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Abstract. In 2008, Wan et al. presented an anonymous ID-based group key
agreement scheme for wireless networks, for which they claim that it ensures
anonymity and unlinkability of the group members, as well as forward and
backward secrecy of the group session key. In this paper, we show that forward
and backward secrecy do not hold for the protocol. We propose a correction
that introduces a shielding factor that protects each member’s input to the
group key. we also introduce a new feature that assures the correctness of the
key as computed by all group members. This results in an increased compu-
tation cost, due to extra public key operations, and a similar communication
cost. We also show in which practical setting the protocol can be deployed.
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1 Introduction

In this paper, we propose an improved version of the anonymous ID-based
group key agreement scheme for wireless networks by Wan et al. [1], and
present a scenario in which such a scheme can be used. The original scheme
claims to provide group member anonymity from outside eavesdroppers, and
forward and backward group key secrecy from leaving resp. joining group
members. We show that these claims are incorrect and propose an improved
protocol. In Sect. 2, we introduce ID-based cryptography, the original protocol
by Wan et al. and its vulnerabilities. The main problem with the protocol is
that most of the shares of the previously agreed group key remain unaltered
in the computation of the new group key, such that joining/leaving members
can reconstruct the old/new group key. The improvement, presented in Sect. 3
involves the introduction of a session ID to protect the previously established
group key shares. In Sect. 4 we analyse the performance loss, and indicate why
the improvements fix the original protocol. Finally, we show how the protocol
can be used in the practical setting of a Virtual Private Ad Hoc Network
(VPAN), and we conclude with ideas for future work.

The setting in which we operate is as follows: a dynamic set of devices
wants to establish a shared secret group key in a privacy-preserving way.
‘Dynamic’ means that devices can join or leave, albeit at a slow pace (a couple
of devices per hour). Encryption with an authenticated group key will ensure
confidentiality, but we also require the following:



- Anonymity: a group member remains anonymous for an outsider;
- Unlinkability: an outsider should be unable to link a group member

across sessions with different group keys;
- Backward and forward secrecy: only the members that were involved

in the group key generation should be able to construct the group key. Be-
ing part of the group in the past (forward secrecy) or the future (backward
secrecy) leaks no information on the ‘current’ group key.

- Perfect forward secrecy: in case of master key compromise, all previous
group keys should remain secret.

2 ID-based Protocol by Wan et al.

The group key agreement scheme of Wan et al. in [1] is based on ID-based
public-key cryptography in which the public key of a user is derived from
its identity. Identity Based Encryption (IBE) was proposed by Shamir [2] in
1984, and one of the first practical IBE schemes [3, 4] is based on bilinear
maps. In IBE, a trusted server S, called a Private Key Generator (PKG),
provides private keys for all participating group members using a randomly
chosen master secret s and the identity of each user, after checking his ID.
The focus on this paper is on how to fix the scheme of Wan et al., but many
similar schemes have been proposed; one example of similar work can be found
in [5], which also contains some references to other schemes, and a survey [6]
of key agreement protocols. The mathematical setup for the protocol in [1]
can be summarised as follows: the PKG selects two cyclic groups G1 and G2

of order q for some large prime q, and a bilinear mapping ê : G1 ×G1 → G2 :
(P1, P2) 7→ Q . The PKG determines the generator P ∈ G1, a master secret
s ∈R Zq \ {0}, and a public value Ppub = sP .
The public parameters 〈q, G1, G2, ê, H1, P, Ppub〉 are distributed to all users
in the system, where H1 is a hash function, H1 : {0, 1}∗ → G1, used to embed
identity values in G1: For a user with identity Ui, the PKG generates the
private key PrKi = sH1(Ui), for which the corresponding public key is the
user’s identity PuKi = Ui. In the remainder of the text, ui = H1(Ui).
The building blocks of the anonymous ID-based group key agreement protocol
presented by Wan et al., which is based on [7,8], are: group initialisation, the
join protocol and the leave protocol.

Initialisation Protocol
The initialisation protocol is executed when an initiator U1 wants to have a
private group session with a set of users {U2, . . . , Un}.
Round 1: U1 → Ui : [EPuKi

(L, SigPrK1
(L)), r1P ] , where r1 ∈R Zq and

L = U1‖ . . . ‖Un‖Nym1‖ . . . ‖Nymn, the concatenation of the identities Ui

and the related pseudonyms Nymi. L is signed with U1’s private key, and
encrypted with the recipient’s (Ui) public key.



Round 2: Ui → Ui−1, Ui+1 : [Nymi, riP ]: The users Ui, (i 6= 1) decrypt
the message from Round 1, retrieve their pseudonym Nymi, which is sent,
together with riP, ri ∈R Zq to the users Ui−1 and Ui+1:
Round 3: Ui → ∗ : [Nymi, Xi = ki

ki−1
]: Each Ui broadcasts his Nymi with a

key share Xi = ki/ki−1, depending on his private key PrKi = sui, the random
number ri and the points ri−1P and ri+1P from Round 2:
ki = h(ê(ui+1, PrKi)‖riri+1P ), ki−1 = h(ê(ui−1, PrKi)‖riri−1P ).1 The bi-
linear property of the mapping ê ensures the consistency of the subkeys ki:
ê(ui+1, PrKi) = ê(ui+1, sui) = ê(ui, sui+1) = ê(ui, PrKi+1).
Group key K generation: Each user Ui receives all Xj , (j 6= i), and com-
putes2 the ‘subkeys’ ki+1,ki+2,. . . ,ki+n−1, from his own subkey ki:
ki+1 = kiXi+1, ki+2 = ki+1Xi+2, . . . ki+n−1= ki−1 = ki+n−2Xi+n−1 = ki−2Xi−1 .
Then Ui verifies ki+n−1Xi+n = ki, and forms the group key K = H(k1‖k2‖ . . . ‖kn).3

Finally, each user Ui, (i 6= 1) sends H(K‖U1‖U2‖ . . . ‖Un) to the initiator U1,
who checks the consistency of the group key K.

Join Protocol
When the join protocol is executed to add a new user Un+1 to the group, the
group key is updated to ensure backward secrecy.
Round 1: U1 generates Nymn+1 for Un+1 and initiates the protocol:

U1 → Un : EPuKn
(L1‖SigPrK1

(L1)), L1 = Un+1‖Nymn+1 (1)
U1 → Un+1 : EPuKn+1

(L2‖SigPrK1
(L2)), (2)

L2 = U1‖Nym1‖r1P‖Un‖Nymn‖rnP‖L1 , (3)

Round 2: Un+1 obtains Nymn+1, chooses rn+1 ∈R Zq and computes two sub-
keys kn+1 = h(ê(u1, PrKn+1)‖rn+1r1P ) and k′n = h(ê(un, PrKn+1))‖rn+1rnP ).
Un+1 then sends his information to U1 and Un:

Un+1 → U1, Un : Nymn+1, rn+1P,Xn+1, where Xn+1 = kn+1/k′n. (4)

Round 3: U1 and Un compute kn+1 and k′n respectively:
kn+1 = h(ê(un+1, PrK1)‖r1rn+1P ), k′n = h(ê(un+1, PrKn)‖rnrn+1P ). Then
they compute the new X-values X ′1 = k1/kn+1 and X ′n = k′n/kn−1, and dis-
tribute them to the new group:

Un → U1 : X ′n ,

U1 → Un+1 : EPuKn+1
(N1‖SigPrK1

(N1)), N1 = X ′1‖X2‖ . . . ‖Xn−1‖X ′n ,

U1 → ∗ : EK(N2‖SigPrK1
(N2)), N2 = X ′1‖Xn+1‖X ′n .

Group key K update: Every group member (including Un+1) can now
compute all the subkeys ki, i = 1, . . . , n + 1 with the altered k′n and the new
kn+1 with the following sequence of calculations4 (illustrated for user Un−1):

1 h : G2 ×G1 → {0, 1}k is a hash function with security parameter k
2 Subscript numbers are considered modulo n.
3 H : {0, 1}∗ → {0, 1}k is a hash function
4 Note that all subscript numbers are considered modulo n + 1.



k′n =kn−1X
′
n; kn+1 =k′nXn+1; kn+2 =k1 =kn+1X

′
1; k2n =kn−1 =kn−2Xn−1.

The updated group key K ′ = H(k1‖k2‖ . . . ‖k′n‖kn+1), is formed and checked
in the same way as in the initialisation protocol.

Leave Protocol
This protocol ensures forward secrecy when a group member Ui leaves.
Round 1: U1 assigns new pseudonyms to Ui−1 and Ui+1, using the current
group key K:

U1 → Ui−1, Ui+1 : EK(L‖SigPrK1
(L)), (5)

L = Ui‖Nymi‖Ui−1‖Nym′i−1‖Ui+1‖Nym′i+1 .

Round 2: Ui−1 and Ui+1 verify the signature of U1 and exchange new pa-
rameters r′i−1P and r′i+1P using their new pseudonyms:

Ui−1 → Ui+1 : Nym′i−1, r
′
i−1P, Ui+1 → Ui−1 : Nym′i+1, r

′
i+1P .

Round 3: Ui−1 and Ui+1 recompute their (equal) subkeys k′i−1 and k′i:
Ui−1 : k′i−1 = h(ê(ui+1, PrKi−1)‖r′i−1r

′
i+1P ) ,

Ui+1 : k′i = h(ê(ui−1, PrKi+1)‖r′i+1r
′
i−1P ) .

Next, the updated X-values are computed and distributed:

Ui−1 → U1 : X ′i−1 =
k′i−1

ki−2
, Ui+1 → U1 : X ′i+1 =

ki+1

k′i
=

ki+1

k′i−1

,

U1 → ∗ : EK(N‖SigPrK1
(N )), N = Ui‖Ui−1‖Ui+1‖X ′i−1‖X ′i+1. (6)

Group key K update: The remaining n− 1 group members can now com-
pute the updated group key K ′ = H(k1‖k2‖ . . . ‖k′i−1‖ki+1‖ . . . ‖kn), which is
checked in the same way as in the initialisation protocol.

Security Properties

Forward and backward secrecy are not met in the described protocols, contrary
to the claims in [1]. In the adversary model, we assume a global, active attacker
who is capable of eavesdropping, injecting, modifying or dropping messages
within the network at will.
Forward secrecy: In the leave protocol described above, forward secrecy
is not guaranteed. In round 3 of the protocol, the leaving member Ui can
obtain the values X ′i−1 and X ′i+1 in two ways: they are sent unprotected
to U1 AND they are broadcasted under the old group key K in (6). Ui

already knows ki (i = 1, . . . , n), from the old group key, and only needs
to recover the updated subkey k′i−1 = k′i, to get the new group key K ′ =
H(k1‖ . . . ‖ki−2‖k′i−1‖ki+1‖ . . . ‖kn), which can be done from X ′i−1 and X ′i+1:

k′i−1 = ki−2X
′
i−1, k′i = ki+1X

′
i+1.

Backward secrecy: Backward secrecy is not ensured by the group member
join protocol. At the end of this protocol, user Un+1 computes the new group



key K ′ = H(k1‖ . . . ‖kn−1‖k′n‖kn+1) knowing all subkeys ki. To be able to
compute K, only kn is missing, which can be computed from X1 = k1/kn or
Xn = kn/kn−1, sent around unencrypted in the previous session, which Un+1

could have monitored.

3 Improved Protocol

Forward and backward secrecy can be ensured by the following improved
leave/join protocols. Our improvement, partially based on ideas of Jung [9],
makes use of a session ID, denoted as SID. This random string, unique for
each new group session is newly generated and distributed by U1 in each
join/leave protocol. The SID will blind all subkeys k, such that each member
will affect the updated group key. Below we describe the difference to the
original protocol, for the building blocks described in Sect. 2.

3.1 Initialisation Protocol

U1

Ui

Uk
1<k<i−1

Ui−1

Ui+1

Ul
i+1<i≤n

(1)

(1)

(1)

(1)

(1)

(1)

L = U1� . . . �Un�Nym1� . . . �Nymn�SID

U1 → Ui : EPuKi
(L�SigPrK1

(L)), r1P ,

(2)

(2)

(2)

(2)

(2)

(2)

(2) Ui → Ui−1, Ui+1 : Nymi, riP

(a) Round-step 1 & 2

U1

Ui

Uk
1<k<i−1

Ui−1

Ui+1

Ul
i+1<i≤n

(3)

(3)

(3)

(3)

(3)(3)

(3) Ui, (i = 1, . . . , n) → ∗ : Nymi, Xi ,

Xi = H(ki,SID)⊕H(ki−1,SID)

(b) Round-step 3

Fig. 1. Initialisation Protocol

Round 1: U1 generates a SID and adds it to the encrypted and signed mes-
sage, sent to each user Ui, in which L = U1‖ . . . ‖Un‖Nym1‖ . . . ‖Nymn‖SID:

U1 → Ui : EPuKi
(L‖SigPrK1

(L)), r1P . (7)

Round 2: No changes to the original protocol.
Round 3: Each Ui calculates ki and ki−1 as in the original. Xi is different:

Xi = H(ki‖SID)⊕H(ki−1‖SID) .



Xi now also depends on SID, and will be updated with each change of the
group. As before Nymi, Xi is broadcasted to all other users.
Group key K generation: Each Ui executes a series of calculations:

H(ki+1, SID) = H(ki, SID)⊕Xi+1 ,H(ki+2, SID) = H(ki+1, SID)⊕Xi+2 ,

. . .

H(ki+n−1, SID) = H(ki+n−2, SID)⊕Xi+n−1 .

At the end, Ui verifies if H(ki+n, SID) = H(ki+n−1, SID)⊕Xi+n = H(ki, SID),
and the group key K is formed: K = H(H(k1, SID)‖H(k2, SID)‖ . . . ‖H(kn, SID)) ,
Group key K consistency verification: In the original scheme, each Ui, (i 6=
1) sends the same check value to U1, which means that U1 cannot verify its
origin. In our version of the protocol, the confirmation message can only be
generated by a legitimate Ui: Ui → U1 : EK(Ui‖SigPrKi

(K)).

3.2 Join Protocol
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U1 → ∗ : EK(L1�SigPrK(L1)),

(1b)

(1b)

U1 → Un+1 : EPuKn+1
(L2�SigPrK1

(L2)),

L2 = L1�r1P�rnP

Un+1 → U1, Un : Nymn+1, rn+1P

(2)

(2)

(2)
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1 = H(k1,SID�)⊕H(kn+1,SID�)

X �
n = H(k�n,SID�)⊕H(kn−1,SID�)

X �
i|2≤i≤n−1 = H(ki,SID�)⊕H(ki−1,SID�)

Un+1 → ∗ : Nymn+1, Xn+1,

Ui, (i = 1, . . . , n) → ∗ : Nym�
i, X

�
i,

(b) Round-step 3

Fig. 2. Join Protocol

Round 1: U1 generates a new session ID, denoted as SID′. Next U1 informs
all members Ui, (i = 1, . . . , n) and Un+1 about Un+1’s joining, and assigns new
pseudonyms Nym′i to all Ui and a pseudonym Nymn+1 to Un+1

5 :

U1 → ∗ : EK(L1‖SigPrK1
(L1)),

L1 = U1‖ . . . ‖Un‖Un+1‖Nym′1‖ . . . ‖Nym′n‖Nymn+1‖SID′ , (8)

5 Note that the encryption algorithms in (8) and (9) are different.



U1 → Un+1 : EPuKn+1
(L2‖SigPrK1

(L2)), L2 = L1‖r1P‖rnP , (9)

Round 2: After decryption, Un+1 obtains the pseudonyms of all Ui, (i =
1, . . . , n+1), chooses rn+1 ∈R Zq and computes kn+1 and k′n as in the original
protocol. He also computes his own Xn+1 = H(kn+1‖SID′)⊕H(k′n‖SID′) and
sends Nymn+1, rn+1P to U1 and Un.
Round 3: Upon reception of rn+1P , U1 and Un can compute subkeys kn+1

and k′n as before and recompute their X-values:

U1 : X ′1 = H(k1, SID′)⊕H(kn+1, SID′) ,

Un : X ′n = H(k′n, SID′)⊕H(kn−1, SID′) .

The other users Ui need to update their X-value as well:

Ui, (i = 2, . . . , n− 1) : X ′i = H(ki, SID′)⊕H(ki−1, SID′) .

Finally, all group members broadcast their new X-values to all other users
along with their new pseudonym:

Ui, (i = 1, . . . , n)→ ∗ : Nym′i, X
′
i , Un+1 → ∗ : Nymn+1, Xn+1 .

Group key K update: Each user can now compute every H(ki‖SID′), using
the X-values, and compute and verify the new group key K ′ 6:

K ′ = H(H(k1, SID′)‖ . . . ‖H(k′n, SID′)‖H(kn+1, SID′)) .

3.3 Leave Protocol
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(3)

(3)
(3)

(b) Round-step 3

Fig. 3. Leave Protocol

6 The consistency verification is identical to the one in the initialisation protocol.



Round 1: When Ui wants to leave the current session, U1 generates a new
SID′ and informs all remaining group members by broadcasting:

U1 → ∗ : EK(L‖SigPrK1
(L)),

L = U1‖ . . . ‖Un‖Nym′1‖ . . . ‖Nym′i−1‖Nymi‖Nym′i+1‖ . . . ‖Nym′n‖SID′ ,

in which new pseudonyms Nym′i are assigned.
Round 2: Upon reception of their new pseudonym, Ui−1 and Ui+1 exchange
their new values r′i−1P and r′i+1P , as in the original protocol.
Round 3: Then, Ui−1 and Ui+1 recompute their subkeys k′i−1 and k′i, again
as in the original protocol, and compute their X-values:

Ui−1 : X ′i−1 = H(k′i−1, SID′)⊕H(ki−2, SID′) ,

Ui+1 : X ′i+1 = H(ki+1, SID′)⊕H(k′i, SID′) .

The other users Ui need to update their X-value as well:

Ui, (i = 1, . . . , i− 2, i + 2, . . . , n) : X ′i = H(ki, SID′)⊕H(ki−1, SID′) .

Finally, all remaining group members broadcast their new X-value:

Ui, (i = 1, . . . , i− 1, i + 1, . . . , n)→ ∗ : Nym′i, X
′
i .

Group key K update: Each user can now compute every H(ki‖SID′)7, using
the X-values, and compute and verify the new group key K ′ 8:

K ′ = H(H(k1, SID′)‖ . . . ‖H(k′i−1, SID′)‖H(ki+1, SID′)‖ . . . ‖H(kn, SID′)).

4 Security and Performance Analysis

4.1 Security

Here we informally show that our scheme ensures all the requirements, includ-
ing forward/backward secrecy. In the security analysis below, we assume that
the adversary knows the current SID, unless otherwise stated.
Anonymity: The identities of the users Ui are encrypted at all times in the
protocols, either by anonymous ID-based encryption using their public keys
PuKi or by symmetric encryption using the group key K. In all protocols,
identities are masked by pseudonyms constructed by the initiator U1. The use
of identities and private keys in the calculation of the values Xi is masked by
hashing with a random point in G1; identity information cannot be retrieved
without the master secret s or the user’s private key PrKi.
Unlinkability: Anonymity alone only hides the real identities of the group
members. To prevent an adversary from tracing a user by his pseudonym,
pseudonyms or X-values are never re-used when the group changes and a new
group key needs to be established. Therefore, a user Ui is able to join or leave
a private group session anonymously.
7 The equality k′i−1 = k′i is necessary for the correctness of the sequence of calculations.
8 The consistency verification is identical to the one in the initialisation protocol.



Group key secrecy and perfect forward secrecy: If an attacker knows
SID, the group key K = H(H(k1, SID)‖H(k2, SID)‖ . . . ‖H(kn, SID)) remains
secure: to retrieve K, he needs access to at least one user’s shared subkey ki,
to compute the other subkeys kj from the broadcasted X-values. The subkey
ki = h(ê(ui+1, PrKi)‖riri+1P ) cannot be computed without knowing Ui+1,
the private key PrKi and the element riri+1P :

– The IDs Ui are encrypted, and only known to the participating members;
– The private key of the users is never shared and can only be computed

with the master secret s;
– The element riri+1P cannot be computed from the exchanged riP and

ri+1P because of the ECDHP assumption [10].

Knowing the identities Ui next to SID, is also insufficient to compute ki with-
out having knowledge of the master secret s or the private keys PrKi, since
ê(ui+1, PrKi) = ê(ui+1, sui). The argumentation above shows that the group
key K cannot be retrieved by the adversary in our threat model.

Even in case when the long-term master secret s is compromised and the
identities of the participating members are revealed, group keys from previous
stages remain uncompromised, because of the last argument in the list above,
such that the protocol is also perfectly forward secret.
Forward and backward secrecy: Forward and backward secrecy should
be ensured for the leaving and joining protocol respectively. Each time the
group membership changes, the initiator U1 introduces a new SID′ and the
group key is updated. While each user Ui still computes both subkeys ki and
ki−1, he will share H(ki‖SID′), instead of the unprotected ki. This is done by
broadcasting X ′i = H(ki‖SID′)⊕H(ki−1‖SID′). A joining/leaving member is
unable to compromise a past/future group key K:

1. the only subkeys k a joining/leaving member knows are his own, which
are both newly generated or updated during the join/leave protocol such
that the knowledge of the previous SID/updated SID′ cannot be used to
compute a previous/updated group key;

2. each user’s shared contribution and the corresponding X-value are SID-
dependent, and are updated and re-broadcasted in the join/leave protocol.

Forward secrecy for the leaving protocol: In round 1, the leaving member Ui

gains knowledge of the updated SID′ since it is encrypted using the old group
key K. This is no problem for the forward secrecy, as Ui can only generate
H(ki‖SID′) and H(ki−1‖SID′); these are exactly the values that are updated
by Ui−1 and Ui+1 in round 3, and shared through updated X ′-values:

Ui−1 : X ′i−1 = H(k′i−1, SID′)⊕H(ki−2, SID′) ,

Ui+1 : X ′i+1 = H(ki+1, SID′)⊕H(k′i, SID′) ,

where each shared contribution is updated with the new SID′. Because Ui only
knows H(ki−1, SID′), H(ki−2, SID), H(ki+1, SID), H(ki, SID′), he is unable to
retrieve any useful information from X ′i−1 and X ′i+1 to retrieve the new K ′.



Backward secrecy for the joining protocol: In round 2, the joining member
Un+1 computes both subkeys kn+1 and k′n and shares this through Xn+1 =
H(kn+1‖SID′)⊕H(k′n‖SID′). If Un+1 knows the previous session ID, i.e. SID,
he can compute H(kn+1‖SID) and H(k′n‖SID). However, this does not give
him an advantage in recovering any past group key K since the subkey kn

has been updated. The shared contributions of all other group members are
now masked with a new SID′, hence knowing H(k1‖SID′) in combination with
X1 = H(k1‖SID)⊕H(kn‖SID) does not help to retrieve K.

4.2 Performance

In Tables 1 and 2, we give an overview of the communication and computation
cost of the new protocol, compared to the original protocol by Wan et al.

Communication cost: the number of broadcast messages in the join and
leave protocol is higher: each time the group (of size n) changes, each Ui

needs to broadcast his updated share H(ki‖SID′) to all other users.
Table 1. Communication Cost Comparison

Protocols Rounds Messages Unicast Broadcast

Wan et al.
Initialise 3 4n 3n n

Join 3 7 6 1
Leave 3 7 6 1

Our protocol
Initialise 3 4n 3n n

Join 3 n + 5 3 n + 2
Leave 3 n + 2 2 n

Computation cost: the increase in signature generations and verifications
is due to (1) the initiator U1 broadcasts his signed message containing
the newly reassigned pseudonyms Nym′i and updated SID′ during the
join/leave protocol, and (2) the improved group key consistency verifica-
tion process at the end of each protocol.

Table 2. Computation Cost Comparison

Protocols ID-based Pairing Signature Point
Encryption Computation (ê) Gen./Verif. Multiplication (in G)

Wan et al.
Initialise n− 1 2n 1 n− 1 3n

Join 3 4 4 n + 3 5
Leave 0 2 2 n + 1 4

Our protocol
Initialise n− 1 2n n 2n− 2 3n

Join 1 4 n + 2 2n + 1 5
Leave 0 2 n− 1 2n− 4 4

5 Application: Virtual Private Ad Hoc Network

As more and more mobile devices interconnect though largescale IP networks,
new network architectures become important. Virtual Private Ad Hoc Net-
work (VPAN) is a concept that aims to establish a secure virtual network



on top of the existing insecure IP base network by combining network virtu-
alisation and ad hoc networking techniques. This concept was proposed and
introduced in [11] and [12].

Due to geographical distribution of VPAN entities, clusters of entities –
VPAN Nodes – that are able to connect to each other directly are formed,
in which a special node, the Gateway Node, has connectivity to an IP-based
access network. Within the same VPAN, clusters are interconnected through
their Gateway Nodes. The VPAN membership is self-organising: members
need to be able to discover each other and form a secure overlay without user
intervention. Additionally, ad hoc routing techniques are used for efficient
internal routing. A VPAN is identified by a VPAN prefix, which is prepended
to the VPAN Node ID for every node in a VPAN, such that one node can be
active in multiple VPANs.

Our privacy-preserving ID-based group key agreement scheme described
in Sect. 3 can be applied to the VPAN setting to protect the privacy of VPAN
cluster nodes to the outside world as well as to obtain a shared group session
key within each cluster while supporting dynamic cluster membership. More
specifically, VPAN Nodes remain anonymous and an outside eavesdropper is
unable to trace or monitor activities of a specific VPAN Node, or to link the
same VPAN Node in clusters of different VPANs.

The initiator U1, which should have an IP connection, assumes the role of
Gateway Node GN , while the remaining users Ui|2≤i≤n act as VPAN Nodes.
Hence a group of users {Ui|1≤i≤n} is here referred to as a cluster of VPAN
members {GN, Ui|2≤i≤n}. To ensure that VPAN Nodes can form new clusters
or join an existing cluster, the GN of each VPAN cluster broadcasts period-
ically the following beacon message: GN → ∗ : GN‖SigPrKGN

(GN), where
GN denotes the Gateway Node’s public key.
Initialisation Protocol: cluster initialisation occurs when setting up a new
VPAN or forming a new cluster within an existing VPAN. Each VPAN Node
Ui receiving GN ’s beacon, responds with the following encrypted message:
Ui → GN : EPuKGN

(L‖SigPrKi
(L)) with L = Ui‖VPANprefix. At the end,

GN has a set of VPAN Nodes {Ui|2≤i≤n} to form a cluster and to agree upon
a shared group session key.
Join Protocol: when a new VPAN Node Un+1 wants to join an existing
cluster {GN, Ui|2≤i≤n}, he waits for the beacon and responds with the fol-
lowing encrypted message: Un+1 → GN : EPuKGN

(L‖SigPrKn+1
(L)) with

L = Un+1‖VPANprefix. During the join protocol, the shared group session
key is updated to provide backward secrecy.
Leave Protocol: when a VPAN Node Ui wants to leave an existing cluster,
the leave protocol is executed to update the group session key and thus to
provide forward secrecy.
The protocols themselves remain exactly the same as described in Sect. 3, all
initiated by the Gateway Node GN .



6 Conclusion and future work

In this paper, we showed that the key agreement protocol by Wan et al.
does not offer forward and backward secrecy, contrary to their claims. We ad-
justed the protocol such that these requirements are met and added an extra
safeguard at the end of the protocol. The cost for these improvements is a
increased computation cost and a moderately higher communication cost.
Future work includes a thorough investigation of the role of the network in
which our protocol will operate; this can be done in a VPAN setting, for which
test infrastructures exist already. The designers of the referenced VPAN were
involved in this work, and collaboration seems possible.
The cost of running an anonymous routing mechanism in a multihop ad hoc
network, as suggested by the original protocol authors, cannot be neglected.
Furthermore, privacy-preserving ID-based protocols in which multiple mem-
bers can join and leave simultaneously and in which groups can merge and
split are still to be developed.
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