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Heads or tails?

Question
When tossing a coin frequently, the
true probabilities of heads and tails
are equal
→ Is the coin truly fair?
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N: Number of tosses
K : Frequency of tails
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Hypothesis testing

N: Number of tosses
K : Frequency of tails

Null model (M0)

K ∼ Binomial(θ, N) and θ = .5

Equal probabilities

Full model (M1)

K ∼ Binomial(θ, N) and θ 6= .5

Heads or tails more probable
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Hypothesis testing

N: Number of tosses
K : Frequency of tails

Null model (M0)

K ∼ Binomial(θ, N) and θ = .5

Equal probabilities

Full model (M1)

K ∼ Binomial(θ, N) and θ 6= .5

Heads or tails more probable

→ Which is the most plausible assumption for θ?
→ Bayes factor
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The Bayes factor

What is a Bayes factor?

Model selection tool in Bayesian framework

Compares the “evidences” of both models

Model with highest evidence is supported

Quantification of how strong that support is

Lodewyckx, Lee & Wagenmakers Bayesian hypothesis testing using transdimensional MCMC



Bayesian hypothesis testing
Hypothesis testing with transdimensional MCMC

Applications
Conclusion

Heads or tails?
The Bayes factor
Research goal

The Bayes factor

What is a Bayes factor?

Model selection tool in Bayesian framework

Compares the “evidences” of both models

Model with highest evidence is supported

Quantification of how strong that support is

Notation
B10 is the Bayes factor in favor of M1 (full model)
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The Bayes factor

Formal definition

B10 =
Marginal LL (M1)

Marginal LL (M0)
=

f (y | M1)

f (y | M0)
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The Bayes factor

Formal definition

B10 =
Marginal LL (M1)

Marginal LL (M0)
=

f (y | M1)

f (y | M0)

=
Posterior model odds

Prior model odds
=

P(M1 | y)/P(M0 | y)

P(M1)/P(M0)
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The Bayes factor

Interpretation scheme Raftery (1995)

log(B10) Evidence?

< -5 Very strong evidence for M0

-5 to -3 Strong evidence for M0

-3 to -1 Positive evidence for M0

-1 to 0 Weak evidence for M0

0 No evidence
0 to 1 Weak evidence for M1

1 to 3 Positive evidence for M1

3 to 5 Strong evidence for M1

> 5 Very strong evidence for M1
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The Bayes factor

Advantages

Intuitive

Model averaging

Model complexity
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Heads or tails?
The Bayes factor
Research goal

The Bayes factor

Advantages

Intuitive

Model averaging

Model complexity

Problems

Depends on prior distribution

Computational
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Research goal

Research goal: Estimating Bayes factors should be..

1 easy to implement

2 precise

3 flexible
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Transdimensional MCMC methods

Markov chain Monte Carlo (MCMC) methods

What? Simulation techniques to simulate values from
posterior distribution

Why? Facilitate Bayesian parameter estimation

Where? Parameter space Ω = [Θ] = [{α, β, γ, . . .}]
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Transdimensional MCMC methods

Markov chain Monte Carlo (MCMC) methods

What? Simulation techniques to simulate values from
posterior distribution

Why? Facilitate Bayesian parameter estimation

Where? Parameter space Ω = [Θ] = [{α, β, γ, . . .}]

Transdimensional MCMC methods

What? MCMC methods that operates on at least 2 models

Why? Simultaneous estimation of Bayesian models,
hypothesis testing, model selection

Where? Parameter space Ω = [M, ΘA, ΘB , ΘC , ΘD , . . .]
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Transdimensional MCMC methods

Transdimensional MCMC methods of interest

What? MCMC methods that operates on M0 and M1

Why? hypothesis testing

Where? Parameter space Ω = [M, Θ0, Θ1]
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Hypothesis testing

Specify prior distribution: Ω = [M, Θ0, Θ1]
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Hypothesis testing

Specify prior distribution: Ω = [M, Θ0, Θ1]

Transdimensional MCMC sampling: Simulate values from
posterior distribution of M

M = 0 → Simulate values posterior Θ0

M = 1 → Simulate values posterior Θ1
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Hypothesis testing

Specify prior distribution: Ω = [M, Θ0, Θ1]

Transdimensional MCMC sampling: Simulate values from
posterior distribution of M

M = 0 → Simulate values posterior Θ0

M = 1 → Simulate values posterior Θ1

Estimate Bayes factor: Use prior and posterior chances of M

B10 =
P(M = 1 | y)/P(M = 0 | y)

P(M = 1)/P(M = 0)
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Hypothesis testing: Prior distribution
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Hypothesis testing: Transdimensional MCMC

Iteration
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Hypothesis testing: Bayes factor

log(BF10) = −1.81
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Hypothesis testing

Problem: No continual sampling of the parameter vectors

Iteration
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C3 method

Combined Carlin & Chib (C3) method

Pseudopriors are used for sampling from the parameter vector
when the model is deactivated

Recommended choice: posterior distribution

Combination of three sampling paths:
1 Ω = [M,Θ0,Θ1]
2 Ω = [Θ0] → Pseudoprior Θ0

3 Ω = [Θ1] → Pseudoprior Θ1
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C3 method
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Is priming truly subliminal?

Question
Subliminal priming studies
assume that the prime
stimulus is perceived on a
subliminal level
→ Assumption plausible?
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Is priming truly subliminal?

Study by Rouder, Morey, Speckman & Pratte (2007)

Visual stimuli [2, 3, 4, 6, 7, 8]

In each trial, participant was presented a 22 ms prime
stimulus, followed by a 200 ms target stimulus

Indicate whether prime stimulus was higher than 5
(“Yes”/“No”)

Results in K correct identifications out of N trials
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Is priming truly subliminal?

Null model (M0)

K ∼ Binomial(θ, N) and θ = .5 (at chance)

Subliminal perception of prime stimulus
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Is priming truly subliminal?

Null model (M0)

K ∼ Binomial(θ, N) and θ = .5 (at chance)

Subliminal perception of prime stimulus

Full model (M1)

K ∼ Binomial(θ, N) and θ > .5 (above chance)

Supraliminal perception of prime stimulus
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Is priming truly subliminal?

Null model (M0)

K ∼ Binomial(θ, N) and θ = .5 (at chance)

Subliminal perception of prime stimulus

Full model (M1)

K ∼ Binomial(θ, N) and θ > .5 (above chance)

Supraliminal perception of prime stimulus

→ Estimate log Bayes factor with Combined Carlin & Chib
method for each subject (non-hierarchical) and for the group
(hierarchical)
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Non-hierarchical application: Graphical model

φ

θ

K

N

K ∼ Binomial(θ, N)

θ = Φ(φ)

M0 : φ = 0

M1 : φ ∼ Normal(0,+∞)(0, 1)
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Non-hierarchical application: Results

Proportion of correct identifications
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Non-hierarchical application: Validation

Log Bayes factor IS method
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Hierarchical application: Graphical model

µφ σφ

φi

θi

Ki

Ni

Ki ∼ Binomial(θi, Ni)

θi = Φ(φi)

φi ∼ Normal(0,+∞)(µφ, σφ)

σφ ∼ Uniform(0, 1.5)

M0 : µφ = 0

M1 : µφ ∼ Normal(0,+∞)(0, 1)

i = 1, . . . , 27
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Hierarchical application: Results & Validation

Log Bayes factor?

C3 method: log(BF10) ≈ −3.6 → Strong evidence M0

Consistent with importance sampling method
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Estimating Bayes factors with C3 method is..

1 easy to implement

2 precise

3 flexible
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Conclusion

Estimating Bayes factors with C3 method is..

1 easy to implement

2 precise

3 flexible

→ C3 method seems a good candidate for Bayesian
hypothesis testing in experimental psychology
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