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Abstract

This paper uses a sequentialized experimental design to select simulation input com-
binations for global optimization, based on Kriging (also called Gaussian process
or spatial correlation modeling); this Kriging is used to analyze the input/output
data of the simulation model (computer code). This paper adapts the classic ”ex-
pected improvement” (EI) in ”efficient global optimization” (EGO) through the
introduction of an unbiased estimator of the Kriging predictor variance; this estima-
tor uses parametric bootstrapping. Classic EI and bootstrapped EI are compared
through four popular test functions, including the six-hump camel-back and two
Hartmann functions. These empirical results demonstrate that in some applications
bootstrapped EI finds the global optimum faster than classic EI does; in general,
however, the classic EI may be considered to be a robust global optimizer.
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1 Introduction

Simulation is often used to estimate the global optimum of the real system
being simulated (like many researchers in this area do, we use the terms ”op-
timum” and ”optimization” even if there are no constraints so the problem
actually concerns minimization or maximization). The simulation model im-
plies an input/output (I/O) function that may have multiple local optima (so
this I/O function is not convex). Hence the major problem is that the search



may stall at such a local optimum. Solving this problem implies that the search
needs to combine exploration and exploitation; i.e., the search explores the to-
tal experimental area and zooms in on the local area with the apparent global
optimum—see the recent survey article [9] and the recent textbook [7] (pp.
77-107), summarized by [6].

A popular search heuristic that tries to realize this exploration and exploita-
tion is called EGO, originally published by Jones, Schonlau,and Welch [12],
paying tribute to earlier publications; also see [7], [8], [10], [17] (pp. 133-141),
[20], [24], and the references to related approaches in [13] (pp. 154-155).

More precisely, EGO selects points (locations, input combinations) based on
maximizing the EI. For the computation of this EI, EGO uses a Kriging meta-
model to approximate the simulation’s I/O function. Kriging metamodels are
very popular in deterministic simulation, applied (for example) in engineering
design; see [7] and the references in [13] (p. 3). This classic Kriging model is
an exact interpolator; i.e., the Kriging predictors equal the simulated outputs
observed for input combinations that have already been simulated. EGO esti-
mates the EI through the Kriging predictor and the estimated variance of this
predictor. However, Den Hertog, Kleijnen, and Siem [4] show that this clas-
sic estimator of the Kriging predictor variance is biased, and they develop an
unbiased bootstrap estimator of the Kriging predictor. Abt [1] also points out
that “considering the additional variability in the predictor due to estimating
the covariance structure is of great importance and should not be neglected
in practical applications”. In the present article, we show that the effective-
ness of EGO may be improved through the use of a bootstrapped estimator.
We quantify this effectiveness through the number of simulation observations
needed to reach the global optimum. Actually, our bootstrapped EI is faster
in three of the four test functions; the remaining test function gives a tie.
Nevertheless, the analysts may still wish to apply classic EI because they ac-
cept possible inefficiency—compared with bootstrapped EI—and prefer the
simpler computations of classic EI—compared with the sampling required by
bootstrapping.

Like many other authors, we assume expensive simulation; i.e., simulating a
single point requires relatively much computer time compared with the com-
puter time needed for fitting and analyzing a Kriging metamodel. For example,
it took 36 to 160 hours of computer time for a single run of a car-crash simu-
lation model at Ford; see [22].

We organize the remainder of this article as follows. Section 2 summarizes the
simplest type of Kriging, but also considers the statistical complications caused
by the nonlinear statistics in this Kriging. Section 3 summarizes classic EI.
Section 4 adapts EI, using an unbiased bootstrapped estimator for the variance
of the Kriging predictor. Section 5 applies the two EI variants to four popular

2



test functions. Section 6 presents conclusions and topics for future research.
Twenty-five references conclude this article.

2 Kriging metamodels

Originally, Kriging was developed—by the South African mining engineer
Daniel Krige—for interpolation in geostatistical or spatial sampling; see [3],
Cressie’s classic Kriging textbook. Later on, Kriging was applied to the I/O
data of deterministic simulation models; see the classic article [18] and also
[19], Santner et al.’s popular textbook.

Kriging may enable adequate approximation of the simulation’s I/O function
when the simulation experiment covers a ”big” input area; i.e., the experi-
ment is global, not local. ”Ordinary Kriging”—simply called ”Kriging ” in the
remainder of this article—assumes that the simulation outputs (say) w are re-
alizations of the following Gaussian covariance-stationary stochastic process :

w(x) = µ+ δ(x) (1)

where µ denotes the constant mean and δ(x) has a multivariate Gaussian
(Normal) distribution with mean zero and a specific covariance matrix detailed
below. Kriging uses the linear predictor

y = λ′w (2)

where w denotes the vector with the n ”old” simulation outputs (i.e., the out-
puts obtained for the n already simulated input combinations) and λ denotes
the vector with the Kriging weights. To select the optimal weights in (2),
Kriging uses the Best Linear Unbiased Predictor (BLUP) criterion, which
minimizes the Mean Squared Error (MSE) of the predictor y. Given the as-
sumptions of the process defined by (1), it can be proven that the optimal
Kriging weights λo are

λo= Σ−1
n (σn+1+1

1− 1′Σ−1
n σn+1

1′Σ−1′
n 1

) (3)

where Σn= (cov(wi, wi′)) with i, i′ = 1, . . . , n denotes the n × n matrix with
the covariances between the n old outputs; σn+1=(cov(wi, wn+1)) denotes the
n-dimensional vector with the covariances between the n old outputs wi and
the ”new” output wn+1 which is to be predicted; 1 denotes the n -dimensional
vector with ones. Obviously, σn+1 varies with the input combination of this
new output, so the optimal weights λo are not constants.

Kriging assumes that output values w(xg) and w(xg′) (g, g′ = 1, . . . , n+1) are
more correlated as their input locations xg and xg′ are closer. Moreover, the
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correlations between outputs in the k-dimensional input space are assumed to
be the product of the k individual correlation functions; e.g.,

exp(−
k∑

j=1

θjh
pj

j ) =
∏k

j=1
exp(−θjh

pj

j ) (4)

where hj denotes the Euclidean distance in the jth dimension of the input
combinations xg and xg′ ; θj denotes the importance of input dimension j (the
higher θj is, the faster the correlation function decreases with the distance),
and pj determines the smoothness of the correlation function; e.g., pj = 1
yields the exponential correlation function, and pj = 2 gives the so-called
Gaussian correlation function. The correlation function (4) implies that the
optimal weights (3) decrease with the distance between the new input combi-
nation to be predicted (xn+1) and the n old combinations (xi, i = 1, . . . , n).

EGO uses the MSE of the BLUP, which can be derived to be

σ2(x) = σ2(1− σn+1
′Σ−1

n σn+1+
(1− 1′Σ−1

n σn+1)
2

1′Σ−1
n 1

) (5)

where σ2(x) denotes the variance of y(x) (the Kriging predictor at location
x) and σ2 denotes the (constant) variance of w, for which the covariance-
stationary process (1) is assumed; a recent reference is [7] (p. 84). Note that
the MSE equals the variance because the Kriging predictor is unbiased. We
call σ2(x) defined in (5) the predictor variance.

A major problem in Kriging is that the correlation function is unknown, so
both the type and the parameter values must be estimated. To estimate these
parameters, the standard Kriging literature and software uses Maximum Like-
lihood Estimators (MLEs). The MLEs of the correlation parameters θj in (4)
require constrained maximization, which is a hard problem because matrix in-
version is necessary, the likelihood function may have multiple local maxima,
etc.; see [15]. To estimate correlation functions like (4), the corresponding op-
timal Kriging weights (3), the resulting BLUP Kriging predictor (2), and the
predictor variance (5), we use the DACE software, which is a free-of-charge
Matlab toolbox well documented by [14]. (Alternative free software is men-
tioned in [13] (p. 146).)

The classic Kriging literature, software, and practice replace the optimal weights
λ in (2) by the estimated optimal weights λ̂0 which result from replacing the
unknown covariances Σi;i′ and σi;n+1 in (3) by their estimators Σ̂i;i′ and σ̂i;n+1

that result from the MLEs (say) σ̂2 and θ̂j. Unfortunately, this replacement
makes the estimated optimal Kriging predictor

ŷ = λ̂o

′
w (6)
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a nonlinear estimator. The classic literature ignores this complication, and
simply plugs the estimates σ̂2 and θ̂j into the right-hand side of (5) to obtain
the estimated predictor variance

s2(x) = σ̂2(1− σ̂n+1
′Σ̂n

−1
σ̂n+1+

(1− 1′Σ̂n

−1
σ̂n+1)

2

1′Σ̂n

−1
1

). (7)

It is well known that s2(x) is zero at the n old input locations; s2(x) tends
to increase as the new location lies farther away from old locations. However,
Den Hertog et al. [4] show that not only does s2(x) underestimate the true
predictor variance, but the classic estimator and their unbiased bootstrapped
estimator (to be detailed in Section 4) do not reach their maxima for the same
input combination!

Note that in general, bootstrapping is a simple method for quantifying the
behavior of nonlinear statistics; see [5], Efron and Tibshirani’s classic text-
book on bootstrapping. An alternative method is used in [16], to examine the
consequences of estimating σ2 and θj (through MLE); i.e., that article uses a
first-order expansion of the MSE; earlier, [1] also used first-order Taylor series
expansion. Our bootstrapped estimator is simpler and unbiased.

3 Classic EI

Forrester et al. [7] (pp. 91-106) provides a recent and in-depth discussion of
classic EI (including a number of EI variations). Classic EI assumes deter-
ministic simulation aimed at finding the unconstrained global minimum of the
objective function, using the Kriging predictor ŷ and its classic estimated pre-
dictor variance s2(x) defined in (7). This EI uses the following steps, where
we use our own notation distinguishing between the simulation output w and
the Kriging metamodel output y.

(1) Find among the n old simulated outputs wi (i = 1, . . . , n) the minimum,
miniwi (i = 1, . . . , n).

(2) Estimate the input combination x that maximizes ÊI(x), the estimated
expected improvement over the minimum found in Step 1:

ÊI(x) =
mini wi∫
−∞

[min
i
wi − ŷ(x)]f [ŷ(x)]dŷ(x) (8)

where f [ŷ(x)] denotes the distribution of the Kriging predictor for the
input combination x. EI assumes that this distribution is a normal dis-

tribution with the estimated mean ŷ(x) given by (6) and a variance equal
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to the estimated predictor variance s2(x) defined in (7). To find the max-
imizer of (8), we may use either a space-filling design with candidate
points or a global optimizer such as the Genetic Algorithm (GA) in [7]
(p. 78).

(3) Simulate the maximizing combination found in Step 3 (which gives

maxx ÊI(x)), refit the Kriging model to the old and new I/O data, and
return to Step 1—unless we conclude that we have reached the global

minimum close enough because maxx ÊI(x) is ”close” to zero.

Note that a local optimizer in Step 2 is not attractive, because ÊI(x) is a
”bumpy” function with many local optima: at all old input combinations we

have s2(x) = 0 so ÊI(x) = 0.

4 Bootstrapped EI

Because s2(x) defined in (7) is an unbiased estimator of the predictor variance,
we may use the unbiased bootstrapped estimator that was developed in [4].
That article uses parametric bootstrapping assuming the deterministic simu-
lation output w forms the Gaussian process (1). That bootstrapping uses the
MLEs of the Kriging parameters that are computed from the ”original” old
I/O data (say) (x1,w1) with x1 the n× k input matrix and w1 = (w1, ..., wn)′

the corresponding output vector. We denote these MLEs by µ̂, σ̂2, and θ̂j

(j = 1, . . . , k); see the text above (6). We compute these MLE estimates
through DACE (different software may give different estimates because of the
difficult constrained maximization required by MLE).

Actually, [4]. gives several bootstrap algorithms. However, its first algorithm
called ”a fixed test set”—namely, the candidate set—gives ill conditioned ma-
trixes in DACE. Therefore we use its second algorithm, called ”adding new
points one at a time”: though we have many candidate points, we add a single
point at a time to the old points; see Step 2 in the preceding section. Unfor-
tunately, it turns out that this second algorithm gives bumpy plots for the
bootstrapped Kriging variance as a function of a one-dimensional input (see
Figure 3 in Den Hertog et al. 2006). This bumpiness might make our EGO
approach less efficient!

Using this algorithm to estimate the MSE of the Kriging predictor at the
new point xn+1, we sample (or bootstrap) both n old I/O data (x1,w

∗
1) with

w∗1 = (w∗1, ..., w
∗
n)′ and a new point (xn+1, w

∗
n+1) where all n + 1 outputs

collected in w∗′ = (w∗′1 , w
∗
n+1) are correlated:

w∗ ∼ Nn+1(µ̂, Σ̂) (9)
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with the mean vector µ̂ that has all its (n + 1) elements equal to µ̂ and the
(symmetric positive-definite) (n+ 1)× (n+ 1) covariance matrix

Σ̂=

 Σ̂n σ̂n+1

σ̂′n+1 σ̂2


where (analogously to the symbols defined below (3)) Σ̂n is the n× n matrix
with the MLE of the covariances between the old outputs, σ̂n+1 is the n-
dimensional (column) vector with the estimated covariances between the n

old outputs and the one new output, and σ̂2 is the MLE of the constant
variance σ2 of the process specified in (1).

The bootstrapped Kriging predictor for the new point ŷ∗n+1 depends on the
old I/O bootstrapped data (x1,w

∗
1), which are used to compute the MLEs µ̂∗,

σ̂∗, and θ̂∗j . Note that we start our search for these θ̂∗j with θ̂j (the MLEs based
on the original data (x1,w1)). The Squared Errors (SEs) at these old points
are zero, because Kriging is an exact interpolator. However, the squared error
at the new point is

SEn+1 = (ŷ∗n+1 − w∗n+1)
2. (10)

To reduce sampling error, we repeat this bootstrapping B times (e.g., B =

100), which gives ŷ∗n+1;b with b = 1, . . . , B. Combined with (10), this bootstrap
sample gives the bootstrap estimator of the Kriging predictor’s MSE at the
new point xn+1:

s2(ŷ∗n+1) =

B∑
b=1

(ŷ∗n+1;b − w∗n+1;b)
2

B
. (11)

We use this s2(ŷ∗n+1) to compute the EI in (8) where we replace the general

distribution f [ŷ(x)] by
N(ŷn+1, s

2(ŷ∗n+1)). (12)

We perform the same procedure for each candidate point xn+1. To speed-up
the computations of the bootstrap estimator s2(ŷ∗n+1) in (11) for the many
candidate points, we use the property that the multivariate normal distribu-
tion (9) implies that its conditional output is also normal. So, we still let w∗1
denote the bootstrapped outputs of the old input combinations; we let w∗2
denote the output of a candidate combination. Then (9) implies that the dis-
tribution of the bootstrapped new output w∗2—given the n bootstrapped old
points w∗1—is (also see equation 19 in [4])

N(µ̂+ σ̂′n+1Σ̂n

−1
(w∗1 − µ̂), σ̂2 − σ̂′n+1Σ̂n

−1
σ̂n+1). (13)

We interpret this formula as follows. If (say) all n elements of w∗1 − µ̂ (in the
first term, which represents the mean) happen to be positive, then we expect
w∗2 also to be ”relatively” high (σ̂n+1 has positive elements only); i.e., higher
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than its unconditional mean µ̂. The second term (including the variances)

implies that w∗2 has a lower variance than its unconditional variance σ̂2 if w1

and w2 show high positive correlations (see σ̂n+1). (The variance of w∗2 is lower
than the variance of its predictor ŷ∗2; see [12] (equation 9).

We note that the bootstrapped predictions for all candidate points use the
same bootstrapped MLEs µ̂∗, σ̂∗, and θ̂∗j computed from the n old I/O data
(x1,w

∗
1). Furthermore, to specify the initial design we use Matlab’s random lhs

design (which implies that each macroreplicate uses slightly different design
points; we shall discuss macroreplicates in the next section). To specify the
candidate points we (like many other authors) use a small space-filling design;
more specifically, we use the deterministic maximin Latin hypercube designs
from the website http://www.spacefillingdesigns.nl/.

5 Empirical results for four test functions

In this section, we compare the effectiveness of classic and bootstrapped EI,
for four test functions with multiple optima; namely, Forrester et al.’s one-
dimensional test function given in [7] (see Section 5.1), the two-dimensional
six-hump camel-back function (Section 5.2), the three-dimensional Hartmann-
3 function (Section 5.3), and the six-dimensional Hartmann-6 function (Sec-
tion 5.4).

For each function, we start with an initial design with ninit points to fit an
initial Kriging model. Next, we update this design sequentially, applying either
classic EI or bootstrapped EI. We estimate the maximum EI through a set of
ntest candidate points; the candidate point that maximizes the estimated EI
is added next to the design (see step 3 in Section 3).

Because bootstrapped EI implies sampling, we repeat the experiment ten
times for each test function to reduce the randomness in our results; these
ten macroreplicates are identical except for the pseudorandom number (PRN)
seed used to draw the bootstrap samples. Obviously, for classic EI a single
macroreplicate suffices.

We stop our search when either the maximum EI is ”small”—namely, EI <
e−20—or a maximum allowable number of points have been added to the initial
design. For both approaches, we report the estimated optimum location xopt

with its objective value wopt, the total number of points simulated before
the heuristic stops (ntot), and the iteration number that gives the estimated
optimum nopt (obviously, nopt ≤ ntot; if the very last point simulated gives the
estimated optimum, then nopt = ntot).
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5.1 Forrester et al.’s test function

In [7] (pp. 83-92) Forrester et al. illustrate classic EI through the following
one-dimensional test function:

w(x) = (6x− 2)2 sin(12x− 4) with 0 ≤ x ≤ 1. (14)

It can be proven that in the continuous domain, this function has one local
minimum (at x = 0.01) and one global minimum at the input xo = 0.7572
with output w(xo) = −6.02074.

We use the same initial design as [7] does; namely, the ninit = 3 equi-spaced (or
gridded) input locations 0, 0.5, and 1. The set of candidate points consists of a
grid with distance 0.01 between consecutive input locations; this yields ntest =
98 candidate points. Given this (discrete) grid, it can be proven that the global
optimum occurs at xo = 0.76 with w(xo) = −6.0167. The genetic algorithm
in [7] finds the optimum in the continuous domain within 8 iterations, so we
also set the maximum number of allowable iterations at 8. Table 1 shows the
results of both EI approaches for this test function. Both approaches turn
out to find the true optimum. Bootstrapped EI, however, finds this optimum
faster (i.e., it requires fewer iterations) in six of the ten macroreplicates; two
macroreplicates yield a tie; in the remaining two macroreplicates classic EI is
faster.

Note that our results confirm the results in [4]; i.e., the classic and the boot-
strapped variance of the Kriging predictor—defined in (7) and (11)—do not
reach their maxima at the same input point; moreover, this classic estimator
underestimates the true variance (given n = 3 old points). To save space, we
do not display the corresponding figures.

5.2 Six-hump camel-back function

The six-hump camel-back function is defined by

w(x1, x2) = 4x2
1 − 2.1x4

1 + x6
1/3 + x1x2 − 4x2

2 + 4x4
2 (15)

with −2 ≤ x1 ≤ 2 and −1 ≤ x2 ≤ 1. In the continuous domain, this func-
tion has two global minima; namely, xo

1 = (0.089842,−0.712656)′ and xo
2 =

(−0.089842, 0.712656)′ with w(xo
1) = w(xo

2) = −1.031628. It also has two ad-
ditional local minima. For further details we refer to [23] (pp. 183-184).

We select an initial spacefilling design with 21 points, like Schonlau did in [21];
moreover, this selection approximates the popular rule-of-thumb that recom-
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Table 1
Forrester et al.’s test function: results for bootstrapped and classic EI

Bootstrap EI

macrorep. xopt wopt nopt ntot

1 0.76 -6.017 9 11

2 0.76 -6.017 10 11

3 0.76 -6.017 9 10

4 0.76 -6.017 10 10

5 0.76 -6.017 8 10

6 0.76 -6.017 11 11

7 0.76 -6.017 11 11

8 0.76 -6.017 9 10

9 0.76 -6.017 6 10

10 0.76 -6.017 9 11

Classic EI 0.76 -6.017 10 11

mends to start with a design containing 10k points; see [12]. More specifically,
we use the maximin Latin Hypercube design found on http://www.spacefillingdesigns.nl/.

We select 200 candidate point through the maximin Latin hypercube design
found on the same website. In this discrete set, the global minima occur at
xo

1= (−0.0302, 0.7688)′ and xo
2 = (0.0302,−0.7688) with wo = −0.9863. We

set the maximum number of allowable iterations at 40.

Table 2 shows the results of both EI approaches for this test function. Both
approaches succeed in finding the true optimum within the candidate set of
points. However, bootstrapped EI finds that optimum a bit quicker, in all
macroreplicates; see the column nopt.

5.3 Hartman-3 function

The Hartman-3 function is given by

w(x1, x2, x3) = −
4∑

i=1

αi exp[−
3∑

j=1

Aij(xj − Pij)
2] (16)

with parameters α = (1.0, 1.2, 3.0, 3.2)′, and Aij and Pij given in Table 3;
0 ≤ xi ≤ 1 for i = 1, 2, 3.
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Table 2
Six-hump camel-back test-function: results for bootstrapped and classic EI

Bootstrap EI

macrorep. xopt wopt nopt ntot

1 (0.0302,-0.7688) -0.9863 29 43

2 (-0.0302,0.7688) -0.9863 29 41

3 (-0.0302,0.7688) -0.9863 29 42

4 (0.0302,-0.7688) -0.9863 29 42

5 (0.0302,-0.7688) -0.9863 29 43

6 (-0.0302,0.7688) -0.9863 25 43

7 (0.0302,-0.7688) -0.9863 27 41

8 (0.0302,-0.7688) -0.9863 26 42

9 (-0.0302,0.7688) -0.9863 30 41

10 (-0.0302,0.7688) -0.9863 26 43

Classic EI (-0.0302,0.7688) -0.9863 31 41

Table 3
Parameters Aij and Pij of the Hartman-3 function

Aij 3 10 30

0.1 10 35

3 10 30

0.1 10 35

Pij 0.36890 0.1170 0.26730

0.46990 0.43870 0.74700

0.10910 0.87320 0.55470

0.03815 0.57430 0.88280

In the continuous domain, the function has a global minimum at xo =
(0.114614, 0.555649, 0.852547)′ with w(xo) = −3.86278; the function has three
additional local minima.

We select an initial maximin Latin hypercube design with 30 points found on
http://www.spacefillingdesigns.nl/, and a set of candidate points consisting
of a maximin Latin hypercube design with 300 points generated by Matlab.
In this discrete domain, the global minimum is xo = (0.2088, 0.5465, 0.8767)′

with w(xo) = −3.7956. We set the maximum allowable number of iterations
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at 35.

Table 4 shows that the bootstrapped EI finds the optimum faster, in nine of
the ten macroreplicates; macroreplicate 5 gives a tie.

Table 4
Hartman-3 function: results for bootstrapped and classic EI

Bootstrapped EI

macrorep xopt wopt nopt ntot

1 (0.2088,0.5465,0.8767) -3.7956 34 65

2 (0.2088,0.5465,0.8767) -3.7956 34 65

3 (0.2088,0.5465,0.8767) -3.7956 41 65

4 (0.2088,0.5465,0.8767) -3.7956 34 65

5 (0.2088,0.5465,0.8767) -3.7956 44 65

6 (0.2088,0.5465,0.8767) -3.7956 43 65

7 (0.2088,0.5465,0.8767) -3.7956 34 65

8 (0.2088,0.5465,0.8767) -3.7956 34 65

9 (0.2088,0.5465,0.8767) -3.7956 41 65

10 (0.2088,0.5465,0.8767) -3.7956 34 65

Classic EI (0.2088,0.5465,0.8767) -3.7956 44 65

5.4 Hartman-6 function

The Hartman-6 function is

w(x1, . . . , x6) = −
4∑

i=1

ci exp[−
6∑

j=1

αij(xj − pij)
2] (17)

with parameters c = (1.0, 1.2, 3.0, 3.2)′, and αij and pij given in Table 5;
0 ≤ xi ≤ 1 (i = 1, . . . , 6).

In the continuous domain, this function has a global minimum at xo =
(0.20169, 0.150011, 0.476874, 0.275332, 0.311652, 0.6573)′ with w(xo)=−3.32237;
the function also has five additional local minima.

We select an initial maximin Latin hypercube design with 51 points, like
Schonlau did in [21]. Our set of candidate points consists of Matlab’s maximin
Latin hypercube design with 500 points. Within this discrete domain, the
global minimum occurs at xo = (0.3535, 0.8232, 0.8324, 0.4282, 0.1270, 0.0013)′
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Table 5
Parametrs αij and pij of the Hartman-6 function

αij 10.0 3.0 17.0 3.5 1.7 8.0

0.05 10.0 17.0 0.1 8.0 14.0

3.0 3.5 1.7 10.0 17.0 8.0

17.0 8.0 0.05 10.0 0.1 14.0

pij 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886

0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

0.2348 0.1451 0.3522 0.2883 0.3047 0.6650

0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

with w(xo) = −2.3643. We set the maximum allowable number of iterations
to 50.

Table 6 shows that our bootstrapped EI is faster in five of the ten macrorepli-
cates. An explanation may be that the initial design has 51 points, which gives
very many points to estimate the k = 6 individual correlation functions in (4)
so the bias of the classic variance estimator vanishes. (An initial design size of
roughly 10k seems necessary, because otherwise the Kriging metamodel would
be too bad an approximation—even if its correlation function is estimated
accurately.)

Table 6
Hartman-6 test function: results for bootstrapped and classic EI

Bootstrap EI

macrorep. xopt wopt nopt ntot

1 (0.3535,0.8232,0.8324,0.4282,0.127,0.0013) -2.3643 92 101

2 (0.3535,0.8232,0.8324,0.4282,0.127,0.0013) -2.3643 89 101

3 (0.3535,0.8232,0.8324,0.4282,0.127,0.0013) -2.3643 78 101

4 (0.3535,0.8232,0.8324,0.4282,0.127,0.0013) -2.3643 86 101

5 (0.3535,0.8232,0.8324,0.4282,0.127,0.0013) -2.3643 92 101

6 (0.3535,0.8232,0.8324,0.4282,0.127,0.0013) -2.3643 98 101

7 (0.3535,0.8232,0.8324,0.4282,0.127,0.0013) -2.3643 76 101

8 (0.3535,0.8232,0.8324,0.4282,0.127,0.0013) -2.3643 78 101

9 (0.3535,0.8232,0.8324,0.4282,0.127,0.0013) -2.3643 73 101

10 (0.3535,0.8232,0.8324,0.4282,0.127,0.0013) -2.3643 75 101

Classic EI (0.3535,0.8232,0.8324,0.4282,0.127,0.0013) -2.3643 79 101
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6 Conclusions and future research

In this article, we study the EI criterion in the EGO approach to global op-
timization. We compare the classic Kriging predictor variance estimator and
our bootstrapped estimator introduced by Den Hertog et al. in [4]. For the
empirical comparison of these two estimators we use four test functions, and
found the following results:

(1) Forrester et al.’s one-dimensional function: Our bootstrapped EI finds the
global optimum faster in six of the ten macroreplicates; two macrorepli-
cates yield a tie; in the remaining two macroreplicates, classic EI is faster.

(2) The two-dimensional six-humped camel-back function: Our bootstrapped
EI finds the global optimum quicker, in all ten macroreplicates.

(3) The Hartmann-3 function: Our bootstrap EI finds the optimum faster in
nine of the ten macroreplicates; the one remaining macroreplicate gives
a tie.

(4) The Hartmann-6 function: Our bootstrapped EI is faster in five of the
ten macroreplicates.

Altogether, our bootstrapped EI is faster in three of the four test functions;
in the remaining test function a tie occurs. Nevertheless, the analysts may ap-
ply classic EI if they accept some possible inefficiency—compared with boot-
strapped EI—and prefer the simpler computations of classic EI—compared
with the sampling required by bootstrapping. So we might conclude that the
classic EI is a quite robust criterion.

We propose the following topics for future research:

• Global convergence of EGO; see [7] (p. 134).
• Constrained optimization; see [7] (pp. 125-131).
• Random simulation: [7] (pp. 141-153) discuss noisy simulation; i.e., numeri-

cal inaccuracy, not noise caused by pseudorandom numbers (which are used
in discrete-event simulation). For the latter noise we refer to [2], [11], and
[25].
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