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Abstract

Interpolation of reduced order models (ROM) is an importapic in many areas of model reduction. Re-
cently, a system-level model reduction technique for fliexibultibody systems, Global Modal Parameteriza-
tion (GMP), has been proposed. This method is based on apataéon of ROMs for different undeformed
configurations in order to reduce model equation asseminig.tiAs is shown in this paper, the way this
interpolation is performed significantly impacts the aecyrof the simulation. This work compares 3 differ-
ent interpolation strategies. Firstly two strategies Whdirectly interpolate the reduced mass and stiffness
matrix, through linear and quadratic interpolation, anestdered. A third novel interpolation strategy, which
operates in the eigenspace of the ROMs, is proposed in arddatain better accuracy for the eigenfrequen-
cies of the interpolated system. Finally the three appresene compared through a numerical validation on
a planar slider-crank mechanism.

1 Introduction

Interpolation of reduced order models (ROMS) is an issueadehorder reduction for nonlinear and param-
eterized systems [12, 5, 9, 2, 1, 7]. The main issue is thed ikeot one single definition of what is expected
of the interpolated model. In general it is imperative that interpolated model is close to the exact model,
but how thisclosenesss defined will be mostly case-dependent.

In this work, interpolation of ROMs for the simulation of rezkd flexible multibody models is examined.
Flexible multibody simulation is an application which tgally requires large computational effort due to
nonlinearity, a large number of degrees-of-freedom (DGirRg) differential-algebraic equations of motion.
Recently, Brils introduced the Global Modal Parametéinna(GMP) as a reduction technique for flexible
multibody simulations [5]. In this method, the system dyiwsrare parameterized by a minimal set of
rigid DOFs. The method is split up into two parts: a preprscesin which the reduced system properties
are determined for a discretized set of possible configamatiand an actual processing phase in which the
reduced system is simulated and system properties arenetitdirough interpolation from the previously
calculated configurations.

The way this interpolation is performed, strongly affedis performance of the reduced simulation, and
this work aims at examining which interpolation approachvdes the best results. For this purpose three
different interpolation approaches are compared. Thetlstapproaches are the linear and quadratic in-
terpolation of the projection vectors and reduced mass-stifidess matrices. This is a classical approach



which keeps both the stiffness and mass matrices closege tifadhe uninterpolated model at a given config-
uration. However, this approach generally does not asstoa@spondence of the reduced system dynamics,
since there is no explicit control on the eigenfrequenciab@interpolated system. Sec. 4 shows that these
approaches can lead to large deviations on the eigenvaues,though both mass and stiffness matrices
show good correspondence. The third approach is a novelbih@éthwhich the reduced mass and stiffness
matrices are projected onto the eigenspace of the systemramterpolated in this eigenspace before trans-
forming back to the original reduced space. This methodwalidirect interpolation of the eigenvalues of the
reduced system and is callé@quency interpolationn the remainder of this work. The numerical experi-
ment in Sec. 4 demonstrates that this approach leads to rocuease results, even though the deviation on
the mass and stiffness matrices is larger than in the casecot thterpolation.

Firstly a short overview of the GMP-method with its main cweristics is given. Section 3 describes the
three proposed interpolation methods in detail. Finallymaerical validation of the GMP-method with the
different interpolation strategies is performed in oraevérify the properties of each method.

2 Global Modal Parameterization.

Many different formulations are used for the descriptiorflexible multibody models and an exhaustive
overview is given by Wasfy & Noor [14]. The equations of matifor a planar system can generally be
written as a set of differential-algebraic equations, mdeneralized coordinatgs
M9 (q)§+Vq+ X = g2, 1)
®(g) = 0 2
In these equations:

e ¢ is a vector ofn generalized coordinates, which define toafigurationof the system.
e M%(q) is the configuration-dependent mass matrix.

e V,is the gradient of the internal potential energy. Only poétenergy due to structural deformation
is considered in this term. The generalized forces due terqibtential energy sources (e.g. gravity)
are taken into account through the source tgfm.

e g7 , denotes the generalized forces due to external loads.

e ®(q) = 0 expresses: kinematic holonomic constrairitslts gradient(b?; is assumed to be of full rank
for all configurations;.2

e ) is avector ofm Lagrange multipliers to take the constraints into account.

° @?; ) represent the reaction forces and moments enforcing thstreamts.

The set of equations (1)-(2) is a differential-algebrai@&f) set of equations of index 3. Solving this system
in its original form requires implicit solution methods grexialized stabilized explicit solvers [13]. Model

reduction techniques are employed to obtain a more sui@b& description of the model for efficient

simulation with standard explicit solvers.

Global Modal Parameterization (GMP), as proposed by B#jlsis a reduction technique which was first
introduced for reduction of rigid systems [6] and afterveaadapted for the reduction of flexible mechanisms.
Due to the assumptions made in deriving this method, it altmturn the set of DAEs into a set of ODEs
with far fewer DOFs.

In this work, the derivation of the model equations is givend planar system with one rigid DOF. This
allows for a more intuitive physical interpretation of thedel equations.

!Non-holonomic constraints are not considered in this work.
2A gradient/Jacobian of an entity with respect to a vectdrwill be denoted ast ;.



2.1 Model reduction

The GMP-model reduction technique is based on dividing tbéan into a rigid and a deformed part. In
this approach, the flexible deformation is assumed to be & Bnesarized deviation from the rigid position.
This is expressed by:

q=p(0) + ¥ (0)0 (3)

The two terms in this equation are:

e p(0): this represents a nonlinear function which determinesgireralized coordinateg for an
undeformed configuration in function of the minimal amouhtigid DOFs#.

e W9%(9)4: this term expresses the flexible deformation. The defdomas determined as the product
of a configuration-dependent modal mat#€® (8), which contains the deformation modes, and the
respective participation factobs or flexible DOFs, of the deformation modes.

The reduced degrees-of-freedom can be grouped in the wgctor

n=3] @

This specific parameterization allows a very strong redactif DOFs in comparison to the original model.
This reduction is twofold:

e Due to the system point-of-view, all redundant DOFs areiekted.

e The description of the flexible deformation allows to onlynsiger the most relevant deformation
modes.

As can be seen from equation (3), the flexible deformationen@ie also dependent on the rigid position.
Eigenmodes are used as deformation modes, and these aiglysttependent on the actual configuration of
the system. This description assumes that the flexible ahefibons remain small, such that the effect of the
elastic deformation on the dynamic properties of the systrmains negligible.

The projection fromy to the reduced coordinatgshappens through the use of rigid bod#® and flexible
deformation mode®9° [5], which are both function of the rigid configuratién Different choices could be
made for these modes, especially for the deformation mdd#s ywhich might highly impact the obtained
accuracy for a given number of reduced DOFs. In this workritlid motion vector is the null-vector of the
stiffness matrix and the deformation modes are the mostmmhiflexible eigenmodes when the rigid DOF
0 is fixed, as in [5]. This choice leads to a clear distinctiotwesen rigid and flexible motion, but also leads
to a mode set which is not mass orthogonal.

2.2 Model equation derivation

Asin [3], the equations of motion for the reduced model amvdd from the augmented Lagrangian for the
system. For an undamped multibody system, the Lagran@@omsists of kinetic energlg, potential energy
Y and external work/V:

L=K-V-W (5)

In order to take the constraints into account, the augmdragdangianC* is employed:
L5 =L+ ®(q)"A (6)

In this formalism, auxiliary variables are used to take the constraidd§q) into account. For a system with
m constraints, there are auxiliary variables\.



From the expression of the augmented Lagrangian, the egsatif motion can be derived. The reduced
equations of motion are obtained by computing the derigativC*, which is a function of the generalized
coordinates;, with respect to the reduced degrees-of-freedpoamd \:

d (oL oL* _ d (oK oK oV ow 09Ty _
G (%) - =a(35) -G BBy Ea=0 0
®(q) =0 (8)

This equation forms the basis of the model equations for ti&@nethod.

In order to compute the different derivatives for the redlD®Fs, the derivative of the generalized coordi-
natesg with respect to the reduced DOF$s required. For a system with only one rigid DOF:

q,= |97 2205w ©)

The reduced equations of motion can be summarized as thefqunojected inertial forceg; ., projected
internal elastic forceg; , and projected external forced,, :

g'?ner + g:,nt = ggmt (10)
This equation is an ODE and does not contain any terms relatdte constraints due to the choice of the
projection space.

In the following paragraphs, the different force terms hasg from the GMP formalism are discussed.

2.2.1 Inertial Forces

The inertial forces are obtained by deriving the kineticrgpe to the reduced DOFs. Details of this
derivation are discussed by Brils [3]. As derived by Nagig,[for a planar system with one rigid DOF and
an unreduced description with a constant mass matrix, thecesl inertial forces are:

owe .o 9w .. HEPY . )

T . T
Iier = 4" M4} + a5 qu( 96 9 Tl g 00t 500
= M™ij + k" (n,1))

In Equation (11), the first term is the obvious projectiontd# tnertial force onto the reduced space and the
second term, denoted A8, arises due to the variable projection vectors.

(11)

2.2.2 Elastic Forces

The elastic forces are obtained by deriving the potentitdrival energy) of the system with respect to
the reduced DOFs. Since this function is highly nonlineafaglor-approximation around an undeformed
configuration is used in order to derive the reduced intefioraks [5]. This approach leads to:

Gint = K™ (12)
Where K" is the reduced stiffness matrix:
K" = 02 (13)
0w (5), v

2.2.3 External forces

The reduced external forces are obtained by projecting tineduiced forces directly onto the reduced pro-
jection space:
Gowt = q,nngmt (14)



2.3 Practical implementation

During the simulation, the unreduced model will not be eatdd during each timestep and then reduced,
since this would be much too costly due to the eigenvaluelgnolivhich has to be solved for model reduc-
tion. Instead, the reduction procedure is performed forid@rpossible undeformed configurations during
a preprocessing step. These reduced models are storechatitihely could be used during the actual simu-
lation. Because it is highly unlikely that the mechanisml wass exactly through the predetermined states
during simulation, interpolation between the precomputedfigurations has to be performed to determine
the ROM for the simulation configurations. It is of paramoumportance that the interpolated model ex-
hibits dynamical behaviour which is very similar to the axROM for a given configuration, in order to
obtain reliable simulation results. Sec. 3 describes thiéerent approaches to this interpolation and their
effect on the accuracy of the simulation is validated nuoadigi in Sec. 4.

3 Interpolation methods

The used interpolation method will highly impact the amoahtiscretization points which is necessary
in order to obtain a certain accuracy. There will however I&rang trade-off between the accuracy of a
method and the computational complexity. It is thereforpantant to correctly define the requirements for
the interpolated model. It will be very application-depentwhich properties the interpolated model should
keep and which are less strict.

In the case of GMP, the requirement of the interpolated redlucodel is simply that it is as close as possible
to the exact reduced model for a given configuration. Howebere is no strict demand on whether this
means the mass and stiffness matrices should be as closesbl@oor the eigenfrequencies should be
matched as good as possible. No matter what method is useth@amise will always be necessary.

In this section, three possible interpolation methods &eudsed: linear interpolation of the system ma-
trices, quadratic interpolation of the system matrices amivel approach which linearly interpolates the
eigenfrequencies of the reduced system.

3.1 Linear interpolation

The first method is to perform a linear interpolation of thdueed system matrices. The reduced mass,
stiffness and projection matrix are all interpolated limg&n order to become an approximate model for a
given configuration. In the discretization points this aygmh will provide exact results, but in between these
points the results might deviate considerably. The useddtas are:

0 =ab;+ (1 —a)fir1 with |a| <1 (15)
M™ = oM™ + (1 — a) M, (16)
K™ =aK]" + (1— a)K:'_?l (17)
T = a @ 4 (1 a) BT, (18)

In case the projection modes were mass orthonormal, thi®ag@p would also lead to an interpolation of
the eigenvalues. In this case the mass matrix is the unityixreatd the stiffness matrix is a diagonal matrix
with the eigenvalues on the diagonal. The interpolatiomtadis the diagonal structure and the eigenvalues
are interpolated correspondingly. However, often, as is work, a non-mass-orthogonal set of modes is
used, in which case there is no direct interpolation of tgemtalues and deviations on the eigenfrequencies
of the interpolated model might differ considerably frorodk of the original model.



3.2 Quadratic interpolation

A second popular method is to perform quadratic interpmtatiThe accuracy of the results obtained through
this approach will be similar to those obtained through otingadratic approximations such as piecewise
guadratic functions or Lagrangian polynomials [5]. Thipagach will generally lead to much more accurate
results than the linear approach, but comes at an addedfatetieomining the coefficients for the interpola-
tion, which is very straight forward in the case of the linederpolation. All matrices are again interpolated
directly as is the case for the linear interpolation.

In order to determine the coefficients, the knowledge of tiadical solution for & x 2-system is used.
Interpolation is performed between 3 poifi{s+,0; andf;, 1:

Y=A0-60"Y2+BO-0"1)+C (19)
_ (0410 1)(Yi=Yi_1)—(0i—0i—1)(Yit1—Yi—1)
A= (91':;2'71)2%9#1—92‘ 1)—(0;—0;— 1)( L:ll 0;— 11) (20)
_ —(Bip1—0; 1)2(Yi—Yi 1)+ (0:—0i1)* (Vi )
b= (eiiéifl);(ewrl_ei 1)—(0;—0;_ 11)(62+1+162 1)1 (21)
C=Yiq (22)

All elements of the reduced system-matrices and projectiodes are interpolated following this process.
As is the case for the linear interpolation, this approadly mterpolates the matrices and doesn’t guarantee
a certain course of the reduced eigenvalues. Again heraghevalues are interpolated in the case of mass
orthogonal modes, but not in the general case.

3.3 Frequency interpolation

This new interpolation method is derived in order to maimtiie best correspondence between the eigen-
values of the interpolated reduced system and the exacteddsystem. As is shown in Sec. 4, regular
interpolation of the system matrices might lead to largeat®ns on the eigenvalues. These eigenvalues
have a large impact on the flexible response of a system. inafas.g. active vibrational damping, a poor
approximation of the eigenfrequencies might lead to poarective actions.

In order to achieve an interpolation of the eigenfreques)@entermediate transformation onto the eigenspace
of the reduced model, through the mass-orthogonal eigeegibdand ®;,,, is used. The projected ma-
trices are now diagonal and are interpolated linearly, asriteed earlier, which preserves the structure and
interpolates the eigenfrequencies as well.

sz = a@iTKZm@i + (1 - a)q)i—}—l K,H_lq)z—f—l (24)

The new diagonal matricedZ™” and K™ are now available and have to be converted back to the otigina
reduction space. A linear interpolation of the eigenmodeassed to perform the back-transformation:

® =a®; + (1 —a)Pigq (25)
M™M= (&)1 p" o1 (26)
Km = (") 1K" %! (27)

The projection modes are interpolated correspondingly:

Pan — (a\I’lqn‘I% + (1 — CL)‘I’Z+1‘I)Z+1)‘I> 1 (28)

This approach delivers an interpolated model with a refia@proximation of the eigenfrequencies. With
this method however, the course of the mass matrix, stdfmeatrix and projection modes will not be a
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Figure 1: Planar slider-crank mechanism

direct interpolation anymore, which might lead to a largevidtion in these areas. Moreover this method
will also be more expensive than the previous 2 methods dreigenvalue problems have to be solved for
each interpolation. Due to the limited dimension of the mtlisystem, the cost of this eigenvalue problem is
expect to remain limited. Alternatively this eigenvaluelglem could also be solved during the preprocessing
phase in order to save online calculation time.

4 Numerical validation

The numerical validation of the aforementioned interpotatnethods is performed on a planar slider-crank
mechanism as depicted in Fig. 1. The properties of the syatensummarized in Table 1. The original
model of this system is constructed using a planar versigheofarge-rotation finite element (FE) model as
proposed by Géradin & Cardona [8]. This FE model serves ass lbo construct the GMP model and is
used as a benchmark during the simulation. The GMP-modaristucted with 7 deformation modes (8

properties| Crank Connector
E[GPd] 210 210
G|GPal 81 81
L[m] 0.3 0.7
Alem?] 1 1
plkg/m] | 7800 7800
#elem. 5 5

Table 1: Properties of FE slider-crank model

modes in total, including the rigid mode) and a discret@attepAd = 0.1rad.

Firstly the the accuracy of the different interpolation hwats for the mass and stiffness matrices and for the
eigenvalues are considered between two discretizationtgoln a second subsection, a simulation of the
mechanism is performed and the accuracy with respect tontegluced model is compared.

4.1 Interpolation accuracy

Firstly the accuracy of the three interpolation strateggesompared for the mass matrix, the stiffness matrix
and the eigenvalues for the reduced system. The originattiets space is constructed with a discretization
step of Af = 0.1rad and an interpolation is performed with an interval®f = 0.01rad.

The average relative difference on the mass and stiffnessxnirafunction of the rigid configuratiord is
depicted in Fig. 2. Fig. 2 shows that the best results ardraatavith the quadratic interpolation. This is



£ IR - --Quadr.
= L Freq.Int.
c v =
o I’ \7 P R4 N,
E ! \" ‘/‘/ ) \ ,’lb “\ /‘,‘ '\’\ /‘I \4\
() O i N\ . . -
1 1.1 1.2 1.3 14 15
x 10"
CX 2t _/‘/ \\,
s 1/
1
a ot et N N ~
1 1.1 1.2 1.3 14 15
0 [rad]

Figure 2: Average accuracy for interpolated reduced madsstfiness matrix in between discretization
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Figure 3: Comparison of eigenvalues in between discratizadoints

to be expected since this method uses the most informatiout ase reduction space and interpolates both
matrices directly. The quadratic interpolation is follavay the linear interpolation, because this method
still works directly on both matrices. The frequency intdgtion however, clearly produces less accurate
results. This is due to the fact that this method actuallgrjptlates the eigenfrequencies, which might lead
to deviations for the mass and stiffness matrix.

Fig.3 shows the average relative difference between trenesdues of the exactly reduced model and the
interpolated reduced models. This figure clearly showstti@interpolation methods which work directly
on the projection space, lead to important deviations ireigenfrequencies of the reduced system. These
deviations might lead to quite important changes in the thindbehaviour of the interpolated system in
comparison to the exact system. The frequency interpolatiothe other hand delivers much better accuracy
at the level of eigenfrequencies.

Based on both Fig. 2 and Fig.3,no clear answer is possiblenahvapproach is best. The direct interpolation

approaches will generally be the cheapest, while the fregumterpolation seems better capable of describ-
ing the dynamical phenomena of the reduced model. The effeactual simulation results is presented in

the following section.



4.2 Simulation accuracy

This section shows the simulation results of the slidenicrmechanism when the rigid DOF is excited with a
torque with amplitud®.5 Nm for the different interpolation schemes. At the beginnifthe simulation the
torque has sinusoidal ramp up with a frequencj@# z. The simulation is performed using the generalized
a-solver [4] with a constant timestdp= 0.05ms and no numerical damping. The same GMP-model as in
the previous section, with a discretization step\af = 0.1rad and 7 flexible modes is used. For the inertial
forces, the full inertial forces as described by Naets [1&]eanployed.

The results for the simulation of the GMP-model with lineaterpolation are compared with those of the
unreduced FE-model in Fig. 4. Fig. 4a shows the responseeafidid DOF 6 and the relative difference
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Figure 4: Simulation results with linear interpolation

with the unreduced model. Even though a very simple intatfmi is employed and the discretization step
is rather coarse, the rigid motion is quite accurately axiprated. Fig. 4b shows the flexible deformation for
the last node of the crank. This figure shows only a fragmetiiefotal simulation to improve interpretabil-
ity. The figure clearly shows that the flexible deformatioroig of phase due to an accumulated effect of
eigenfrequency estimation errors between the reducedlrandehe FE-model. This difference is due to the
poor interpolation properties of the linear interpolatigith respect to the frequency content.

For the GMP-model with quadratic interpolation, the sintiolaresults are shown in Fig. 5. The accuracy for
the rigid motion is improved in case of quadratic interpolat Fig. 5b does however show that no noticeable
improvement is present for the frequency of the flexible duefdion. Even though the quadratic approach is
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Figure 5: Simulation results with quadratic interpolation

capable in general to deliver better results than the linparoach, it also needs a rather fine discretization
in order to reach good frequency accuracy in the case of n@s+ordhogonal modes.

Finally, Fig. 6 shows the simulation results for the frequemterpolation. Fig. 6a shows that the accuracy
for the rigid motion is similar to the linear interpolatiofthis can be expected, as after projection onto the
eigenspace, a linear interpolation is performed. Howeéwehigh frequency content of the relative difference
is clearly reduced by employing this approach. When reggrttie flexible deformation of the hinge-node
in Fig. 6b, the advantage of the frequency interpolatiorobezs apparent. The flexible deformation of both
the unreduced and reduced model are very similar and therdiffe is imperceivable on this scale.

5 Conclusion

Interpolation of reduced order models (ROMS) is an issueanyrareas, such as nonlinear model reduction.
One such method, in which ROM-interpolation is of paramauargortance, is the Global Modal Parame-
terization (GMP). This method allows the reduction of flégimultibody models, which typically exhibit
strong nonlinear behaviour. The GMP-method is based oncprmguted discretization of the possible con-
figuration space of the system. During the actual simulatieereduced model is evaluated by interpolating
from this precomputed grid of possible configurations. Tdpproach avoids the expensive evaluation of
a multibody model during the simulation. It is however imjaoit that the interpolation procedure delivers
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Figure 6: Simulation results with frequency interpolation

physically valid approximations for the exact model.

In previous works on the GMP method, polynomial based imtetjipn schemes, such as linear or quadratic
interpolation schemes, were used to directly interpolatereduction modes, mass- and stiffness matrix.
These are very straightforward and economical approachahwleliver good results in many cases. How-

ever, in general, these methods provide no certainty oratiwese of the eigenfrequency of the reduced model.
This work demonstrates experimentally that the deviatafrbe eigenvalues for the interpolated system and
the exact system might become quite large, even though tlss-raad stiffness matrices are interpolated
quite accurately. These deviations might lead to largedifices in the flexible motion for the simulation of

mechanisms which are excited with a high frequency congsrnis shown through the numerical example of
a slider-crank mechanism.

Due to the aforementioned problems, a novel interpolagahnique is introduced in this work. The tech-
nique is based on a projection on the eigenspace of the rédocdel, in which the eigenvalues of the model
can be interpolated directly. Afterwards a back-transfiaon to the general reduced coordinates is per-
formed. This approach allows to generate an interpolateb R@h interpolated eigenvalues, at the expense
of a larger deviation in the reduced mass- and stiffnessixnas is shown experimentally. The ability of this
method to improve the flexible response of the GMP-model matestrated on a slider-crank mechanism.
For this numerical example, the flexible deformation for @&P-model is almost indistinguishable from
the original FE-model, in contrast to the GMP-model witlenpiblation of the system matrices.



These results show the importance of adequate interpoelégichniques for ROMs and allow the user of
GMP to perform much more accurate highly dynamical simoieti
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