
The interval ordering problem

 C. D¿rr, M. Queyranne, F. Spieksma, F. Talla Nobibon, G. Woeginger

DEPARTMENT OF DECISION SCIENCES AND INFORMATION MANAGEMENT (KBI)

Faculty of Business and Economics

KBI 1025

The interval ordering problem

Christoph Dürr∗, Maurice Queyranne†, Frits C.R. Spieksma‡,
Fabrice Talla Nobibon‡, Gerhard J. Woeginger§

Abstract. For a given set of intervals on the real line, we consider the problem of
ordering the intervals with the goal of minimizing an objective function that depends on
the exposed interval pieces (that is, the pieces that are not covered by earlier intervals
in the ordering). This problem is motivated by an application in molecular biology that
concerns the determination of the structure of the backbone of a protein.

We present polynomial-time algorithms for several natural special cases of the prob-
lem that cover the situation where the interval boundaries are agreeably ordered and the
situation where the interval set is laminar. Also the bottleneck variant of the problem is
shown to be solvable in polynomial time. Finally we prove that the general problem is
NP-hard, and that the existence of a constant-factor-approximation algorithm is unlikely.

Keywords: dynamic programming; bottleneck problem; NP-hard; exposed part; agree-
able intervals; laminar intervals.

1 Introduction

Let us consider a set I of n intervals Ij = [aj, bj) for j = 1, 2, . . . , n on the real line. The
length of interval Ij is denoted by |Ij| = bj − aj. As usual, the length of a union of disjoint
intervals is the sum of the lengths of the individual intervals. For an interval Ij and a subset
S ⊂ I of the intervals, we define Ij \

⋃
I∈S I to be that part of interval Ij that is not covered

by the union of the intervals in S; throughout this text this uncovered part will be called
the exposed part of Ij relative to subset S. Notice that the exposed part depends upon S
and in general need not be an interval. (If the intervals in I are pairwise disjoint, then of
course the exposed part of any interval I relative to any set S of intervals not containing I
is the interval I itself.)

We investigate an interval ordering problem that is built around a cost function f that
assigns to every interval of length p a corresponding real cost f(p). The cost of a set S of
pairwise disjoint intervals is the sum of the costs of the individual intervals in S. The cost of
an ordering α =

(
α(1), α(2), . . . , α(n)

)
of all n intervals is the result of summing up in that

order, for every interval, the cost of its exposed part with respect to the previous intervals.
Formally, the problem is defined as follows.

∗CNRS, LIX, Ecole Polytechnique, 91128 Palaiseau, France. durr@lix.polytechnique.fr
†University of British Columbia. maurice.queyranne@sauder.ubc.ca
‡Leuven University, Operations Research Group, Naamsestraat 69, B-3000 Leuven, Belgium.

{Frits.Spieksma;Fabrice.TallaNobibon}@econ.kuleuven.be
§Technical University of Eindhoven. gwoegi@win.tue.nl

1

Definition 1.1. The Interval Ordering Problem: Given a function f : R → R and n
intervals I1, . . . , In over the real line, find an ordering α ∈ Σn such that the cost

n∑
k=1

f
(
|Iα(k) \

⋃
k−1

j=1 Iα(j)|
)
,

is minimized, where Σn denotes the set of all the permutations of {1, 2, . . . , n}.

Observe that the interval ordering problem becomes trivial, if all intervals are pairwise
disjoint (since then all orderings yield the same cost). In the rest of this paper, an instance
of the interval ordering problem is represented by

(
I, f

)
where I is the set of intervals and

f is the cost function.

Example 1.2. Consider the instance that consists of the five intervals I1 = [0, 1), I2 = [1, 2),
I3 = [2, 3), I4 = [3, 6) and I5 = [0, 5), and the cost function f(x) = 2x. An optimal solution
for this instance is given by the sequence α = (1, 2, 3, 5, 4) with a total cost of 12.

I1

I2

I3

I4

I5

I1

I2

I3

I5

I4

21

21

21

23

20

21

21

21

22

21

greedy ordering with respect to interval length optimal ordering

This example illustrates that in general an optimal solution will not sequence the intervals
in order of increasing length (and it can be verified that in Example 1.2 no such sequence
can yield the optimal objective value). The next example illustrates that also the following
natural greedy algorithm fails: “Always select the interval with the smallest exposed part
relative to the intervals sequenced so far”.

Example 1.3. Consider the instance that consists of I1 = [2k, 4k + ε), I2 = [k, 5k + ε),
I3 = [0, 2k), I4 = [4k+ε, 6k+ε) for some constants k, ε > 0 with the cost function f(x) = 2x.
The greedy sequence (3, 4, 1, 2) achieves a cost of 22k+ε + 22k+1 + 20, whereas the optimal
solution (1, 2, 3, 4) has cost 22k+ε + 22k + 2k+1. The ratio between both costs can be made
arbitrarily close to 2, by choosing arbitrarily large k and arbitrarily small ε > 0.

22k+ε

22k

22k

20

I2

I4

I3

I1

greedy ordering with respect to exposed length optimal ordering

2k2k
22k+ε

2k
2kI3

I1

I2

I4

The contributions of this paper are twofold: On the positive side, we describe polynomial-
time algorithms for some natural and fairly general special cases of the problem. On
the negative side, we establish the computational complexity (NP-hardness) and the in-
approximability of the problem.

The paper is organized as follows. In Section 2, we describe the motivating real world
application (in molecular biology) that stands behind the interval ordering problem. In

2

Section 3, we formulate and resolve a number of special cases of the problem that can
be solved in polynomial time. In Section 4, we present complexity and in-approximability
results. We conclude in Section 5.

2 Motivation

The protein folding problem consists of computing the 3-dimensional structure of a protein.
A protein is a huge molecule consisting of many different atoms linked together. Consider
now a simplified version of this problem where we only want to determine the structure of
the backbone of the protein, that is, we are interested in determining the position of the main
string of atoms. The exact sequence of atoms is known, and different approaches are being
used in practice to determine their spatial structure. One possibility is to use Nano Magnetic
Resonance (NMR) to determine the distances between some pairs of atoms. The goal is then
to reconstruct a folding that matches the measured distances. There are different algorithms
that solve the problem in this setting, we refer to [2] for an overview.

Formally, the problem can be described as follows. Given is a chain of m atoms, each
having some unknown position pi ∈ R3 for 1 ≤ i ≤ m. We are given the distances between
all pairs of atoms i, j with |i− j| ≤ 3, as well as distances between some pairs of atoms i, j
with |i− j| > 3. The goal is to determine positions of the atoms p′i ∈ R3 for 1 ≤ i ≤ m, that
satisfy all given pairwise distances.

p1 u�����
��

��

HHH
HHH

HHH

up2 �
��

��up3
��

��
�
��

��

H
HHH

HHH
HH

&%
'$up′4
up′4

Figure 1: Four atoms and their positions in space. The circle is the intersection of balls
centered respectively at p2 and p3. A further intersection with the ball centered at p1,
leaves two possibilities for atom 4 (identified by p′4), which are symmetric with respect to
the hyperplane supported by p1, p2, p3

We assume that no three successive atoms are collinear, meaning that the angle between
two successive bonds pi − pi+1, pi+1 − pi+2 is different from π. Under this assumption, the
problem gets a combinatorial structure. Consider a chain of four atoms as in Figure 1.
Without loss of generality we can place p1 in the origin (0, 0, 0), and p2 in (d, 0, 0), where d is
the given distance between p1 and p2. Then p3 can be placed in (x, y, 0), for some coordinates
x, y, determined by the distances with the first two atoms. By symmetry, without loss of
generality we can assume y ≥ 0 and even y > 0 by the non-collinearity assumption. Now
the possible positions for p4 are at the intersection of the balls around p1, p2, p3 with the
radii given by the measured distances. The intersection of the balls around p2 and p3 is a
circle with its center on the line through p2 and p3 (and on a plane, orthogonal to it). The
intersection with the ball centered around p1 results in at most two points, since by the
non-collinearity assumption, p1 does not lie on the latter line. These two points are mirrors

3

of each other over the p1, p2, p3 plane, and in the degenerate case we have a single point on
this plane. Suppose — for this moment — that we only take the distances between atoms i, j
with |i−j| ≤ 3 into account. Then, once the atoms 1, 2, 3 are fixed as described above, there
are two possible positions for atom 4, 22 possible positions for atom 5, . . . , 2m−3 possible
positions for atom m. Each position is described by some binary string x ∈ {0, 1}m−3,
that we index for convenience x4, x5, . . . , xm. The bit xi describes which of the two possible
positions for atom i is taken, relative to the atoms i− 3, i− 2, and i− 1.

Up to now we have not used the known distances between atoms i, j with |i − j| > 3.
Such a distance implies a constraint on the unknown binary string x. It enforces the bits
xi+4, xi+5, . . . , xj to those positions that yield a local folding such that atoms i and j are at
the right distance. The problem now is to find, as efficiently as possible, values for the bits
satisfying all measured distance constraints. Let us now state some notation to arrive at a
formal definition of the problem.

Notation If a > b then we denote by [a, b] the empty interval. For any a < b by {0, 1}[a,b]
we denote the set of bit strings of length b − a + 1, and by convenience we do not index
the bits from 1 on, but from a to b. If [a, b] ⊆ [c, d] and x ∈ {0, 1}[c,d] then we denote by
x[a, b] the restriction of x to the indices from a to b. Also {0, 1}m is a shortcut notation for
{0, 1}[1,m].

Definition 2.1. The BitString-Reconstruction Problem (BSRP): We are given an
integer m, and n triplets (ai, bi, Ti) where 1 ≤ ai < bi ≤ m, Ti : {0, 1}[ai,bi] → {0, 1}.
The function Ti is an oracle that returns 1 at a single element of the domain. The goal
of the BSRP is to find a bit string x ∈ {0, 1}m, such that for all i = 1, . . . , n we have
Ti(x[ai, bi]) = 1.

The idea is that a triplet in BSRP corresponds to a given distance between atoms i and
j with |i − j| > 3 in the folding problem. Formally, a triplet is defined by (a = i, b = j, T)
where T is the boolean function, that accepts a bit string z if and only if z = x[a, b] for every
bit string x ∈ {0, 1}m describing atom positions where i and j are at the right distance.
We assume that there is a unique bit string z with this property. Already with this strong
simplification, we are facing a non-trivial and interesting algorithmic problem.

A straightforward algorithm to solve BSRP employs a brute force approach: by letting ξ
be a symbol representing an unspecified bit, the idea of brute-force search is to start with a
completely unspecified string x = ξn ∈ {0, 1, ξ}n, and to refine it using the distances between
atoms i and j with |i− j| > 3. More precisely:

The running time of the BruteForce search algorithm is O
(∑n

i=1 2`i
)
. Clearly, this num-

ber depends on the order in which the triplets in the instance are presented to the algorithm.
The only question remaining is in which order to process the given distances. In fact, it is
our goal to find an order for the triplets in the instance of the BSRP to be passed to the
BruteForce search algorithm in order to minimize the running time. This leads to the in-
terval ordering problem that was described in the introduction with the following additional
structure: (i) all data are integral, and (ii) the cost function f is given by f(x) = 2x.

4

Algorithm 1 The BruteForce search algorithm

1: for i = 1, . . . , n do
2: Let y = x[ai, bi] and let `i be the number of unspecified bits in y
3: Search for z such that Ti[z] = 1, ranging over all 2`i different replacements of ξ in y
4: if found then
5: replace, in x, x[ai, bi] by z
6: else
7: exit and announce that there is no solution
8: end if
9: end for

10: Return x, replacing all occurrences of ξ by an arbitrary bit

3 Some polynomial time solvable cases

In this section, we study some special cases of the interval ordering problem that can be
solved in polynomial time. We first consider the case where the intervals are agreeable.
We derive an O(n3) dynamic programming algorithm for solving this special case for any
cost function f . When the cost function is continuous and convex, we propose a dynamic
programming algorithm with time complexity O(n2). Next, we consider the case where the
intervals are laminar and describe polynomial-time algorithms for solving the problem when
the cost function f is such that the function g(x) = f(x) − f(0) is either super-additive
or sub-additive. Finally, we study the bottleneck variant of the interval ordering problem
and show that it can be solved in polynomial time when the cost function f is either non-
decreasing or non-increasing.

3.1 Agreeable intervals

We say that a set I of n intervals Ii = [ai, bi), for i = 1, 2, . . . , n is agreeable if there exists
a permutation γ of {1, . . . , n} such that aγ(1) ≤ . . . ≤ aγ(n) and bγ(1) ≤ . . . ≤ bγ(n). In
other words, the ordering of the intervals induced by the left endpoints is the same as the
ordering induced by the right endpoints. For ease of exposition, we will assume in the
rest of this section that γ is the permutation identity: thus we have a1 ≤ . . . ≤ an and
b1 ≤ . . . ≤ bn. We can assume that two consecutive intervals Ii and Ii+1 overlap (that is
ai+1 < bi) because otherwise this would split the problem into two sub-problems that can be
solved independently. In what follows, we first consider the general case with an arbitrary
cost function f , followed by a special case where the cost function f is continuous and convex.

3.1.1 Arbitrary cost function

In this section, we consider instances
(
I, f

)
of the interval ordering problem with I agreeable

and f arbitrary. Observe that in the case of agreeable intervals, after selecting a first interval,
the problem decomposes into (at most) two unrelated instances that are each agreeable; we
will use this property to derive a dynamic programming algorithm.

For a formal definition of the decomposition, consider the set I = {I1, Ii+1 . . . , In} of

5

agreeable intervals. We consider the exposed parts of each of these intervals with respect
to {Ij}, 1 ≤ j ≤ n. Since I is agreeable, the exposed parts are again intervals, and we
distinguish between those before Ij and those after Ij.

Ii
Ik

Ik−1

Ii+2

Ii+1

Figure 2: The subinstance Ii,k.

For convenience define b0 = a1 and an+1 = bn. For any pair of indices 0 ≤ i, k ≤ n + 1
we define the subinstance Ii,k := {Ij ∩ [bi, ak) : i < j < k}. Notice that if bi ≥ ak, then Ii,k
consists of k − i− 1 intervals of zero length. Let O(i, k) be the cost of an optimum solution
to
(
Ii,k, f

)
, where O(i, k) = 0 if Ii,k = ∅. We have the following recursion.

Lemma 3.1. For 0 ≤ i < k ≤ n+ 1 we have O(i, k) = 0 in case i+ 1 = k and otherwise

O(i, k) = min
i<j<k

{
O(i, j) + f(|Ij ∩ [bi, ak)|) +O(j, k)

}
.

Proof: The case i+ 1 = k follows from Ii,i+1 = {} and the remaining case is immediate. �

Theorem 3.2. The interval ordering problem
(
I, f

)
with I agreeable and f arbitrary, can

be solved in O(n3).

Proof: Lemma 3.1 leads to a dynamic programming algorithm with O(n2) variables, each
computable in linear time. �

3.1.2 Continuous and convex cost function

In this subsection, we still assume that the intervals in I are agreeable, but we consider
the cost function f to be continuous and convex. We need the following result, due to
Karamata [4] (see also pages 30–32 in Beckenbach and Bellman [1]).

Lemma 3.3. Given are 2q + 2 numbers {xk, yk}, k = 0, 1, . . . , q satisfying:

• x0 ≥ x1 ≥ . . . ≥ xq, and y0 ≥ y1 ≥ . . . ≥ yq,

• for each k = 0, 1, . . . , q − 1:
∑k

i=0 xi ≥
∑k

i=0 yi, and

•
∑q

i=0 xi =
∑q

i=0 yi.

6

Then, for any continuous, convex function f we have:

q∑
i=0

f(xi) ≥
q∑
i=0

f(yi). (1)

Let
(
I, f

)
be an instance of the interval ordering problem where I is agreeable and

contains n intervals Ii = [ai, bi), i = 1, . . . , n and f is continuous and convex. For a given
solution to

(
I, f

)
(i.e., a sequence of intervals), we call an interval Ii an E-interval if ai is

contained in the exposed part of interval Ii relative to the set of intervals sequenced before Ii
(in that solution). Given an integer k, 1 ≤ k ≤ n, let Ik be the set containing the intervals
Ii = [ai, bi) for i = k, . . . , n and let Ok be the value of an optimal solution to the instance(
Ik, f

)
. Notice that this definition implies that I = I1. Further, interval Ik is an E-interval

in any feasible solution to
(
Ik, f

)
.

Lemma 3.4. Let
(
I, f

)
be an instance of the interval ordering problem with I agreeable and

f continuous and convex; and let Ik defined as above.
If, in an optimal solution to

(
Ik, f

)
, interval Ik is the only E-interval, then

Ok = f
(
bk − ak

)
+

n∑
i=k+1

f
(
bi − bi−1

)
. (2)

Otherwise, in this optimal solution to
(
Ik, f

)
, let Ij with j > k be the first E-interval, i.e.,

the E-interval with minimal aj.
If aj ≤ bk then j = k + 1 and

Ok = f
(
ak+1 − ak

)
+Ok+1. (3)

If aj > bk, then

Ok = f
(
bk − ak

)
+
∑̀
i=k+1

f
(
bi − bi−1

)
+ f
(
aj − b`

)
+
(
j − `− 1

)
f(0) +Oj, (4)

where I` is the latest interval in Ik that satisfies b` < aj.

Proof: We will show that if interval Ik is the only E-interval, then the optimal sequence to(
Ik, f

)
is simply (k, k + 1, . . . , n). Otherwise, if there is another E-interval Ij, where Ij is

the first E-interval with j > k, then the optimal sequence to
(
Ik, f

)
is the sequence of the

solution to
(
Ij, f

)
followed by k, k + 1, . . . , j − 1. See Figure 3 for illustration.

Case 1: Interval Ik is the only E-interval. We show that α0 = (k, k + 1, . . . , n) is an
optimal sequence to

(
Ik, f

)
. The sequence α0 partitions [ak, bn) into n − k + 1 nonempty

segments, defined by S0 = [ak, bk), Si = [bk+i−1, bk+i) for i = 1, . . . , n − k (this is true
since the intervals are agreeable). Let σ be a permutation of {0, 1, . . . , n − k} such that
|Sσ(i)| ≥ |Sσ(i+1)| for i = 0, 1, . . . , n− k − 1; the permutation σ orders the segments induced
by α0 in non-increasing length. Now, let α be some sequence of intervals (α 6= α0) which
does not feature another E-interval apart from interval Ik. Clearly, α partitions [ak, bn) into

7

Ij

Ij−1

Ij+1

Ik+1

Ik

I`

In

Figure 3: Recurrence relation of Ok. If Ij is the first E-interval after Ik, then the cost
divides into the cost of the intervals between k and j, plus Oj

less than n − k + 1 nonempty segments, each segment being defined by a pair from the set
{ak, bk, bk+1, . . . , bn} (indeed, notice that the only way to have n − k + 1 segments is when
α = α0). Let us suppose that α partitions [ak, bn) into p + 1 segments (1 ≤ p ≤ n − k − 1)
S ′0, . . . , S

′
p satisfying |S ′0| ≥ |S ′1| ≥ . . . ≥ |S ′p|. For convenience set S ′p+1 = . . . = S ′m =

{}. A crucial observation is that because the segments are defined by points in the set
{ak, bk, bk+1, . . . , bn}, any segment S ′i (i = 0, 1, . . . , p) is either identical to a segment Sj for
a given j ∈ {0, 1, . . . , n − k} or is a union of consecutive intervals Sj. We will use this
observation to argue that for each m = 0, 1, . . . , n− k + 1:

m∑
i=0

|S ′i| ≥
m∑
i=0

|Sσ(i)|. (5)

For any m with p ≤ m ≤ n − k, we have that
∑m

i=0 |S ′i| ≥
∑m

i=0 |Sσ(i)|. This is because
∪mi=0S

′
i = [ak, bn) and ∪mi=0Sσ(i) ⊆ [ak, bn) and the segments are disjoint.

We now show that (5) is also true for m < p, by induction on m. For the basis case, note
that the the observation above immediately implies that |S ′0| ≥ |Sσ(0)|. For the induction
step, we assume that

∑m
i=0 |S ′i| ≥

∑m
i=0 |Sσ(i)|. The question now is whether

m+1∑
i=0

|S ′i| ≥
m+1∑
i=0

|Sσ(i)| (6)

is true. Let us consider Sσ(m+1). If each Sσ(r) with r ≤ m is contained in the left-hand side
of (6), then the validity of inequality (5) implies the validity of (6). Indeed, if Sσ(m+1) is also
contained in the left-hand side of (6), the inequality is certainly valid, else we know that
S ′m+1 ≥ Sσ(m+1). If there exists an Sσ(r) with r ≤ m not contained in the left-hand side of
(6), then: S ′m+1 ≥ Sσ(r) ≥ Sσ(m+1) (where the first inequality holds since the length of a
segment Sσ(j) not contained in the left-hand side of (6) is a lower bound for S ′j).

We now invoke Lemma 3.3 by setting q := n − k + 1, and for i = 0, 1, . . . , n − k + 1 we
set xi := |S ′i|, yi := |Si|. Clearly, the arguments given above imply that the conditions of

8

Lemma 3.3 are satisfied. Hence, when f is continuous and convex, the cost of α is greater
than or equal to the cost of α0.

Case 2: There is another E-interval Ij, where Ij is the first E-interval after Ik.
For this case, we use the following observation. Let Ip and Iq be two consecutive intervals
in a solution, and suppose that they are disjoint. Then it does not matter for the cost of
the solution whether Ip or Iq is processed first of the two. Now since Ij is an E-interval, it
must be processed before all intervals Ii that contain aj (otherwise Ij is not an E-interval),
and it can be processed before all intervals Ii with bi < aj. Thus, we conclude that Ij is
processed before intervals indexed by k, k+1, . . . , j−1. Since the intervals are agreeable, the
exposed parts (after processing Ij) of the intervals before Ij are disjoint with the intervals
with index greater than j. Therefore we can assume that the intervals with index k, . . . , j−1
are processed after the intervals with index j, . . . , n. And of course, the latter intervals are
processed optimally by a sequence of the solution to

(
Ij, f

)
. Let I` with ` < j be the

latest interval that does not intersect interval Ij. Notice that by the choice of j, the optimal
sequence of the intervals Ik,. . . ,I` contains only one E-interval, namely Ik. Hence, that
optimal sequence has a cost of f(bk − ak) +

∑`
i=k+1 f(bi − bi−1). Finally, we need to take

into account the intervals I`+1, . . . , Ij−1. Thus, we incur f(aj − b`) for the exposed part
between b` and aj, corresponding to interval I`+1, and we incur a cost of f(0) for each of the
remaining intervals. Notice that all intervals I`+1, . . . , Ij−1 are completely covered in this
sequence. This completes the proof of this lemma. �

Theorem 3.5. The interval ordering problem
(
I, f

)
with I agreeable and f convex and

continuous, can be solved in O(n2).

Proof: The O(n2)-time complexity of the dynamic program following from Lemma 3.4 (see
equations (2) and (3)) is explained by the fact that there are n variables and each is a
minimization over O(n) values. �

3.2 Laminar intervals

Let
(
I, f

)
be an instance of the interval ordering problem where I contains n intervals

Ii = [ai, bi), for i = 1, 2, . . . , n. We say that the set I of intervals is laminar if for any two
intervals Ii and Ij in I, either Ii ∩ Ij = ∅ or one is included in the other. See Figure 4 for an
illustration.

Figure 4: Illustration of laminar intervals

An ordering α respects the inclusions if for any two intervals Ii and Ij with Ii (Ij we
have that i appears before j in α.

9

Lemma 3.6. Let
(
I, f

)
be an instance of the interval ordering problem with I laminar. If

the function g defined by g(x) = f(x) − f(0) is super-additive i.e., g(x + y) ≥ g(x) + g(y)
then any ordering that respects the inclusions is an optimal solution to

(
I, f

)
.

Proof: Let α be an arbitrary order of optimal cost. We will show that there is another
order respecting the inclusions and having a cost not greater than that of α.

Suppose that α does not respect the inclusions. Then there is a pair i, j with Ii (Ij and
j appears before i in α. Let α′ be the result of placing j right after i in the order α. Let x
be the length of the exposed part of Ij in α′, and y be the length of the exposed part of Ii
in α′. Then x + y is the length of the exposed part of Ij in α. Therefore the contribution
of Ii and Ij to the cost of α is f(x + y) + f(0) while their contribution to the cost of α′ is
f(x) + f(y).

Since g is super-additive, it follows that f(x + y) + f(0) ≥ f(x) + f(y). We conclude
that the cost of α′ is not more than the cost of α. By repeating the argument, we eventually
obtain an inclusion respecting order with optimal cost. �

An inclusion respecting order can be found simply by sorting the intervals in increasing
order of their lengths, breaking ties arbitrarily.

Theorem 3.7. The interval ordering problem
(
I, f

)
with I laminar and f such that the

function g(x) = f(x)− f(0) is super-additive, can be solved in O(n log n) time

Proof: Immediate. �

We show in Section 4 that the time-complexity of O(n log n) is actually best possible.

Remark 3.8. Notice that the problem
(
I, f

)
with I laminar and f such that the function

g(x) = f(x) − f(0) is sub-additive, can also be solved in O(n log n) time by sorting the
intervals in decreasing order of their lengths.

3.3 Bottleneck variant of the interval ordering problem

In this subsection, we consider the bottleneck variant of the interval ordering problem. Re-
ferring to the application described in Section 2, instead of looking for the exact complexity
O
(∑n

i=1 2`i
)

of the BruteForce search algorithm, we focus on the maximum power of two
that dominates this complexity. Hence, solving the bottleneck variant gives us a solution
that is an approximation of the optimal solution to the interval ordering problem. The
bottleneck variant is explicitly defined as follows.

Definition 3.9. The Bottleneck Interval Ordering Problem (BIO): Given a function
f and a set I = {I1, . . . , In} of intervals over the real line, find an ordering α ∈ Σn that
minimizes the value

max
k=1,...,n

f
(
|Iα(k) \

⋃
k−1

j=1Iα(j)|
)
.

A greedy algorithm for this variant would iteratively select the interval with the smallest
exposed part. A formal description is given in Algorithm 2. In the rest of this section we
prove that Algorithm 2 solves instances of BIO when the cost function f is non-decreasing.
Our proof is based on the following lemmas.

10

Algorithm 2 Smallest Exposed Part Algorithm

1: for every i = 1, . . . , n, let I ′i := Ii be the exposed part of the i-th interval
2: Let S = {1, . . . , n} be the set of yet unselected intervals
3: for j = 1, . . . , n do
4: Identify i ∈ S such that |I ′i| is minimal.
5: α(j) := i
6: S := S\{i}
7: for k ∈ S do
8: update I ′k := I ′k\I ′i
9: end for

10: end for
11: Return α

Lemma 3.10. Let
(
I, f

)
be an instance of BIO with a non-decreasing cost-function f .

There exists an optimal solution to
(
I, f

)
starting with a smallest interval.

Proof: We prove this result by contradiction. Let
(
I, f

)
be an instance of BIO with a non-

decreasing cost-function f . Assume that each optimal sequence to
(
I, f

)
does not start with

a smallest interval. Consider an optimal sequence α =
(
α(1), . . . , α(i0), . . . , α(n)

)
to
(
I, f

)
with the corresponding optimal value val(α). Clearly, val(α) ≥ f

(
|Iα(1)|

)
. Let Iα(i0) be the

first smallest interval in α, i.e., |Iα(i0)| ≤ |Iα(j)| for all j ∈ {1, . . . , n} and |Iα(i0)| < |Iα(j)| for
all j ∈ {1, . . . , i0 − 1}. Consider now the sequence α′ =

(
α(i0), α(1), . . . , . . . , α(n)

)
where

α(i0) is move to the first position in α. It is clear that this move only affects the intervals
that were sequenced before Iα(i0) in α. Further, since f is non-decreasing, and the length
of each affected interval cannot have become larger, and |Iα(i0)| ≤ |Iα(1)|, we conclude that
the objective value achieved by α′ does not exceed val(α). Therefore, α′ is also an optimal
sequence to

(
I, f

)
, which is a contradiction. �

Given an arbitrary instance
(
I, f

)
of BIO with n intervals and Ii0 ∈ I a smallest interval,

we define the Ii0-reduced instance
(
Īi0 , f

)
with n − 1 intervals as follows. For any interval

Ij ∈ I,

1. if Ij 6= Ii0 and Ij ∩ Ii0 = ∅ then Ij ∈ Īi0 ;

2. if Ij 6= Ii0 and Ij ∩ Ii0 6= ∅ then Ij \ Ii0 ∈ Īi0 .

Further, the real line is adapted accordingly such that Ij \ Ii0 is an interval for all j 6= i0.

Lemma 3.11. Let
(
I, f

)
be an instance of BIO with a non-decreasing cost-function f . Let

Ii0 ∈ I be a smallest interval and αi0 be an optimal sequence to
(
Īi0 , f

)
. Then

(
i0, αi0

)
is

an optimal sequence to
(
I, f

)
.

Proof: Let val(αi0) be the total cost of the optimal solution αi0 to
(
Īi0 , f

)
.

1. If f
(
|Ii0|

)
≥ val(αi0) then

(
i0, αi0

)
is clearly an optimal sequence to

(
I, f

)
(recall that

Ii0 is a smallest interval).

11

2. On the other hand, suppose that f
(
|Ii0 |

)
< val(αi0). Lemma 3.10 implies that there

exists an optimal sequence α′ to
(
I, f

)
starting with Ii0 . After selecting Ii0 , the instance

that remains is
(
Īi0 , f

)
, for which αi0 is optimal. Therefore, (i0, αi0) is an optimal

solution to
(
I, f

)
. �

Theorem 3.12. The Bottleneck Interval Ordering problem
(
I, f

)
with I arbitrary and f

non-decreasing can be solved in O(n2).

Proof: The result follows from Lemma 3.10 and Lemma 3.11. �

Remark 3.13. Notice that if the function f is non-increasing then the instances of BIO
with this cost function can be solved with an O(n2)-time algorithm similar to Algorithm 2
where in line 6 instead of taking the interval with the smallest exposed part, we take the
interval with the longest exposed part.

4 Complexity results

This section presents a number of negative results on the computational complexity of the
interval ordering problem. Our first result shows that even the easy special cases discussed
in Section 3.1 are not completely straightforward, and shows optimality of the algorithm
given in Section 3.2.

Theorem 4.1. The interval ordering problem is at least as hard as the SORTING problem,
even if (a) the intervals are agreeable, or if (b) the intervals form a laminar set. Consequently
every algorithm for these special cases will have a time complexity of at least Ω(n log n).

Proof: Let x1, . . . , xn be an arbitrary sequence of positive real numbers that form an in-
stance of the SORTING problem. We construct a corresponding instance of the interval
ordering problem that consists of the intervals Ij = [0, xj) for j = 1, . . . , n, together with the
cost function f(x) = 2x. Note that this set of intervals is agreeable and laminar.

Note that the cost function f(x) is such that g(x) = f(x) − f(0) is super-additive on
the positive real numbers. This observation easily yields that the optimal ordering of the
intervals must sequence them by increasing right endpoint, and hence induces a solution to
the SORTING problem. �

Next, we will discuss the computational complexity of the interval ordering problem. We
will show that there is little hope for finding a polynomial-time algorithm for solving the
interval ordering problem in general. The reduction is from the following variant of the
NP-hard PARTITION problem [3, problem SP12].

Instance: A finite set {q1, q2, . . . , qn} of n positive integers with sum 2Q; an integer k.
Question: Does there exists an index set J ⊆ {1, . . . , n} with |J | = k, such that

∑
j∈J qj =∑

j /∈J qj = Q?

12

Lemma 4.2. Let I be an instance of PARTITION and N be an integer such that 2N−1 >
2nQ + k. Then there exists an instance

(
I, f

)
of the interval ordering problem that can be

built from I in polynomial time and that satisfies the following conditions:

(i) If I is a YES-instance of PARTITION, then the total cost of an optimal sequence to(
I, f

)
is at most 2nQ+ n− k.

(ii) If I is a NO-instance of PARTITION, then the total cost of an optimal sequence to(
I, f

)
is at least 2N + 2nQ+ n− k.

Proof: Consider an arbitrary instance I of PARTITION. We build the instance
(
I, f

)
of

the interval ordering problem as follows. The cost function f : N→ N is defined by f(x) = 0
if x is a power of two, and by f(x) = x otherwise. The set I consists of n + 2 intervals.
First, for i = 1, . . . , n there is a so-called element-interval of length `i = 2nqi + 1. These
element-intervals are pairwise disjoint and put back to back, so that they jointly cover the
interval from 0 to L :=

∑n
i=1 `i = 2n+1Q + n. Secondly, there is a so-called dummy-interval

of length `n+1 = 2N − 2nQ− k that goes from L to L+ `n+1. Thirdly, there is the so-called
main-interval that covers all other intervals, and that goes from 0 to L + `n+1; hence the
length of the main-interval is 2N + 2nQ+ n− k. Clearly, this construction of

(
I, f

)
can be

done in polynomial time. Next, we prove (i) and (ii).
(i) Assume that I is a YES-instance of PARTITION, and let J ⊆ {1, . . . , n} be the

corresponding index set. First select the element-intervals that correspond to the qi with
i /∈ J , then the main-interval, followed by the remaining element-intervals, and finally the
dummy-interval. For the first batch of element-intervals we pay a cost of 2nQ+ n− k. The
exposed part of the main-interval then has length 2N , which yields a cost of 0. This reduces
the exposed part of all remaining intervals down to length 0. The overall total cost is then
2nQ+ n− k.

(ii) Now assume that I is a NO-instance of PARTITION. We claim that in this case
no sequencing can ever turn the length of the exposed part of the main-interval into a
power of 2. Then the total cost is proportional to the total length, and hence at least
2N + 2nQ + n − k. It remains to prove the claim. We distinguish two cases. The first case
deals with the time before the dummy-interval is sequenced. At such a point in time the
length of the exposed part of the main-interval equals the length of the dummy-interval plus
the length of the currently unsequenced element-intervals. The length of the dummy-interval
is 2N − 2nQ − k > 2N−1. The length of the dummy interval plus the length of all element-
intervals is 2N + 2nQ + n − k < 2N+1. Hence the only candidate power of 2 would be 2N .
But in this case the subset of the element-intervals would have a total length of 2nQ+n−k,
which would correspond to a solution to the PARTITION instance I; a contradiction. The
second case deals with the time after the dummy-interval has been sequenced. At such a
point in time the length of the exposed part of the main-interval equals the length of the
remaining unsequenced element-intervals. But the total length of such a subset can never
be a power of 2. �

Of course, Lemma 4.2 immediately yields the NP-hardness of the interval ordering prob-
lem. We will also deduce in-approximability from it. Suppose for the sake of contradiction

13

that there is a polynomial-time approximation algorithm with some finite worst-case guar-
antee θ. Pick an arbitrary instance I of PARTITION, and choose the integer N sufficiently
large so that

2N >
(
θ − 1

)(
2nQ+ n− k

)
. (7)

Then N is roughly n+logQ+log θ, and hence its length is polynomially bounded in the size
of instance I. We construct the instance

(
I, f

)
of the interval ordering problem as indicated

in the proof of Lemma 4.2, and feed it into the approximation algorithm. The answer allows
us to decide in polynomial time whether instance I is a YES-instance or a NO-instance of
PARTITION.

Theorem 4.3. The interval ordering problem is NP-hard. Furthermore, the interval or-
dering problem does not possess any polynomial-time approximation algorithm with constant
worst-case guarantee, unless P = NP .

5 Conclusion

This text studies the problem of ordering a given set of intervals on the real line to minimize
the total cost, where the cost incurred for an interval depends on the length of its exposed
part when it is processed. We were motivated to consider this problem by an application in
molecular biology. Our work proposes polynomial-time algorithms for some special cases of
the problem. Further, we prove that the problem is NP-hard and it is unlikely to derive a
constant-factor-approximation algorithm for solving the problem.

An important research direction that might be pursed in the future is the study of the
complexity of the problem for the cost function f(x) = 2x (note that our NP-hardness
construction does not yield anything for this particular cost function). Finally, it would be
interesting to see other special cases that can be solved in polynomial time.

Acknowledgements. Gerhard Woeginger has been supported by the Netherlands Orga-
nization for Scientific Research (NWO), grant 639.033.403, by DIAMANT (an NWO math-
ematics cluster), and by BSIK grant 03018 (BRICKS: Basic Research in Informatics for
Creating the Knowledge Society).

References

[1] E. F. Beckenbach and R. Bellman. Inequalities. Springer-Verlag, 3rd printing, 1971.

[2] N. Maculan C. Lavor, L. Liberti. An overview of distinct approaches for the molecular
distance geometry problem. Encyclopedia of Optimization, 2nd Edition, edited by P.
Pardalos and C. Floudas, pages 1305–2311, 2008.

[3] M.R. Garey and D.S. Johnson. Computers and intractability: A guide to the theory of
NP-completeness. W.H. Freeman and Co., 1979.

14

[4] J. Karamata. Sur une inégalité relative aux fonctions convex. Publ. Math. Univ. Belgrade,
1:145–148, 1932.

15

	FEB_KBI-voorblad onderzoeksrapport-sharepoint.pdf
	intervalordering

