434 J. Chem. Inf. Model2008,48, 434—448

MMM-QSAR Recognition of Ribonucleases without Alignment: Comparison with an
HMM Model and Isolation from Schizosaccharomyces pombrediction, and
Experimental Assay of a New Sequence

Guillermin Agtero-Chap,"* Humberto GonZaz-Diaz,*" 8" Gustavo de la Riva,
Edrey Rodmguez? Aminael Smchez-Rodguez# Gianni Poddd,and Roberto I. Vazquez-Pdarb

Dipartimento Farmaco Chimico Tecnologico, Univerditagli Studi di Cagliari, Cagliari, 09124, Italy, CAP,
Faculty of Chemistry and Pharmacy, IBP, and CBQ, UCLV, Santa Clara 54830, Cuba,

Unit for Bioinformatics & Connectivity Analysis (UBICA), Institute of Industrial Pharmacy and Department
of Organic Chemistry, Faculty of Pharmacy, USC, Santiago de Compostela 15782, Spain,
CINVESTAV-LANGEBIO, Irapuato, Guanajuato 36821, Meo, Caribbean Vitroplants,

Santo Domingo 1464, Dominican Republic, and Vascular Biology Institute, School of Medicine,
University of Miami, Miami, Florida 33136

Received August 29, 2007

The study of type Il RNases constitutes an important area in molecular biology. It is known tipaicttie

gene encodes a particular RNase 11l that shares low amino acid similarity with other genes despite having
a double-stranded ribonuclease activity. Bioinformatics methods based on sequence alignment may fail when
there is a low amino acidic identity percentage between a query sequence and others with similar functions
(remote homologues) or a similar sequence is not recorded in the database. Quantitative -stattime
relationships (QSAR) applied to protein sequences may allow an alignment-independent prediction of protein
function. These sequences of QSAR-like methods often use 1D sequence numerical parameters as the input
to seek sequence-function relationships. However, previous 2D representation of sequences may uncover
useful higher-order information. In the work described here we calculated for the first time the spectral
moments of a Markov matrix (MMM) associated with a 2D-HP-map of a protein sequence. We used MMMs
values to characterize numerically 81 sequences of type Ill RNases and 133 proteins of a control group. We
subsequently developed one MMM-QSAR and one classic hidden Markov model (HMM) based on the
same data. The MMM-QSAR showed a discrimination power of RNAses from other proteins of 97.35%
without using alignment, which is a result as good as for the known HMM techniques. We also report for
the first time the isolation of a new Pacl prot€DQ64782¢ from Schizosaccharomyces pomsteain

428-4-1. The MMM-QSAR model predicts the new RNase Il with the same accuracy as other classical
alignment methods. Experimental assay of this protein confirms the predicted activity. The present results
suggest that MMM-QSAR models may be used for protein function annotation avoiding sequence alignment
with the same accuracy of classic HMM models.

1. INTRODUCTION Drospha are type Il RNases responsible for the generation
. e of short interfering RNAs (siRNAs) from long double-
RNase il is a double-strand-specific ribonuclease (dsR- gyranged RNAs during RNA interference (RNA). Also, the
Nase) that usually makes staggered cuts in both strands of &g|,jar processing of ShRNAs shares common features with
double helical RNA, although in some cases it cleaves once, biogenesis of naturally occurring miRNA such as
in a single-stranded bulge in the helix.The primary  qjaavage by nuclear type 11l RNase Drosha, export from the
biological function of this system Ls the _specmc processing ycleus, processing by a cytoplasmic type Il RNase Dicer,
of rRNA and mRNA precursors,® but it has also been 5 incorporation into the RNA-induced silencing complex
|mpI|cateGd in other diverse phenomena such as MRNA 3 5c) Each step has a crucial influence on the efficiency
turnover? conjugative DNA transfef, antisense RNA- ¢ pNAj 1013 It involves both RNase proteins in several

mediated regulation, and othé¥sFor instance, Dicer and i o1tant biological processes as for instance the function
. of Dicer on the vascular system regulating embryonic
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Escherichia colis an archetype of this class of enzyniés!’ other attributes of proteins based on their sequence
The RNase Il family consists of a growing number of similarity.*>4%74 Alternatively, some authors generalized
enzymes that includes at least 33 bacterial and 22 eukaryoticmolecular indices that are classically used for small mol-
enzymes?® There have been numerous reports of dsRNase ecule$®>76to describe protein sequences, such as the gener-
activities in eukaryotic cells, some of which exhibited alization of Brote-Moreau indices by Caballero and Femna
properties consistent with a role in pre-rRNA processhét dez et al’” On the other hand, many authors have introduced
One of the best candidates for eukaryotic RNase Ill 2D or higher dimension representations of sequences prior
homologues is the Pacl RNase fr@ohizosaccharomyces to the calculation of numerical parameters. This constitutes
pombe??~2* The Pacl product is derived fro®chizosac-  an important step in order to uncover useful higher-order
charomyces pombpacI™ gene expression, which is also information not encoded by 1D sequence paramétets.
involved in the regulation of sexual developméhpossibly In addition, 2D graphs have been used for proteins and DNA
through a mechanism that involves the processing of certainsequences by other researchers. For example, Zupan and
small nucleolar RNAs (snRNAS$Y.Pacl works in eukaryotes ~ Randicused spectral-like and zigzag representations. These
as dsRNase and shares a functional similarity to RNase IIl authors suggested an algorithm for encoding long strings of
from E. coli. This fact was proved either by measuring the building blocks (like 4 DNA bases, 20 natural amino acids,
ability of Pacl to degrade double-stranded RNA in vitro or or all 64 possible base triplets) using “zigzag” or “spectrum-
by expressingacl' in E. coli, where it produced an activity  like” representation® Hydrophobic cluster analysis (HCA)
that converted dsRNA into acid-soluble prodiuétBespite constitutes another well-known technique for the 2D repre-
these observations the Pacl gene product shows low homolsentation of protein sequencé€®.Randicet al. ultimately
ogy with other RNAse Il enzymes, particularly with those approached protein representations by using 2D schemes
ones belonging to bacteria. The homology between the based on nucleotide triplet codons or virtual genetic c8tle.
different RNase Il enzymes varies in the range-84% Finally, we introduced hydrophobicity-polarity (HP) 2D
depending on their evolutionary distance, suggesting a low Cartesian or latticelike representations for proteins related
level of primary structure conservatiéhlt has been reported  to plant metabolisni
that antibodies prepared against Pacl RNase have failed to In this work, we propose to use the spectral moments of
react with RNase IIF?2 The Pacl gene product from a Markov matrix (MMM) associated to a 2D-HP-graph to
Schizosaccharomyces pomibelongs to subclass Il of the numerically characterize protein sequences and seek a QSAR
RNase Il family, which is characterized by the presence of model to predict type 1l RNAses without alignment. First,
an N-terminal extension and includes fungal RNasé’i#f. we derived hydrophobicity-polarity (HP) 2D Cartesian or
This contains 363 amino acids (aa), and only its C-terminal latticelike representations (also called maps or graphs) for
230 residues share 25% amino acid identity with the RNase Il and control group protein sequengeg/e then
Escherichia coliribonuclease 113 calculated the MMM values of ordér(symbolized as§®ry)
Methods based on sequence alignment have revealed do characterize the protein sequence. Spectral moments for
low amino acidic identity (26:40%) for thepacl’ gene many kinds of graphs have been used before for quantitative
product with other typical RNases Ill, either isolated from structure-activity relationships (QSAR) studies on pro-
bacteria or even from species that are genetically d6%¥e.  teins!02112 We subsequently developed a classifier to
However, experimental observations show the Pacl proteinconnect protein sequence information (represented by the
to be a dsRNAse enzyme. This relatively low degree of SR values) with the classification of sequences as RNAse
conservation probably reflects the species-specificity of Il or not. In general, different kinds of classifiers have been
RNase lll, which prevents genetic complementation betweenused to derive protein sequence QSAR modfElst* We
members of the RNase Il famify. selected a linear discriminant analysis (LDA), which is a
All of the facts discussed above hinder the prediction of simple but powerful techniqué® 12! The use of this MMM-
the Pacl gene product as an RNase lll-like enzyme usingQSAR model enabled us to predict a novel recombinant Pacl
computational methods based on sequence alignment. In fact(rPacl) protein as an RNase lll-like enzyme from a new
bioinformatics methods based on sequence alignment mayisolate ofSchizosaccharomyces pomBeediction was also
fail in general for cases of low sequence homology between supported by profile Hidden markov model (HMM) analysis
the query and the template sequences deposited in the datand submission to BLASTp and InterP#® servers and
base. The lack of function annotation (defined biological demonstrated by experimental evidence.
function) for the sequences deposited in databases and used
as templates for function prediction constitutes another 2. MATERIALS AND METHODS
weakness of alignment approacl&¥ Recently, a group of 2.1. Computational Methods.A Markov model (MM),
researchers published PROTEOMICS2006) a review? also called MARCH-INSIDE, was used to codify information
on the growing importance of machine learning methods for about 81 RNase IIl protein sequences belonging to prokary-
predicting a protein functional class independently of se- ote and eukaryote species downloaded from the GenBank
quence similarity. In this review the authors make reference database. Briefly, our methodology considers as states of the
to various papers on the topic, including their own wrk> Markov chain (MC) any atom, nucleotide, or amino acid (aa)
These methods often use as the input 1D sequence numericalepending on the kind of molecule to be describ&d?*
parameters specifically defined to seek sequence-functionTherefore, MM deals with the calculation of the probabilities
relationships. For instance, the so-called pseudoamino acid(p;) with which the charge distribution of aa moves from
composition approaéh*” based on 1D sequence coupling any aa in the vicinityi at timet, to another aa along the
numbers has been widely used to predict subcellular local- protein backbone in discrete time periods until a stationary
ization, enzyme family class, and structural class as well asstate is achievet>126
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Table 1. Classification Results Derived from the Model for
Training and Validation Series

MMM training MMM validation
total% 97.35 RNases control RNases control 100 total%
RNases 93.44 57 4 20 0 100 RNases
control 100 0 90 0 43 100 control
MMM all sequences HMM classic
total% 98.1 RNases control RNases control 97.50 total%
RNases 95.1 77 4 80 1 98.75 RNases
control 100 0 133 5 128 96.24 control

Table 2. Enzymatic Assay of Double-Stranded RNase Recombinant
Pac1DQ647826Extracted fromSchizosaccharomyces pom®gain

428-4-1
conc. rPac 1 inM 10 nM 100 nM
EUV2 6.2x 1P 7.4x 1P 7.2x 1P
6.0x 1P 6.8 x 1P 7.3x 1P
6.6 x 10° 6.9x 10° 7.9x 1P
mean 6.4x 10° 7.0x 1P 7.5x 1P

@ Enzymatic unit value for rPac 1 (U/mg).

Each RNase Ill sequence was labeled by its accession
number; see Table 1 in the Supporting Information. The
control group consists of 133 proteins, which were selected
from 2184 high-resolution proteins in a structurally nonre-
dundant subset of the Protein Data Bank (PDB); most of
the data were published by other authors to distinguish
enzymes and nonenzymes without alignmrisee Table
2 in the Supporting Information). Many researchers have
demonstrated the possibility of predicting protein function
from sequence¥? and we used 2D-HP graphs to encode
information about RNase Il amino acid sequenteg/e
then calculated for the first time tH€ny values for these : . . . .

. ) Figure 1. 2D Cartesian representation for the amino acid sequence

graphs. As can be seen from the discussion above, Weyf'ine (pac1 proteischizosaccharomyces pométeain 428-4-1,
selected™"z, based on the utility of other nonstochastic GenBank accession numbBQ647826 Note that a node may
spectral moment®-112 as well as other MMMs and other  contain more than one amino acid, which ensures graph compact-

stochastic parametef¥:12%-131 ness.
It is important to point out that this 2D graphical

representation for proteins is similar to those previously
reported for DNA%29:97 pbut the 20 different amino acids
are regrouped into HP classes instead of using 4 types of
bases. These four groups characterize the HP physicochem
ical nature of the amino acids as polar, nonpolar, acidic, or
basicl®? The 2D-HP graph for the deduced amino acid

the number of nodes) in the graph is equal to the number
of rows and columns ifIT but may be equal to or even
smaller than the number of amino acids or DNA bases in
the sequence. The elements'df are the probabilitiedp

of reaching a node; with chargeQ; moving through a walk

of lengthk = 1 from another node; with chargeQ'*3

sequence of rPacl protein, obtained fr&chizosaccharo- Q

myces pombstrain 428-4-1 (uploaded by our group with p. = _ 9 (1)
accession numbedQ647829, is shown in Figure 1. It is Yoo

worth noting that 363 amino acids are rearranged in a 2D Z ;°Q

space compacting protein representation. Each amino acid =

in the sequence is placed in a Cartesian 2D space starting ) ) ,
with the first monomer at the (0, 0) coordinates. The Wherea; equals 1 if the nodes andn; are adjacent in the
coordinates of the successive amino acids are calculated agraPh and equal to 0 otherwis®; is equal to the sum of
follows: a) increase by-1 the abscissa axis coordinate for the electrostatic charges of a_lll amino acids placed at this
an acid amino acid (rightwards-step), or b) decrease-by node. I'F then becomes straightforward to_ carry out the
the abscissa axis coordinate for a basic amino acid (lefiwards-calculation of the spectral moments ofl in order to
step), or ¢) increase by1 the ordinate axis coordinate for numerically characterize the protein sequence
a polar amino acid (upward-step), or d) decrease-thythe n
ordinate axis coordinate for a nonpolar amino acid (downward- MMM = SR 7 = z ko = Tr{(*TT)Y )
step). 2 g

2.2. 2D-HP Graph MMMs Used as Sequence Numer-
ical Descriptors. After the representation of the sequences where Tr is called the trace and indicates that we sum all
we assigned to each graph a stochastic maffixNote that the values in the main diagonal of the matri€Bs= (*IT)X,
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which are the natural powers éFI. The present class of —
MMMSs encodes in a stochastic manner the distribution of GRoup ||  SEQUENCES §<(3| CONTROL
the amino acid properties (charge) through all of the nodes
placed at different distances in the 2D-HP lattice. Expansion ‘

of expression 2 fok = 0 gives the order zero MMM(HPxo); oy any 3
for k = 1 the short-range MMM ("Pry), for k = 2 the

middle-range MMM ("Px,), and fork = 3 the long-range — — CRC64
MMMs. This extension is illustrated for the linear grapfh n e Cg&&h

ny-nz, which is characteristic of the sequence (Asp-Glu-Asp-
Lys); please note that the central node contains both Glu

93 BLAST SEQUENCE HP-SEQLEM! INTERPro
and Asp? R ZD-HE SEQUENCE SEQUENCE SCAN
100 1 l l
HP _ 1 _ —
Ty = Tr[( H)O] =Tr|0 1 0|]|=3 (2a) Pl P12 oo Pin HMMTigr  HMMPtam
ATTAATGCATGCAAG
O 0 1 : H Par P2z e Py HMMTanther
" 1 "'“K"L?'”t“"'”'“('g(“i"‘ HAMSmart  HMMPir
P11 P12 0 TAGCATGCATGCITT Enl; B oz P BLASTProDom
HP _ 1 17 1 1 1 _
T = TI’[( H) ] =Tr Po1 P Pazf|= PROBLEM-TEMPLATE MARKOV-MATRIX _LAUNCI SELECTLD
1. 1 SBQUENCES SPECTRAL MOMENTs ~ INTERPro APPLICATIONS
0 p32 p33 SIMILARITY
1 1 1
Pyt Pt P2y (2b) l l
GUTPUT [ RNase-score 35,46 i, ~33.36Mn, —2.22]
HP _ 1 1y _
Ty = TI’[( H) ] - ANALYSIS LDA SEARCH FOR

SRQUENCE-FUNCTION

1 1 1pll 1plz 0 I\-I(IDEL
lpn 1F’12 10 0,1 P2z Pog , ) )
Trl['P21 P22 Pas|*[O 1psz lpss = Put Pt P SEQUENCE ()

U R
(2¢) °
HP = Tr[(ll'I)Z] — Figure 2. Schematic representation of the steps given in this work.
1 1 1 1 1 1 . . .
P11 P2 O P11 P2 O P11 P2 O explored as clustering variables in order to carry out k-MCA.
Tl ['P0r 'P2s 'Poa| [P P2z Paal [Pt TPas TPasl| = The procedure described above is represented graphically

0 1p lp 0 1p lp 0 lp 1p in Figure 3, where a cluster analysis was carried out to select
s2 33 32 33 . 32 . 33 a representative sample for the control group.
P11t Pt Py (20) 2.4. Linear Discriminant Analysis. LDA forward step-
) . wise analysis was carried out for variable selection to build
All calculations of"Pry values for protein sequences of up the modet15-12 All of the variables included in the model
both groups were carried out with our in-house software \yere standardized in order to bring them onto the same scale.
MAR(:_H"QJS'DE’ version 2.0, including sequence repre- gyhsequently, a standardized linear discriminant equation that
sentatlggﬂ We proceeded to upload a row data table with 5)10\s comparison of their coefficients was obtaiA&drhe
eleven™"x values for each sequende< 0, 1, 2,...10) and  gquare of Mahalanobis’s distand®?( and Wilk's (1) statistic
grouping variable RNaselll-score 1 (for_RNAses) anq—l (. = 0 perfect discrimination, being & A < 1) were
(for control group sequences) to statistical analysis soft- examined in order to assess the discriminatory power of the
ware!® The overall methodology is represented schemati- model. Pacl protein was submitted to BLASTp to show
cally in order to improve the understanding of our approach graphically the similarity of the sequence compared to other

(see Figure 2). , , RNases Ill. Each sequence presented in this study was also
2.3. Statistical Analysis. K-Means Cluster AnalysisThe submitted to the InterPro ser¥&in order to compare our

negative group was selected from 2184 proteins with diverse methodology with other classical sources of predictive
functions (enzymes and nonenzymes) recorded in the PDB,nctional annotation. InterPro consists of a database of
as mentioned before. Our negative subset was designetygtein families, domains, and functional sites in which

according to K-means cluster analygisMCA).** The jgentifiable features found in known proteins can be applied
method consists of carrying out a partition of the starting o ynknown protein sequences.

group made up by a non-RNase Il series of proteins into
several statistically representative clusters of sequences. Thus,
one may select the members to conform to the negative
subset from all of these clusters. This procedure ensures that 3.1. Strains and Culture Media. The Schizosaccharo-
the main protein classes (as determined by the clustersmyces pombstrain 428-4-1 was routinely grown in yeast
derived from k-MCA) will be represented in the model extract (YEB) medium at 30C during 12 h. Bacterial strain
control group, thus allowing the representation of the entire Escherichia coliDH5a was grown in luria broth (LB).
‘experimental universe’. The spectral moment series was Transformed bacteria were recovered in the same LB

3. EXPERIMENTAL SECTION
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Figure 3. k-MCA procedure for control group design.

medium but supplemented with carbenicillin at Z09/mL.
Media were also supplemented with bacteriological agar
when required.

3.2. Total DNA Extraction. A colony from Schizosac-
charomyces pombstrain 428-4-1 was inoculated in 5 mL
of YEB medium and grown at 38 during 12 h until O3y
= 0.5. From this culture, 250L was transferred to 50 mL

AGUERO-CHAPIN ET AL.

dard PCR from its total DNA. The reaction mixture contain-
ing 10 ng of template, 1 mM of each dNTP, 1.5 mM MgClI
2 uM of each PAC5and PAC3 primers, X buffer Taq
Pol (Gibco BRL), and 2.5 U Taq Pol (Gibco) was completed
to a total volume of 5Q:L. The PCR was carried out using
a thermocycler (Perkin-Elmer 2400) programmed as fol-
lows: 5 min initial template denaturation at 9€, cycle
steps—1 min template denaturation at 9€, 2 min primer
annealing at 45C, 2 min primer extension at 7Z for 30
cycles, plus a final extension step at Q2 for 5 min29:30.138
PCR reaction showed a band coinciding with the size of the
reportedpact™ ORF138

3.5. Plasmid Construction and SequencingThe PCR
amplification product was purified using a GEL Band Purifi-
cation kit (AmershamPharmaciaBiotechand ligated to
pMOS-Blue T-vector AmershamPharmaciaBiotechThe
ligation was transformed into electrocompetEntoli DH50
by electroporation in 0.2 mm cuvettes using a Gene Pulser
Machine (BioRad) (12.5 kV, 2&F, 1000w). The transfor-
mation was plated onto LB medium supplemented with 40
uL of 20 ug/mL X-gal solution and 4L of isopropylthio-
pB-D-galactoside from a 200g/mL IPTG solution per plate
and allowed to grow overnight at 3TC. White colonies-
presumably carrying the recombinant pacl gene inserted in
pMOS-Blue T-vector, named pRSPaedere selected, and
plasmid DNA was extracted for analysis of the cloned frag-
ment by restriction enzymes. Sequencing of the cloned frag-
ment was performed using an ABI 3700 sequencer (Applied
Biosystems}3° and this showed a product of 1.111 Kb.

3.6. Purification of Recombinant PaclA single colony
of E. coli DH5a with pRSPacl was grown overnight at 30
°C in 5 mL of LB medium supplemented with carbencillin
at 100ug/mL. 250uL of culture was then inoculated to 250
mL of the same medium supplemented with carbenicillin
(100 ug/mL) and grown under the same culture conditions
until ODgoo = 0.8; at this point 5QiL of 200 ug/mL IPTG
solution was added to the culture. Three hours after induction,
cells were harvested by centrifugation and washed with 15
mL of 50 mM tris-HCI (pH 8), 100 mM NaCl, and 1 mM
EDTA. Cells were collected by centrifugation and stored at

of the same medium and grown overnight at the same —70 °C overnight. Aroud 3 g of frozen cells was resus-

temperature. When the QB = 0.8, cells were collected by

pended in 15 mL of lysis buffer (1% NP40, 0.5% sodium

centrifugation and broken using small glass peatrls. A cellular deoxycholate, 0.1 M NaCl, 30 mM Tris-HCI (pH 8), 1 mM

pellet was resuspended in 500 of sterile water at 50C,

EDTA), and 5 mM MgC} and DNasel (1@g/mL) were

and the extract was separated from cellular debris by added. The cell suspension was incubated on ice for 10 min.

centrifugation. Total DNA was purified using a total DNA
extraction kit (Qiagen GmbH, Germany). Total DNA solution

was measured at 260 nm in a GENESYS 10 spectropho-

tometer, reaching a concentration of @uL. The solution

Inclusion bodies were collected by washing four times with
lysis buffer and twice with 50 mM Tris-HCI 5 mM (pH 8),

1 mM DTT. Finally, the sample was dissolved in 5 mL of
loading buffer and boiled in a water bath for 10 min. The

was also run on agarose gel (0.8%), and high integrity wastotal volume of extract was divided into five preparative

seen.
3.3. Primer Design. Forward (PACYH 5'-cccATGG-
GACGGTTTAAGAGGCATC-3 and reverse (PACB5'-
gtgggttascgggcaaatTA G-3 primers were designed based
on the previously reportegacl™ coding sequence from
Schizosaccharomyces pombwmitant snm1-1. The primer

sequences show the restriction sites Ncol and Kpnl intro-

duced at the'3and 3 ends, i.e., the first ATG and the stop
TTA codon. The coding regions are shown in capital
letters?s®

3.4. PCR Amplifications. Amplification of thepacl" gene
from Schizosaccharomyces pombas performed by stan-

PAGE electrophoresis samples containing 1 mL of protein
extract, which were run in 12% gel. The component
corresponding to 45.5 kDa recombinant Pacl protein was
visualized by staining with an agueous solution of 0.05%
Coomassie brilliant blue R250. In each case the recombinant
protein was excised from polyacrylamide gel, recovered by
electroelution, combined, concentrated with Centricon-10
(Amicon) to 0.5 mL, and diluted to 1.5 mL with a storage
buffer to a final composition of 500 mM NaCl, 20 mM
sodium phosphate (ph 7.4), 67 mM imidazole, 1 mM DTT,
1 mM EDTA, and 30% glycerol. The recPacl preparation
was stored at-20 °C 2930138
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3.7. Synthesis and Preparation of Complementary RNA  mM Tris-HCI (pH7.6), 1 mM DTT, 5 mM of MgG, 10
Strands. The enzymatic assay of recombinant Pacl was nM of dsRNA substrate, and different quantities (0, 1, 10,
carried out according to the optimized conditions described 100 nM) of purified recombinant Pacl enzyme. Enzymatic
by Rotondo and Frendewé9In a previous experiment (data reactions were completed on ice, started by the addition of
not shown) we amplified by PCR a fragment corresponding 0.1 V of 50 mM MgCh, incubated at 30C for 10 min, and
to the fourth intron ofSchizosaccharomyces pombéubu- stopped by the addition of 500L of 5% ice-cooled TCA
line from its total DNA and inserted the amplified fragment followed by 15 min on ice. The aliquots were centrifuged at
into pBluescript Il KS ¢) for further in vitro transcription 16 00@ during 5 min in a Spin-X filter unit (Costar). The
purposes. The integrity of the amplified sequence and soluble fractions (filtrate) were quantified by liquid scintil-
transcriptional fusion was tested by sequencing. We repro-lation counting. The counting data represent the amount of
duced exactly the described assay to compare the activityacid-precipitable polynucleotide phosphorus (dsRNA) sub-
of our recombinant enzyme with the results from other strate transformed into acid soluble cleavage products by
reports. This construction was used as a template for the PCRPacl enzyme. The procedure was repeated three times with
of fragments corresponding to transcriptional-fusion suitable three repetitions per experimeti€0138
for the synthesis of both complementary strands of dsRNA
substrate for an in vitro transcription reaction. For this 4. RESULTS AND DIS?USSION
purpose the following primers were synthesized: 'apbtc- 4.1. MMM-QSAR Model To Predict Type Ill RNAses
ggaattaaccctcactaagaacGTAGGTTTTTTTGCTTTC!IT3 without Alignment. Many different parameters can be used
promoter in lower case, ®nd of theSchizosaccharomyces {0 e€ncode protein sequence information and further assign
pombes-tubuline fourth intron in upper case) and B)dsit- or predict the function or physical properties of proteins and
acctaatacgactcactatggagaCTACAGTCGTCAGTAC I T7 their mgtantslf‘?’l“l The present approach involves the
promoter in lower case, complement of theedd of the calculation of different sequence parameters based on MMs,
Schizosaccharomyces pomPetubuline fourth intron in  Which can be applied to different kinds of molecular graphs
upper case). including DNA, RNA, and protein&4* MMs have been
applied successfully to genomics and proteomics and rep-
resent an important tool for analyzing biological sequence
data. In particular, MMs have been used for protein folding
recognitiot*® and the prediction of protein signal se-
guences?*+1*5MMs have also been applied to predict alpha
turng“®and beta turri4” as well as other tight turns and their
typest*® Particularly, MMs have been further used to predict
the specificity of GalNAc-transfera¥€ and cleavage sites
in proteins by proteasé8} 1% greatly stimulating the
development for drug design against AIDS and SARS!S?
In this work we calculated MMMsz,) of the stochastic

atrix that describe the distribution of the amino acids of
he protein sequence in the 2D-HP graph. This calculation
was carried out for two groups of protein sequences, one
made up of RNase lll-like enzymes and the other formed
by heterogeneous proteins. This last group contains 133
members, and these were selected as follows:

Original data were submitted to k-MCA as described

The arrows indicate the transcription initiation site. The
PCR products were purified, and 50 ng of each was used to
synthesize both complementary strands of the dsRNA Pacl
substrate. The transcription reactions were prepared in a final
volume of 20uL containing 40 mM Tris-HCI (pH 7.9), 6
mM MgCl,, 2 mM spermedine, 10 mM DTT, 0.5 mM of
each ribonucleoside (Amersham Pharmacia Biotech) G0
[0®2 P] UTP (800 Ci/mmol), 20 U RNAsin (Promega), and
20 U T3 or T7 RNA polymerase (Amersham Pharmacia
Biotech). In the case of the transcription reaction driven by
the T3 promoter, the addition of 50 mM NacCl to the reaction
mixture was required. In all cases the reactions were prepare
on ice and were then incubated at°€7during 10 min. The
resulting transcripts were treated with DNAse | (Promega),
phenol extraction and precipitation with 2.5 V/V of absolute
ethanol were carried out, and the samples were stored
overnight at—70 °C. The complementary RNA strands were

collected by centrifugation at 16 09@uring 10 min at 4 0.i6,51y13 The k-MCA divided the data into four clusters
°C. Finally, the pellets were washed with 70% ethanol, dried, containing 439, 684, 592, and 469 members, respectively.
resuspended in diethyl pyrocarbonate treated with distilled Selection was based on the distance from each member with

water, and stored at70 °C. respect to the cluster center (Euclidean distance). We selected
3.8. Preparation of dsRNA Substrate for Pacl Enzy-  the closer cases to the center in order to ensure the inclusion
matic Assay.Equimolar quantities of both complementary of representative members of each cluster in the control
strands were mixed in diethyl pyrocarbonate and treated with group. Depending on the cluster size, a proportional number
distilled water to give a final volume of 50L. The mixture of proteins were set; 27 cases were taken from the first
was heated during 10 min at 10C in a water bath. The cluster, 42 from the second, 36 from the third, and 28 from
whole bath was then firmly closed and placed into thermal the fourth to give a total of 133 members in the control group.
box overnight to allow annealing of both complementary We always bore in mind the principle of discriminant analysis
strands into the dsRNA substrate. The unpaired ends andn terms of balancing the size of the control group with
RNA strands were removed by RNase A (Promega) treat- respect to the RNase Ill group. A simple MMM-QSAR was
ment. The dsRNA substrate was purified (PAGE-TBE 15% then developed to classify a novel sequence as RNase Ill or
gel) and stored in diethyl pyrocarbonate (DEPC) treated not. The best equation found for this purpose was
distilled water at—70 °C. The substrate for the Pacl assay RNaselll—

consisted of 101 bp dsRNA, identical to the substrate used score= HP HP
by Rotondo and Frendewéy. 35.46x "y — 33.36x T, — 2.22 (3)
3.9. Enzymatic Assay of Recombinant PacIThe Pacl The statistical parameters for the above equation were

assay was carried out using the following conditions: 30 Wilk’s statistic ¢ = 0.18), Mahalanobis’s distanc®{ =



440 J. Chem. Inf. Model., Vol. 48, No. 2, 2008 AGUERO-CHAPIN ET AL.

1.1

1.0

- T

0.9

0.8

0.7

0.6

'

0.5

04—+t

1-Specificity

03 r

02r

0.1

N4

-0.2 0.0 02 04 06 08 1.0
-0.1 0.1 0.3 0.5 0.7 0.9 1.1

Sensitivity
Figure 4. Receiver operating characteristic curve (ROC-curve) for

training (dark line), validation (dot line), and random classifier (tight
line) with areas under the curve of 0.99, 0.97, and 0.5, respectively.

16.36), and error levepflevel < 0.001)!3 This discriminant
function misclassified only four cases out of 214 proteins Figure 5. 2D-HP map superposition of RNases from prokaryotes
used in both the training and validation series, reaching a (dark gray), eukaryotes (in light gray), and rPa2Q647826from
high level of accuracy of 98.13%. More specifically, the Schizosaccharomyces pomiteain 428-4-1 (in black).

model classified correctly 77/81 (95.06%) of RNase llI-like
enzymes and 100% of the control group. The respective auery
classification matrices for training and cross-validation are
depicted in Table 1. Analyzing the definition of MMMs in

above equations, it is important to highlight that the
combination of a positive contribution 8fz, and a negative
contribution of?x, in eq 3 points to a HP folding rule for

the biological activity. The higher the number of HP-folded
nodes (evaluated b{y/Pzy) and the lower the number of
middle-range self-return HP-folding walkfz,) the higher

will be the assigned activity score. Thus, highest scores for
classification of RNase lll-class are proportionally related

not only to the content of hydrophobic residues in the protein
sequence but also to the middle-range patterns formed by

the backbone in the HP-lattice folding process. Otherwise,

the folding patterns at long-range (MM}\) within the lattice

do not directly affect the final assigned biological activity
score.

A validation procedure was subsequently performed in
order to assess the model predictability. This validation was
carried out with an external series of 20 RNase llI-like
proteins and a further 43 diverse proteins (see Table 1). The
present model showed an average predictability of 100% for
each group, which is remarkable in comparison to results
obtained by other researchers on using the LDA method in gigyre 6. BLASTp analysis for rPaci protein sequem@647826
QSAR studies® 16" These results are also consistent with Note that the scale of scoring is progressive in darkness. Sequence
many others we have recently reviewed in-depth and names are not depicted.
published in the form of a review article on the uses of
different networklike indices in small-sized, nucleic acids, sification analysis with all of the proteins included. These
and proteins QSARS In addition, we carried out a clas- results provide further evidence of the robustness of the
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Figure 8. Clustal X sequence alignment involving RNase lll-like enzymes. Each sequence is represented by its accession to the GenBank

Database Protein. Sequences used in the alignment were represented previously in the Cartesian ZBigysednWe use sequences
from some representative eukaryotes and rPacl fBorpombe[XP_717277]Candida albicansSC5314, [XP_457193pebaryomyces
hanseniiCBS767, [NP_013966%accharomyces cersiae, [XP_449570]Candida glabrataCBS138, [XP_45618%luyveromyces lactis
[DQ647826]S. pombestrain 428-4-1, [EAL91634Aspergillus fumigatug\f293, [XP_790161]Strongylocentrotus purpuratus

results obtained. The receiver operating characteristic (ROC)lated ORF as an RNase llI-like enzyme was performed by
curve was also constructed for the training and validation the present alignment-independent approach instead of
series. Notably, the curve presented a pronounced curvaturdraditional alignment methods. The theoretical prediction of

(convexity) with respect to thg = x line for both series

rPacl as a double-stranded RNase was confirmed experi-

(see Figure 4). This result confirms that the present model mentally by in vitro assays.
is a significant classifier, having areas of 0.99 (training) and  4.2.2. PredictionOur Pac1l protein sequence was analyzed

0.97 (validationy-i.e. markedly higher than 0.5, which is
the value for a random classifi&®

4.2. Isolation, Prediction, and Assay of a Novel Pacl
from Schizosaccharomyces pomliStrain 428-4-1.4.2.1.

using the MMM-QSAR methodology with the aim of
recognizing the rPacl gene product as a eukaryotic RNase
[l homologue. The sequence was represented in a Cartesian
2D system and calculated including the whole data set. This

Isolation. In this work we isolated, cloned, and expressed a particular case was included in the validation subset in order
new Pacl DNA sequence froBthizosaccharomyces pombe to make a prediction. The MMM-QSAR model although very
strain 428-4-1, and its nucleotide and amino acid sequencesimple (two variables) allowed the correct classification of
was recorded on the GenBank database with accessiorthe rPacl product as an RNase lll-like enzyme with the

numberDQ647826 The theoretical prediction of its trans-

maximum probability § = 1). In order to make a graphical
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comparison between our methodology and alignment meth- a b
ods like BLASTp6%172 several representative RNase |l
protein sequences from prokaryotes and eukaryotes were -
selected together with rPacl for representation in a 2D- -
mapping system (see Figure 5).
The 2D-HP map protein representation introduced here
revealed a significant separation for the groups consisting
of dsRNases from prokaryotes (in dark gray) and eukaryotes
(in light gray). The rPac1 protein (in black) is placed between
the two groups, acting as a sort of link between the RNase
Il families. This representation possibly supports evolution- s ” -
ary relationships between double-stranded RNase protein
sequences. Since the Cartesian 2D protein representation is
mainly based on amino acid composition, we can highlight
a major region from rPacl matching eukaryote sequences h
(in light gray) and another small region that lies within the
prokaryote region (in dark gray). There is also a nonmatching
region specific for rPacl iBchizosaccharomyces ponthat
does not exist in other eukaryotes. However, matching
regions in the graph made a significant contribution to
calculation of the spectral moments, thus allowing successful

recognition of rPacl as RNase lll. These results coincide ~
with the use of different variants of 2D-HP folding maps i
for proteinst’3-175

We also performed an alignment between the previously “

selected sequences and our rPacl product using the CIUSt"’}Jiigure 9. Electrophoresis of rPacl protein. 45 kDa rPacl was

W program, version 1.81 (see Figures 7 and 8). Alignment purified and loaded in 12.5% PAGE-SDS and stained with
results coincide with those obtained in previous studies Coomassie brilliant: (a) band corresponding to rPacl purified and

reported by other authors. The rPac1 showed low amino acid(b) molecular weight marker66.2 kDa, 45.7 kDa, 31 kDa, 21.5
identity percentages in comparison to dsRNase sequence %%;‘é‘)d 14.4 kDa (unstained SDS-PAGE standards broad range,
from other eukaryote organisms, even for those belonging '
to yeast-related species. Short and less frequent regions matchroup, six cases did not have InterProt identification, and
along the protein sequences, especially toward the N-terminalthree of them did not have any hits reported (95, 50% of
region (see Figure 8). The comparison with prokaryote predictability) (see Table 1ISM). These results confirm that
sequences showed a matching region toward the protein’sour model replaces neither classical methods for protein
C-terminal part, from the 170 up to the 260 amino acid function annotation like BLAS™T*1"2and InterPrd€>17nor
position. This region corresponds with the RNase Il C- new alignment techniques based on partial order, secondary
terminal domain (RIBOc), which is conserved in eukaryotic, structure, or gene ontologyf ¥ but becomes an interesting
bacterial, and archeal RNase Ill and is associated with thealternative toot-especially due to its alignment-independence
catalytic activity. There is a significant N-terminal region and simplicity. It is also important to highlight that our
in the Pacl product that does not appear in the RNase Il methodology can be considered as a good classifier, despite
prokaryote family-a finding consistent with other reports its simplicity, as it gives rise to a linear equation with two
(see Figure 732 A BLAST%%172 gnalysis was carried out variables at most! Thus, once the whole database has been
on the translated rPacl DNA sequence (see Figure 5). Thisscreened and proteins having the desired function are
method recognized successfully our query sequence as a Pacfecognized, it would be worthwhile to assess results obtained
ribonuclease, reaching up to 98% of amino acid identity with using our approach using other methodologies.
others already recorded froBchizosaccharomyces pombe  In order to compare the MMM-QSAR approach reported
strains. Although this analysis showed lower scores (close here with other methodologies based on MM, training and
to 80%) in comparison to other typical dsRNases, the negative (non-RNAses sequences) sets were scored with a
approach still enabled protein query recognition as RNase classic HMMst76:1821%0 Classification driven by an HMM
Ill. With the aim of comparing different methods, it is built on the original training set resulted in an accuracy of
possible to set an equivalence for the score value (80%) from98.75% for the positive sequences (training set) and 96.24%
BLAST with our predicted probabilityp = 1, for rPacl to for the negative sequences (see Table 2). Our query sequence
act as an RNase lll-like enzyme. BLAST also revealed low DQ647826was also successfully predicted with the maxi-
amino acid identity €40%) toward the C-terminal portion mum score by the HMM.
despite this representing the highest conserved region in the 4.2.3. Experimental Hdence for RNase Il Actity.
four existing RNase Il subclass&8:172 Recombinant Pacl protein froBthizosaccharomyces pombe
On the other hand, as mentioned previously, each sequencetrain 428-4-1 was purified in order to measure its double-
included in the study was submitted to InterProt. All cases stranded RNase activity in vitro. The corresponding product
(100%) from the RNAse Il group matched significantly with  size (45.5 kDa) coincided with the reported size for the native
RNase Il domainsIPR000999, allowing the total recogni-  protein (see Figure 9). Double-stranded activity was mea-
tion as dsRNases (see Table ISM). In the case of the controlsured in vitro by following the protocol described above.
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Figure 10. Autoradiography of rPacl enzymatic assay. To visualize the cleavage activity of the dsRNA substrate generated by T3/T7 “in
vitro” transcription, aliquots of enzymatic assay were taken at 2, 5, and 10 min, loaded in 12.5% PAGE/7 M urea followed by autoradiography.
Lane 1 is pBR322 digested by Mspl. Lane 2 is the intact dSRNA substrate. La®esr8 the results of rPacl enzymatic activity at 2, 5,

and 10 min of reaction at 3. Lanes 6 and 7 are the T3 and T7 ssRNA obtained by “in vitro” transcription too which are not degradated
by RNAse activity of Pacl.

The unit definition for all RNase Il types is the amount of 5. CONCLUSIONS
enzyme able to solubilize 1 nmol of acid-precipitable ) )
radioactivity per hour” Pac1 activity showed values com- The work described here introduces a new approach to

parable to other results (5 10° U/mg) obtained for a ~ Predict RNase type IIl function from protein sequences
recombinant Pacl product fronSchizosaccharomyces irrespective of sequence alignment using the MMMs associ-
pombeby Rotondo and FrendewéyResults derived from ated with a 2D sequence representation as the input for an
the enzymatic activity assay are shown in Table 3 for each LDA classifier. This MMM-QSAR classifier successfully
experiment; the mean value was 6.9610° U/mg. discriminates between RNase-like sequences and a control
The kinetic enzymatic reaction of rPacl by monitoring 9roup. The Pacl gene product was chosen as a representative

dsRNA integrity (lanes 25) is illustrated in Figure 10. example of a sequence with low amino acid identity
These last experiments for ti2Q647826sequence were compared to other enzymes with similar activity. The present
not carried out to validate the MMM-QSAR model but to methodology achieves high classification scores similar to
show how to use it for predicting RNase lll-like protein bioinformatics tools based on sequence alignment (BLASTp)
function annotation. We recall that the validation of the and comparable results to other predicting protein function
MMM-QSAR model was assessed with the external predic- annotation methods like InterProt and HMMs. The predic-
tion series as recommended for any QSAR studies (seetions made by the present model coincide with outcomes
previous sectionsP! from experimental isolation, expression, and enzymatic
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