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A B S T R A C T

Standard gait analysis reports knee joint rotations in the three anatomical planes without addressing

their different levels of reliability. Most clinical studies also restrict analysis to knee flexion–extension,

because knee abduction–adduction and axial rotation are small with respect to the corresponding

amount of measurement artefact. This study analyses a set of 11 motor tasks, in order to identify those

that are adequately repeatable and that can induce greater motion at the knee than walking. Ten

volunteers (mean � SD age: 29 � 9 years) each underwent three motion analysis sessions on different days

with a standard gait analysis system and protocol. In each session they performed normal walking, walking

with sidestep and crossover turns, ascent onto and descent off a step, descent with sidestep and crossover

turns, chair rise, mild and deep squats, and lunge. Range and repeatability of motions in the three anatomical

planes were compared by ANOVA. The sidestep turns showed a range of axial rotation significantly larger than

that in walking (about 88), while maintaining similar levels of repeatability. Ascent, chair rise, squat, and

lunge showed greater flexion ranges than walking; among these, ascent was the most repeatable. The results

show that turning increases knee axial rotation in young subjects significantly. Further, squats and lunges,

currently of large interest in orthopaedics and sports research, have smaller repeatability, likely accounted for

to the smaller constraints than in the traditional motor tasks.

� 2010 Elsevier B.V. All rights reserved.
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1. Introduction

In vivo measures of knee joint kinematics can facilitate the
quantitative evaluation of clinical conditions, particularly in the
context of knee replacement. Previous studies compared knee
rotations of various clinical populations, including the same knees
before and after replacement [1,2], replaced versus normal knees
[1–9], replaced knees with different prosthesis designs or surgical
procedures [9–11], and pathological versus non-pathological
knees [12,13]. These data have been obtained with various
methods, including fluoroscopy [9], goniometry and accelerometry
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[1–3,12–14], but mainly skin marker-based movement analysis
[4–11]. The latter presents unique advantages over the others but
also considerable challenges. Although motion capture systems are
not yet as portable as smaller devices nor as precise as fluoroscopic
analyses, they can noninvasively measure whole body motion in
three dimensions, during complex functions as frequently
performed in daily life.

Marker-based motion tracking studies on the knee have
mainly focused on level walking [6,8–10,15,16]. A limited number
have studied step-up, -down, and -over manoeuvres [4,8–10],
obstacle avoidance [5], and chair rising [7,17]. Other studies used
different methodological approaches to analyse ascent [9] and
chair rise [2,3,9,13,14,18,19]. Frequently only knee flexion–
extension was analysed in these studies because these motor
tasks induce small out-of-sagittal plane knee rotations, both in
healthy and replaced joints [6,15,16]. Moreover, measurement
variability is introduced by marker tracking error, skin motion
artefacts, and marker placement or frame definition errors [20–
22]. The overall error and variability across repeated trials,
therefore, is expected to exceed the small out-of-sagittal plane
knee rotations involved in many motor tasks [21,23–26]. This
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hinders the detection of differences in skeletal kinematics among
populations.

To overcome these limitations that accompany standard gait
analysis, the ratio between skeletal joint kinematics and relevant
measurement errors should be improved, either by reducing the
errors or enlarging the joint range of motion. This study investigates
the latter direction. Progress in error reduction includes the
development of more robust hardware, tracking devices, marker
sets, and analysis techniques [22,24,26], although the main source of
error is associated with soft tissues [21]. An interesting additional
approach is to enlarge the spectrum of analysed motor tasks. Ideal
tasks would be as repeatable as walking, while inducing larger knee
rotations, thereby reducing the error-to-measurement ratio. Conse-
quently a change in range of motion (ROM) among pathologic
patients would be more detectable than in walking, especially for the
out-of-sagittal knee rotations.

The purpose of this study was to identify motor tasks in which
knee joint rotation in the three anatomical planes is both large and
repeatable. These would best suit more detailed clinical gait
analysis studies on knee treatments. The potential tasks were
chosen based on availability of published data for comparison, and
on the hypothesis of achieving greater abduction–adduction or
axial rotation than during gait. Previous similar studies that have
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Fig. 1. Images of the pivoting tasks and ascent over a standard box. (a) The two main phas

turn. (c) The ascent task over a standard step.
analysed series of tasks in vivo used simple goniometry and
reported only on knee flexion [1,2,13,14].

2. Materials and methods

Approval for this study was given by the ethics committee of Leuven (Pellenberg)

University Hospital, Belgium. Ten adult subjects (9 male, 1 female; age: 29� 9 years;

body-mass index (BMI): 25� 5) volunteered to participate after giving informed consent.

None had a known history of musculoskeletal or neurological pathology, except for one

male subject who was treated 1 year earlier for a right Achilles tendon rupture.

Three-dimensional (3D) motion analysis was performed using an optical data

capturing system (Vicon Motion Systems, UK) with eight to fourteen cameras, which

determined the 3D trajectories of 23 passive retro-reflective markers (14-mm

diameter), located on the lower limbs, pelvis, and trunk (Total body Plug-in-Gait

marker set [15,16,27] with Knee Alignment Device, KAD [28], Vicon, Oxford, UK). The

infrared cameras collected data at 100 Hz. Kinematics were calculated based on

marker trajectories by using Euler angles and specific anatomically aligned joint

coordinate systems. Ground reaction force was also collected at 1000 Hz from two

forceplates (AMTI, Watertown, MA, USA), but for gait cycle definition only.

Each subject underwent three motion capture sessions, each 0–56 days apart

(median: 7 days), conducted by one well-trained physical therapist. During each

session, the subject was asked to perform three trials of each of the following 11 motor

tasks:

1. Walking: Walk on a level floor in a straight direction at a self-selected speed.

2. Walk and crossover turn (Fig. 1a): After initially walking forward, pivot over

the forceplate and change direction by 908 toward the side of the pivoting leg.
es of the walk and crossover turn. (b) The two main phases of the walk and sidestep
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Fig. 2. Example of the measurements taken on all kinematics curves. (a) Set of

original tibial in/external rotation curves during walking with sidestep turn. (b) The

maximum, minimum, and range of motion (max–min) of each individual curve was

found. Variability of the group of curves was calculated by taking the root-mean-

square of the error, or distance, from the average curve at each %cycle, which

estimates the deviation of all the individual trials from the average trial.
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Internal rotation at the pivoting knee, i.e. internal rotation of the tibia in the

femur reference frame, is expected, which would result from a combination of

external rotation of the femur and a possible internal rotation for the tibia,

similarly to a previously reported crossover turn [17].

3. Walk and sidestep turn (Fig. 1b): As in the previous task, walk forward, then

pivot over the forceplate by 908 toward the side opposite to the pivoting leg.

External rotation of the pivoting knee is expected, mainly associated to internal

rotation of the femur, similarly to a previously reported sidestep turn [17].

4. Ascent onto a step (Fig. 1c): With one leg, step onto and over a 20 cm high step

over the forceplate, as previously described [10], and continue straight. The

step length and width were 30 cm � 45 cm. Subjects started with toes 20 cm

away from the step.

5. Descent off a step: Descend from the same step as in stair ascent onto the

forceplate and walk forward.

6. Descent with crossover turn: Descend from the step onto the forceplate, and

perform a crossover turn by pivoting on the descending leg.

7. Descent with sidestep turn: Descend from the step onto the forceplate, and

perform a sidestep turn by pivoting on the descending leg.

8. Chair rise: Rise up from a 908 knee flexion sitting position into a full standing

position, with feet over separate forceplates and the hands and arms free. An

adjustable height stool was used for the seat.

9. Squat, mild: Squat down to less then 908 knee flexion with feet over separate

forceplates, with minimal exertion, and rise back up. Heels could lift from the

floor.

10. Squat, deep: Squat down as far and safely as possible, with feet over separate

forceplates, and rise back up. Heels could lift from the floor.

11. Lunge: Bend one knee in front of the body to approximately 908 flexion,

planting that foot on a forceplate, and then rise back up.

The left leg was analysed for each task except for the crossover turns, for which

the right leg was analysed, which kept the turn direction constant. Trials were

averaged for each subject, resulting in sample sizes of 10 subjects for each task

except the deep squat. Two high-BMI subjects (BMI 32 and 35) attempted but

ultimately declined to perform the deep squat, resulting in 8 subjects for this task.

Movement cycles were defined according to foot contact with forceplates and by

analysing foot marker trajectories. Both stance and swing phases were analysed in

all the walking and ascent/descent tasks. The start of chair rise was the time at

which the upper body began to lean forward, and the end was the time of maximal

knee extension. Squat cycles were defined according to when the knee flexed away

from and returned to full extension. The lunge cycle started at initial footstrike in

front of the body and ended at final footstrike near standing position. All data were

normalized to a 0–100% time cycle.

The data were reduced by measuring the extremes and relevant ROMs of the

kinematics curves for each subject, and by averaging these measurements within

and between subjects for each task. Measures of absolute intra- and inter-subject

variability of the three knee rotations for each task were calculated by finding the

root-mean-square of the error (RMS) of each trial against the average trial, across

the whole movement cycle (Fig. 2). Lower variability implies increased

repeatability. The extreme, ROM, and RMS values for the tasks were compared

within each of the three knee rotations using statistical software (Minitab, State

College, PA, USA). Multiple outcome one-way ANOVA was performed for the

comparison, after confirming normality of the distributions and noting the nearly

equal sample sizes. Bonferroni’s test against a control was used to find paired

differences from walking. All significance thresholds were a = 0.05. Adjusted p-

values are reported to account for the multiple outcomes testing.

3. Results

The tasks showed considerable differences in repeatability of
knee kinematics, as evidenced by the inter- and intra-subject RMS
values (Fig. 3). For sagittal plane motion, all the tasks were less
repeatable than walking and had larger inter-subject RMS values.
These were between 5.88 in walking and crossing over, and 18.38 in
deep squat, which compare with the 4.68 in walking. Ascent, chair
rise, squat, and lunge also showed significantly larger mean intra-
subject RMS values for the sagittal plane motion (between 5.58 and
118 vs. 2.78 in walking, p < 0.006). For the out-of-sagittal plane
knee rotations, walking and descent tasks showed the highest
repeatability.

Average maximum and minimum values of the three knee
rotations revealed remarkably different ROMs among the motor
tasks, which was consistent across the subjects analysed (Table 1,
Fig. 4). Regarding sagittal knee motion, the tasks of ascent onto a
step, chair rise, deep squat, and lunge all had significantly greater
ROM than typical walking (p < 0.002), with the maximum found
for deep squat (95.48). Regarding knee abduction–adduction, the
squats showed significantly smaller ROM than walking (4.88 or 4.98
vs. 8.38, p < 0.047). Regarding axial rotation, the ROMs for
sidesteps while walking (22.28) or descending (23.98) were
significantly greater than for normal walking (14.48, p < 0.004).

The extremes of the kinematics curves also exhibited significant
differences among the tasks. Peak knee flexion angles for ascent,
chair rise, mild squat, deep squat, and lunge ranged from 78.68 to
106.18, and all were significantly greater than for walking (63.78,
p < 0.012). Maximum knee internal rotation for the crossover
turns, ascent, chair rise, and squats ranged from 15.88 to 22.48, and
all were greater than for walking (10.28, p < 0.048). Minimum knee
internal rotation for ascent and squats ranged from 0.38 to 2.68 and
were greater than for walking (�4.28, p < 0.028), while the
minimum angles for the sidestep turns ranged from �10.58 to
�11.08 and were lower than for walking, or more externally
rotated (p < 0.001).

4. Discussion

Motion of the human knee joint in the three anatomical planes
was measured in 11 different motor tasks using a standard gait
analysis technique. The results demonstrated that in more
demanding motor tasks of daily living, such as sidestep turn and
step descending, the knee experiences joint rotations that are
significantly larger than during standard walking, but still very
repeatable. This holds even when giving subjects minimal
instructions. A sidestep turn while walking or descending induces



[(Fig._3)TD$FIG]

Fig. 3. Inter-subject and average intra-subject RMS errors of the kinematics curves

for the three knee rotations, across all subjects, for each motor task. RMS values are

similar to standard deviation of the errors. Asterisked tasks showed statistically

significant paired differences in the RMS values compared to walking. ‘‘CO’’ and ‘‘SS’’

indicate crossover and sidestep turns, respectively.

Table 1
Average extremes and ranges of motion (ROM) of knee kinematics curves, for 11

motor tasks from 10 different subjects, in degrees (̊). ‘‘CO’’ and ‘‘SS’’ indicate

crossover and sidestep turns, respectively.

Task Max Min ROM

Knee flexion+/extension�
Walking 63.7�5.2 2.6�3.7 61.1�5.0

Walk + CO 63.9�3.5 6.2�2.6 57.7�4.2

Walk + SS 58.7�6.0 1.1�4.8 57.5�8.0

Ascent 94.6*�6.1 11.0�3.1 83.6*�5.3

Descent 65.7�6.4 4.8�2.7 60.9�6.2

Descent + CO 63.4�3.0 7.3�2.0 56.1�3.7

Descent + SS 57.7�7.4 3.1�3.4 54.6�8.0

Chair rise 85.7*�5.4 4.4�4.6 81.3*�6.6

Squat, mild 78.6*�16.0 8.5�5.7 70.1�18.3

Squat, deep 106.1*�22.2 10.7�5.1 95.4*�25.4

Lunge 97.3*�13.9 16.6�7.1 80.7*�11.7

Knee adduction+/abduction�
Walking 8.2�2.9 �0.1�3.0 8.3�2.5

Walk + CO 5.0�2.7 �2.1�2.3 7.1�2.4

Walk + SS 7.6�2.7 0.4�3.5 7.1�3.3

Ascent 10.0�3.7 �0.7�3.1 10.7�1.9

Descent 7.7�2.5 �0.2�2.2 8.0�2.2

Descent + CO 5.7�2.3 �2.2�2.3 8.0�2.1

Descent + SS 7.9�3.4 0.3�3.0 7.6�2.8

Chair rise 7.0�2.3 �0.9�2.1 7.9�1.8

Squat, mild 4.3�3.5 �0.5�4.7 4.9*�2.8

Squat, deep 5.0�2.7 0.2�3.7 4.8*�2.4

Lunge 8.3�3.8 �0.7�5.1 9.0�3.4

Knee tibial internal+/external� rotation

Walking 10.2�3.4 �4.2�2.6 14.4�4.1

Walk + CO 16.3*�4.0 �3.0�3.2 19.3�5.2

Walk + SS 11.7�4.3 �10.5*�3.2 22.2*�4.0

Ascent 15.9*�4.2 0.3*�3.6 15.6�4.6

Descent 11.6�3.3 �2.4�1.3 14.0�2.9

Descent + CO 15.8*�3.8 �2.4�3.5 18.3�3.8

Descent + SS 13.0�3.0 �11.0*�3.8 23.9*�4.8

Chair rise 17.7*�5.4 �0.1�3.9 17.8�5.0

Squat, mild 17.9*�4.2 1.8*�3.1 16.0�4.3

Squat, deep 22.4*�6.5 2.6*�1.6 19.7�6.7

Lunge 15.3�5.2 �2.5�4.6 17.7�5.5

n = 10 for each task, except for deep squat where n = 8.
* Significant difference with respect to the value for walking.
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a greater axial ROM than typical walking by 8–98, while
maintaining similar levels of repeatability. Ascent onto a step
induces larger flexion ROM than walking by approximately 208,
concurring with previous studies which additionally showed the
sensitivity of knee flexion to clinical condition [1,2,9,13,14]. Chair
rise, deep squat, and lunge also showed larger flexion ranges but
had worse repeatability.

To better understand these results, it is crucial to place them in
the context of measurement error, which affects both repeatability
and accuracy. Clinical gait analysis fully relies on the repeatability
of measurements, since conclusions are based on multiple follow-
ups of a single subject, or on studies of multiple subjects in
different populations. Consequently, repeatability of the techni-
ques has been the focus of previous studies on walking [16,23].
Notably, the repeatability of knee internal–external rotation
during turning tasks was found to be similar to the straight-
ahead tasks, even between subjects and sessions. This higher level
of repeatability, combined with a larger ROM, suggest that the
turning tasks may be preferable for a number of clinical
investigations.

Accuracy must also be considered in addition to repeatability. In
human kinematic analyses, accuracy refers to the difference
between the observed measurements obtained with external, i.e.
skin mounted, references and the real internal skeletal motion.
Invasive bone tracking [22] was not performed here, but the extent
of measurement inaccuracy likely associated with skin markers
can still be inferred, based on the knee abduction–adduction
curves. A small ROM for abduction–adduction is expected in
normal knees, and large deviations in abduction–adduction
suggest measurement inaccuracy [21,23,29]. Previous investiga-
tions also showed that larger flexion range, as observed in a
number of the present motor tasks, can be associated with larger
measurement inaccuracy [21]. Despite this, the ranges of abduc-
tion–adduction interestingly were found to be comparable to or
even smaller than in walking, except possibly for ascent and lunge.
These smaller abduction–adduction ROMs may suggest that the
KAD procedure helped reduce crosstalk errors sufficiently.

Previous literature provides also quantitative insight into the
amounts of this error which could have affected the present
results. During walking and other motor tasks, measurement
inaccuracy associated with skin markers can exceed considerably
the true skeletal motion [21,29,30,33–35]. In particular, because of
the distribution of the soft tissues about the long bones of the
lower limb, joint axial rotation is much affected [21,29]. Within the
motor tasks analysed, it is expected that the skin motion artefact
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Fig. 4. Bar charts mapping the mean ROM (between the maximum and minimum

value) of the three knee rotations, across all subjects, for each motor task. Whiskers

represent 1SD of the maximum or minimum values. An asterisk notes a task with a

statistically significant pairwise difference for the ROM compared to walking. ‘‘CO’’

and ‘‘SS’’ indicate crossover and sidestep turns, respectively.
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can be larger in descending tasks as for the higher impacts, in the
large-knee-flexion tasks as for the larger skin sliding around the
joint, and in the turning tasks as for the larger skeletal internal–
external rotation at the joints. In the latter however, the error in
percentage of the physiological motion can be smaller because in
fact of the larger axial ROM. For example, axial ROM in the range
18–248 was observed in the present study for 908 turning tasks,
which may be compared with a corresponding mean maximum
error of 5.48 associated with skin motion [30], though obtained in
jump-cutting maneuver. Finally, it must be pointed out that the
inter-subject variability of the soft-tissue artefact is very large [21]
and therefore relevant consistent patterns over a large population
of even normal subjects are unlike.
The most repeatable tasks were walking and descent, with and
without turns. Only the sidestep turns showed significantly larger
axial rotation ROM than walking, though the crossover turns
showed the same trend. This is possibly due to a combination of
smaller range of motion and higher variability for the crossover
turns. Previous studies on similar crossover tasks suggest that a
larger sample size would have revealed a statistical difference
[17,31]. Another previous study demonstrated recovery of knee
flexion ROM in total knee replacement by analysing a set of motor
tasks over multiple follow-ups [2]. Based on the present results,
knee axial rotation can also be included in similar future studies. In
particular, these tasks can aid the functional assessment of axial
rotation in mobile-bearing versus fixed-bearing knee implants, or
of single- versus double-bundle anterior cruciate reconstructions.

Standardisation and instruction are expected to improve the
repeatability of the tasks. For example, during crossover turns,
subjects were observed to inconsistently point the toes of the
pivoting leg in the direction of the turn before heel strike. This
made any increases in axial ROM more difficult to distinguish
statistically from walking. Standard instructions or training might
have prevented this. Additionally, the effect of arm positions on
ground reaction forces during chair rise already has been studied
[19], but similarly rigorous work should be done for knee
kinematics. Knee flexion ROM during chair rise also is affected
by pathology and arthroplasty [2,7], and more robust, standardised
protocols may show if the out-of-sagittal rotations are similarly
affected. The squat is of particular interest for in vitro knee
simulator studies [32], but in vivo it can be performed in a variety of
ways. Further work is warranted to study the effects of limb and
trunk positions, movement speed, and other factors on these motor
tasks. Care also must be taken when employing any standardisa-
tion method, since each attempt to control a motor task raises
possible questions about the clinical relevance of the task.

The strengths and limits of the present study are those of most
current clinical gait analyses. Additional measurements, such as
spatio-temporal parameters, kinetics, or muscle activation, can be
reported with the present technique, which can be the focus for
future studies. For example, temporal data allows the analysis of
joint angular velocities or task completion times [3,7]. Also the out-
of-sagittal plane rotation data could be plotted versus knee flexion,
which would facilitate comparison with many cadaver studies
[32]. Other limitations specific to this study can be addressed in the
future. Additional populations are of interest besides young
subjects. Studies of pathologic, asymmetric patients also must
more rigorously consider the issue of which leg to study. Finally the
present results could be confirmed with more accurate tools like
fluoroscopy or bone-pin studies, in order to reveal these kinematic
differences at the skeletal system. However, until such tools can
analyse the whole body non-invasively, skin-marker-based gait
analysis will remain the only comprehensive and practical clinical
tool available.

These results imply two central conclusions. First, turning
increases knee axial rotation in young subjects significantly. The
amount of axial rotation and the between trial variability vary from
subject to subject, but among the population analysed a general
pattern persists and this can be investigated further. Second,
squats and lunges tasks, which are currently of great interest in
orthopaedic and sports research, have smaller repeatability likely
because subjects are allowed to perform these with less instruc-
tions and constraints.
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