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Abstract
Interpolation of reduced order models (ROM) is an importanttopic in many areas of model reduction. Re-
cently, a system-level model reduction technique for flexible multibody systems, Global Modal Parameteriza-
tion (GMP), has been proposed. This method is based on an interpolation of ROMs for different undeformed
configurations in order to reduce model equation assembly time. As is shown in this paper, the way this
interpolation is performed significantly impacts the accuracy of the simulation. This work compares 3 differ-
ent interpolation strategies. Firstly two strategies which directly interpolate the reduced mass and stiffness
matrix, through linear and quadratic interpolation, are considered. A third novel interpolation strategy, which
operates in the eigenspace of the ROMs, is proposed in order to obtain better accuracy for the eigenfrequen-
cies of the interpolated system. Finally the three approaches are compared through a numerical validation on
a planar slider-crank mechanism.

1 Introduction

Interpolation of reduced order models (ROMs) is an issue in model order reduction for nonlinear and param-
eterized systems [12, 5, 9, 2, 1, 7]. The main issue is that there is not one single definition of what is expected
of the interpolated model. In general it is imperative that the interpolated model is close to the exact model,
but how thisclosenessis defined will be mostly case-dependent.

In this work, interpolation of ROMs for the simulation of reduced flexible multibody models is examined.
Flexible multibody simulation is an application which typically requires large computational effort due to
nonlinearity, a large number of degrees-of-freedom (DOFs)and differential-algebraic equations of motion.
Recently, Brüls introduced the Global Modal Parameterization (GMP) as a reduction technique for flexible
multibody simulations [5]. In this method, the system dynamics are parameterized by a minimal set of
rigid DOFs. The method is split up into two parts: a preprocessing in which the reduced system properties
are determined for a discretized set of possible configurations, and an actual processing phase in which the
reduced system is simulated and system properties are obtained through interpolation from the previously
calculated configurations.

The way this interpolation is performed, strongly affects the performance of the reduced simulation, and
this work aims at examining which interpolation approach delivers the best results. For this purpose three
different interpolation approaches are compared. The firsttwo approaches are the linear and quadratic in-
terpolation of the projection vectors and reduced mass- andstiffness matrices. This is a classical approach



which keeps both the stiffness and mass matrices close to those of the uninterpolated model at a given config-
uration. However, this approach generally does not assure acorrespondence of the reduced system dynamics,
since there is no explicit control on the eigenfrequencies of the interpolated system. Sec. 4 shows that these
approaches can lead to large deviations on the eigenvalues,even though both mass and stiffness matrices
show good correspondence. The third approach is a novel method in which the reduced mass and stiffness
matrices are projected onto the eigenspace of the system andare interpolated in this eigenspace before trans-
forming back to the original reduced space. This method allows direct interpolation of the eigenvalues of the
reduced system and is calledfrequency interpolationin the remainder of this work. The numerical experi-
ment in Sec. 4 demonstrates that this approach leads to more accurate results, even though the deviation on
the mass and stiffness matrices is larger than in the case of direct interpolation.

Firstly a short overview of the GMP-method with its main characteristics is given. Section 3 describes the
three proposed interpolation methods in detail. Finally a numerical validation of the GMP-method with the
different interpolation strategies is performed in order to verify the properties of each method.

2 Global Modal Parameterization.

Many different formulations are used for the description offlexible multibody models and an exhaustive
overview is given by Wasfy & Noor [14]. The equations of motion for a planar system can generally be
written as a set of differential-algebraic equations, in the generalized coordinatesq:

Mqq(q) q̈ + V,q + ΦT
,q λ = g

q
ext (1)

Φ(q) = 0 (2)

In these equations:

• q is a vector ofn generalized coordinates, which define theconfigurationof the system.

• M qq(q) is the configuration-dependent mass matrix.

• V,q is the gradient of the internal potential energy. Only potential energy due to structural deformation
is considered in this term. The generalized forces due to other potential energy sources (e.g. gravity)
are taken into account through the source termgqext.

• gqext denotes the generalized forces due to external loads.

• Φ(q) = 0 expressesm kinematic holonomic constraints1. Its gradientΦT
,q is assumed to be of full rank

for all configurationsq.2

• λ is a vector ofm Lagrange multipliers to take the constraints into account.

• ΦT
,q λ represent the reaction forces and moments enforcing the constraints.

The set of equations (1)-(2) is a differential-algebraic (DAE) set of equations of index 3. Solving this system
in its original form requires implicit solution methods or specialized stabilized explicit solvers [13]. Model
reduction techniques are employed to obtain a more suitableODE description of the model for efficient
simulation with standard explicit solvers.

Global Modal Parameterization (GMP), as proposed by Brüls[5], is a reduction technique which was first
introduced for reduction of rigid systems [6] and afterwards adapted for the reduction of flexible mechanisms.
Due to the assumptions made in deriving this method, it allows to turn the set of DAEs into a set of ODEs
with far fewer DOFs.

In this work, the derivation of the model equations is given for a planar system with one rigid DOF. This
allows for a more intuitive physical interpretation of the model equations.

1Non-holonomic constraints are not considered in this work.
2A gradient/Jacobian of an entityA with respect to a vectorb will be denoted asA,b.



2.1 Model reduction

The GMP-model reduction technique is based on dividing the motion into a rigid and a deformed part. In
this approach, the flexible deformation is assumed to be a small linearized deviation from the rigid position.
This is expressed by:

q = ρ(θ)+Ψqδ(θ)δ (3)

The two terms in this equation are:

• ρ(θ): this represents a nonlinear function which determines thegeneralized coordinatesq for an
undeformed configuration in function of the minimal amount of rigid DOFsθ.

• Ψqδ(θ)δ: this term expresses the flexible deformation. The deformation is determined as the product
of a configuration-dependent modal matrixΨqδ(θ), which contains the deformation modes, and the
respective participation factorsδ, or flexible DOFs, of the deformation modes.

The reduced degrees-of-freedom can be grouped in the vectorη:

η =

[

θ

δ

]

(4)

This specific parameterization allows a very strong reduction of DOFs in comparison to the original model.
This reduction is twofold:

• Due to the system point-of-view, all redundant DOFs are eliminated.

• The description of the flexible deformation allows to only consider the most relevant deformation
modes.

As can be seen from equation (3), the flexible deformation modes are also dependent on the rigid position.
Eigenmodes are used as deformation modes, and these are strongly dependent on the actual configuration of
the system. This description assumes that the flexible deformations remain small, such that the effect of the
elastic deformation on the dynamic properties of the systemremains negligible.

The projection fromq to the reduced coordinatesη happens through the use of rigid bodyΨqθ and flexible
deformation modesΨqδ [5], which are both function of the rigid configurationθ. Different choices could be
made for these modes, especially for the deformation modes [10], which might highly impact the obtained
accuracy for a given number of reduced DOFs. In this work, therigid motion vector is the null-vector of the
stiffness matrix and the deformation modes are the most dominant flexible eigenmodes when the rigid DOF
θ is fixed, as in [5]. This choice leads to a clear distinction between rigid and flexible motion, but also leads
to a mode set which is not mass orthogonal.

2.2 Model equation derivation

As in [3], the equations of motion for the reduced model are derived from the augmented Lagrangian for the
system. For an undamped multibody system, the LagrangianL consists of kinetic energyK, potential energy
V and external workW:

L = K − V −W (5)

In order to take the constraints into account, the augmentedLagrangianL∗ is employed:

L∗ = L+Φ(q)Tλ (6)

In this formalism, auxiliary variablesλ are used to take the constraintsΦ(q) into account. For a system with
m constraints, there arem auxiliary variablesλ.



From the expression of the augmented Lagrangian, the equations of motion can be derived. The reduced
equations of motion are obtained by computing the derivative ofL∗, which is a function of the generalized
coordinatesq, with respect to the reduced degrees-of-freedomη andλ:

d
dt

(

∂L∗

∂η̇

)

− ∂L∗

∂η
= d

dt

(

∂K
∂η̇

)

− ∂K
∂η

+ ∂V
∂η

− ∂W
∂η

+ ∂ΦT

∂η
λ = 0 (7)

Φ(q) = 0 (8)

This equation forms the basis of the model equations for the GMP-method.

In order to compute the different derivatives for the reduced DOFs, the derivative of the generalized coordi-
natesq with respect to the reduced DOFsη is required. For a system with only one rigid DOF:

q,η =
[

Ψqθ + ∂Ψqδ

∂θ
δ Ψqδ

]

(9)

The reduced equations of motion can be summarized as the sum of projected inertial forcesgη
iner, projected

internal elastic forcesgη
int and projected external forcesgη

ext:

g
η
iner + g

η
int = g

η
ext (10)

This equation is an ODE and does not contain any terms relatedto the constraints due to the choice of the
projection space.

In the following paragraphs, the different force terms resulting from the GMP formalism are discussed.

2.2.1 Inertial Forces

The inertial forces are obtained by deriving the kinetic energy K to the reduced DOFs. Details of this
derivation are discussed by Brüls [3]. As derived by Naets [11], for a planar system with one rigid DOF and
an unreduced description with a constant mass matrix, the reduced inertial forces are:

g
η
iner = q,η

TMqqq,ηη̈ + q,η
TMqq

(

∂Ψqθ

∂θ
θ̇
2
+ 2

∂Ψqδ

∂θ
θ̇δ̇ +

∂2Ψqδ

∂θ2 θ̇
2
δ

)

= Mηηη̈ + hη (η, η̇)

(11)

In Equation (11), the first term is the obvious projection of the inertial force onto the reduced space and the
second term, denoted ashη , arises due to the variable projection vectors.

2.2.2 Elastic Forces

The elastic forces are obtained by deriving the potential internal energyV of the system with respect to
the reduced DOFs. Since this function is highly nonlinear, aTaylor-approximation around an undeformed
configuration is used in order to derive the reduced internalforces [5]. This approach leads to:

g
η
int = Kηηη (12)

WhereKηη is the reduced stiffness matrix:

Kηη =

[

0 0

0 (Ψqδ)T
(

∂2V

∂q2

)

0
Ψqδ

]

(13)

2.2.3 External forces

The reduced external forces are obtained by projecting the unreduced forces directly onto the reduced pro-
jection space:

g
η
ext = q,η

Tg
q
ext (14)



2.3 Practical implementation

During the simulation, the unreduced model will not be evaluated during each timestep and then reduced,
since this would be much too costly due to the eigenvalue problem which has to be solved for model reduc-
tion. Instead, the reduction procedure is performed for a grid of possible undeformed configurations during
a preprocessing step. These reduced models are stored such that they could be used during the actual simu-
lation. Because it is highly unlikely that the mechanism will pass exactly through the predetermined states
during simulation, interpolation between the precomputedconfigurations has to be performed to determine
the ROM for the simulation configurations. It is of paramountimportance that the interpolated model ex-
hibits dynamical behaviour which is very similar to the exact ROM for a given configuration, in order to
obtain reliable simulation results. Sec. 3 describes threedifferent approaches to this interpolation and their
effect on the accuracy of the simulation is validated numerically in Sec. 4.

3 Interpolation methods

The used interpolation method will highly impact the amountof discretization points which is necessary
in order to obtain a certain accuracy. There will however be astrong trade-off between the accuracy of a
method and the computational complexity. It is therefore important to correctly define the requirements for
the interpolated model. It will be very application-dependent which properties the interpolated model should
keep and which are less strict.

In the case of GMP, the requirement of the interpolated reduced model is simply that it is as close as possible
to the exact reduced model for a given configuration. However, there is no strict demand on whether this
means the mass and stiffness matrices should be as close as possible, or the eigenfrequencies should be
matched as good as possible. No matter what method is used, a compromise will always be necessary.

In this section, three possible interpolation methods are discussed: linear interpolation of the system ma-
trices, quadratic interpolation of the system matrices anda novel approach which linearly interpolates the
eigenfrequencies of the reduced system.

3.1 Linear interpolation

The first method is to perform a linear interpolation of the reduced system matrices. The reduced mass,
stiffness and projection matrix are all interpolated linearly in order to become an approximate model for a
given configuration. In the discretization points this approach will provide exact results, but in between these
points the results might deviate considerably. The used formulas are:

θ = aθi + (1− a)θi+1 with |a| < 1 (15)

Mηη = aMηη
i + (1− a)Mηη

i+1 (16)

Kηη = aK
ηη
i + (1− a)K

ηη
i+1 (17)

Ψqη = aΨ
qη
i + (1− a)Ψ

qη
i+1 (18)

In case the projection modes were mass orthonormal, this approach would also lead to an interpolation of
the eigenvalues. In this case the mass matrix is the unity matrix and the stiffness matrix is a diagonal matrix
with the eigenvalues on the diagonal. The interpolation maintains the diagonal structure and the eigenvalues
are interpolated correspondingly. However, often, as in this work, a non-mass-orthogonal set of modes is
used, in which case there is no direct interpolation of the eigenvalues and deviations on the eigenfrequencies
of the interpolated model might differ considerably from those of the original model.



3.2 Quadratic interpolation

A second popular method is to perform quadratic interpolation. The accuracy of the results obtained through
this approach will be similar to those obtained through other quadratic approximations such as piecewise
quadratic functions or Lagrangian polynomials [5]. This approach will generally lead to much more accurate
results than the linear approach, but comes at an added cost of determining the coefficients for the interpola-
tion, which is very straight forward in the case of the linearinterpolation. All matrices are again interpolated
directly as is the case for the linear interpolation.

In order to determine the coefficients, the knowledge of the analytical solution for a2 × 2-system is used.
Interpolation is performed between 3 pointsθi−1,θi andθi+1:

Y = A(θ − θi−1)2 +B(θ − θi−1) +C (19)

A = (θi+1−θi−1)(Yi−Yi−1)−(θi−θi−1)(Yi+1−Yi−1)
(θi−θi−1)2(θi+1−θi−1)−(θi−θi−1)(θi+1−θi−1)2

(20)

B =
−(θi+1−θi−1)2(Yi−Yi−1)+(θi−θi−1)2(Yi+1−Yi−1)
(θi−θi−1)2(θi+1−θi−1)−(θi−θi−1)(θi+1−θi−1)2

(21)

C = Yi−1 (22)

All elements of the reduced system-matrices and projectionmodes are interpolated following this process.
As is the case for the linear interpolation, this approach only interpolates the matrices and doesn’t guarantee
a certain course of the reduced eigenvalues. Again here the eigenvalues are interpolated in the case of mass
orthogonal modes, but not in the general case.

3.3 Frequency interpolation

This new interpolation method is derived in order to maintain the best correspondence between the eigen-
values of the interpolated reduced system and the exact reduced system. As is shown in Sec. 4, regular
interpolation of the system matrices might lead to large deviations on the eigenvalues. These eigenvalues
have a large impact on the flexible response of a system. In case of e.g. active vibrational damping, a poor
approximation of the eigenfrequencies might lead to poor corrective actions.

In order to achieve an interpolation of the eigenfrequencies, a intermediate transformation onto the eigenspace
of the reduced model, through the mass-orthogonal eigenmodesΦi andΦi+1, is used. The projected ma-
trices are now diagonal and are interpolated linearly, as described earlier, which preserves the structure and
interpolates the eigenfrequencies as well.

M̂
ηη

= aΦi
TM

ηη
i Φi + (1− a)Φi+1

TM
ηη
i+1Φi+1 (23)

K̂
ηη

= aΦi
TK

ηη
i Φi + (1− a)Φi+1

TK
ηη
i+1Φi+1 (24)

The new diagonal matricesM̂ηη andK̂ηη are now available and have to be converted back to the original
reduction space. A linear interpolation of the eigenmodes is used to perform the back-transformation:

Φ = aΦi + (1− a)Φi+1 (25)

Mηη = (ΦT )−1M̂
ηη
Φ−1 (26)

Kηη = (ΦT )−1K̂
ηη
Φ−1 (27)

The projection modes are interpolated correspondingly:

Ψqη = (aΨqη
i Φi + (1− a)Ψqη

i+1
Φi+1)Φ

−1 (28)

This approach delivers an interpolated model with a reliable approximation of the eigenfrequencies. With
this method however, the course of the mass matrix, stiffness matrix and projection modes will not be a



Figure 1: Planar slider-crank mechanism

direct interpolation anymore, which might lead to a larger deviation in these areas. Moreover this method
will also be more expensive than the previous 2 methods since2 eigenvalue problems have to be solved for
each interpolation. Due to the limited dimension of the reduced system, the cost of this eigenvalue problem is
expect to remain limited. Alternatively this eigenvalue problem could also be solved during the preprocessing
phase in order to save online calculation time.

4 Numerical validation

The numerical validation of the aforementioned interpolation methods is performed on a planar slider-crank
mechanism as depicted in Fig. 1. The properties of the systemare summarized in Table 1. The original
model of this system is constructed using a planar version ofthe large-rotation finite element (FE) model as
proposed by Géradin & Cardona [8]. This FE model serves as a basis to construct the GMP model and is
used as a benchmark during the simulation. The GMP-model is constructed with 7 deformation modes (8

properties Crank Connector
E[GPa] 210 210
G[GPa] 81 81
L[m] 0.3 0.7
A[cm2] 1 1
ρ[kg/m] 7800 7800
#elem. 5 5

Table 1: Properties of FE slider-crank model

modes in total, including the rigid mode) and a discretization step∆θ = 0.1rad.

Firstly the the accuracy of the different interpolation methods for the mass and stiffness matrices and for the
eigenvalues are considered between two discretization points. In a second subsection, a simulation of the
mechanism is performed and the accuracy with respect to the unreduced model is compared.

4.1 Interpolation accuracy

Firstly the accuracy of the three interpolation strategiesis compared for the mass matrix, the stiffness matrix
and the eigenvalues for the reduced system. The original reduction space is constructed with a discretization
step of∆θ = 0.1rad and an interpolation is performed with an interval of∆θ = 0.01rad.

The average relative difference on the mass and stiffness matrix in function of the rigid configurationθ is
depicted in Fig. 2. Fig. 2 shows that the best results are obtained with the quadratic interpolation. This is
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Figure 2: Average accuracy for interpolated reduced mass and stiffness matrix in between discretization
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Figure 3: Comparison of eigenvalues in between discretization points

to be expected since this method uses the most information about the reduction space and interpolates both
matrices directly. The quadratic interpolation is followed by the linear interpolation, because this method
still works directly on both matrices. The frequency interpolation however, clearly produces less accurate
results. This is due to the fact that this method actually interpolates the eigenfrequencies, which might lead
to deviations for the mass and stiffness matrix.

Fig.3 shows the average relative difference between the eigenvalues of the exactly reduced model and the
interpolated reduced models. This figure clearly shows thatthe interpolation methods which work directly
on the projection space, lead to important deviations in theeigenfrequencies of the reduced system. These
deviations might lead to quite important changes in the dynamic behaviour of the interpolated system in
comparison to the exact system. The frequency interpolation on the other hand delivers much better accuracy
at the level of eigenfrequencies.

Based on both Fig. 2 and Fig.3,no clear answer is possible on which approach is best. The direct interpolation
approaches will generally be the cheapest, while the frequency interpolation seems better capable of describ-
ing the dynamical phenomena of the reduced model. The effecton actual simulation results is presented in
the following section.



4.2 Simulation accuracy

This section shows the simulation results of the slider-crank mechanism when the rigid DOF is excited with a
torque with amplitude0.5Nm for the different interpolation schemes. At the beginning of the simulation the
torque has sinusoidal ramp up with a frequency of50Hz. The simulation is performed using the generalized
α-solver [4] with a constant timesteph = 0.05ms and no numerical damping. The same GMP-model as in
the previous section, with a discretization step of∆θ = 0.1rad and 7 flexible modes is used. For the inertial
forces, the full inertial forces as described by Naets [11] are employed.

The results for the simulation of the GMP-model with linear interpolation are compared with those of the
unreduced FE-model in Fig. 4. Fig. 4a shows the response of the rigid DOFθ and the relative difference
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Figure 4: Simulation results with linear interpolation

with the unreduced model. Even though a very simple interpolation is employed and the discretization step
is rather coarse, the rigid motion is quite accurately approximated. Fig. 4b shows the flexible deformation for
the last node of the crank. This figure shows only a fragment ofthe total simulation to improve interpretabil-
ity. The figure clearly shows that the flexible deformation isout of phase due to an accumulated effect of
eigenfrequency estimation errors between the reduced model and the FE-model. This difference is due to the
poor interpolation properties of the linear interpolationwith respect to the frequency content.

For the GMP-model with quadratic interpolation, the simulation results are shown in Fig. 5. The accuracy for
the rigid motion is improved in case of quadratic interpolation. Fig. 5b does however show that no noticeable
improvement is present for the frequency of the flexible deformation. Even though the quadratic approach is
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Figure 5: Simulation results with quadratic interpolation

capable in general to deliver better results than the linearapproach, it also needs a rather fine discretization
in order to reach good frequency accuracy in the case of non mass-orthogonal modes.

Finally, Fig. 6 shows the simulation results for the frequency interpolation. Fig. 6a shows that the accuracy
for the rigid motion is similar to the linear interpolation.This can be expected, as after projection onto the
eigenspace, a linear interpolation is performed. However the high frequency content of the relative difference
is clearly reduced by employing this approach. When regarding the flexible deformation of the hinge-node
in Fig. 6b, the advantage of the frequency interpolation becomes apparent. The flexible deformation of both
the unreduced and reduced model are very similar and the difference is imperceivable on this scale.

5 Conclusion

Interpolation of reduced order models (ROMs) is an issue in many areas, such as nonlinear model reduction.
One such method, in which ROM-interpolation is of paramountimportance, is the Global Modal Parame-
terization (GMP). This method allows the reduction of flexible multibody models, which typically exhibit
strong nonlinear behaviour. The GMP-method is based on a precomputed discretization of the possible con-
figuration space of the system. During the actual simulation, the reduced model is evaluated by interpolating
from this precomputed grid of possible configurations. Thisapproach avoids the expensive evaluation of
a multibody model during the simulation. It is however important that the interpolation procedure delivers
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Figure 6: Simulation results with frequency interpolation

physically valid approximations for the exact model.

In previous works on the GMP method, polynomial based interpolation schemes, such as linear or quadratic
interpolation schemes, were used to directly interpolate the reduction modes, mass- and stiffness matrix.
These are very straightforward and economical approaches which deliver good results in many cases. How-
ever, in general, these methods provide no certainty on the course of the eigenfrequency of the reduced model.
This work demonstrates experimentally that the deviationsof the eigenvalues for the interpolated system and
the exact system might become quite large, even though the mass- and stiffness matrices are interpolated
quite accurately. These deviations might lead to large differences in the flexible motion for the simulation of
mechanisms which are excited with a high frequency content,as is shown through the numerical example of
a slider-crank mechanism.

Due to the aforementioned problems, a novel interpolation technique is introduced in this work. The tech-
nique is based on a projection on the eigenspace of the reduced model, in which the eigenvalues of the model
can be interpolated directly. Afterwards a back-transformation to the general reduced coordinates is per-
formed. This approach allows to generate an interpolated ROM with interpolated eigenvalues, at the expense
of a larger deviation in the reduced mass- and stiffness matrix, as is shown experimentally. The ability of this
method to improve the flexible response of the GMP-model is demonstrated on a slider-crank mechanism.
For this numerical example, the flexible deformation for theGMP-model is almost indistinguishable from
the original FE-model, in contrast to the GMP-model with interpolation of the system matrices.



These results show the importance of adequate interpolation techniques for ROMs and allow the user of
GMP to perform much more accurate highly dynamical simulations.
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