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ABSTRACT 

Two paradigmatic approaches to the normalisation of citation-impact measures  are 

discussed. The results of the mathematical manipulation of standard indicators such as 

citation means, notably journal Impact Factors, (called aposteriori normalisation) are 

compared with citation measures obtained from fractional citation counting (called 

apriori normalisation). The distributions of two subfields of the life sciences and 

mathematics are chosen for the analysis. It is shown that both methods provide indica-

tors that are useful tools for the comparative assessment of journal citation impact. 

1. INTRODUCTION 

A common problem in comparative bibliometrics at the meso and micro level is the 

differentiation and specialisation of subject profiles of the objects of analysis. Typical 

tasks are the evaluation and ranking of research institutes and journals, which requires 

the application of more sophisticated techniques than customary at the macro level. 

The necessity and possibility of proper standardisation or cross-field normalisation of 

scientometric indicators for evaluative purposes has been studied by Schubert and 

Braun (1996). Other papers on this issue have shown that subfield-specific normalised 

citation indicators are useful tools for the comparative assessment of objects with 

deviating profile (Glänzel et al., 2009).  

Most notably, the ranking of scientific journals according to their citation impact proved 

an everlasting story. It is not only the most commonly used ISI Impact Factor as such 

that is in dispute; also the general question of how journal performance and significance 

could best be depicted has provoked broad discussions and encouraged a plethora of 

methodological approaches to solve controversial issues in the context of journal impact 

measures (e.g., Pinski and Narin, 1976, Lindsey, 1978, Asai, 1981, Tomer, 1986). Some 

solutions aimed at improving the impact factor (e.g., Asai) others suggested completely 



different approaches like the weighted journal influence suggested by Pinski and Narin. 

However, one of the main points of criticism lies in the Impact Factors’ subject bias. The 

page-rank based approach by Gonzalez-Pereira et al. (2010) is linked to the earlier 

suggestions by Pinski and Narin (1976). In particular, the SCImago Journal Rank 

indicator (SJR) weights citations received by journals by the eminence of the citing 

journals. Eigenfactor Score and Article Influence by Thomson Reuters are similar 

measures, which estimate the relative influence of cited items (cf., Bergstrom et el, 

2008). While the first measure expresses the overall prestige of a given journal, the latter 

indicator provides the per-article citation influence of the journal. Nevertheless, these 

alternatives cannot solve the subject bias caused by the specific subject and document 

type. Review journals and life sciences thus remain still on top of the ranking lists. 

The idea of subject normalisation for journals has recently taken up again by Beirlant et 

al. (2007) and Glänzel (2010). The idea was to transform the distribution of Impact 

Factors over journals within given disciplines so that standard distributions are 

obtained. Since these approaches are manipulations of the original measures, we can call 

these methods aposteriori normalisation. Other forms of aposteriori normalisation, 

applied in a broader context, are journal- or subject-normalised relative indicators such 

as RCR, NMCR, CPP/JSCm and CPP/FSCm used by (Schubert and Braun, 1986, Braun 

and Glänzel, 1991, Moed et al., 1995). This type of normalisation is also called cited-side 

normalisation (cf. Waltman and van Eck, 2010). 

More recently, Zitt and Small (2008), Zitt (2010), Moed (2010) and Leydesdorff and 

Opthof (2010) have chosen a different way: Citations to journals are immediately 

normalised before the indicators are build. These are referred to as citing-side or source 

normalisation (e.g., Zitt, 2010, Moed, 2010). We will call this solution apriori 

normalisation. In the following we will compare the two specific normalisation methods 

for journal impact measure, one each apriori and aposteriori. The pros and cons of the 

two approaches will be discussed. 

2. THE APOSTERIORI METHOD – NORMALISED IMPACT-FACTOR 

DISTRIBUTIONS 

In an earlier study, Beirlant et al. (2007) have transformed the distribution of journals 

over impact factors to the standard-normal distribution. In a recent paper, Glänzel 

(2010) has chosen another way; threshold values of Characteristic Scores and Scales  

(CSS; cf. Glänzel and Schubert, 1988) were used to re-scale the distribution of impact 

measures over journals. CSS are obtained from a recursive procedure of iteratively trun-

cating a sample according to mean values from the low-end up to the high-end. In par-



ticular, samples are iteratively truncated at their mean value m, then the mean of the 

truncated sample is recalculated until the procedure is stopped or no new scores are 

obtained. The scores are denoted by i, where 0 = 0 and 1 = m by definition. 3 is ordi-

narily used to identify top journals. This procedure can preferably be applied to ISI Sub-

ject Categories or sufficiently narrow subfields. The transformation  

12

* x
u  , 

where x is the journal impact factor and 1 and 2 the first and second characteristic 

score of the underlying citation distribution, results in a robust normalisation of journal 

impact (cf. Glänzel, 2010). This method aimed at the identification of top. Since their 

modified impact measures become comparable though normalisation, top journals can 

be compared across different fields. Table 1 illustrates this effect for three selected fields 

biochemistry/biophysics/molecular biology (B1) and applied mathematics (H1). Here 

papers are published in 2006, the citation window comprises the three-year period 

2006–2008. The threshold 3 usually identifies 3% to 5% of all journals of the discipline 

as top journals. In the case of the two selected fields, 11 top journals were found in the 

life-science field B1 (n = 333) and 14 in mathematics H1 (n = 380).  Also the mean value 

of the distributions changes considerably. While 6.90 for B1 and 1.82 for H1 1.59 clearly 

reflect the usual subject-specific peculiarities, the same distribution means take almost 

subject-invariant values after transformation ( 1* = 1.07 for B1 and 1.41 for H1). The nor-

malisation effect is even more dramatic if the 3rd score is considered (22.69 and 4.47 for 

3 vs. 3.53 and 3.46 for 3
*). Figure 1 and 2 show, in addition, how this transformation 

smoothes the large deviations at the high end of the distributions. 

TABLE 1.  CSS values ( k) according to the distribution of journal impact measures and their 

normalised versions ( k
*
) for two subfields (citation window: 2006-2008). 

k 
k k

* 

B1 H1 B1 H1 

0 0.00 0.00 0.00 0.00 

1 6.90 1.82 1.07 1.41 

2 13.33 3.11 2.07 2.41 

3 22.69 4.47 3.53 3.46 

 

The advantage of this method is it robustness: Although the distributions still differ at 

the lower end, their modes are almost “synchronised” and the deviation between the 

probabilities around the mode has distinctly decreased. The transformation to the stan-

dard form of the distribution would require the knowledge or estimation of all parame-



ters of the distribution; obtaining this standard form can thus hardly be expected from 

using some robust parameter-free statistics. However, the parameter-free u* transforma-

tion provides a proxy even for different underlying distribution models. 

TABLE 2.  11 top journals (CSS class 3) in the subfield B1 based on 3-year diachronous impact  

factors. 

x u
* 

Journal title 

61.04 9.49 Cell 

57.13 8.88 Annual Review of Biochemistry 

42.16 6.55 Annual Review of Biophysics and Biomolecular Structure 

41.69 6.48 Nature Medicine 

27.51 4.28 Molecular Cell 

27.27 4.24 Progress in Lipid Research 

25.86 4.02 Nature Chemical Biology 

25.04 3.89 Nature Methods 

24.50 3.81 PLoS Biology 

23.43 3.64 Genome Research 

22.82 3.55 Nature Structural & Molecular Biology 

 

TABLE 3.  14 top journals (CSS class 3) in the subfield H1 based on 3-year diachronous impact 
factors. 

x u
*
 Journal title 

13.81 10.70 PLoS Computational Biology 

9.63 7.47 International Journal of Nonlinear Sciences and Numerical Simulation 

8.18 6.34 Bioinformatics 

6.86 5.32 MATCH-Communications in Mathematical and in Computer Chemistry 

6.85 5.31 IEEE-ACM Transactions on Computational Biology and Bioinformatics 

6.45 5.00 CMES-Computer Modeling in Engineering & Sciences 

6.14 4.76 Communications on Pure and Applied Mathematics 

6.04 4.68 Econometrica 

5.13 3.97 Foundations of Computational Mathematics 

4.82 3.74 Biostatistics 

4.76 3.69 Statistical Science 

4.67 3.62 Chaos Solitons & Fractals 

4.67 3.62 Production and Operations Management 

4.66 3.61 Archive for Rational Mechanics and Analysis 
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FIGURE 1. Distribution of mean citation rate over journals based on the three-year citation window 

2006–2008. 
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FIGURE 2. Distribution of mean citation rate over journals based on the three-year citation 

window 2006–2008 after the u
* 
normalisation.   

 



A further advantage of the aposteriori method is that it might be applied to any journal-

based subjects defined according to the corresponding needs. At the same time, it im-

mediately provides sets of top journals as determined, e.g., by the 3rd characteristic score.  

By contrast, there are two disadvantages. On one hand, this method does not take into 

account the deviating citation patterns of review journals. On the other hand, the trans-

formation results in different impact measures for one and the same journal if this jour-

nal is assigned to different subject categories.  

3. THE APRIORI METHOD – FRACTIONAL IMPACT-FACTORS 

Recently two interesting apriori solutions have been suggested. Henk Moed (2010) in-

troduced his SNIP indicator which is already used as a standard journal measure in El-

sevier’s SCOPUS database. According to its definitions, SNIP takes into account both the 

frequency of other papers in the reference lists of citing papers and the coverage of the 

corresponding subject field in the database. Leydesdorff (2010) suggested a modified 

journal impact factor which is calculated from fractional citation counts. In the follow-

ing, we suggest a similar solution, which is, by contrast, based on fractional citation 

counts using references from indexed source items at the level of individual papers, and 

which thus results in a consistent measure with respect to the total database and to any 

partition of disjoint subsets of the database. This means if the journal impact measures 

are summed up over all journals in the database and all papers published in these jour-

nals and the result is divided by all papers indexed in the database, the corresponding 

value of the complete database should be obtained. This certainly holds for the Impact 

Factor if citation counts are determined on a paper-to-paper basis. For instance, if a 

journal impact measure is defined on one publication year and a three-year citation 

window beginning with the publication year, and is calculated from individual citations 

of papers (as used in the previous section) then the grand total over all papers results in 

the number of all citations in the three citation years in question and the ratio of the 

grand total and the number of papers in the first year provide the impact measure of the 

database. Now we proceed as follows. Again, one publication year and a three-year cita-

tion window is chosen. Citations are fractionated for individual reference-source pairs. 

If a paper A published in year y is cited by paper B say published in year y+2 and paper B 

has k references to papers indexed in volume y of the same database, then the corre-

sponding fractional ‘citation value’ amounts to 1/k. The case k=0, of course, cannot occur 

once A is cited by B. The resulting fractional journal impact measures are consistent 

metrics in the above-mentioned sense: The grand total does not provide the total of 

citations but the total of citing papers. Although fractional citation counts are rational 

numbers, the grand total is an integer again. This value divided by the number of papers 



indexed in the volume y of the database gives the ratio of citing paper in the period y–

y+2 and the publications in y. This is the fractional citation mean of the complete data-

base. This also implies that this notion of consistency also holds for all subsets of the 

database defined on journal assignment, provided journals are fully covered by the sub-

set. Based on the definition we expect that this metrics compensates for the “surplus” of 

citations received from both review articles which have by nature long reference lists 

and the “hard sciences” where most of the references are most recently published jour-

nal articles (cf. Price, 1970).   

The results for the twelve major science fields according to the Leuven classification 

scheme (Glänzel et al., 2003) are presented in Table 4. These fields include A = Agricul-

ture & Environment, Z = Biology, B = Biosciences, R = Biomedical research, I = Clinical 

& Experimental Medicine I (General & Internal Medicine), M = Clinical & Experimental 

Medicine II (Non-Internal Medicine Specialties), N = Neuroscience & Behaviour, C = 

Chemistry, P = Physics, G = Geosciences & Space Sciences, E = Engineering and H =  

Mathematics. The following notations are used: MOCR denotes the Observed Mean 

Citation Rates based on integer counts, MOCR|+ is the same ratio but calculated for 

cited papers only (a conditional mean value), MOCR|F and MOCR|F+ are the correspond-

ing metrics based on fractional counts and f0 is the percentage of uncited papers. We 

have obviously MOCR|+ = MOCR/(1-f0) and MOCR|F+ = MOCR|F/(1-f0), respectively. 

TABLE 4.  Mean citation impact of science fields based on integer and fractional citation counts. 

Field MOCR MOCR|+ MOCR|F MOCR|F+ f0 

A 3.18 4.24 1.26 1.68 25.0% 

Z 4.60 5.84 1.51 1.92 21.3% 

B 7.93 8.91 2.05 2.31 11.0% 

R 5.55 6.66 1.61 1.93 16.7% 

I 7.18 8.93 2.03 2.52 19.6% 

M 4.28 5.69 1.47 1.95 24.9% 

N 5.68 6.88 1.74 2.10 17.5% 

C 4.35 5.82 1.42 1.89 25.3% 

P 3.90 5.30 1.47 2.00 26.4% 

G 4.57 6.09 1.53 2.04 25.0% 

E 1.71 3.40 0.81 1.60 49.7% 

H 1.85 3.21 0.98 1.69 42.4% 

 

The gap between the MOCR values of biosciences, on one hand, and mathematics and 

engineering, on the other hand, is well known. The same applies to the share of uncited 



papers, which is high in mathematics and applied sciences and considerably low in the 

life sciences (cf. Table 4). Fractional counting somewhat decreases subject-specific dif-

ferences but the results fall short of the expectation. There is one straightforward expla-

nation, namely fractionation affects only citation counts of cited items, i.e., c/k is inde-

pendent of the number of references k if c=0. Therefore we have to split up the frac-

tional indicator into two statistics based on disjoint subsets, the conditional mean and 

the relative frequency of uncited papers. This is also in line with earlier observations 

concerning the multi-dimensionality of journal impact (Glänzel, 2009). Splitting citation 

impact into an indicator pair does not only reduce subject-specific biases of one of its 

components as the MOCR|F+ values are almost subject-independent (cf. Table 4), but 

also paves the way for the extension of MOCR|F+ to non-source items while f0 has to be 

skipped in these cases. At CWTS such procedure is called extension of citation analysis 

to ‘non-source’ items (cf. Butler and Visser, 2006). 

Figure 3 presents the distribution of the conditional mean citation rate (MOCR|F+) over 

journals. Although the modes of the two distributions are almost “synchronised” and the 

mean value of the two distributions (2.04 for B1 and 1.57 for H1, respectively) do not dif-

fer dramatically, the distribution plot in Figure 3 pronouncedly deviates from the corre-

sponding chart in Figure 2. The considerably higher impact of the top journals in the 

life-science field with respect to applied mathematics is quite striking.  
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FIGURE 3. Distribution of the conditional mean citation rate (MOCR|F+) over journals based on 
the three-year citation window 2006–2008 and fractional citation counts.  

 



TABLE 5.  11 top journals in the subfield B1 based on 3-year fractional impact factors according to 
MOCR|F+. 

MOCR|F+ f0 Journal title 

13.04 3.3% Annual Review of Biochemistry 

12.48 2.4% Cell 

10.03 8.5% Nature Medicine 

8.92 0.0% Annual Review of Biophysics and Biomolecular Structure 

6.63 0.0% Progress in Lipid Research 

6.32 1.4% Nature Chemical Biology 

6.25 8.8% Nature Methods 

6.04 0.6% PLOS Biology 

5.92 0.0% Molecular Cell 

5.04 0.0% Natural Product Reports 

4.97 0.0% Trends in Biochemical Sciences 

 

TABLE 6.  14 top journals in the subfield H1 based on 3-year fractional impact factors according to 
MOCR|F+. 

MOCR|F+ f0 Journal title 

4.05 5.7% Econometrica 

3.93 25.0% Journal of Educational and Behavioral Statistics 

3.75 3.7% PLOS Computational Biology 

3.58 4.9% IEEE-ACM Transactions on Computational Biology and Bioinformatics 

3.32 19.2% MATCH-Communications in Mathematical and in Computer Chemistry 

3.21 35.4% Journal of Applied Econometrics 

3.21 40.9% SIAM Review 

3.18 11.6% Communications on Pure and Applied Mathematics 

3.09 12.5% Foundations of Computational Mathematics 

2.97 16.3% Annals of Statistics 

2.92 5.4% Archive for Rational Mechanics and Analysis 

2.90 14.6% Journal of the Royal Statistical Society Series B-Statistical 

2.86 20.7% Review of Economics and Statistics 

2.75 14.3% Statistical Science 

 

The deviation of top journals shown in Figure 3 is reflected by Tables  5 and 6 as well. In 

both tables, where  journals are ranked according to MOCR|F+, the same top 11 and 14 

journals are displayed as in the corresponding tables based on aposteriori normalisation 

in the previous section. While the changes in the top of B1 journals are not dramatic, the 



comparison of Tables 3 and 6 reveals structural changes. The journals International 

Journal of Nonlinear Sciences and Numerical Simulation (rank 2 vs. 17), Bioinformatics 

(rank 3 vs. 26) and Biostatistics (rank 10 vs. 77) disappear from the top list when apriori 

normalisation is applied. The fact that MOCR|F+ is only one component of the citation 

metrics is at least in part responsible for this effect (f0 = 6.7% for Bioinformatics and f0 = 

9.8% for Biostatistics). Both shares lie much below the standard in mathematics which 

amounts to about 42%. This provides one more argument fort the application of multi-

dimensional impact measures.  

4. CONCLUSIONS 

Citation-impact metrics can be normalised based on two paradigmatic models, prior to 

building the indicator (apriori) and afterwards (aposteriori). Two examples – one each 

for a field with high and low citation standard, respectively – have illustrated that, if 

normalisation is done in a consistent way, the difference between the two methods is not 

large. Nevertheless, apriori normalisation is versatile and flexible as individual links can 

be weighted according to many aspects. The method used in this study was based on a 

simple frequency weight. The method reduces the weight of a citation if the cited work 

is just “one of many”, e.g., a citation received from a review or bibliography. Another ad-

vantage is that the fractional citation indicator becomes less sensitive to the citation 

window since citations are losing weight as the overall number of citation grows in time 

and the decreasing share of uncited paper is absorbed by the complementary indicator. 

On the other hand, aposteriori proved robust and can provide standard distributions for 

cross-disciplinary assessment, but are inferior to apriori methods if complex aspects of 

normalisation are concerned. The specific task and the availability of data can help de-

cide which type of normalisation should be preferred. 
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