 0 the warplet will cause a dilation of the time points in the interval [a − r1, a −
3
√

3
8

λr], followed by a compression of the time values in the interval [a− 3
√

3
8

λr, a + r2], with

an intensity determined by the value of λ. When λ < 0 the curve is compressed for time

values in the interval [a − r1, a − 3
√

3
8

λr], and dilated on the interval [a − 3
√

3
8

λr, a + r2].

Asymmetric domains of dilation and compression require less warplets in the final warping

function than would be the case when using symmetric components (see Claeskens et al.,

2010).

For each curve n (n = 1, . . . , N), the warping function consists of a function composition

of warplets: τ̃n,q (q = 1, . . . , Q) are composed in a warping function

τn = τ̃n,Q ◦ . . . ◦ τ̃n,2 ◦ τ̃n,1.

Since each warplet is monotone increasing, the same property holds for the composition.

Moreover, the inverse of a warplet is explicit to obtain by changing the sign of λ, that is,

τ̃−1 = τ̃ (a,−λ,wl, wu; t), leading to the attractive property that the inverse transformation

has an easy and explicit formula,

τ−1
n = τ̃−1

n,1 ◦ . . . ◦ τ̃−1
n,Q−1 ◦ τ̃−1

n,Q.
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2.2. The model for multiresolution warping

The observed function values y are noisy observations of an underlying noise-free curve F .

This curve consists of a common mean function µ with added local amplitude, which can be

warped through compositions of warplets, as denoted more precisely in the multiresolution

warping model:

yn(tj) = yn,j = Fn,j + en,j = µ(τn(tj)) +
K∑

k=1

bn,kψk(τn(tj)) + en,j, (2)

with bn,k and en,j independent realizations of respectively N (0, σ2
k) and N (0, σ2) for n =

1, . . . , N, j = 1, . . . , T, k = 1, . . . , K.

The local amplitude differences are modeled by a fixed set of asymmetric rescaled quartic

kernels ψk, defined as

ψk(āk, al,k, au,k; t) =





(
1−

(
(t−āk)

au,k−āk

)2
)2

, āk ≤ t ≤ au,k

(
1−

(
(t−āk)
āk−al,k

)2
)2

, al,k ≤ t ≤ āk.

of which the locations (lower bound al,k < center āk < upper bound au,k ) are estimated

from the data. For successive kernels we make sure that āk+1 > au,k and al,k+1 > āk. The

curve-specific kernel coefficients bn,k are included in the model as random effects (see also

Gervini and Gasser, 2005, for using B-splines instead of kernels). The curve-specific warping

functions τn are modeled as follows,

τn(tj) = τ̃(aQ, λn,Q, wl,Q, wu,Q) ◦ . . . ◦ τ̃(a1, λn,1, wl,1, wu,1)(tj),

such that the intensities λ are the only curve-specific parameters and for each component they

are directly comparable across curves. As an averaging constraint, the intensity parameters

satisfy that

λN,q = −
N−1∑
n=1

λn,q for q = 1, . . . , Q. (3)

Since the warplets can only model local phase variation, we have included horizontal

shifts in a preprocessing step, which allows the original curves to be shifted over a limited

time range similar to the preprocessing step of Slaets et al. (2010). These shifts wshift,n are

estimated by minimizing the sum of the squared distances between each set of two shifted

curves. As a distance measure between the curves we took the average over the squared

distances in each of the time points tj. Linear interpolation is used to evaluate the shifted

curves in these time points. This preprocessing step is optional.
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The multiresolution warping approach of Claeskens et al. (2010) uses model (2) to align

the (pre-shifted) data by minimizing the squared error between the warped responses, while

allowing for amplitude differences by means of a limited number of local variability areas. A

Bayesian estimation procedure is used, see Slaets et al. (2010) for details about the imple-

mentation. While the algorithm of Slaets et al. (2010) fits such models treating the amplitude

variation as nuisance effects, we here need predictions for the amplitude coefficients bn,k to

use for clustering the curves. Hence we now estimate the parameters of the warping functions

τn as compositions of individual warplets, the parameters of the kernel functions ψk, as well

as the coefficients bn,k of the kernels.

An iterative estimation procedure is proposed to obtain estimates of the kernel coeffi-

cients, after the estimation of model (2). Denote (t, ỹn(t)) for the warped curves (τn(t), yn(t)),

where

ỹn(ti) = µ(ti) +
K∑

k=1

bn,kψk(ti) + en,i,

which are obtained by means of penalized spline smoothing of the warped data points

(τn(tj), yn(tj)), using the SemiPar package in R (Wand et al., 2005). This procedure uses

the mixed model representation of penalized spline models, to estimate a smooth curve to

the data with simultaneous estimation of the smoothing parameter and is hence completely

automatic. The iterative estimation of joint mean and kernel coefficients goes as follows.

For 1000 equally spaced time points ti, i = 1, . . . , 1000 on [t1, tT ]:

1. Initialization: µ̂(ti) = 1
N

∑N
n=1 ỹn(ti).

2. Estimate bn,k by using linear regression on the following models for each of the curves

separately ỹn(ti) = µ̂(ti) +
∑K

k=1 bn,kψk(ti) + en,i.

3. Use b̂n,k in 1. to update µ̂(ti) = 1/N
∑N

n=1

(
ỹn(ti)−

∑K
k=1 b̂n,kψk(ti)

)
.

4. Repeat 2. and 3. until the maximum absolute differences between the successive esti-

mates are smaller than 1%, or a maximum of e.g. 50 iterations have been performed.

Once the model is estimated and we have for each curve estimates of the model coeffi-

cients, these are used for clustering the curves.

2.3. Partitioning around mediods for clustering

An advantage of our method is that it reduces a sample of curves to a vector of coefficients

for each curve. When this vector is used for clustering, standard multivariate cluster methods

are applicable. We use the multivariate partitioning around mediods (PAM) clustering

technique, as described in Kaufman and Rousseeuw (1990).

To find M clusters, the PAM algorithm starts by choosing M subjects as cluster centers

(medoids) in an initialization step. It then assigns other subjects to a cluster by minimizing
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Figure 2: (a) Estimated shifts and (b) data after preprocessing with a horizontal shift only.

the sum of the dissimilarity between each subject and the medoid. In the next step new

medoids are calculated, these are the cluster subjects which minimize the average dissimi-

larity to its cluster members. Note that PAM differs from the k-means algorithm in that

a user-defined dissimilarity measure can be used, instead of the Euclidian distance only, it

sums these individual distances rather than taking sums of squares, and it uses mediods

rather than means. It is a popular approach for multivariate clustering, as it is less sensitive

to outlying observations. Implementations of PAM are available in the R-package cluster,

in S-PLUS (Struyf et al., 1997) and MATLAB (Verboven and Hubert, 2005).

We applied PAM with the Euclidian distance throughout this paper.

3. Illustrative example

We now return to the illustrative example presented in Figure 1 in the introduction and

show step by step how the method works.

3.1. Shifts and warplet intensities

Figure 2 plots the estimated shifts (left) and the set of horizontally shifted curves (right)

which result from the preprocessing step. These shifts form the first column in the multi-

variate data object, see Table 1, that will be used for clustering the data.

As explained in Section 2.2 each component of the warping function only differs across

the curves in the intensity via the parameter λ. This can be clearly observed in the estimated

warping components for the illustrative example (Figure 3, panels (a) and (c)). In particular
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Figure 3: (a) Estimated first warplet for each of the curves, (b) warped data after applying one warplet, (c)
estimated second warplet for each of the curves and (d) warped data after applying two warplets.

we note that the warplets are quite asymmetric. By letting the components operate on the

same domain across curves, the warplet intensities characterize the difference between the

curves with respect to the warping stage. By allowing for curve specific warping domains,

not only would there be estimated 3N more parameters, the averaging constraint (3) would

not be satisfied and a direct comparison of the warplets would no longer be possible. In

terms of computation time, which is related to the number of parameters, we would be able

to include about four components with a fixed domain, as compared to only one component

with curve-specific domains.

We stopped the warping procedure after composing two warplets, Figure 3(d) gives a
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Figure 4: Shifted and warped curve observation n = 1 (black dots), together with the kernels ψ1 and ψ2 (red
dotted lines), mean curve µ̂ (blue dashed line) and the predictions µ̂ + b̂1,1ψ1 + b̂1,2ψ2 (black solid line).

satisfactory result showing the aligned curves. The warplet intensities are added in two

additional columns to the data summary matrix, see Table 1, finalizing the phase variation

part of the data summary matrix that will be supplied to the PAM algorithm. Figure 3 (a)

and (c) illustrates clearly that the group of five curves for which the peaks are further apart

all need negative first warplet intensities (first a compression, then a dilation) and a large

dilation domain, to mimic a local shift to the left in a smooth way. A similar effect in the

other direction is observed for the second warplet. The other curves have opposite intensities

for the warplets to meet them in the ‘middle’.

3.2. Kernel coefficients

In this illustrative example the choice of the number of kernels, being two, was taken

since each of the curves consists of two peaks of varying heights. Figure 4 illustrates how

amplitude variation is captured by means of the two kernels in the model. It displays

one functional curve observation from the sample of 17 such curves in Figure 1, together

with the kernel functions obtained from multiresolution warping, the estimated overall mean

function and a prediction µ̂ + b̂n,1ψ1 + b̂n,2ψ2 of this particular warped curve constructed

from the estimated mean function and the predicted kernel coefficients, as calculated in the

iterative procedure described earlier. The predicted kernel coefficients b̂n,1 and b̂n,2 contain

information on whether a peak (in this example) is larger, or smaller, than the average value

of the peak. These coefficients are used to summarize amplitude variation in the data.

The full multivariate summary data matrix for this example is presented in Table 1. It
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Table 1: Multivariate summary data for the illustrative example consisting of estimated parameters charac-
terizing phase (shift, λ1, λ2) and amplitude variation (bn,1, bn,2). The numbers in italics for λn,1 and λn,2

characterize the five (blue) dashed curves in Figure 1, while the numbers in italics for bn,2 correspond to the
(red) dotted curves.

n horizontal shift λn,1 λn,2 bn,1 bn,2

1 0.0363 0.1564 -0.1662 0.4733 -0.5183
2 -0.0034 0.2294 -0.1354 0.1722 -0.3521
3 0.0231 0.1595 -0.1592 0.4022 -0.2707
4 -0.0812 0.1990 -0.1551 0.1218 -0.4649
5 -0.1397 0.3808 0.0504 0.6823 -0.4744
6 -0.0018 0.2049 -0.2938 -0.2478 -0.3538
7 -0.0423 0.2394 -0.2459 -0.2024 0.7020
8 0.0919 0.1849 -0.3009 0.5434 0.5843
9 0.0192 0.3266 -0.1679 -0.2490 0.5684
10 -0.0651 0.2394 -0.1372 -0.7163 0.5528
11 -0.1672 0.2933 -0.1347 -0.7569 0.4311
12 -0.0362 0.1457 -0.3219 0.3024 0.6944
13 0.0953 -0.6543 0.3217 0.3756 -0.0496
14 0.1044 -0.7798 0.2341 0.5721 -0.0737
15 0.0097 -0.2998 0.7238 -0.3260 -0.3704
16 0.1184 -0.6694 0.3276 -0.3496 -0.0489
17 0.0386 -0.3560 0.5608 -0.8316 -0.1942

contains here for each of the 17 curves in the sample the estimated horizontal shift parameters

aw,n, the intensities of the first and second warplet, λn,1, λn,2, as well as the predicted

kernel coefficients (bn,1, bn,2). The table illustrates clearly that for the group of six curves

with increased height of the second peak (curves 7–12) the predicted coefficients bn,2 are all

positive, while for the other curves these predicted coefficients are negative. Alternatively

one could use functional principal components (Rice and Silverman, 1991) to summary the

amplitude variation.

3.3. Standardization

The data matrix is columnwise standardized to obtain values that sum to zero and have

sample standard deviation equal to one. This is to avoid that large values for, e.g., shifts or

kernel coefficients would dominate the dissimilarity measure and hence give wrong clustering

results. Table 2 contains the standardized values that are used in the PAM algorithm.

3.4. Searching for three clusters

We apply the PAM algorithm on the standardized data matrix. In this illustrative exam-

ple we first search for three clusters in the data. Clustering results based on all variables in
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Table 2: Standardized multivariate summary matrix.

n horizontal shift λn,1 λn,2 bn,1 bn,2

1 0.4429 0.4044 -0.5243 0.9600 -1.1809
2 -0.0412 0.5933 -0.4272 0.3523 -0.8172
3 0.2816 0.4125 -0.5023 0.8164 -0.6391
4 -0.9895 0.5146 -0.4892 0.2500 -1.0640
5 -1.7030 0.9846 0.1589 1.3823 -1.0848
6 -0.0215 0.5300 -0.9269 -0.4964 -0.8210
7 -0.5161 0.6190 -0.7757 -0.4047 1.4898
8 1.1177 0.4780 -0.9492 1.1018 1.2321
9 0.2352 0.8446 -0.5295 -0.4988 1.1975
10 -0.7938 0.6191 -0.4329 -1.4429 1.1631
11 -2.0387 0.7584 -0.4248 -1.5249 0.8968
12 -0.4410 0.3768 -1.0154 0.6149 1.4730
13 1.1621 -1.6920 1.0148 0.7628 -0.1551
14 1.2732 -2.0165 0.7384 1.1596 -0.2078
15 0.1184 -0.7753 2.2832 -0.6545 -0.8572
16 1.4437 -1.7309 1.0333 -0.7022 -0.1536
17 0.4703 -0.9206 1.7689 -1.6757 -0.4716

this summary matrix results for this example in a perfect identification of the three clusters.

We refer to the simulation setting for a repeated experiment and for a full comparison with

other clustering procedures for functional data.

Table 3 gives the clustering results for application of the new method using all variables in

the summary matrix, as well as the results from applying the competitors. See Section 4.2

for a description of the simultaneous registration and clustering method (SACK) and of

k-centers functional clustering (k-centers FC). Only the new method classifies the curves

correctly for this illustrative example. The SACK method separates the group of curves

with the peaks further apart correctly, but fails to detect the group of curves with a larger

second peak. The k-centers functional clustering approach also correctly identifies the cluster

with a phase difference, but likewise does not make a correct classification according to the

amplitude differences.

3.5. Searching for two clusters

A strong advantage of the new method is that several more specialized clustering options

can be considered. If not searching for the three real clusters, but rather for two clusters, we

can direct the search towards finding clusters that are characterized by differences in phase.

Therefore we take the set of variables in the data summary matrix that gives information on

11



Table 3: Clustering results based on the full summary matrix and of the methods SACK and k-centers FC
for the illustrative example. Underlined results indicate misclassified curves according to the real situation
with three clusters.

Method clustering result real clusters
summary matrix–all 11111122222233333 11111122222233333

SACK 11111121222233333
...

k-centers FC 11122121122233333
...

Table 4: Clustering results based on several sets of variables for the illustrative example. Underlined results
in the first four rows indicate misclassified curves according to the real phase clusters. Underlined results in
the next three rows indicate misclassified curves according to the real amplitude clusters.

Set of variables clustering result real clusters
shift,λn,1,λn,2 (all phase) 11111111111122222 11111111111122222 phase

shift 22211212211122222
...

λn,1 11111111111122222
...

λn,2 11111111111122222
...

bn,1, bn,2 (all amplitude) 11111122222211112 11111122222211111 amplitude

bn,1 11111221222111222
...

bn,2 11111122222211111
...

SACK 11111111111122222 —
k-centers FC 11122121122222222 —

phase variation, this corresponds to the shift parameter and the intensities of both warplets.

Taking all three vectors of coefficients together in the clustering algorithm PAM results in

a correct classification according to the true situation where the set of curves with the two

peaks further apart form one cluster and all other curves form another cluster. Detailed

results for the illustrative data example are presented in Table 4.

By applying the clustering on each of these three phase variables separately, we see that

the coefficients of the warplet intensities both give the needed information for separating

clusters in phase. The coefficient of the shift does not help to separate the clusters in this

example, as indeed, all curves were generated with a random shift parameter.

Alternatively, we can search for clusters that differ with regard to amplitude. Therefore

we take both predicted kernel coefficients and apply the PAM algorithm to the bivariate

vector. This results in misclassifying one curve where the true situation is now formed by

one cluster of curves with a higher second peak, and all other clusters forming the other

group. The coefficient bn,1 is used for the first kernel, located around the first peak in
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Figure 5: Scatterplots of each of the variables in the summary matrix for the illustrative example. (a) The
different symbols indicate the two clusters selected by the PAM algorithm, when applied to each of the
variables separately. (b) The different symbols indicate the true three underlying clusters (as in data plots),
with (red) triangles representing the (red) dotted curves (clusters in amplitude) and (blue) crosses the (blue)
dashed curves (clusters in phase).

the curves, and, as expected, does not give us the wanted information. Working with the

coefficient vector bn,2 which gives the information about the amplitude variation around the

second peak gives a perfect classification of the curves in the two clusters. This illustrates

how ‘local’ clusters could be sought, where areas of specific interest, e.g. the area around

the second peak, can receive separate attention in the search for clusters. Figure 5 gives a

graphical representation of the values in the data summary matrix, as well as the result of

the clustering based on each variable separately.

The result of the trivariate clustering taking all three phase-characterizing variables to-

gether, and of the bivariate clustering taking both amplitude coefficients together, are sum-

marized in Table 4. The PAM algorithm misclassifies none of the observation when clustering

is based on phase (line 4 in Table 4), and the two true clusters are defined by separating

the set of five curves with the two peaks further apart. This is because the estimated shifts

do not separate the sample in any (random) way which can disturb the true clusters in the

intensities. When considering the clusters defined by the set of six curves with a larger

second peak, it are the predicted coefficients bn,2 that should determine the clusters. When

taking both kernel coefficients together, the influence of the first kernel coefficient slightly

disturbs the clustering. The heights of the first peak are generated randomly, but due to a

small sample size, an artificial cluster can arise. For this example, clustering on variable bn,2

only gives the best results when searching for clusters that differ in amplitude.

In Table 4, the competitive method SACK for clustering functional data is seen to identify
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the cluster that differs in phase, but does not find the cluster that differs in amplitude. The

method of k-centers FC makes a split in two clusters without clear interpretation for this

data.

When one is unsure which and how many clusters to consider, one can look at the

average silhouette width of the clusters (Rousseeuw, 1987). The silhouette of each curve n is

a measure for the similarity of this curve to the members of its own cluster, compared to its

similarity to the ‘nearest’ cluster. In particular, denote d(n,C) the average dissimilarity of

curve n with respect to each of the members of its cluster C, and d(n,C ′) the minimum of

the average dissimilarity of curve n with respect to each of the members of any other clusters

C ′. The silhouette of curve n is then defined as {d(n,C ′)−d(n,C)}/ max{d(n, C ′)−d(n,C)}
and the silhouette width of each cluster is the average of the silhouettes of its members.

The latter is a good measure for the degree of separation of the clusters. For each of

the variables (shift, λn,1, λn,2, bn,1 and bn,2) in the illustrative example, the highest value

of the silhouette width was obtained for λn,1 (0.82), followed by bn,2 (0.79) and λn,2 (0.74).

When deciding on the number of clusters, We compared the average silhouette widths for

the PAM clustering algorithm with 2, 3, 4 and 5 clusters. The silhouette widths for 2, 3

and 4 clusters were very similar (with the surprising 4 cluster result due to an artificial λn,1

cluster for curves 15 and 17) and went down for 5 clusters.

4. Simulation study

4.1. Generating the data

The simulated data sets consist of one hundred samples s of each N = 17 curves. Each

sample s contains three different groups, formed by considering two different types of clusters.

One cluster consists of a group of five curves with increased distance between the peaks,

another cluster consists of six curves with increased hight of the second peak. See below

for details. The objective is in the first place to detect the three groups, though we also

demonstrate that it is possible to uncover the two different sets of clusters when looking for

two groups only.

The samples are generated as follows. For time point subscripts j = 1, . . . , 100,

y(s)
n (tj) = a

(s)
1,nφ((µ

(s)
1,n, 0.1); tj) + a

(s)
2,nφ((µ

(s)
1,n + µ

(s)
2,n, 0.1); tj), tj = −0.5 + (j − 1) · 0.02,

with φ ((µ, σ); t) the density function of the normal distribution with mean µ and variance
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σ2, and for each simulated sample s = 1, . . . , 100:

µ
(s)
1,n drawn from N̄ (0.1, 0.08,−0.1, 0.3), n = 1, . . . , 12,

µ
(s)
1,n drawn from N̄ (−0.05, 0.05,−0.15,−0.05), n = 13, . . . , 17,

µ
(s)
2,n drawn from N̄ (0.8, 0.01, 0.55, 0.71), n = 1, . . . , 12,

µ
(s)
2,n = 1, n = 13, . . . , 17, (4)

a
(s)
1,n drawn from N̄ (1, 0.2, 0.7, 1.2), n = 1, . . . , 17,

a
(s)
2,n drawn from N̄ (0.8, 0.2, 0.7, 0.9), n = 1, . . . , 6, 13, . . . , 17,

a
(s)
2,n drawn from N̄ (1.05, 0.2, 1.1, 1.2), n = 7, . . . , 12,

with N̄ (µ, σ, a, b) the truncated normal distribution with mean µ, variance σ2 and lower and

upper bound resp. a and b.

Figure 6 illustrates this setting with two examples of generated samples.

Each curve in the sample follows the same pattern: there are two peaks with random

heights and there is a random horizontal shift. For five of the curves the mean distance

between the curves is larger than for the other twelve curves, in this way creating a first set

of two clusters based on µ
(s)
1,n and µ

(s)
2,n in (4). An additional set of clusters is constructed in

the first set of twelve curves by increasing the average height of the second peak, as indicated

by a
(s)
2,n in (4). Thus we can distinguish two clusters based on the distance between peaks

(curves 1 to 12 versus curves 13 to 17) or two clusters based on the height of the second

peak (curves 1 to 6 and 13 to 17 versus 7 to 12), which means that this is actually a setting

with three clusters (curves 1 to 6 versus 7 to 12 versus 13 to 17).

4.2. Functional clustering approaches

We compare the multiresolution clustering method (MRC) with two advanced functional

clustering models: the SACK model (simultaneous alignment and clustering k-centers) (Liu

and Yang, 2009) and k-centers functional clustering (k-centers FC) (Chiou and Li, 2007). Liu

and Yang (2009) introduce cluster membership by means of a model with shifted B-spline

basis functions and cluster-specific basis coefficients. This means clusters are characterized

by similar patters, while allowing for random phase differences (basis functions shifts bi) and

amplitude differences (shifts di) within clusters.

Yij = di +
l∑

l=1

β
(k)
l Bl(bi + tij) + εij ≈ di +

l∑

l=1

β
(k)
l Bl(bi) + biB

′
l(tij) + εij,

with the Bl cubic B-spline basis functions, di ∼ N (0, σ2
d), bi ∼ N (0, σ2

b ) and εij
iid∼ N (0, σ2).

The random shifts bi constitute the curve registration aspect of their method.
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Figure 6: Two examples of simulated data samples in setting 1. Five curves with increased distance between
the peaks (blue) dashed lines and 6 curves with increased height of second peak (red) dotted lines.

In Chiou and Li (2007), an advanced functional version of the popular multivariate k-

means clustering algorithm is introduced via a truncated Karhunun-Loève representation of

each cluster c of curves Y in each step of the algorithm

Ỹ (c)(t) = µ(c)(t) +
Mc∑
j=1

ξc
j(Y )ρc

j(t),

with eigenfunctions ρj associated with the covariance (〈cov[Y (s), Y (t)], ρc
j〉 = λc

jρ
c
j(t)) and

ξc
j(Y ) uncorrelated random variables with zero mean and variance λc

j such that ξc
j(Y ) =

〈Y − µc, ρc
j〉. We refer to the mentioned paper for more details. Briefly, if in iteration i

Y is wrongly classified and does not belong to cluster c, discrepancies exist between Y (c)

and Y which can favor a change of cluster membership by comparing Y with its truncated

expansion with respect to the Karhunun-Loève eigenbases of the other clusters. These bases

maximize the percentage of total variation explained in the cluster curves, solving the issue

of having to choose the one set of proper basis functions (e.g. B-splines with equidistant

knots).

4.3. Clustering: simulation results

We use the classification error rate and the percentage of correct classifications in the

simulation setting to evaluate the performance of MRC and that of the competitors. The

classification error rate is the smallest percentage of cluster membership changes to be made

for the clustering result to match the real configuration.
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Figure 7: Boxplots of the classification error rate with respect to the three true clusters for resp. MRC based
on all variables in the summary matrix (MRC All), k-centers FC and SACK.

We start by searching for three groups in the data. For the MRC method, we use

the information of all coefficients. Figure 7 shows boxplots of the classification error rate

over the simulation runs. The true situation is one where there are three clusters. The

good performance of the new method which is based on the information contained in the

warped curves, is clearly visible. Similar as in the illustrative data example in Section 5,

the k-centers FC method has difficulties with detecting the correct clusters, especially those

curves with amplitude differences cannot be separated. In a lesser extend this holds true

for the SACK method as well. In the considered simulation setting it is expected that false

classifications might occur. Due to a small sample size, chance-induced clusters can arise in

a shift or with fitting the first kernel. The k-centers FC method however had not a single

entirely correct classification over the simulation runs, the SACK method reached 4% of

correct classifications, while the new MRC method taking all variables together was able to

correctly cluster the sample of curves in 28% of the simulation runs.

We now ask some more specialized questions. We wish to specify clusters of curves that

distinguish from other curves in showing more phase variation. This implies that in a warping

action, these curves need more severe warping than other curves. For the simulation setting

this corresponds to identifying the five curves for which the average distance between the

peaks is larger than for the other curves. The multiresolution warping method contains this

information in the intensities of the first warplet λn,1. This is confirmed by inspecting the

boxplots in Figure 8; clustering based on the λn,1 values gives indeed the best classification

result within the MRC approaches.

When using the three phase variables (horizontal shifts and intensities of both warplets),
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Figure 8: Boxplots of the classification error rate with respect to the two clusters based on the distance
between peaks for resp. MRC based on all variables in the summary matrix (all), MRC based on the
variables related to phase (phase), MRC based on the intensities of the first warping component only (λn,1),
k-centers FC and SACK.

an equally good result is obtained, as expected. This analysis does not get disturbed by the

distraction provided by the clusters in amplitude (height differences of the second peak).

When considering all variables resulting from the MRC procedure, thus also including the

estimated amplitude coefficients, we still get a reasonable result when searching for the two

clusters defined by phase characteristics, which indicates that the clusters originating from

phase differences might dominate the clusters originating from amplitude differences. The

simultaneous registration and clustering approach SACK excels here, while the k-centers FC

method, which is not designed to handle phase variation, has the worst performance.

In this example it is easier for the methods to detect the clusters in phase, than to detect

the clusters in amplitude. The boxplots of the classification error rate in Figure 9 show that

the MRC method (using all variables), k-centers FC as well as the SACK method fail to find

the clusters defined by amplitude differences. For all three methods the median classification

error is around 35%.

A strong characteristic of the MRC method is that we can specify which variables should

be used for clustering, which is not possible for any of the other methods. Using the esti-

mated coefficients for the second kernel in the model used for warping as a basis for clustering,

results in the lowest classification error rate amongst the considered methods. Including the

predicted coefficients for the first kernel, which does not add information in this example,

gives a slightly higher classification error rate, but performs still better than the other con-

sidered methods.
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Figure 9: Boxplots of the classification error rate with respect to the two clusters based on the height of the
second peak for resp. MRC based on all variables in the summary matrix (all), MRC based on the variables
related to amplitude (amplitude), MRC based on the coefficients for the second kernel (bn,2), k-centers FC
and SACK.

5. Clustering the Berkeley growth data

The Berkeley growth data (Tuddenham and Snyder, 1954) encompasses 31 height mea-

surements of boys and girls over a period of 17 years (from age 1 to 18). Important features

of human growth are easily observed when looking at growth velocity or acceleration; the

derivatives of the originally observed process. Hence growth curves are processes which have

intrinsic functional features. Instead of clustering the entire sample, with obvious differences

between boys and girls, we focus on the more homogeneous sample of velocity curves for the

39 boys, as shown in Figures 10 and 11.

Multiresolution warping was performed with one warplet and two kernel functions. The

warplet takes action on the interval (9.90, 22.28) with a center at 12.33. We note that

the warping and kernel bounds are allowed to extend beyond the observation domain to

incorporate possible increased variability at the boundaries. The first kernel acts on the

interval (0.03, 7.53) with a center at 0.86, while the second kernel focusses on amplitude

variation in the (2.98, 19.95) region with the center at 12.98. We immediately see that the

first warping component and the second kernel function focus on the variation around age

12. This leads to the interpretation that the variation in the pubertal growth spurt is related

both to phase (timing) and amplitude (magnitude).

Figure 10 shows the clustering result when applying the PAM algorithm for constructing

two clusters after multiresolution warping. It selects those boys who have a strong downfall

in growth velocity, right after the initial strong growth peak after birth.

Since the MRC method allows to search for local clusters in functional data, we decide to
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Figure 10: Growth velocity curves for 39 boys, clusters based on kernel 1 only (red dashed lines) and kernel
1 (blue line).

change the focus from the early age growth variation towards that at a later age. Therefore

we concentrate on the information contained in the second kernel (Figure 11 (a)) and the

warping component (Figure 11 (b)). The second kernel detects overall lower velocities in

the 8–16 age range, while the warping component forms clusters based on the timing of the

pubertal growth spurt. Finally, Figure 12 shows the clustering results for the two competitive

methods considered in section 4: the SACK model and k-centers FC. For the SACK model

it is not clear which feature exactly characterizes the clusters, but it seems to be a joint late

and small pubertal growth spurt effect. For k-centers FC the groups are based on overall

low versus high velocity curves, lacking any phase perspective and mixing information from

several growth periods. As with most clustering methods, we get only one clustering result

and no additional information on what caused the method to build these groups, contrary

to MRC, which supplies us with three options and allows for meaningful interpretations.
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Figure 11: Growth velocity curves for 39 boys. (a) Clusters based on kernel 2 only (red, dashed) and the
estimated kernel function (blue). (b) Clusters based on the warplet only (red, dashed), together with the
warping bounds and warping center (blue, dashed).
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Figure 12: Growth velocity curves for 39 boys. (a) Clusters based SACK model (red, dashed). (b) Clusters
based k-centers FC (red, dashed).

6. Discussion

The important contribution of this research is that we can explicitly use the information

from warping functional data in a further analysis, this is otherwise not actively done in the

available research. In particular, this information can be used for (i) clustering of functional
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data, (ii) outlier detection, (iii) classification. While the topic of the current paper is about

clustering, current research considers the other two methods.

The dimension reduction provided by the warping facilitates the use of existing clustering

approaches, without the need to develop new methods for the sole purpose of clustering

functional data.

A strong point of the proposed multiresolution approach is that we can direct the search

towards finding clusters with phase differences, or clusters with amplitude differences, or

do not specify any option, and look simultaneously for clusters with might differ in phase

and/or amplitude.

When local or some specific features are of interest, the available information can be

explored in more detail. Multivariate tools can aid one in the search for clusters which yield

the best separation of the curves. For instance, the warplets are built from a multiresolution

approach and have a clear interpretation with respect to both location and intensity. The

search for local clusters in a set of curves with similar shapes can be pursued by considering

the effects of the warplets related to a specific region. This leads towards searching for

clusters within a specific time frame.

While the MRC-all approach takes all of the standardized variables of the multiresolution

warping method, one could weigh each of the variables according to the amount of variation,

according to a chosen measure, that they explain in the curve sample. For example, when

a set of curves displays much more phase variation than amplitude variation, the variables

related to phase could be decided to receive a larger weight.

A simulation study showed improved clustering performance with respect to two ad-

vanced competitive methods, in a complex phase-amplitude setting. The method is also

illustrated by means of the well-known Berkeley growth curves, where we considered the

more homogeneous sample of velocity curves for boys.

Appendix A. R code for the multiresolution clustering

The R library MRwarp can be accessed from the webpage

http://perswww.kuleuven.be/gerda claeskens/software. The code for the analysis of the

illustrative data example is included in full in the file MRWclust.examplecode.R, where also

the function kernelcoeff is made available.

library(MRwarp); library(SemiPar); library(cluster); library(pls)

# multiresolution warping step

output <- MRwarp(Xdata,Ydata,chain=1500,thin=5,burnin=1/3,kernel.s=c(-0.2,0.2,0.5,0.6,0.9,1.2),
components=2,selection="FIXED",thresh=0.8,threshd=1/20,prepr=c(1,0,0,0),outputfit=0)
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parsk = as.matrix(read.table("amcmcker2.txt",header=FALSE))
K <- parsk[output$index[1],]

ll <- min(Xdata); ul <- max(Xdata)
S <- dim(Xdata)[1]; N <- dim(Xdata)[2]

A <- output$A
Ll <- output$Ll
Ul <- output$Ul
Lambda <- output$Lambda
shift.w <- output$shift.w

valvec <- matrix(0,S,1+length(K)/3+dim(Lambda)[2]) #data summary matrix

# shift
valvec[,1] <- shift.w
Wx <- Xdata + shift.w

# warplets
valvec[,2:(1+dim(Lambda)[2])] <- Lambda
for (ii in 1:2)

{for (j in 1:S)
{Wx[j,] <- warp(A[ii],Lambda[j,ii],A[ii]-Ll[ii],Ul[ii]-A[ii],Wx[j,]) }

}

#kernels
kc <- kernelcoeff(Wx,Ydata,K,ll,ul,maxiter=50,prec=0.01)
valvec[,(2+dim(Lambda)[2]):(1+dim(Lambda)[2]+length(K)/3)] <- kc$coeff

#standardize the summary matrix
valvec.st <- stdize(valvec)

#perform PAM procedure
pam(valvec.st[,1:3],2)$cluster
pam(valvec.st[,5],2)$cluster
pam(valvec.st[,1:5],3)$cluster
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