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Non-technical summary 

Technological change is an important determinant of long-run productivity which is 

essential for securing competitiveness both at the firm-level and for the economy as a whole. 

Public authorities expect that increasing R&D investment causes intensified technological 

progress and finally accelerates growth in the long-run. In this line, countries cannot merely 

rely on public R&D (i.e. conducted by universities or public research centres), but they have 

to make sure that R&D is also performed at business level. In order to stimulate these private 

R&D activities, governments usually offer a wide range of public incentives like R&D 

subsidies, tax credits, technological consultancy etc.  

In this paper, we empirically evaluate whether public support for innovation spurs 

investment at the firm level. Conducting a treatment effects analysis, we investigate whether 

public R&D funding crowds out private investment in the business sector and whether the 

government could further foster R&D by supporting currently non-subsidized firms. The 

analysis is based on harmonized micro data from the 4th wave of the Community Innovation 

Survey (CIS4) covering the years 2002 – 2004 of Belgium, Germany and Luxembourg, as 

well as a CIS-harmonized survey from South Africa, and Spanish data from the Panel de 

Innovación Tecnológica (PITEC) of the year 2004. In addition, we also test for possible 

misallocation of public funds.  

Our sample concerns only innovative firms and covers manufacturing as well as business 

related services sectors. In total, the sample consists of 9790 observations of 5 different 

countries, out of which 3854 received R&D subsidies. Using a non-parametric nearest-

neighbor matching, we find that firms that received subsidies would have invested 

significantly less in R&D and innovation if they would not have received public support. Full 

crowding-out can thus be ruled out for all the countries of our sample. On similar grounds, 

when estimating the treatment effect on the untreated, we find that untreated firms would on 

average invest significantly more if they would receive subsidies. With the exception of one 

country, all countries of our sample would thus benefit from extending existing innovation 

policies to currently non-subsidized firms. Finally, these two matching results, i.e. the 

treatment on the treated and the treatment on the untreated, can be combined in order to test 

for misallocation of public funds. Misallocation of public funds would be present if the 

treatment effect of the untreated was significantly larger than the treatment effect on the 

treated. Our analysis does not uncover any systematic misallocation of public funding for the 

countries under review, though.  
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Abstract 

This study focuses on the effect of public funding on internal R&D investment and 

on total innovation intensity on a cross-country comparative level. Using harmonised 

micro data from five different countries, this study analyzes the heterogeneity of the use 

of policy instruments. Applying a nonparametric matching method to identify the 

treatment effect, we find that on average firms would have invested significantly less if 

they would not have received subsidies. On similar grounds, our estimation also takes 

into account the “treatment effects on the untreated”. This estimation enables us to 

assess whether or not governments could further foster R&D activities by extending 

innovation policies to currently not supported firms. With the exception of one country, 

all the governments of the sample would benefit from an extension of their subsidy 

policies. Finally, these two matching results can be combined in order to test for 

misallocation of public funds. Our analysis does not uncover any systematic 

misallocation of public funding for the countries under review. 
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1. Introduction 

Technological change is an important determinant of long-run productivity, essential for 

securing competitiveness both at the firm-level and at the macro level (Aghion and Howitt, 

2005, Jones, 2005). However, investment in R&D suffers from market failure such that the 

socially optimal investment level is larger than the level of private investment because of 

external effects (Arrow, 1962). Therefore, many countries subsidize R&D in order to close 

the gap between private and social equilibrium. Public authorities expect that increasing R&D 

investment causes intensified technological progress and finally accelerates growth in the 

long-run. Although R&D subsidy schemes have been evaluated frequently (see David et al., 

2000, Klette et al., 2000, Cerulli, 2010), this study will contribute to the existing literature by 

investigating the effects of R&D subsidies in five countries of different size, different factors 

of endowments and different innovation policies.  

Using harmonized micro data from the 4
th

 wave of the Community Innovation Survey 

(CIS4), covering the years 2002 – 2004 of Belgium, Germany and Luxembourg, as well as a 

CIS-harmonized survey from South Africa, and Spanish data from the Panel de Innovación 

Tecnológica (PITEC) of the year 2004, allows a large scale study on the effects of innovation 

policies on total innovation intensity and internal R&D investment in these five countries. As 

a matter of fact, one would expect that the optimal policy mix varies across countries with 

different industry structures. Belgium as small open economy possibly applies different 

innovation policies than South Africa and these countries may put a different emphasis on 

policy goals. Furthermore, Germany as large economy with strong manufacturing industries, 

as well as Eastern Germany still regarded as transition economy, certainly requires different 

policy instruments than Luxembourg with strong focus on financial services.  
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Although many aspects of the impact of subsidies on R&D and innovation have been 

investigated at length in scholarly literature, it remains difficult to draw ultimate conclusions 

from a bundle of studies that use data from different countries, different data sources, and 

different methods (see e.g. David et al., 2000). Our study thus has the advantage that we can 

draw conclusions where possible heterogeneous results are stemming from actual differences 

across countries and do not result from heterogeneity in the data collection.  

A further feature of this study consists in the inclusion of an emerging country, South 

Africa, and a transition economy (Eastern Germany). Even though recent literature expresses 

a growing interest in the matter (see e.g. Garcia and Mohnen, 2010; Vertesy and Szirmai, 

2010; Ramani and Mukherjee, 2010, Hall and Maffioli, 2008) not many comparable results 

between industrialized and emerging (or developing) economies have been obtained so far.  

As common in the literature, we are mainly interested in estimating the “treatment effect 

on the treated”. In other words, we are interested to know how much a firm would have 

invested if it would not have received subsidies. Thus, we investigate whether public R&D 

funding stimulates private R&D and innovation activities or whether we face crowding-out 

effects and firms just substitute public means for private investment. However, an interesting 

contribution to the literature by this study is that we also analyse the so-called “treatment 

effect on the untreated”, which is much less commonly done. This effect allows an estimation 

of what companies that did not receive a subsidy would have invested if they would have 

gotten support. Finally, the combination of the two estimations allows testing for possible 

misallocation of public funds as we will outline below. 

The remainder of the paper is organized as follows. The second section briefly reviews 

some recent literature, section three outlines the econometric methods used in the study and 
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the fourth section introduces the data sources and variables employed in the analysis. Section 

five presents the empirical results and the final section concludes. 

2. This study in the context of existing literature 

Over the last years, a great bulk of literature has emphasised the importance of business 

R&D in fostering innovation, technological change and economic growth (Romer, 1990). 

Even though the “public good attribute” of knowledge as well as the well known market 

failures towards R&D investment are valid justifications for governmental intervention, it is 

crucial for policy-makers to be able to evaluate whether or not their policies achieve the 

desired effect (i.e. an extension of innovation activities because of public financing and not a 

mere crowding out of private R&D investment). In this vein, the impact of R&D policies on 

firms’ innovation behaviour has been of interest in the economic literature for years. David et 

al. (2000) survey micro and macroeconomic studies on that topic. One major result of their 

survey is that most of the estimations reviewed are subject to a potential selection bias as 

recipients for subsidies might be chosen by the government because they are more promising 

candidates in succeeding their research projects. In this case, funding becomes endogenous to 

innovative activity, leading to bias in regressions of e.g. R&D intensity on government 

subsidies. More recent studies addressing the selection bias include Busom (2000), Wallsten 

(2000), Lach (2002), Czarnitzki and Fier (2002), Almus and Czarnitzki (2003), Duguet 

(2004), González et al. (2005), Hussinger (2008) and Cerulli and Potí (2008, 2010). Other 

microeconomic approaches take different output measures into consideration. Examples 

include the effects of subsidies on patent applications, productivity, fixed-asset investment, 

returns on sales and growth of sales or employment (see Klette, Moen and Griliches (2000) 

for a comprehensive survey). However, no clear cut results come out of these studies and the 

amount of crowding out, if any, differs from one analysis to another. Finally, Cerulli (2010) 
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reviews the principle econometric models used to measure the effects of public support on 

R&D investment. The author offers a comprehensive overview on the subject by presenting a 

taxonomy, classifying papers according to their estimation methods, the type of data and the 

type of policy variable.  

In this vein, our study focuses on the effect of public funding on internal R&D investment 

and on total innovation intensity on a cross-country comparative level. Undeniably, the 

countries of our analysis present heterogeneous industry structures. Belgium is mainly an 

export-oriented economy. In terms of export per capita, Belgium is the world’s leading export 

country. This modern, private-enterprise economy capitalizes on its central geographic 

location, highly developed transport network, and diversified industrial and commercial base 

with its main industries concentrated in the Flemish area in the north of the country. Germany, 

the fifth largest economy in the world (in purchasing power parity terms) and Europe's 

largest, is a leading exporter of machinery, vehicles, chemicals, and household equipment and 

benefits from a highly skilled labour force. The modernization and integration of the Eastern 

German economy – still considered a transition economy where the number of producing 

firms remains far below the average of that of Western Germany - explains why subsidies are 

still much higher in this part of the country. As far as Luxembourg is concerned, even though 

the country’s economic take-off was due to the discovery of iron ore around 1850, its 

economy is nowadays mainly characterised by its prominent international financial centre, 

ranking eighth among the largest financial centres worldwide and accounting for about 28% 

of the country’s GDP. With regards to Spain, though most of the country’s active population 

works in the tertiary sector (a bit more than 60%), Spain counts among the biggest car 

producers on the market. Besides holding the biggest fishing fleet of the EU, it is also a large 

exporter of steel, chemicals and clothing and one of the most important producers of olive oil. 

Finally, South Africa - a middle-income, emerging market - is the economic powerhouse of 
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Africa. While the country presents modern infrastructure, good communication networks and 

a stock market ranked 17
th

 largest in the world, its economy is above all characterised by its 

abundant supply of natural resources, leading the continent in industrial output and mineral 

production.
1
  

In this context, the present study complements the existing literature in mainly two 

aspects: (1) we analyse the effects of public subsidies in the context of these highly 

heterogeneous economies. Compared to most existing studies where no clear-cut comparative 

results could be found, our estimation presents the advantage of allowing for comparable 

conclusions. Based on harmonized data, the estimation allows concluding that different 

findings come from actual differences in the use of public policies (e.g. “picking the winner” 

vs. “aiding the poor” strategies) and not because of different data collection methods. (2) Our 

estimation takes into account the “treatment effects on the untreated”. Not frequently done in 

the literature so far, this estimation enables investigating whether or not governments could 

further foster R&D activities by extending innovation policies to currently not supported 

firms in order to accelerate technological progress and long-term growth. In addition, the 

combination of both treatment effects allows detecting possible misallocations of public 

resources.  

3. Econometric Method 

The modern econometric evaluation techniques have been developed to identify treatment 

effects when the available observations on individuals or firms are subject to a selection bias. 

This typically occurs when participants in public measures differ from non-participants in 

important characteristics. The literature on the econometrics of evaluation offers different 

                                                 

1
 The “stylized facts” about the different countries mentioned in this paragraph were obtained from various 

sources; among others the World Banks’ World Development Indicators, CIA’s World Factbooks and the 

OECD’s Economic Survey series of our respective countries.  
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estimation strategies to correct for selection bias (see Heckman et al., 1999, Imbens and 

Wooldridge, 2009, for surveys) including the difference-in-difference estimator, control 

function approaches (selection models), instrumental variable (IV) estimation and non-

parametric matching. The difference-in-difference method requires panel data with 

observations before and after (or while) the treatment (change of subsidy status). As our 

database (to be described in the following subsection) consists of cross-sections from different 

countries, we cannot apply this estimator. For the application of IV estimators and selection 

models one needs valid instruments (or an “exclusion restriction” in the selection model case) 

for the treatment variables. It is very difficult in our case to find possible candidates being 

used as instruments. Hence, the most appropriate choice is the matching estimator for our 

data. Its main advantage over IV and selection models is that we neither have to assume any 

functional form for the outcome equation nor is a distributional assumption on the error terms 

of the selection equation and the outcome equation necessary. The disadvantage is that it does 

only control for selection on observables, that is, one assumes that there is no unobserved 

factor driving the program participation. If panel data were available, one could at least 

control for unobserved heterogeneity which is constant over time. As we have to rely on a 

single cross-section of data, we have to maintain the assumption that we observe all important 

determinants of the subsidy receipt. This is a clear limitation when only cross-sectional data is 

available. 

Matching estimators have been applied and discussed by Angrist (1998), Dehejia and 

Wahba (1999), Heckman et al. (1997, 1998a, 1998b), and Lechner (1999, 2000), among 

others. Matching directly addresses the question "What would a treated firm with given 

characteristics have done if it had not been treated?" A treatment in our context is the receipt 

of innovation subsidies. Those observations on treated firms are compared with a selected 

group of non-treated firms with similar characteristics (not with all non-recipients). Our 
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fundamental evaluation question can be illustrated by an equation describing the average 

treatment effect on the treated individuals or firms, respectively: 

      | 1 | 1T C

TTE E Y S E Y S     (1) 

where Y
T
 is the outcome variable. We will consider various measures of innovation in the 

subsequent empirical analysis. The status S refers to the group: S=1 is the treatment group and 

S=0 the non-treated firms. Y
C
 is the potential outcome which would have been realized if the 

treatment group (S=1) had not been treated. The problem is obvious: while the outcome of the 

treated firms in case of treatment, E(Y
T
|S=1), is directly observable, it is not the case for the 

counterpart. This is defined as the basic problem of causal inference (Holland, 1986). What 

would these firms have realized if they had not received the treatment? E(Y
C
|S=1) is a 

counterfactual situation which is not observable and, therefore, has to be estimated. In the 

case of matching, this potential outcome of treated firms is constructed from a control group 

of firms that did not receive innovation subsidies. The matching relies on the intuitively 

attracting idea to balance the sample of program participants and comparable non-

participants. Remaining differences in the outcome variable between both groups are then 

attributed to the treatment. 

Initially the counterfactual cannot simply be estimated as average outcome of the non-

participants, because E(Y
C
|S=1)   E(Y

C
|S=0) due to the possible selection bias. The 

participant group and non-participant group are expected to differ, except in cases of 

randomly assigned measures in experimental settings. Rubin (1977) introduced the 

conditional independence assumption (CIA) to overcome the selection problem, that is, 

participation and potential outcome are independent for individuals with the same set of 

exogenous characteristics X. Thus, the critical assumption using the matching approach is 
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whether we can observe the crucial factors determining the entry into the programme. If this 

assumption is valid, it follows that 

    | 1, | 0,C CE Y S X E Y S X    (2) 

The outcome of the non-participants can be used to estimate the counterfactual outcome 

of the participants in case of non-participation provided that there are no systematic 

differences in the observed characteristics between both groups. The treatment effect can be 

written as  

     | 1,  | 0,T C

TTE E Y S X x E Y S X x     
   (3) 

Conditioning on X takes account of the selection bias due to observable differences 

between participants and non-participants. In our case, we conduct a Nearest Neighbor 

matching, that is, for each treated firm we pick the most similar firm from the potential 

control group of non-subsidized firms. In addition to the CIA, another important precondition 

for consistency of the matching estimator is common support, i.e. it is necessary that the 

control group contains at least one sufficiently similar observation for each treated firm. In 

practice, the sample to be evaluated is restricted to common support. If the overlap between 

the samples is too small, the matching estimator is not applicable. 

As one often wants to consider more than one matching argument, one has to deal with 

the "curse of dimensionality". If we employ a lot of variables in the matching function, it will 

become difficult to find appropriate controls. Rosenbaum and Rubin (1983) suggested to use a 

propensity score as a single index and thus to reduce the number of variables included in the 

matching function to just one. Therefore a probit model is estimated on the dummy indicating 

the receipt of subsidies S. The estimated propensity scores are subsequently used as matching 

argument. Lechner (1998) introduced a modification of the propensity score matching 
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("hybrid matching") as one often wants to include additional variables, e.g. like firm size, 

directly in the matching function. In this case, instead of a single X (the propensity score), 

other important characteristics may be employed in the matching function. The matching 

protocol in Table 1 summarizes the empirical implementation of the matching procedure used 

in this paper.  

Table 1: The matching protocol 

Step 1 Specify and estimate a probit model to obtain the propensity scores  P̂ X .  

Step 2 Restrict the sample to common support: delete all observations on treated firms with probabilities 

larger than the maximum and smaller than the minimum in the potential control group. (This step is 

also performed for other covariates that are possibly used in addition to the propensity score as 

matching arguments.) 

Step 3 Choose one observation from the subsample of treated firms and delete it from that pool. 

Step 4 Calculate the Mahalanobis distance between this firm and all non-subsidized firms in order to find the 

most similar control observation.    
' 1

ij j i j i
MD Z Z Z Z


     

where   is the empirical covariance matrix of the matching arguments based on the sample of 

potential controls. If only the propensity score is used, there is no need to calculate a multidimensional 

distance. In that case, e.g. a Euclidian distance is sufficient. 

 

Step 5 In this application of the matching, we restrict the group of potential neighbors to firms active in the 

same industry as the particular treated firm. Select the observation with the minimum distance from 

the remaining sample. (Do not remove the selected controls from the pool of potential controls, so that 

it can be used again.)  

Step 6 Repeat steps 3 to 5 for all observations on subsidized firms. 

Step 7 Using the matched comparison group, the average effect on the treated can thus be calculated as the 

mean difference of the matched samples: 

 

 
 

with  being the counterfactual for i and n
T
 is the sample size (of treated firms). 

Step 8 As we perform sampling with replacement to estimate the counterfactual situation, an ordinary t-

statistic on mean differences is biased, because it does not take the appearance of repeated 

observations into account. Therefore, we have to correct the standard errors in order to draw 

conclusions on statistical inference. We follow Lechner (2001) and calculate his estimator for an 

asymptotic approximation of the standard errors. 

 

The calculation of the “treatment effect on the untreated” is analogous to the method 

outlined above. In this case, one searches for twins of the non-subsidized firms in the group of 

subsidized firms (see e.g. Lechner and Gerfin, 2001, for more details).  
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4. Data and variables 

The data used in this paper stem from various sources. The firm level data of Belgium
2
, 

Germany
3
 and Luxembourg come from the Community Innovation Survey (CIS4) and refer to 

the years 2002 to 2004. The CIS covers most EU member states, Norway and Iceland using a 

largely harmonized questionnaire throughout participating countries. Eurostat presents 

detailed descriptive survey results for all countries and aggregate statistics. South Africa, like 

more and more emerging and developing countries, introduced an innovation survey aligned 

on the European CIS. This survey is conducted by the Centre for Science, Technology and 

Innovation Indicators (CeSTII), established to undertake regular national R&D and innovation 

surveys on behalf of the Department of Science and Technology (DST) and to produce 

national indicators from the survey results to provide inputs for policy makers and a basis for 

international comparisons. The CIS databases contain information on a cross-section of firms 

active in the manufacturing sector and in selected business services. 

The data from Spain stem from the Panel de Innovación Tecnológica (PITEC). Initiated 

in 2004 with the aim of improving the availability of statistical information on technological 

change and innovation activities in Spanish companies, PITEC is the fruit of the joint effort of 

the National Institute of Statistics (INE), the Spanish Foundation for Science and Technology 

(FECYT) and the Cotec Foundation
4
.  

Our sample concerns only innovative firms and covers manufacturing as well as business 

related services sectors. In total, the sample consists of 9790 observations of 5 different 

countries, out of which 3854 received R&D subsidies. According to the 3
rd

 edition of the Oslo 

Manual – which is the definition followed by the CIS - an innovative firm is one that has 

                                                 

2
 The data of Belgium concerns only Flanders, the Flemish part of the country.  

3
 For Germany, we split the sample into two parts, Eastern and Western Germany. For the rest of the paper, 

those two regions will be analyzed and evaluated separately.  
4
 The data is available online: http://icono.fecyt.es/contenido.asp?dir=05)Publi/AA)panel.  

http://icono.fecyt.es/contenido.asp?dir=05)Publi/AA)panel
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implemented an innovation during the period under review. An innovation is defined as the 

implementation of a new or significantly improved product (good or service), or process, a 

new marketing method, or a new organizational method in business practices, workplace 

organization or external relations (see Eurostat and OECD, 2005). 

The receipt of subsidies is denoted by a dummy variable equal to one for firms that 

received public R&D funding over the period 2002 to 2004 and zero otherwise. No difference 

is made between the various subsidy programmes. They include national R&D subsidies from 

the governments of the respective countries of our sample as well as EU financing schemes. 

As this variable covers a three year period for the countries for which we use CIS4 data, we 

use values of 2002 for the covariates in order to avoid endogeneity problems. For Spain, we 

use lagged values of the covariates measured before 2004 whenever possible for the same 

reason.  

As outcome variables, we consider the total innovation intensity, INNOV_INT, at the firm 

level in 2004, which is the ratio of total innovation expenditure to sales (multiplied by 100), 

as well as the internal R&D investment, INT_RD_INT, being the ratio of internal R&D 

expenditures to sales (multiplied by 100)
5
. 

We use several control variables in our analysis that might have an impact on whether or 

not a firm receives public subsidies. As the same variables were not always available for all 

the countries of our sample, some of the control variables differ from one country to the other. 

The log of the firm’s age (LNAGE) is included in the analysis as it is often claimed that 

older firms are more reluctant to pursue innovation and as a consequence they might be less 

likely to apply for public research subsidies. The log of the number of employees (LOGEMP) 

takes into account possible size effects. As mentioned before, in order to avoid the concern of 

potential endogeneity due to the correlation of the receipt of subsidies and increasing the 

                                                 

5
  The CIS definition of R&D expenditure follows the Frascati Manual (OECD, 1993). 
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number of employees, we use the number of employment of 2002 and R&D and innovation 

expenditure of 2004.  

Further we include a dummy variable to capture whether a firm is part of a group (GP), 

and if so, whether or not its headquarters are on national or foreign territory (FOREIGN). 

Firms that belong to a group with the parent company on national territory might be more 

likely to receive subsidies because they presumably have better information about 

governmental programmes due to their network linkages. In their decision making process, 

governments might favour firms that are part of a group because of potential spillover effects 

and specialised know-how national entities might have from their foreign branches. However, 

firms belonging to groups with a foreign parent company might be more likely to file 

applications in their home country. In addition, governments typically maintain special policy 

instruments for small and medium-sized firms. If a small firm, however, is majority-owned by 

a large parent company, it would no longer qualify for most SME-programs and hence the 

likelihood to receive a subsidy is reduced. The dummies GP and FOREIGN thus also control 

for this type of company profile, and a-priori it is unclear whether the effect is positive or 

negative because of the two opposing arguments outlined above. 

Usually it is desirable to control for the capital intensity of firms in order to control for 

different technologies used in the production process. As a matter of fact, companies with 

capital-intensive production might rely more heavily on innovation activities than labour-

intensive firms. Furthermore, capital may serve as collateral in credit negotiations with 

potential lenders, facilitating access to external sources of financing. Such firms are thus more 

likely to already have more experience in conducting R&D and innovation activities than 

firms that faced financial constraints in the past. Unfortunately, we do not have information 

about firms’ capital stock for most countries. However, we can use lagged investment into 

tangible assets as a proxy variable. We define KINT as the ratio of investment into tangible 
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assets divided by the number of employees. For South Africa, we do not have any 

information, and thus cannot account for this variable. For Flanders, there are many missing 

values for the investment variable. Instead of imputing these missing values with the help of a 

mean or of information of other years, we created a dummy variable (d(kint = missing)) that 

takes on the value 1 if the value for the investment is missing. Once we include this dummy in 

the analysis, we can impute, for instance, a zero for the missing in the investment variable and 

the dummy will capture the bias arising from this transformation in the estimated slope of the 

investment variable.  

To control for technological prowess or previous R&D experience, the analysis includes a 

dummy variable indicating whether firms have permanent, internal R&D activities 

(PERM_RD_INT). Finally, we include an export dummy (EXPORT) to capture whether a firm 

faces foreign competition. Such firms may be more innovative and more likely to apply for 

subsidies as they may have more competition than firms only serving the domestic market. 

Table 2 shows the descriptive statistics of the variables of our sample.  

 

[Insert Table 2, descriptive statistics, about here] 

 

As the t-tests show, there are some significant differences between the subsidized and the 

non-subsidized firms. For all the countries but Eastern Germany, the subsidized firms are 

larger than the non-subsidized ones. With the exception of Luxembourg and Eastern 

Germany, subsidized firms tend to be more capital-intensive. For Flanders and Germany (East 

as well as West), we can observe a significant difference in export activities between the 

treated and the untreated groups. More importantly, in all the countries of our sample, the 

subsidized firms have significantly more permanent internal R&D activities than the non-

subsidized firms as well as – with the exception of Luxembourg - higher total innovation and 
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internal R&D expenditure. We thus can suspect that governments adopt a “picking-the-

winner” strategy, favouring the firms that invest more substantially in R&D and innovation 

and look thus like more promising candidates than others. Luxembourg appears to be an 

exception, given that on average internal R&D expenditures and total innovation intensity are 

not significantly different among the two groups of firms. With the exception of Eastern 

Germany, the age of the firm does not seem to differ between treated and non-treated groups. 

Finally, being part of a group or having the parent company abroad does not significantly 

differ between the subsidized and the non-subsidized firms (expect for the group variable in 

Spain).  

5. Econometric Results 

Before applying the matching methodology, we present the probit models on the 

likelihood to receive subsidies. These models are used to obtain the propensity score which is 

employed as matching argument subsequently. The results of the probit estimations on the 

receipt of subsidies are presented in table 3. As already indicated by the descriptive statistics, 

size, export, capital intensity and permanent internal R&D are the most important variables 

driving the selection in most countries.
6
 The estimation additionally shows that for the 

countries where this variable is significant (Flanders and Spain), a firm with a foreign parent 

company is less likely to receive subsidies than other firms. The same is true for Spanish 

firms that are part of a group. 

                                                 

6
 At this stage, it has to be noted that the employment variable for Spain cannot be interpreted in the same 

straightforward way as for the other countries of the sample. For reasons of opportunity and viability, PITEC 

started with two samples with data from 2003: a sample of firms with 200 or more employees (sample of big 

firms (MEG), which represented 73% of all firms with 200 or more employees according to data from the 

DIRCE), and a sample of firms with intramural R&D expenditures (MID). Given the improvements made by the 

INE in information on firms undertaking R&D activities, there were enlargements of the second sample in 2004 

and 2005. Moreover, in 2004, a sample of firms with fewer than 200 employees, external R&D expenditure and 

no intramural R&D expenditure (MIDE); and a representative sample of firms with fewer than 200 employees 

and no innovation expenditure (MEP) were included. For further detail, see 

http://icono.fecyt.es/05)Publi/AA)panel/bdPITEC_June2010_ing.pdf.  

http://icono.fecyt.es/05)Publi/AA)panel/bdPITEC_June2010_ing.pdf
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[Insert Table 3, Probit estimations, about here] 

 

Table 4 presents the results of the matching by propensity score.
7
 As the means and 

corresponding t-tests show, our sample is well balanced according to all employed covariates 

after the matching. There are no statistically significant differences in the exogenous 

variables. However, with regards to the outcome variables, significant mean differences exist 

after the matching. Those can be attributed to the treatment and full crowding-out with regard 

to public funding can hence be rejected. As a consequqnce, on average, the subsidised firms 

would have invested significantly less in R&D and innovation if they would not have been 

subsidized. The fact that after the matching significant mean difference exists between the 

treated and the non treated group in Luxembourg (and that this difference was not significant 

before the matching) might indicate that the Luxembourgish government follows an “aiding-

the-poor” strategy rather than a “picking-the-winner” one. However, it could also signify that 

the government privileges national over foreign firms, as indicated by the negative sign of the 

FOREIGN variable in the probit regression
8
. Tables A.7 and A.8 in the appendix display OLS 

regressions for internal R&D intensity and total innovation intensity. One can see that the 

OLS estimates are comparatively similar to the matching in this case. 

 

[Insert Table 4, matching results: treatment on the treated, about here] 

 

                                                 

7
 In two cases, the propensity score matching did not balance the samples in all covariates. Therefore, we 

applied hybrid matching by including additional arguments in the matching function (see Lechner, 1998). For 

Western Germany, the matching has been done by propensity score and LNAGE. For Flanders, it has been done 

by propensity score, FOREIGN and 2 industry dummies.   
8
 The non-significance of this variable in the Probit regression might be attributable to the relatively small 

size of the sample.  
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Table 5 displays the results of the treatment effects on the untreated. As for the matching 

results on the treated, the means and t-statistics of the matching on the untreated show that all 

the covariates of our sample are well balanced after the matching. As for the outcome 

variables, significant mean differences exist after the matching (with the exception of South 

Africa). Those differences can be attributed to a lack of treatment. In other words, with the 

exception of South Africa, all the countries of the sample would possibly benefit from an 

extension of their subsidy policies, as by obtaining public funding the non-treated firms would 

significantly increase both, internal R&D expenditure as well as total innovation intensity 

(though the former only at the 10% significance level for Flanders).  

 

[Insert Table 5, matching results: treatment on the untreated, about here] 

 

The two matching results, i.e. the treatment on the treated and the treatment on the 

untreated, can now be combined in order to test for misallocation of public funds. Table 6 

presents the estimated treatment effects and the Lechner-corrected standard errors. This 

information is used to compute a t-test on mean difference. Misallocation of public funds 

would be found if the treatment effect of the untreated is significantly larger than the 

treatment effect on the treated. As the results show, the analysis does not uncover any 

systematic misallocation of public funding in this case. Although some treatment effects on 

the untreated are larger than the estimated treatment effects on the treated, e.g. in 

Luxembourg, no difference is significantly different from zero. While this result is reassuring 

with respect to current policy practice, it appears that more research should be done on 

possible misallocation. First, our analysis is limited in covariates, and more detailed data 

would be desirable as more precise matching estimations could be conducted. Second, the 

insignificance of t-tests in the misallocation exercise also suggests that the governments are 
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not necessarily following a successful picking-the-winner strategy, as the treatment effects on 

the treated are not significantly larger than the treatment on the untreated. Only for Spain, we 

find some weak evidence at the 10% level that the treated did actually invest more compared 

to the situation where other firms would have been funded. 

 

[Insert Table 6, testing for misallocation of public funds, about here] 

 

6. Conclusions 

In this paper, we conduct a treatment effects study on harmonized data from five different 

countries, or six different regions, respectively, as Eastern and Western Germany are analyzed 

separately. In line with recent literature on the effects of public R&D or innovation subsidies, 

we find that full crowding out effects can be rejected. A novel feature of this study is that the 

data allow concluding that possible heterogeneity in results stem from actual differences in 

the policy use across different economies, as the data sources are based on largely harmonized 

innovation surveys from different countries. 

A further attribute of the study is the analysis of the treatment effect on the untreated, 

where we find evidence that untreated firms would actually have benefitted from receiving 

subsidies. Indeed, we estimate that such firms would have invested significantly more in case 

of a treatment. 

Finally, we also introduce calculations of possible misallocation of public innovation 

subsidies to this strand of literature. However, with the data at hand, we do neither find a 

misallocation nor a superiority of the actual policy decision, as the actual treated firms do not 

invest significantly more than the non-treated firms would have invested if they had received 

a subsidy. 
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Of course, it has to be noted that our study is not without limitations. Although we benefit 

from harmonized data from different countries, this comes not without a price when compared 

to other existing studies. First, our nearest-neighbor matching exercise controls only for 

selection on observables and uses less covariates than other studies cited in this paper that 

only used data from one country but had more detailed information on the firms in the sample. 

Second, we cannot control for fixed firm effects as we have to rely on a single cross-section. 

The availability of panel data would be desirable. If one could control for fixed effects by 

using a (conditional) difference-in-difference estimator, for instance, the concern of having 

only few covariates would certainly be much reduced. Finally, let us note that we attempted to 

overcome the limitation with respect to selection on observables by applying parametric 

treatment models that allow controlling for selection on unobservables. However, the 

available data did not contain a convincing exclusion restriction, i.e. a variable that influences 

the probability of subsidy receipt, but not the outcome variables. Therefore, we refrained from 

discussing these results in more detail as the treatment effects identification is poor in these 

models with the given data. Consequently, we were not able to apply instrumental variable 

techniques either, which would also offer an approach to deal with selection on 

unobservables. 
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Table 2: Descriptive Statistics 

  Flanders (full sample N=805) Western Germany (full sample N=1491)  Eastern Germany (full sample N=730) 

  

Non-subsidized 

firms N=568  

Subsidized firms 

N=237 

p-value of 

t-test on 

mean 

difference 

Non-subsidized 

firms N= 1190  

Subsidized firms 

N= 301 

p-value of 

t-test on 

mean 

difference 

Non-subsidized 

firms N= 420  

Subsidized firms 

N= 310 

p-value of 

t-test on 

mean 

difference 

Variable Mean Std. Dev. Mean Std. Dev.   Mean Std. Dev. Mean Std. Dev.   Mean Std. Dev. Mean Std. Dev.   

  Covariates 

LNAGE 3.097 0.858 3.099 0.874 p = 0.974 3.159 0.924 3.030 0.936 p = 0.033 2.573 0.581 2.445 0.422 p < 0.001 

LOGEMP20021 3.914 1.389 4.317 1.803 p = 0.002 4.273 1.745 4.900 2.145 p < 0.001 3.554 1.410 3.680 1.365 p = 0.227 

FOREIGN 0.310 0.463 0.245 0.431 p = 0.056 0.520 0.500 0.555 0.498 p < 0.282 0.512 0.500 0.535 0.500 p = 0.529 

GP 0.563 0.496 0.603 0.490 p = 0.293 0.631 0.483 0.704 0.457 p = 0.015 0.557 0.497 0.610 0.489 p = 0.155 

KINT20022 5.074 13.160 8.023 15.952 p < 0.012 0.013 0.027 0.020 0.049 p = 0.010 0.015 0.070 0.018 0.045 p = 0.467 

d(kint=missing) 0.637 0.481 0.464 0.500 p < 0.001           

PERM_RD_INT 0.405 0.491 0.726 0.447 p < 0.001 0.324 0.468 0.751 0.433 p < 0.001 0.202 0.402 0.619 0.486 p < 0.001 

EXPORT 0.759 0.428 0.916 0.279 p < 0.001 0.539 0.499 0.804 0.398 p < 0.001 0.329 0.470 0.619 0.486 p < 0.001 

Propensity score 0.279 0.161 0.408 0.174 p < 0.001 0.166 0.147 0.346 0.172 p < 0.001 0.325 0.213 0.572 0.216 p < 0.001 

  Outcome variables 

INNOV_INT 4.047 8.840 12.692 18.633 p < 0.001 4.854 8.565 11.823 14.543 p < 0.001 5.105 9.016 16.380 19.314 p < 0.001 

INT_RD_INT 1.872 5.961 8.269 14.503 p < 0.001 1.852 4.686 7.243 10.581 p < 0.001 1.141 3.565 9.831 14.521 p < 0.001 
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…. Table 2 continued 

  Spain (full sample N=6006) Luxembourg (full sample N=248) South Africa (full sample N=510) 

  

Non-subsidized 

firms  N= 3136  

Subsidized firms 

N= 2870 

p-value of 

t-test on 

mean 

difference 

 Non-subsidized 

firms N= 175  

Subsidized firms 

N= 73 

p-value of 

t-test on 

mean 

difference 

Non-subsidized 

firms N= 447  

Subsidized firms 

N= 63 

p-value of 

t-test on 

mean 

difference 

Variable Mean Std. Dev. Mean Std. Dev.   Mean Std. Dev. Mean Std. Dev.   Mean Std. Dev. Mean Std. Dev.   

  Covariates 

LNAGE      2.693 0.932 2.823 1.070 p = 0.366      

LOGEMP20021 4.326 1.515 3.911 1.538 p < 0.001 3.849 1.291 4.634 1.480 p < 0.001 4.543 1.665 5.103 2.106 p = 0.047 

FOREIGN 0.765 0.424 0.751 0.433 p = 0.202 0.434 0.497 0.356 0.482 p = 0.251 0.260 0.439 0.175 0.383 p = 0.019 

GP 0.402 0.490 0.339 0.474 p < 0.001 0.629 0.485 0.699 0.462 p = 0.285 0.510 0.500 0.444 0.501 p = 0.333 

KINT20022 6.771 12.234 7.808 12.432 p < 0.001 5.661 10.836 6.496 7.141 p = 0.476      

PERM_RD_INT 0.578 0.494 0.714 0.452 p < 0.001 0.326 0.470 0.493 0.503 p = 0.016 0.371 0.484 0.540 0.502 p = 0.014 

EXPORT 0.676 0.468 0.671 0.470 p = 0.681 0.880 0.326 0.890 0.315 p = 0.814 0.582 0.494 0.587 0.496 p = 0.933 

Propensity score 0.444 0.139 0.515 0.115 p < 0.001 0.247 0.152 0.409 0.203 p < 0.001 0.115 0.085 0.182 0.097 p < 0.001 

  Outcomes variables 

INNOV_INT 3.841 8.566 11.108 17.299 p < 0.001 4.358 10.311 6.614 11.330 p = 0.145 4.358 9.830 9.852 16.453 p = 0.012 

INT_RD_INT 2.873 7.356 8.972 15.299 p < 0.001 1.729 6.431 3.907 10.997 p = 0.117 1.080 3.141 3.085 7.355 p = 0.036 

1For Spain data of 2003 is used; for South Africa data of 2004 is used. 

          2For Germany (Western and Easter) and Spain data of 2003 is used. 
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Table 3: Probit regressions on subsidy receipt 

 

Flanders Western Germany Eastern Germany Spain Luxembourg South Africa 

  Coef. 

(Std. err.) 

Coef. 

(Std. err.) 

Coef. 

(Std. err.) 

Coef. 

(Std. err.) 

Coef. 

(Std. err.) 

Coef. 

(Std. err.) 

LNAGE -0.089 -0.117* -0.124  -0.103  

 (0.066) (0.048) (0.110)  (0.103)  

LOGEMP20021 0.080 0.062* -0.040 -0.072*** 0.245** 0.095 

 (0.042) (0.027) (0.045) 0.013 (0.080) (0.049) 

FOREIGN -0.368** 0.073 0.143 -0.387*** -0.465 -0.283 

 (0.138) (0.126) (0.230) 0.060 (0.261) (0.232) 

GP -0.004 -0.118 0.009 -0.294*** 0.277 -0.196 

 (0.127) (0.145) (0.239) 0.058 (0.251) (0.194) 

KINT20022 0.004 5.349*** 0.990 0.007*** 0.003  

 (0.004) (1.293) (0.816) 0.001 (0.010)  

d(kint=missing) -0.251*      

 (0.121)      

PERM_RD_INT 0.588*** 0.756*** 0.852*** 0.331*** 0.222 0.419* 

 (0.113) (0.091) (0.118) 0.036 (0.201) (0.164) 

EXPORT 0.605*** 0.369*** 0.263* 0.007 -0.225 0.004 

 (0.156) (0.103) (0.121) 0.040 (0.303) (0.165) 

Constant term -1.342*** -1.824*** -0.272 0.444*** -0.592 -1.423** 

  (0.342) (0.350) (0.427) 0.097 (0.517) (0.445) 

Test on joint significance on 

industry dummies 
2(12)=20.94* 2(12)=38.19*** 2(12)=38.44*** 2(12)=148.34*** 2(10)=15.39 2(11)=19.04* 

LR test on model significance 2(20)=135.5*** 2(19)=266.3*** 2(19)=192.1*** 2(18)=456.7*** 2(17)=40.8*** 2(16)=34.4** 

McFadden R2 0.139 0.177 0.196 0.055 0.136 0.0901 

# of obs. 805 1491 715 6006 248 510 

*** (**.  *) indicate a significance level of 1% (5. 10%) 

    1For Spain data of 2003 is used; for South Africa data of 2004 is used. 

   2For Germany (Western and Easter) and Spain data of 2003 is used. 
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Table 4: Matching results: treatment on the treated 

  Flanders (full sample N=805) Westerns Germany (full sample N=1491)  Eastern Germany (full sample N=730) 

  

Selected control 

group N=235  

Subsidized firms 

N=2353 

p-value of 

 t-test on 

mean 

difference4 

Selected control 

group N= 299 

Subsidized firms 

N= 2993 

p-value of 

 t-test on 

mean 

difference4 

Selected control 

group N= 310  

Subsidized firms 

N= 310 

p-value of 

 t-test on 

mean 

difference4 

Variable Mean Std. Dev. Mean Std. Dev.   Mean Std. Dev. Mean Std. Dev.   Mean Std. Dev. Mean Std. Dev.   

Covariates 

LNAGE 3.178 0.876 3.101 0.878 p = 0.513 3.028 0.923 3.026 0.937 p = 0.986 2.439 0.516 2.445 0.422 p = 0.931 

LOGEMP20021 4.471 1.450 4.311 1.810 p = 0.437 4.698 1.847 4.914 2.144 p = 0.251 3.742 1.423 3.679 1.365 p = 0.736 

FOREIGN 0.247 0.432 0.247 0.432 p = 1.000 0.592 0.492 0.558 0.497 p = 0.480 0.593 0.492 0.535 0.499 p = 0.375 

GP 0.610 0.489 0.600 0.491 p = 0.896 0.742 0.438 0.710 0.455 p = 0.432 0.677 0.468 0.610 0.488 p = 0.279 

d(kint=missing) 0.494 0.501 0.468 0.500 p = 0.703           

KINT20022 4.890 11.632 7.736 15.230 p = 0.091 0.015 0.035 0.017 0.033 p = 0.614 0.012 0.016 0.017 0.045 p = 0.078 

PERM_RD_INT 0.720 0.450 0.723 0.448 p = 0.944 0.742 0.438 0.749 0.434 p = 0.873 0.632 0.483 0.619 0.486 p = 0.841 

EXPORT 0.911 0.286 0.915 0.279 p = 0.911 0.793 0.406 0.803 0.399 p = 0.795 0.535 0.499 0.619 0.486 p = 0.203 

Propensity score 0.401 0.169 0.405 0.171 p = 0.852 0.339 0.161 0.342 0.164 p = 0.830 0.572 0.215 0.572 0.216 p = 0.992 

Outcome variables 

INNOV_INT 5,845 10.839 12.477 18.285 p < 0.001 6.699 8.183 11.845 14.578 p < 0.001 7.663 10.925 16.380 19.313 p < 0.001 

INT_RD_INT 2,959 6.042 8.026 13.970 p < 0.001 3.549 5.578 7.240 10.599 p < 0.001 2.425 4.235 9.831 14.520 p < 0.001 

1For Spain data of 2003 is used; for South Africa data of 2004 is used. 

          2For Germany (Western and Easter) and Spain, data of 2003 is used. 

          3Two observations were lost because no common support could be found. 

         4t-statistics are based on Lechner's (2001) asymptotic approximation of the standard errors that accounts for sampling with replacement in the selected control group.  
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…Table 4 continued 

  Spain (full sample N=6006) Luxembourg (full sample N=248) South Africa (full sample N=510) 

 

Selected control 

group N=2869 

Subsidized firms 

N= 28695 

p-value of 

 t-test on 

mean 

difference4 

Selected control 

group N= 706 

Subsidized firms 

N= 70 

p-value of  

t-test on 

mean 

difference4 

Selected control 

group N= 63 

Subsidized firms 

N= 63 

p-value of 

 t-test on 

mean 

difference4 

Variable Mean Std. Dev. Mean Std. Dev.   Mean Std. Dev. Mean Std. Dev.   Mean Std. Dev. Mean Std. Dev.   

Covariates 

LNAGE      2.815 0.873 2.846 1.022 p = 0.864      

LOGEMP20021 3.907 1.428 3.911 1.537 p = 0.933 4.412 1.358 4.537 1.414 p = 0.645 5.251 2.315 5.103 2.106 p = 0.730 

FOREIGN 0.763 0.425 0.750 0.433 p = 0.401 0.357 0.483 0.371 0.487 p = 0.881 0.222 0.419 0.175 0.383 p = 0.539 

GP 0.323 0.467 0.339 0.473 p = 0.334 0.643 0.483 0.686 0.468 p = 0.648 0.460 0.502 0.444 0.500 p = 0.869 

KINT20022 7.779 14.158 7.785 12.377 p = 0.990 6.478 7.453 6.280 7.039 p = 0.891      

PERM_RD_INT 0.713 0.452 0.713 0.452 p = 1.000 0.543 0.502 0.486 0.503 p = 0.564 0.651 0.481 0.540 0.502 p = 0.237 

EXPORT 0.667 0.471 0.671 0.469 p = 0.810 0.857 0.352 0.886 0.320 p = 0.670 0.666 0.475 0.587 0.496 p = 0.393 

Propensity score 0.515 0.115 0.515 0.115 p = 0.999 0.390 0.185 0.391 0.186 p = 0.978 0.182 0.097 0.182 0.097 p = 1.000 

Outcome variables 

INNOV_INT 5.808 11.198 11.108 17.302 p < 0.001 3.369 3.655 6.696 11.543 p = 0.026 4.172 6.533 9.852 16.453 p = 0.012 

INT_RD_INT 4.888 10.304 8.971 15.302 p < 0.001 1.197 2.018 3.931 11.221 p = 0.047 1.491 3.525 3.085 7.355 p = 0.132 

4t-statistics are based on Lechner's (2001) asymptotic approximation of the standard errors that accounts for sampling with replacement in the selected control group.  

 5One observation was lost because no common support was found. 

          6Three observations were lost because no common support was found. 
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Table 5: Matching results: treatment on the untreated 

  Flanders (full sample N=805) Westerns Germany (full sample N=1491)  Eastern Germany (full sample N=730) 

  

Selected control 

group N=545  

Non-subsidized 

firms N=5453 

p-value of t-

test on mean 

difference5 

Selected control 

group N= 1168 

Non-subsidized 

firms N= 11684 

p-value of t-

test on mean 

difference5 

Selected control 

group N= 3917 

Non-subsidized 

firms N= 391 

p-value of t-

test on 

mean 

difference5 

Variable Mean Std. Dev. Mean Std. Dev.   Mean Std. Dev. Mean Std. Dev.   Mean Std. Dev. Mean Std. Dev.   

  Covariates 

LNAGE 3.063 0.839 3.103 0.853 p = 0.713 3.143 0.910 3.146 0.922 p = 0.985 2.547 0.418 2.549 0.552 p = 0.968 

LOGEMP20021 4.062 1.565 3.936 1.390 p = 0.532 4.176 1.758 4.298 1.746 p = 0.569 3.640 1.325 3.569 1.344 p = 0.694 

FOREIGN 0.301 0.459 0.301 0.459 p = 1.000 0.488 0.500 0.520 0.500 p = 0.603 0.522 0.500 0.512 0.501 p = 0.879 

GP 0.554 0.498 0.561 0.497 p = 0.909 0.652 0.476 0.633 0.482 p = 0.734 0.591 0.492 0.558 0.497 p = 0.617 

KINT20022 4.097 9.843 5.288 13.393 p = 0.372 0.015 0.025 0.013 0.027 p = 0.496 0.018 0.026 0.015 0.072 p = 0.630 

d(kint=missing) 0.640 0.480 0.622 0.485 p = 0.768           

PERM_RD_INT 0.428 0.495 0.422 0.494 p = 0.932 0.322 0.467 0.330 0.471 p = 0.880 0.217 0.413 0.212 0.409 p = 0.927 

EXPORT 0.789 0.408 0.791 0.407 p = 0.972 0.634 0.482 0.549 0.498 p = 0.145 0.399 0.490 0.345 0.476 p = 0.414 

Propensity score 0.738 0.154 0.742 0.158 p = 0.822 0.828 0.144 0.831 0.147 p = 0.863 0.666 0.207 0.667 0.207 p = 0.992 

  Outcome variables 

INNOV_INT 8.449 14.695 4.153 8.959 p = 0.019 9.275 12.990 4.888 8.617 p = 0.005 11.463 15.515 5.271 9.262 p = 0.002 

INT_RD_INT 4.042 9.980 1.908 6.014 p = 0.087 3.965 7.389 1.884 4.724 p = 0.019 5.847 11.948 1.187 3.670 p = 0.002 

1For Spain data of 2003 is used; for South Africa data of 2004 is used. 

          2For Germany (Western and Easter) and Spain, data of 2003 is used. 

          3Twenty-three observations were lost because of no common support. 

          
4Twenty-two observations were lost because no common support could be 

found. 

         5t-statistics are based on Lechner's (2001) asymptotic approximation of the standard errors that accounts for sampling with replacement in the selected control group.  
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… Table 5 continued 

  Spain (full sample N=6006) Luxembourg (full sample N=248) South Africa (full sample N=510) 

 

Selected control 

group N=3112 

Non-subsidized 

firms N=31126 

p-value of t-

test on mean 

difference5 

Selected control 

group N= 1658 

Non-subsidized 

firms N= 165 

p-value of t-

test on 

mean 

difference5 

Selected control 

group N= 4099 

Non-subsidized 

firms N= 409 

p-value of t-

test on mean 

difference5 

Variable Mean Std. Dev. Mean Std. Dev.   Mean Std. Dev. Mean Std. Dev.   Mean Std. Dev. Mean Std. Dev.   

  Covariates 

LNAGE           2,550 0,837 2,687 0,946 p = 0,432           
LOGEMP20021 4.386 1.650 4.308 1.502 p = 0.199 3.670 1.369 3.950 1.248 p = 0.309 4.832 1.987 4.605 1.665 p = 0.588 

FOREIGN 0.772 0.420 0.764 0.425 p = 0.625 0.467 0.500 0.424 0.496 p = 0.667 0.218 0.413 0.240 0.427 p = 0.803 

GP 0.395 0.489 0.399 0.489 p = 0.847 0.630 0.484 0.630 0.484 p = 1.000 0.460 0.499 0.504 0.501 p = 0.679 

KINT20022 6.994 11.470 6.790 12.266 p = 0.641 5.346 6.475 5.717 10.817 p = 0.802      

PERM_RD_INT 0.597 0.490 0.583 0.493 p = 0.412 0.442 0.498 0.339 0.475 p = 0.307 0.411 0.493 0.391 0.489 p = 0.852 

EXPORT 0.683 0.466 0.679 0.467 p = 0.840 0.885 0.320 0.873 0.334 p = 0.854 0.528 0.500 0.575 0.495 p = 0.662 

Propensity score 0.553 0.135 0.553 0.135 p = 0.998 0.741 0.149 0.741 0.149 p = 0.998 0.879 0.078 0.879 0.078 p = 0.984 

  Outcome variables 

INNOV_INT 7.855 14.548 3.868 8.593 p < 0.001 13.821 23.640 4.527 10.582 p = 0.040 9.993 16.733 4.459 10.216 p = 0.123 

INT_RD_INT 6.053 12.640 2.895 7.380 p < 0.001 11.570 24.232 1.808 6.610 p = 0.034 4.416 10.014 1.158 3.267 p = 0.117 

5t-statistics are based on Lechner's (2001) asymptotic approximation of the standard errors that accounts for sampling with replacement in the selected control group.  

 6Twenty-four observations were lost because no common support was found. 

         7Twenty-nine observations were lost because of no common support. 

          8Ten observations were lost because no common support was found. 

          9Thirty-eight observations were lost because no common support was found. 
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Table 6: t-tests on misallocation of public funding 

  Flanders (full sample N=805) Westerns Germany (full sample N=1491)  Eastern Germany (full sample N=730) 

  

Estimated 

treatment 

effect on the 

treated 

Estimated 

treatment 

effect on the 

untreated 

p-value of t-

test on 

mean 

difference 

Estimated 

treatment 

effect on the 

treated 

Estimated 

treatment 

effect on the 

untreated 

p-value of t-

test on 

mean 

difference 

Estimated 

treatment 

effect on the 

treated 

Estimated 

treatment 

effect on the 

untreated 

p-value of t-

test on 

mean 

difference 

  N=235 N=545   N=229 N=1168   N=310 N=391   

Variable 
Alpha Std. err. Alpha Std. err. 

  
Alpha Std. err. Alpha Std. err. 

  
Alpha Std. err. Alpha Std. err. 

  

INNOV_INT 6.631 1,738 4.296 1.837 p = 0.4399 5.145 1.050 4.387 1.556 p = 0.8307 8.717 1.708 6.193 1.993 p = 0.3513  

INT_RD_INT 5.066 1,152 2.133 1.247 p = 0.1518  3.690 0.747 2.081 0.884 p = 0.4268  7.405 0.968 4.661 1.503 p = 0.1482 

  

 

Spain (full sample N=6006) Luxembourg (full sample N=248) South Africa (full sample N=510) 

   N= 2869  N= 3112    N= 70  N= 165    N= 63  N= 409   

Variable 
Alpha Std. err. Alpha Std. err. 

  
Alpha Std. err. Alpha Std. err. 

  
Alpha Std. err. Alpha Std. err. 

  

INNOV_INT 5.300 0.481 3.986 0.504 p = 0.0602  3.328 1.494 9.293 4.531 p = 0.3972 5.681 2.278 5.394 3.499 p = 0.9745  

INT_RD_INT 4.091 0.435 3.157 0.437 p = 0.1306 2.733 1.378 9.762 4.596 p = 0.3247  1.594 1.058 3.358 2.079 p = 0.7545  

 

 



31 

 

Table A.7: OLS estimates on internal R&D intensity 

 

Flanders Western Germany Eastern Germany Spain Luxembourg South Africa 

  Coef. 

(Std. err.) 

Coef. 

(Std. err.) 

Coef. 

(Std. err.) 

Coef. 

(Std. err.) 

Coef. 

(Std. err.) 

Coef. 

(Std. err.) 

SUBSIDY DUMMY 4.066*** 3.326*** 5.711*** 3.799*** 3.062* 1.895* 

 (0.730) (0.543) (0.682) (0.250) (1.700) (0.960) 

LNAGE -0.482 -0.576*** -0.262  -0.443 -0.395* 

 (0.363) (0.151) (0.535)  (0.466) (0.159) 

LOGEMP20021 -0.730** -0.670*** -1.068*** -2.023*** -1.293  

 (0.256) (0.101) (0.231) (0.120) (0.732)  

FOREIGN 0.628 0.451 -1.193 0.592 2.222 0.065 

 (0.809) (0.456) (1.858) (0.317) (1.793) (0.403) 

GP -0.507 -0.895 0.494 0.500 -0.966 -0.051 

 (0.816) (0.539) (1.905) (0.326) (0.949) (0.385) 

KINT20022 0.061 -2.724 -2.811 0.046*** -0.028  

 (0.037) (4.063) (2.469) (0.012) (0.036)  

d(kint=missing) 0.768      

 (0.709)      

PERM_RD_INT 4.934*** 3.532*** 3.769*** 3.996*** 5.619*** 1.331*** 

 (0.669) (0.373) (0.802) (0.256) (1.616) (0.354) 

EXPORT 1.262 0.727* 2.126* -0.896* 1.473 -0.006 

 (0.772) (0.346) (0.853) (0.376) (1.682) (0.323) 

Constant term 1.482 4.343*** 2.198 6.373*** 3.783 2.317* 

  (1.887) (0.790) (1.782) (0.668) (2.352) (0.942) 

Test on joint 

significance on 

industry dummies 

F(12. 783) = 6.51*** F(12. 1470)=9.72***  F(13. 708) =  4.84*** F(12. 5986) = 36.73*** F( 10.229) = 1.09 F(11. 492) = 1.32 

F-test 
F(21. 783) = 8.45*** F(20. 1470)=15.85*** F(21. 708)=10.41*** F(19. 5986)=64.18*** F(18. 229) = 2.50*** F(17.492)=3.23*** 

R-squared 
0.345 0.313 0.350 0.311 0.217 0.105 

# of obs. 
805 1491 730 6006 248 510 

*** (**.  *) indicate a significance level of 1% (5.  10%) 

    1For Spain data of 2003 is used; for South Africa data of 2004 is used. 

    2For Germany (Western and Easter) and Spain data of 2003 is used. 
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Table A.8: OLS estimates on total innovation intenstity 

  Flanders Western Germany Eastern Germany Spain Luxembourg South Africa 

  Coef. 

(Std. err.) 

Coef. 

(Std. err.) 

Coef. 

(Std. err.) 

Coef. 

(Std. err.) 

Coef. 

(Std. err.) 

Coef. 

(Std. err.) 

SUBSIDY DUMMY 6.245*** 4.899*** 8.052*** 4.692*** 3.226* 4.712* 

 (1.174) (0.808) (1.142) (0.288) (1.802) (2.101) 

LNAGE -0.652 -0.680* -1.426  -0.892  

 (0.552) (0.268) (0.793)  (0.747)  

LOGEMP20021 -1.054** -1.522*** -1.755*** -2.499*** -1.451 -0.425 

 (0.352) (0.174) (0.361) (0.137) (0.768) (0.454) 

FOREIGN 1.187 0.584 0.592 0.766* 1.141 1.121 

 (0.946) (0.615) (2.242) (0.382) (2.082) (0.860) 

GP -2.625* -1.123 -0.364 0.953* -0.247 -3.378** 

 (1.036) (0.756) (2.303) (0.390) (1.877) (1.189) 

KINT20022 0.063 13.513 1.593 0.081*** -0.035  

 (0.043) (10.642) (6.790) (0.013) (0.054)  

d(kint=missing) 0.023      

 (0.983)      

PERM_RD_INT 5.343*** 3.915*** 3.805** 3.708*** 4.799** 0.927 

 (1.007) (0.587) (1.207) (0.298) (1.807) (1.039) 

EXPORT 0.201 0.927 2.040 -1.165** 1.950 0.133 

 (1.224) (0.618) (1.327) (0.431) (2.401) (1.001) 

Constant term 7.565* 9.942*** 11.118*** 8.948*** 7.408* 8.447* 

  (2.965) (1.406) (2.900) (0.786) (2.919) (3.414) 

Test on joint significance on 

industry dummies F(12. 783) = 5.74*** F(12. 1470)=8.33***  F(13. 708) =  4.41*** F(12. 5986) = 34.58*** F( 10.229) = 0.97 F(11. 492) = 2.78** 

F-test 
F(21. 783) = 7.94*** F(20. 1470)=13.69*** F(21. 708)=10.46*** F(19. 5986)=63.75*** F(18. 229) = 2.44** F(17.492)=3.13*** 

R-squared 
0.255 0.249 0.287 0.309 0.158 0.120 

# of obs. 
805 1491 730 6006 248 510 

*** (**.  *) indicate a significance level of 1% (5.  10%) 

     1For Spain data of 2003 is used; for South Africa data of 2004 is used. 

    2For Germany (Western and Eastern) and Spain data of 2003 is used. 
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