
Change Patterns: Co-evolving

Requirements and Architecture

Koen Yskout Riccardo Scandariato
Wouter Joosen

Report CW593, August 2010

Katholieke Universiteit Leuven
Department of Computer Science

Celestijnenlaan 200A – B-3001 Heverlee (Belgium)



Change Patterns: Co-evolving

Requirements and Architecture

Koen Yskout Riccardo Scandariato
Wouter Joosen

Report CW593, August 2010

Department of Computer Science, K.U.Leuven

Abstract

Emerging classes of systems are more and more subject to changes in their
requirements and environment assumptions. Such changes have a far-reaching
impact across several artifacts. This paper argues that patterns of co-evolution
(or change patterns) can be observed between “privileged” pairs of artifacts,
like the requirements specification and the architectural design. The paper
introduces change patterns as a precise framework to systematically capture and
handle change. The approach is based on model-driven engineering concepts and
is accompanied by a tool-supported process. Changing trust assumptions are
presented as an example of security-related evolution, and are used to illustrate
the approach.

Keywords : Co-evolution, MDE, security requirements, architecture.



1 Introduction

Supporting evolution in a principled way is becoming of uttermost importance
for larger and larger classes of systems. For instance, the European Commu-
nity has stimulated the research in the area of eternal systems, i.e., “long-lived
systems requiring minimal intervention and management to thrive in spite of
changes in usage, host device, network context or data and data protection for-
mats.” Such systems (including smart cards, portable devices, home appliances,
and so on) are characterized by an operational time that is much longer than
the building time. Due to their longevity, such systems inevitably face changes
in their environment, their (security) requirements, as well as their design and
implementation.

As a second example, services in the “Internet of Future” will be the result
of very complex compositions spanning across multiple administrative domains,
and will be operated by a heterogeneous consortium of stakeholders (service
providers, platform providers, content providers, consumers) that will dynam-
ically evolve over time, often in opportunistic ways due to business considera-
tions. In this scenario, change is deemed as a normal business condition. For
instance, trust relationships among the stakeholders of such services are very
likely to change over time, along with other (security) requirements.

Clearly, change has a multi-level impact reaching from the requirements
analysis down to the run-time configuration of systems. As illustrated by Mens
et al., achieving co-evolution between different types of software artifacts is a
challenging task that is still open to seminal research [13].

This work presents a novel approach to deal with co-evolution in a precise
and practical way: change patterns. In general, a change pattern provides a
framework to systematically evolve a certain artifact in face of changes taking
place in another artifact, which is developed at a different level of abstraction.
Intuitively, some artifacts expose a tighter relationship vis-a-vis change. That
is, they co-evolve in ways that go beyond a generic, imprecise ripple effect. For
instance, the development of the requirements and the software architecture are
known to be closely intertwined [15]. In these cases, patterns of co-evolution
(or change patterns) are likely to be observed.

As its main contribution, this paper introduces the idea of change patterns
and provides a precise definition based on model-driven engineering principles.
This foundation is illustrated via a specific family of change patterns that al-
lows the co-evolution of trust requirements and secure software architectures.
Further, change patterns are leveraged to build a (mini-)process that guides a
software architect towards the design of a highly-evolvable system. The pro-
cess assumes that a sufficiently complete catalog of change patterns is at hand.
While an illustrative catalog has been developed and referenced by the authors,
the creation of an extensive collection of change patterns goes beyond the scope
of the intended contribution for this paper. Finally, to showcase the feasibility
of the presented ideas, a prototype tool is presented.

Trust and trustworthiness are the basis of security, because the need for se-
curity in a system originates from the presence of untrusted entities. Therefore,

3



to be able to effectively secure a system, it is important to know (and explicitly
state) which entities are trusted for certain tasks, and which are not. In the con-
text of the emerging classes of systems mentioned above, the trust requirements
are subject to constant change. Therefore, they are of particular importance in
terms of evolution, and have been addressed in this work.

The rest of this paper is structured as follows. In Section 2 a high-level, in-
formal description of change patterns is given. Section 3 introduces the running
example used throughout this paper. The example comes from an industrial
case study used for the initial validation of the presented approach. Sections 4
and 5 present the formal definition of change patterns and their illustration in
the context of changing trust assumptions. Section 6 describes the supporting
process and the prototype tool. A discussion is provided in Section 7. Finally,
Section 8 presents the related work and Section 9 concludes the paper.

2 Change patterns at a glance

A change pattern is a reusable source of knowledge concerning the co-evolution
of two related artifacts. The changes in a given artifact (called the driver)
are characterized via a change scenario. In order to cope with this change, a
change pattern provides guidance about how to transform the second artifact
(called the companion). The guidance provides a principled way of executing
a transformation that fulfills certain constraints, e.g., the minimization of the
impact. The transformations in the companion can, in turn, generate feedback
to the driver.

Depending on the type of artifacts involved, there can be many families
of change patterns. For instance, patterns of evolution are likely to be found
among design and implementation, requirements and test cases, and so on. To
illustrate this promising idea, this paper focuses on requirements in the driver
seat and the architecture as the companion. A change pattern from this family
can be denoted as change patternRA, although the subscript is often left implicit
in the remainder of this paper.

When the requirements of a system evolve, the system’s architecture most
likely needs to be updated to accommodate the changed requirements. Keeping
the requirements and architecture synchronized, such that the system at all
times fulfills its requirements, is a big challenge for a software architect.

Change patterns can help to achieve this challenge, by providing advice to
the architect. In this paper, a change pattern characterizes a generic kind of
change at the requirements level. This change is captured in a change scenario,
which consists of a requirements template that describes a generic requirements
model (i.e., independent from a concrete system), and a change description rel-
ative to that template. To interpret a scenario in the context of a concrete
system, a binding needs to be defined in order to match the requirements tem-
plate and the concrete system’s requirements model. These concepts are further
explained in Section 4.

Moreover, the pattern provides a collection of architectural solutions that

4



enable the system to respond to the change, while minimizing the impact on the
architecture. This is important when the system that evolves has already been
deployed, and recalling the system to carry on major changes to the architecture
is prohibitive. Similar to the change scenario, the architectural solution also
contains a generic architectural template, and a description of the necessary
change relative to that template, called the guidance. The architectural template
provides a reference point to start applying the change. This way, the guidance
can be expressed in generic terms. Again, to apply the guidance in the context
of a concrete system, a binding needs to be defined between the architectural
template and the concrete system’s architectural model. Finally, the solution
describes the feedback, which is a description of the influence of the architectural
changes on the requirements model. These concepts are further explained in
Section 5.

3 Running example

The illustrations in this paper are based on a prototype of a ‘home gateway’,
currently in development by a telecommunications operator. The home gateway
is a device placed at a customer’s home, through which the customer’s devices
(e.g., a laptop, a PDA, home appliances, and so on) connect to the operator
network and the Internet.

The gateway performs access control, prohibiting access to insecure devices,
for instance when a virus is detected or the configuration is not up-to-date.
Additionally, the gateway acts as a service platform, enabling third-party service
providers to offer home services to the customer, for example a domotics service.
The service platform is based on the OSGi [18] specification, and home services
are installed as bundles onto this platform.

In this paper, the focus lies on the infrastructure for purchasing and obtain-
ing home service bundles.

4 Modeling change

Based on model-driven engineering principles [3], this section describes the mod-
els and metamodels that are used in this work to represent requirements, archi-
tectures, and change, together with the adopted notations.

4.1 Requirements model

We assume that the requirements are expressed in a requirements model R that
conforms to a requirements metamodel R (written R : R).

The requirements metamodel R itself conforms to a meta-metamodel M .
Multiple meta-metamodels have been defined and are used in practice, for in-
stance OMG’s EMOF [16] and EMF’s Ecore [17]. All of these offer similar
generic concepts, such as a Class and a Structural Feature (which is a property
of a Class) in Ecore.

5



Delegation

Trust

Figure 1: Requirements model in SI* for the running example (R)

Illustration Trust requirements are chosen as an illustration in this paper.
Since trust relationships are a forefront concept in SI* [10], the requirement
models in this paper are expressed using SI*. Note, however, that the general
applicability of the presented approach is not impacted by this choice.

The SI* requirements model R for the running example is given in Figure 1.
It contains three agents: User, Home Gateway and Service Provider. The home
gateway is the system under development. The user and the third-party service
provider are examples of external agents.

The model also defines various services. A service in SI* can be a goal (shown
as a rounded rectangle), a task (represented using a hexagon) or a resource (de-
picted using a rectangle, but not shown in the figure). Some agents delegate the
execution of a service to another agent, represented using a ‘Delegation of Exe-
cution’ (De) relationship. For example, the home gateway delegates the task of
delivering a purchased home service to the service provider. Trust relationships
are represented using a ‘Trust of Execution’ (Te) relationship, e.g., the home
gateway agent trusts the service provider to (at least) correctly deliver a home
service. Finally, it is possible to model ‘Distrust of Execution’ (Se) relationships
(not shown in this picture).

In this work, all metamodels are expressed in Ecore. We have defined a
metamodel RSI* for a subset of SI*, which contains the concepts of agents,
services (goals, tasks and resources), delegation and trust relationships. For
instance, an agent is defined as an Ecore Class with a Structural Feature for its
name. A trust relationship is also defined as a Class, with features such as the
source agent, the target agent and the kind of the relationship.

4.2 Architectural model

The architecture is represented using a model A that conforms to an archi-
tectural metamodel A . Typical architectural metamodels define concepts like
components, ports, connectors, and required and provided interfaces. Clearly,
an architectural metamodel also conforms to some meta-metamodel.

6



Figure 2: Initial architecture

Illustration In this work, UML 2 is used as the architectural metamodel,
which has been modeled in Ecore as part of the Eclipse UML2 project.

The chapters on Components and Composite Structures of the UML specifi-
cation are of particular interest, since they offer concepts that are well suited to
represent architectural models. We graphically represent UML models using the
structure diagrams and composite structure diagrams, which are also defined in
the specification.

The architectural model for the running example is shown in Figure 2. The
Home Gateway component is based on the Java Runtime and the OSGi frame-
work [18]. The purchasing of home services is handled by the Service Store
OSGi Bundle, which is accessed by the customer using a Browser. The bun-
dle connects to the Operator to obtain a list of third-party service providers
and services, which it presents to the customer. Purchasing a home service is
handled by directly contacting the Service Provider.

4.3 Templates and binding functions

As explained in Section 2, a change pattern describes change in an abstract
and context-independent way. To this aim, the notion of a template model is
leveraged. A template model, written T̂ , captures a generic structure of model
elements. It needs to be connected with a concrete model T that is subject to
change. Note that the template and the concrete model both conform to the
same metamodel.

To specify the connection between the template and the concrete model, a
binding function BT̂→T : T̂ → T is defined. The binding must be well-formed,
which means that all template elements need to be bound (it is a total function),
and all relationships between the template elements need to be preserved.

Illustration Consider the requirements template R̂ in Figure 3a. It con-
tains a System agent that requires the execution of a Service task, for which it

7



(a) Requirements template in SI* (R̂)

Requirements template R̂ Requirements model R
sys : agent(System) hg : agent(Home Gateway)
ext : agent(ExternalParty) sp : agent(Service Provider)
svc : task(Service) ds : task(Deliver Service)
rel(De, sys, ext, svc) rel(De, hg, sp, ds)
rel(Te, sys, ext, svc) rel(Te, hg, sp, ds)

(b) Binding BR̂→R

Figure 3: A requirements template and a binding for the running example

needs and trusts an External Party.
A well-formed binding BR̂→R between the template model R̂ and the re-

quirements model R of the example in Figure 1 is given in Figure 3b. The
System agent is bound to the Home Gateway, the External Party to the Ser-
vice Provider, and the generic Service task is bound to the Deliver Service task.
Also the delegation and trust relationships from the template are bound to the
corresponding concrete elements.

4.4 Change model

The models discussed so far have been considered in isolation. In the context
of evolution, subsequent versions of a model need to be related, e.g., when a
new model has been obtained by modifying an element from the previous one.
To express this relationship, we utilize a change model which defines specific
changes from one model to another. In the rest of this subsection, requirement
models are used as an example, but the same concepts are also applicable to an
architectural (or any other) model.

4.4.1 Change metamodel

There are two possibilities for the definition of a change metamodel. First, the
change metamodel ∆R can be defined in terms of the metamodel R. It then
defines change concepts such as adding or modifying an instance of a certain
concept from R. For example, a change metamodel ∆SI* would include the con-
cept ‘modify the source agent of a trust relationship’. While more intuitive, this
representation has the disadvantage that each distinct requirements metamodel
requires its own definition of a corresponding change metamodel. For instance,
the KAOS metamodel does not include the concept of a trust relationship as

8



FeatureChange
dataValue : EString

ListChange EObject
(from ecore)

EObjectToChangesMapEntryChangeDescription

listChanges referenceValue

referenceValues

value

objectChanges

Figure 4: Ecore change metamodel ∆Ecore (simplified) [17]

in SI*, but on the other hand defines the concepts of a requirement and an
expectation. The change metamodel ∆KAOS thus needs to differ from ∆SI*.

Alternatively, it is possible to define a change metamodel ∆M which depends
exclusively on the meta-metamodel M (i.e., Ecore in our case). Such a change
metamodel adds an extra level of indirection by moving the references to R
to its instances (i.e., concrete change models). For example, for the Ecore
meta-metamodel mentioned earlier, ∆Ecore defines the concept of modifying
an object’s value for a Structural Feature. The modification of a relationship’s
source agent in SI* is not part of the change metamodel ∆Ecore. It is expressible
in a concrete change model, however, by specifying the object (the relationship
that undergoes the change), the Structural Feature that is changed (the ‘source
agent’ feature), and the new value. Note that this differs from the previous
possibility, where ‘modify the source agent of a relationship’ was a first-class
concept from ∆SI*. Because of its genericity, we follow this approach in this
work.

While less intuitive, the chosen representation has as its main advantage that
it can describe the changes in all models conforming to any metamodel that has
been defined using the meta-metamodel M . In practice, this means that the
change metamodel for some meta-metamodel can be defined and implemented
once and re-used for all metamodels defined in that meta-metamodel. For in-
stance, if the metamodels for SI* and KAOS are both defined using Ecore, the
same change metamodel can be used to describe all changes in both SI* and
KAOS models.

Further, an implementation of ∆Ecore is already available in the Eclipse
Modeling Framework (EMF) for the Ecore meta-metamodel [17, Chapter 17].

Illustration In EMF, the change metamodel for Ecore is centered around
changes related to Structural Features, as shown in Figure 4. A Structural Fea-
ture can represent an attribute of a primitive data type, or a reference to another
object. A ChangeDescription consists of a mapping of Ecore objects (EObjects)
to a set of FeatureChanges, each describing a change to some Structural Feature
of that object. A FeatureChange can either represent a change to a single-valued
feature, in which case it refers the new value object, or a multi-valued feature,

9



in which case it refers to a set of ListChanges. A ListChange can represent the
addition, removal or movement of a value in the list.

4.4.2 Change characterization

As sketched in Figure 5a, we say that a change, defined with respect to a
template model T̂ , is modeled as a change characterization δ̂. The change
characterization expresses the change with respect to the elements in T̂ , resulting
in a modified model T̂ ′. To apply the change characterization to a concrete
model T , we can derive the change model δ = δ̂[BT̂→T ] by substituting each

occurrence of a template element t̂ ∈ T̂ in δ̂ with its concrete binding image
BT̂→T (t̂). The model T ′ (after the change) can be obtained by applying the

change model δ, i.e., T ′ = δ̂[BT̂→T ](T ). Note that a change characterization δ̂
describes the difference between the models T and T ′. This is different from a
transformation, which describes the process of achieving that change.

The binding BT̂ ′→T ′ between the resulting template model T̂ ′ and the result-
ing concrete model T ′ can be automatically derived when δ is applied: starting
with a copy of the original binding BT̂→T , elements removed by δ̂ are removed

from the binding, and elements that are added by δ̂ are bound to the correspond-
ing new concrete elements introduced by δ. Accordingly, given the models T̂ ,
T , change characterization δ̂ and binding BT̂→T , the resulting models T̂ ′, T ′,
the change model δ and the binding BT̂ ′→T ′ can be automatically derived.

Illustration Consider again the requirements template R̂ shown in Fig-
ure 3a. It is possible that the System loses trust in the External Party over
time. This means that the trust relationship (Te) is converted to a distrust
relationship (Se), as shown in Figure 5b. Given our metamodel RSI* expressed
in Ecore, this change is expressed using the Ecore change metamodel ∆Ecore as
hinted in Figure 5c. The ‘kind’ Structural Feature of the appropriate relation-
ship object is changed from ‘trust of execution’ (Te) to ‘distrust of execution’
(Se).

This is the change characterization ĉ (a concrete example of δ̂), defined with
respect to the template model R̂. Using the binding BR̂→R in Figure 3b, the
change model c is obtained from ĉ by replacing the occurrences of all template
elements by their concrete image. This change model represents the change
from a trust relationship to a distrust relationship between the Home Gateway
and the Service Provider for the task Deliver Service.

4.5 Change patterns revisited

As mentioned in Section 2, a change patternRA describes a generic evolution at
the requirements level, and provides the appropriate actions to take with re-
spect to the system’s architecture when that evolution occurs. Hence, a change
pattern is composed of two parts: the change scenario and the set of architec-
tural solutions. An overview of the different parts of a change pattern and the

10



T̂ T̂ ′

T T ′

δ̂

δ = δ̂[BT̂→T ]
BT̂→T BT̂ ′→T ′

(a) Change characterization and binding functions

(b) Requirements template after change (R̂′)

ChangeDescription { objectChanges:
EObjectToChangesMapEntry {

key: rel(Te, System, ExtParty, Service)
value: FeatureChange {
feature: Relationship::kind
dataValue: ‘Se’

} } }

(c) Example change characterization ĉ modeled in ∆Ecore (pseudo-notation)

Figure 5: Change characterization

11



R̂ R̂′ R̂?

R R′ R?

A− A A?

Â Â?

Requirements

Architecture

ĉ f̂

c=ĉ[BR̂→R] f=f̂ [BR̂′→R′ ]

apply Â g=ĝ[BÂ→A]

ĝ

BR̂→R BR̂′→R′ BR̂?→R?

fulfills fulfills

BÂ→A BÂ?→A?

Scenario

Solution

System

Key Change Binding Fulfillment

Figure 6: Formalization of a change pattern

relationships with a concrete system is given in Figure 6, using the notation
introduced previously.

The change scenario (the green part in the figure) describes a generic kind of
change at the requirements level. That change scenario is defined by a change
characterization, called the change description ĉ : ∆M . The change charac-
terization is defined with respect to the requirements template R̂ : R. The
anticipated model R̂′ : R corresponds to the situation after the change has oc-
curred and can be computed from R̂. To interpret a scenario in the context of a
concrete system (the red part of the figure), a binding function BR̂→R needs to
be defined. If multiple instances of the same change scenario occur, a separate
binding needs to be provided for each instance.

An architectural solution (the blue part in the figure) consists of three ele-
ments. First, the architectural template Â describes the reference infrastructure
for the solution. It must be applied to a concrete system in order to use the
solution, which means that a binding function BÂ→A needs to be provided. Sec-
ond, the guidance, in the form of a change characterization ĝ, describes how the
change scenario can be implemented via a refactoring of the architecture, based
on the architectural template Â. The resulting architecture Â? can be derived
from Â. Finally, the feedback f̂ is a change characterization at the requirements
level that describes how the solution affects the anticipated model R̂′ when the
architecture is updated by the guidance, resulting in a new template R̂?.

12



Figure 7: Architectural template (Â)

5 Architectural solutions

An architectural solution prescribes a strategy that can be followed when the
associated change scenario occurs, while minimizing the impact on the architec-
ture. Each solution is an alternative and may provide different guarantees and
have different non-functional properties associated with it. Therefore, when
a suitable solution is chosen, these aspects need to be known and taken into
account.

The three parts of each solution (the architectural template, guidance and
feedback) are explained in the following subsections.

5.1 Architectural template

An architectural template Â : A describes a certain structure and configura-
tion of architectural elements. It generically describes the situation before the
requirements have changed, while ensuring that all elements are identified that
play a role in the architectural refactoring expressed by the guidance (discussed
in the next subsection).

A template Â is considered as applied to the architecture A if there exists a
binding BÂ→A that binds the elements from template Â to elements from A. For
clarity, the architecture without an applied architectural template is denoted as
A−.

Illustration Consider the ‘disappearing trust’ change pattern that char-
acterizes the change from R̂ in Figure 3a to R̂′ in Figure 5b. This change
pattern collects two possible solutions. The first solution describes how the sys-
tem can monitor the external party, such that anomalies can be detected during
the execution of the task. This solution is not detailed further in this paper.
The second solution entails requiring a commitment from the external party
before actually requesting the execution of the task. This corresponds to the
non-repudiation pattern described in [5].

The architectural template for this solution is shown in Figure 7. The tem-
plate is a composition of four parts. The first part (the top row) is aligned with

13



the requirements template. It defines two components ‘System’ and ‘External
party’, corresponding to the agents in Figure 3a. Both components commu-
nicate through the ‘Service’ interface, which corresponds to the delegation of
execution of the ‘Service’ task.

The next three parts, on the bottom row from left to right, need to be
present in order to support the change guidance (described the next subsec-
tion). They prescribe (1) a mechanism such that the system’s operations can
be intercepted, and the invocation can be inspected (and possibly blocked) by
configurable handler components; (2) the presence of a Cryptographic Module,
which provides operations for verifying digital signatures. This module will be
used by the system to verify the digitally signed commitments; (3) a component
offering Secure Storage. This component will be used by the system to securely
store the received commitments, so they can be used as proof in case of dispute.

Note that not all parts are connected to the System, e.g., the Cryptographic
Module. This is because these parts are not strictly necessary at the present
time, but must certainly be available when the guidance needs to be executed.
At minimum, they force the architect to reason about the feasibility of intro-
ducing these dependencies at a later time.

5.2 Guidance

The guidance part of an architectural solution describes how the architecture
must be updated after the requirements model has evolved to the anticipated
situation. When this evolution happens, the guidance is applied automatically.

As mentioned, the guidance is a change characterization ĝ defining the tran-
sition from the architectural template Â to an updated (template) architecture
Â?. By providing a binding BÂ→A, the guidance can also be applied in the
context of the concrete architecture A.

Illustration The changes described by the guidance for the ‘disappear-
ing trust’ change pattern, with respect to the architectural template Â from
Figure 7, can be broken down to four steps. First, the guidance defines the
creation and connection of a new handler that is responsible for obtaining the
commitment from the external party. Second, the external party is extended
with support for providing such commitment, and the new handler is connected
to the external party. In the last two steps, the new handler is connected to
both the cryptographic module and the secure proof storage. More specifically,
the guidance represents the following changes:

1. (a) define a new component CommitmentHandler that is generalized by
the Handler component; (b) connect the System to the Commitmen-
tHandler by defining a connector between the handlers port from System
and the port on the Handler component;

2. (a) define a new interface CommitmentProvisioning, packaged in the Ex-
ternalParty component; (b) add a new port to component ExternalParty,
which provides the interface CommitmentProvisioning; (c) add a new port
to component CommitmentHandler, which requires the interface Com-

14



ChangeDescription { objectChanges:
EObjectToChangesMapEntry {

key: ExternalParty
value: FeatureChange {
feature: packagedElement
listChanges: ListChange {
kind: ADD
referenceValues: new UML::Interface {
name: “CommitmentProvisioning”

} } } } }

Figure 8: Excerpt from the guidance ĝ modeled in ∆Ecore (pseudo-notation)

mitmentProvisioning; (d) connect CommitmentHandler to ExternalParty
using the corresponding ports;

3. (a) add a new port to component CommitmentHandler, which requires
the interface SignatureVerification; (b) connect CommitmentHandler to
CryptographicModule using the corresponding ports;

4. (a) add a new port to component CommitmentHandler, which requires
the interface Storage; (b) connect CommitmentHandler to SecureStorage
using the corresponding ports.

Due to the complexity of the Ecore change model and the UML metamodel, we
omit a detailed description of the entire guidance, except for change 2a from
the list above, which is given as an illustration in Figure 8.

Behaviorally, the commitment handler gets invoked before the actual request
for the service is issued. The handler will first request a commitment from the
external party. When the commitment is received, its digital signature must be
verified and, if valid, the commitment needs to be securely stored. Only then
the actual request can be issued.

5.3 Feedback

A particular solution often has an impact on the requirements once the guidance
ĝ is applied. This impact is called feedback.

By following the guidance, additional requirements may be imposed on the
system. Equally, the guidance might be effective only if additional assumptions
can be expected to hold. These new requirements and assumptions are not part
of R̂′, and thus the requirements model needs to be updated to reflect the new
architecture.

Alternatively, the effects of the foreseen evolution can be softened or reverted
by means of some solutions. Thus, following the guidance may restore the
requirements model to the model before the change, as if the change has never
happened, or the impact of the change may be diminished. The feedback also
captures these effects on the requirements model.

The effect of feedback is closely related to the Twin Peaks model [15]. The

15



Figure 9: Template requirements model after feedback (R̂?)

original Twin Peaks model describes the interwoven refinement of requirements
and architecture in the design phase of the system. Here, however, we identified
a different kind of feedback, which arises from evolution (and not refinement).
When the requirements evolve after the system has been completely designed
and deployed, and the architecture is updated to conform to these new require-
ments, this architectural update may again have an impact on the requirements.
The impact can lead to the introduction of new elements in R̂′ or the modifica-
tion of elements already present in R̂′.

The feedback is represented using a change characterization f̂ . It describes
how the “after” requirements template R̂′ needs to be changed to a model R̂?

when the guidance is applied, such that the resulting architectural template Â?

fulfills the requirements R̂?. It is not always necessary to provide feedback, and
it can thus be an empty (i.e., changeless) change characterization.

Illustration The feedback for the ‘disappearing trust’ pattern describes
the transition from the anticipated requirements model R̂′ in Figure 5b to the
one shown in Figure 9. The notion of a commitment, and the functionality for
obtaining it, needs to be introduced in the requirements model after the guid-
ance is followed, in order to synchronize the requirements and the architecture.
The decrease of trust has been (partially) mitigated by means of this commit-
ment; it is believed that the external agent will properly execute the service,
because it has non-repudiably committed to it. Therefore, the trust relationship
is restored. Due to space constraints, further technical details of the feedback
are not described in this paper.

5.4 Soundness constraint

The three parts of an architectural solution for a change scenario (the architec-
tural template, guidance and feedback) cannot be defined completely at will by
the pattern’s designer. Instead, the following property must always be ensured:

Applying the guidance ĝ on an architectural template Â results in

16



a valid architectural model Â? which fulfills the requirements model
R̂? that is obtained by applying the feedback f̂ on the change sce-
nario’s anticipated model R̂′.

6 Using change patterns

Change patterns can be collected in a catalog. For instance, a catalog has
been created for the family of change patternsRA related to trust relationships
[19]. However, an architect needs a (mini-)process to effectively use a catalog in
order to design an evolvable architecture. The process described in this Section
is accompanied by a proof-of-concept tool providing automated assistance [19].

The first input to the process is a requirements model R, representing the
set of requirements and assumptions of the system. Additionally, the process
requires an initial architectural model A− that already fulfills the requirements,
but has not yet been prepared for the evolution of these requirements. Therefore,
the process cannot be used to design an architecture from scratch, but requires
that the architecture is at least roughly defined already.

In the implementation, an additional traceability model is introduced to
connect the requirements and architectural model for the change patterns that
have been applied. In the traceability model, the bindings and decisions that
are made during the process are recorded. Using this model, it is for instance
possible to retrieve the applied change patterns and the solutions that have been
chosen.

The process consists of three stages. First, during the change assessment
phase, the requirements model is analyzed and the applicable change patterns
from the catalog are selected. Second, in the preparation phase, the architecture
is prepared with respect to the selected patterns. Both of these phases happen
during the design (or refactoring) of the system. The final phase of the process
occurs when the system’s requirements actually change. Here, the architectural
and requirements model are modified to a new, consistent state. Each phase is
presented in some more detail in the next subsections.

6.1 Change assessment phase

In this phase, matches are sought between the system’s requirement model R
and the evolution scenario from each change pattern in the catalog. An evolution
scenario fits with the system requirements if a well-formed binding BR̂→R can be
defined. For each fitting pattern, a change scenario instance is computed, which
is defined by the combination of the (generic) change scenario and the binding
with the concrete system. Also, the new “after” model R′ = ĉ[BR̂→R](R) is com-
puted. This exploration of potentially interesting change scenario instances can
be automated via pattern recognition techniques. The found scenario instances
are stored in the traceability model for later reference.

For each change scenario instance, its relevance, importance and likelihood
needs to be estimated. To determine the relevance, the transition from R to

17



R′ is investigated. The architect, the analyst and the other stakeholders need
to assess whether this transition is meaningful and realistic for the system and
environment at hand. This may not always be easy, and may require some
creative thinking. If the scenario is not relevant, it is discarded and the process
continues with the next scenario instance.

The importance and likelihood estimation is similar, and in fact closely re-
lated, to the risk analysis of the system. The stakeholders will have to decide
which of the following alternatives is the better choice in the context of the sys-
tem: allocating resources to support the evolution scenario now, even though
it may never happen, or ignoring the evolution scenario until it takes place,
possibly leading to a greater cost in the future. Additionally, observe that other
solutions, independent of the architecture, might be possible and preferable, and
should be considered.

The decision to support or discard a scenario instance, and the reasons for
that, should be explicitly documented. This information can be integrated in
the traceability model.

Illustration By matching the requirements template from Figure 3a to
the initial requirements model in Figure 1, a change scenario instance is found
in the form of a binding (Figure 3b). The obtained change scenario instance
challenges the trust relationship between the home gateway and the third-party
service provider. Assuming that the stakeholders agree that the loss of this
trust relationship is relevant, likely and important, the scenario is selected for
inclusion.

In the current implementation, the change scenario instances are discovered
automatically using a Prolog-based pattern matcher. The resulting change sce-
nario instances are presented to the user (Figure 10a). The user can then view
the details for each of these scenarios, and select to accept or reject the change,
as shown in Figure 10b. The scenario instances, together with the choices of
the user, are persisted in the traceability model.

6.2 Preparation phase

If it has been decided that the scenario needs to be supported, a suitable so-
lution needs to be selected. The suitability is determined by, for instance, the
feasibility of applying the architectural template Â to the current architecture,
the guarantees given by the solution, the implied trade-offs, and the solution’s
feedback. If necessary, multiple solutions for the same scenario can be selected
and implemented simultaneously, e.g., to implement multiple layers of protec-
tion. Again, the chosen solutions are recorded in the traceability model. Note
that, if no solution from the catalog seems to be suitable, a custom solution
should be defined, possibly outside the change patterns framework. Providing
an extensive catalog of change patterns is not our main goal at this time, and
the current catalog should be extended in the future.

When a solution has been chosen, it needs to be ensured that the associated
architectural template Â is in place. The architectural model A− is prepared for

18



(a) The found change scenario instances

(b) Assessing a change scenario instance

Figure 10: Support provided by the prototype

19



the scenario by applying the template, resulting in a new architectural model
A.

Illustration Take the case where the solution based on commitments from
Section 5 is chosen by the stakeholders. The initial architecture of the system
(Figure 2) is prepared so that it implements the template Â from Figure 7. The
resulting architecture is shown in Figure 11, together with the binding BÂ→A.
Elements that correspond to elements from the template are shaded in gray and
annotated using notes.

The service store bundle is extended with a handler mechanism. This allows
external handlers to intercept the purchase operation and perform additional
actions, possibly preventing the purchase from being requested. Currently, no
handlers have been configured yet. To provide cryptographic operations, the
Java Cryptography Architecture (JCA) is used, which is included in the default
Java Runtime Platform. The operator further decides that the secure storage,
necessary to store proof of the service provider’s commitment, will not be located
on the home gateway itself, but provided by the operator’s platform.

At present, the architect has to manually inject the template. Afterwards,
the architect can use the tool to specify the binding between the architectural
template and the architecture, which is then stored in the traceability model.

6.3 Evolution phase

Later in the lifetime of the application, if and when the requirements of the
system evolve, the traceability model can be used to determine whether some
evolution corresponds to a foreseen scenario instance. If this is the case, the
guidance ĝ that belongs to the chosen solution is applied automatically, and the
application’s architecture is updated to the new situation.

Additionally, the requirements model is updated by applying the feedback
f̂ . This step can also be performed automatically, but is not yet implemented.

Illustration Assume the trust upon a service provider disappears, be-
cause customers complain about the provider’s failure to deliver purchased ser-
vices. This corresponds to the change scenario for which a change pattern was
selected and installed. The guidance from the solution needs to be applied to
the system’s architecture using the binding from Figure 11b. This is done au-
tomatically by the tool when the change scenario instance is triggered. The
guidance is executed, resulting in an updated UML2 model.

The resulting architecture is shown in Figure 12. Thanks to the preparation,
the impact of this change is limited: the commitment handler is added to the
home gateway and wired to the other components, and the service provider needs
to offer a commitment provisioning service. Other components, especially those
within the home gateway device which are expensive to recall or update, remain
unchanged during this evolution.

Note that the requirements model also needs to be updated, according to
the feedback given by the solution. Due to space constraints, the resulting
requirements model is not shown, but it can be inferred by combining Figures 1,

20



(a) Prepared architecture (A)

Architectural template Â Architecture A
System Service Store Bundle
A Service Provider
Cryptographic Module Java Runtime
Secure Storage Operator
IHandler PurchaseHandler
Service Purchase
SignatureVerification Signature
Storage Proof Storage

(b) Binding (BÂ→A)

Figure 11: Prepared architecture and binding

21



Figure 12: Evolved architecture (A?)

ChangePattern

RequirementsModelArchitectureModel
ChangeScenario

ChangeSolution ChangeGuidanceArchitecturalTemplate

RequirementsTemplate

ArchitecturalTemplateBinding

PatternSelection

ChangeDescription
(from change)

TraceabilityModel

before

Figure 13: Change patterns Ecore model (simplified)

3b, and 9.

6.4 Behind the scenes

The prototype tool is implemented as an integrated collection of Eclipse plugins,
and is based on the Eclipse Modeling Framework (EMF). All concepts from this
paper are modeled using an Ecore model. A simplified version of the model can
be found in Figure 13.

The matching of a change scenario with a requirements model is done by a
matcher. Each change pattern can provide its own implementation of a matcher.
For the change patterns using the SI* requirements metamodel, the implemen-
tion is based on Prolog. The matcher automatically translates the requirements
template to a Prolog rule, with the template elements as variables. The body
of the rule describes the structure of the template using the variables. The con-

22



crete requirements model is translated to a set of facts. A Prolog query then
computes all variable bindings, each of which corresponds to a binding in the
sense of this work.

Change models are implemented using the ChangeDescription class from
EMF. To apply the change description from the scenario to the actual require-
ments model, we extended ChangeDescription to BoundChangeDescription. A
BoundChangeDescription wraps a regular change description, and enriches it
with a binding. Before applying the change description, the binding is used to
convert all template objects to their concrete counterpart objects.

The tool takes advantage from the standard Eclipse extension mechanism by
defining two new extension points. New patterns or new solutions for existing
patterns can easily be added by creating a plugin that provides an extension.
While the current tool can handle only SI* and UML models, it has been de-
signed to be easily extensible with other meta-models.

7 Discussion

The main goal of a change patternRA is to reduce the architectural impact of a
change in the requirements, by shifting the cost (effort, time, and so on) for the
change management from the maintenance phase to the design phase. A change
can impact the architecture to various degrees. A change with local impact only
changes a small and related set of architectural elements. A non-local change
modifies multiple elements, but still complies with the overall architectural de-
sign (e.g., the used styles are preserved). Contrarily, an architectural change
modifies the architecture in more fundamental ways. A change pattern should
enable the architect to limit the impact of a requirements change during system
maintenance to a local architectural change, perhaps by performing non-local
or architectural changes at design time.

Additionally, the proposed process forces the architect to explicitly assess a
set of evolution scenarios for the system, corresponding to the scenarios found
in the catalog of patterns. This systematic exploration helps the architect in
achieving a more complete solution. The success of the approach, however,
largely depends on the extensiveness of the catalog that is available to the
architect, as the best solution for a foreseen evolution scenario may not be part
of the catalog. This paper is meant to introduce and formalize the fundamental
concepts related to change patterns; providing an extensive catalog is beyond
the scope of this work.

Even if a suitable pattern is found in the catalog, the applicability the ar-
chitectural solution can be limited by the existing architecture’s style. It is
possible that the architecture needs to be significantly refactored in order to
integrate the architectural template. When this is the case, it is important for
the architect to carefully consider the alternative options, such as choosing a
different solution that fits better, or deciding not to prepare for the evolution
scenario at that point in time.

As a remark, it was noted that the guidance captures the net difference

23



between the architectural template models before and after the change, but
does not describe the actual process of achieving that change. Applying the
guidance to a concrete architectural model may require additional changes, e.g.,
when an architectural metamodel is used in which additional consistency rules
are imposed on the instances. In such cases, the solution should be augmented
with a model transformation that achieves the extra changes and has the same
effect as the guidance. Despite the slight conceptual difference, accommodating
for model transformations does not conflict with the overall approach and the
required modifications to the implementation are straightforward.

8 Related work

Software co-evolution has been identified as a challenging research frontier [13].
Consequently, the state of the art is limited, especially when it comes to pre-
cise approaches. In the context of change management, Han [11] uses the term
‘change patterns’ to describe event-condition-action rules propagating change
across two artifacts (namely from class design to implementation). The change
propagation is essentially reactive and unidirectional, i.e., no feedback is fore-
seen. Côté et al. [6] describe an informal approach to evolution, based on prob-
lem frames, a requirements engineering methodology. Architectural patterns
are assumed to be associated to corresponding problem frames via traceability
links. In light of evolution, new sub-frames may emerge in the specification and
the architect can extend the design by incorporating additional architectural
patterns, whose selection is facilitated by the above-mentioned links.

Considerable research has been done in the area of requirements and evo-
lution. For instance, change cases [7] are an extension of use cases, aimed at
capturing requirements for expected future changes. In the context of the NFR
framework, changes related to non-functional requirements have been investi-
gated in [4]. More research about requirements evolution, and a research agenda,
are given in [8]. Specifically for security requirements, Nhlabatsi et al. [14] pro-
vide an extensive survey of security requirements engineering approaches and
their support for evolution.

Research in architectural evolution is also relevant for this work, especially
as a way to characterize and define the guidance. For example, Garlan et al. [9]
propose the concept of ‘evolution styles’, which are patterns that can be used by
the architect to plan incremental evolution paths (orthogonal to requirements
evolution) from an initial architecture to some target architecture. Evolution
styles can be seen as a form of guidance, giving strategies to the architect on
how to approach an architectural evolution. Graph transformations have also
been used to model architectural evolution, for instance in [12]. The TranSAT
transformation language [1] achieves evolution by weaving architectural aspects
into the architecture.

In summary, the requirements and the software architecture research com-
munities have developed methods that facilitate the evolution of either require-
ments or architectures. However, the state of the art is still lacking a principled

24



and precise approach that synergically handles the co-evolution of both.

9 Conclusions

In this paper, change patterns have been introduced as a promising idea that
uncloses the opportunity for a new stream of research. The main goal of a
change pattern is to provide guidance to cope with the impact of a change
scenario across artifacts. The change patterns have been precisely described in
model-driven terms and their potential as a means to support automation has
been illustrated.

Initial validation of these ideas in the context of an industrial case study is
providing encouraging results. However, empirical experiments are foreseen to
perform a quantitative evaluation.

Further, the authors are experimenting with algorithmic techniques to detect
the occurrence of change scenarios in one artifact (e.g., by means of incremental
model queries [2]) in order to trigger the execution of the appropriate guidance
and feedback in the co-evolving artifact. This way, fully automated co-evolution
can be achieved, which extends the applicability of change patterns to the realm
of self-adapting systems.

References

[1] O. Barais, A. Meur, L. Duchien, and J. Lawall. Software architecture
evolution. Software Evolution, pages 233–262, 2008.

[2] G. Bergmann, A. Horváth, I. Ráth, D. Varró, A. Balogh, Z. Balogh, and
A. Okrös. Incremental Model Queries over EMF Models. In ACM/IEEE
13th International Conference on Model Driven Engineering Languages and
Systems, 2010.

[3] J. Bézivin. Model driven engineering: An emerging technical space. Gen-
erative and Transformational Techniques in Software Engineering, pages
36–64, 2006.

[4] L. Chung, B. Nixon, and E. Yu. Dealing with change: An approach us-
ing non-functional requirements. Requirements Engineering, 1(4):238–260,
1996.

[5] L. Compagna, P. El Khoury, A. Krausová, F. Massacci, and N. Zan-
none. How to integrate legal requirements into a requirements engineering
methodology for the development of security and privacy patterns. Artifi-
cial Intelligence and Law, 17(1):1–30, 2009.

[6] I. Côté, M. Heisel, and I. Wentzlaff. Pattern-based Exploration of Design
Alternatives for the Evolution of Software Architectures. International
Journal of Cooperative Information Systems, 16(3-4):341–366, 2007.

25



[7] E. Ecklund Jr, L. Delcambre, and M. Freiling. Change cases: use cases
that identify future requirements. ACM SIGPLAN Notices, 31(10):342–
358, 1996.

[8] N. Ernst, J. Mylopoulos, and Y. Wang. Requirements evolution and what
(research) to do about it. pages 186–214. Springer, 2009.

[9] D. Garlan, J. Barnes, B. Schmerl, and O. Celiku. Evolution styles: Founda-
tions and tool support for software architecture evolution. In Proceedings of
the Joint Working IEEE/IFIP Conference on Software Architecture 2009
& European Conference on Software Architecture 2009, pages 131 –140,
2009.

[10] P. Giorgini, F. Massacci, and N. Zannone. Security and trust requirements
engineering. Lecture notes in computer science, 3655:237, 2005.

[11] J. Han. Supporting impact analysis and change propagation in software
engineering environments. In The 1997 8th IEEE International Workshop
on Software Technology and Engineering Practice, STEP, pages 172–182,
1997.

[12] T. Mens, J. Magee, and B. Rumpe. Evolving Software Architecture De-
scriptions of Critical Systems. Computer, pages 42–48, 2010.

[13] T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer, R. Hirschfeld, and
M. Jazayeri. Challenges in software evolution. In Principles of Software
Evolution, Eighth International Workshop on, pages 13–22, 2005.

[14] A. Nhlabatsi, B. Nuseibeh, and Y. Yu. Security requirements engineer-
ing for evolving software systems: A survey. Journal of Secure Software
Engineering, 1:54–73, 2009.

[15] B. Nuseibeh. Weaving together requirements and architectures. IEEE
Computer, 34(2):115–117, 2001.

[16] Object Management Group. OMG Meta Object Facility Core Specification,
Version 2.0. http://www.omg.org/mof, 2006.

[17] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse
Modeling Framework 2.0. Addison-Wesley Professional, 2009.

[18] The OSGi Alliance. OSGi – The Dynamic Module System for Java. http:
//www.osgi.org.

[19] K. Yskout, R. Scandariato, and W. Joosen. Change patterns website. http:
//people.cs.kuleuven.be/koen.yskout/changepatterns.

26

http://www.omg.org/mof
http://www.osgi.org
http://www.osgi.org
http://people.cs.kuleuven.be/koen.yskout/changepatterns
http://people.cs.kuleuven.be/koen.yskout/changepatterns

	Introduction
	Change patterns at a glance
	Running example
	Modeling change
	Requirements model
	Architectural model
	Templates and binding functions
	Change model
	Change metamodel
	Change characterization

	Change patterns revisited

	Architectural solutions
	Architectural template
	Guidance
	Feedback
	Soundness constraint

	Using change patterns
	Change assessment phase
	Preparation phase
	Evolution phase
	Behind the scenes

	Discussion
	Related work
	Conclusions

