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OInduced: An Efficient Algorithm for Mining
Induced Patterns from Rooted Ordered Trees
Mostafa Haghir Chehreghani, Morteza Haghir Chehreghani, Caro Lucas, and Masoud Rahgozar

Abstract—Frequent tree patterns have many practical appli-
cations in different domains such as XML mining, web usage
analysis, etc. In this paper, we presentOInduced, a novel and
efficient algorithm for finding frequent ordered induced tree
patterns. OInduced uses a breadth-first candidate generation
method and improves it by means of an indexing scheme. We
also introduce frequency counting using tree encoding. Forthis
purpose, we present two novel tree encodings,m-coding and cm-
coding, and show how they can restrict nodes of input trees
and compute frequencies of generated candidates. We perform
extensive experiments on both real and synthetic datasets to show
efficiency and scalability of OInduced.

Index Terms—Rooted ordered labeled tree, frequent tree
pattern, induced subtree, breadth first candidate generation,
frequency counting, tree encoding.

I. I NTRODUCTION

M INING frequent tree patterns is very useful in domains
such as user web log analysis, XML document mining,

web mining, bioinformatics and network routing. For example,
in [35], tree patterns are used as a powerful tool to distinguish
users according to their behavior on the web. In this work,
first, log data are converted into rooted ordered trees and a
set of frequent patterns is extracted from them. Then, based
on these patterns, a structural classifier is built to classify
different users. Structural classifiers show higher performance
compared to traditional classifiers which treat each tree asa
bag of words [35].

In this paper, we focus on the problem of extracting induced
patterns from a database of rooted ordered trees. Several
algorithms have been proposed to find induced patterns from
a collection of rooted ordered tree. The well-known algorithm
in this context isFREQT [2]. FREQT uses an occurrence-
list based approach for frequency counting. For each subtree,
all the nodes in the database are stored in a list in which
the rightmost node of the subtree can be mapped. The size
of the occurrence list kept for each frequent pattern can be
large (O(|V |), where |V | is the number of nodes of the
database). This makes the algorithm inefficient, especially for
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dense datasets in which the correlation among trees is very
high.

Recently,iMB3Miner [22] tries to restrict invalid candidates
using a tree model guided approach. For frequency counting,
iMB3Miner uses the information gathered for guided candi-
date generation. However, the amount of this information is
high. Each occurrence of a candidateC is encoded as an
occurrence coordinator whose size is|C|.

In this paper, we develop more efficient data structures for
storing the information used in frequency counting. To do so,
we initiate frequency counting based on tree encoding. The
key contributions of our work are as follows:

1) We develop a new equivalence class extension to extend
each candidate by only frequent trees. We use breadth
first search and take advantage of an indexing scheme
to perform the class extension, effectively.

2) We present two new tree encodings and accordingly,
develop a novel and efficient approach for frequency
counting. We show that successful occurrences of a
candidate must satisfy a number of conditions and
the presented tree encodings can check the conditions,
efficiently. The size of each occurrence in the proposed
method isO(1).

3) We introduce a new and efficient algorithm, called
OInduced, for the problem of finding all the frequent
induced ordered tree patterns from a single tree or from
a forest of trees. We compareOInduced with most
efficient previous works, and by performing extensive
experiments, we show thatOInducedprovides signifi-
cant improvements for both real data and synthetic data.

The rest of this paper is organized as follows. In section 2,
some preliminaries and definitions related to tree mining and
tree patterns are given. In section 3, we have a brief overview
on the related works. Section 4 describes our proposed candi-
date generation method. In section 5 we present two new tree
encodings as well as the method used for frequency counting.
We experimentally evaluate the effectiveness ofOInducedin
section 6. Finally, the paper is concluded in section 7.

II. PRELIMINARIES AND PROBLEM STATEMENT

To explain the problem of mining frequent tree patterns in
a collection of trees we provide the following definitions:

a) Rooted labeled tree:A rooted labeled treeT =
(V, E, L) is a connected directed acyclic graph (DAG) with
V as the set of nodes andE = {(x, y)|x, y ∈ V } as the set
of edges.L : V → N is a labeling function that assigns an
integer to each node of the tree. A distinguished noder is
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Fig. 1: An example of occurrences.O and O′ are two
occurrences ofC in T .

considered as the root, and for any other nodex, there is a
unique path fromr to x. A rooted labeled ordered treehas a
left-to-right ordering among each set of siblings.

b) Zaki’s string representation:Zaki’s string representa-
tion S for a treeT is defined as follow: labels of the nodes
are added toS in the preorder traversal ofT , and when a
backtracking from a child to its direct parent occurs, a unique
symbol (e.g. -1) is added toS [32]. For convenience, through
the paper, we present each tree by its string representation.
For example, treeT of Figure 1 is presented as ”1 2 -1 3 -1
3 3”.

c) Induced subtree:For a rooted labeled treeT =
(V, E, L), a rooted labeled treeT ′ = (V ′, E′, L′) is aninduced
subtreeof T (or T ′ is isomorphicto a subtree ofT ), if and
only if: (1) V ′ ⊆ V , (2) E′ ⊆ E, (3) L′ ⊆ L and the labeling
of V ′ in T is preserved inT ′ and (4) if defined for rooted
ordered trees, the left-to-right ordering among the siblings in
T is preserved among the corresponding nodes inT ′.

If a k-candidate (a candidate tree withk nodes)Ck is an
induced subtree of an input treeT , anoccurrenceOk of Ck in
T is the subtree ofT which is isomorphic toCk. Two distinct
occurrences can share some nodes in common, but they cannot
consist of entirely the same nodes. For example, in Figure 1,
T is an input tree,C is a candidate, andO and O′ are two
occurrences ofC in T . O andO′ share two nodes in common:
the nodes with lables1 and2.

d) Embedded subtree:For a rooted labeled treeT =
(V, E, L), a rooted labeled treeT ′ = (V ′, E′, L′) is an
embedded subtree ofT if and only if: (1) V ′ ⊆ V , (2) v1

is the parent ofv2 in T ′ if v1 is an ancestor ofv2 in T , (3)
L′ ⊆ L and the labeling ofV ′ in T is preserved inT ′ and
(4) if defined for rooted ordered trees, the left-to-right ordering
among the siblings inT is preserved among the corresponding
nodes inT ′.

e) Per-tree support (per-tree frequency, per-transaction
frequency) and occurrence-match support (occurrence-match
frequency):Given a databaseD consisting of rooted ordered
labeled trees and a subtreeS the per-tree support (or per-
tree frequency) ofS is the number of trees inD for which
S is an induced subtree. The occurrence-match support (or
occurrence-match frequency) ofS is defined as the number
of occurrences ofS in D. Per-tree support can be expressed
more formally as follows:

supportT (S, D) =
∑

T∈D

IsInd(S, T )

whereIsInd(S, T ) is 1 if S is the induced subtree ofT and
0 otherwise. Occurrence-match support can be represented as

follows:

supportO(S, D) =
∑

T∈D

NumInd(S, T )

whereNumInd(S, T ) is the number of occurrences ofS in
T .

f) Frequent tree:Tree C is frequent if its per-tree sup-
port (occurrence-match support) is more than or equal to a
user-specified per-tree (occurrence-match)minsup value. The
problem of mining frequent tree patterns in a database of tree-
structured data is concerned with finding all frequent trees. The
desired type of patterns in the mining process can differ based
on the type of the application. In this paper, our concern is
mining frequent induced patterns from rooted ordered labeled
trees. Both of per-tree frequency and occurrence-match fre-
quency are allowed in this work. There is no overall agreement
on the definition of support for different applications. It
seems that occurrence-match frequency is more applicable for
structured data [22]. For simplicity, through the paper, we
use the term frequency (support) to refer to occurrence-match
frequency (occurrence-match support); unless we explicitly
say that frequency (support) refers to per-tree frequency (per-
tree support).

III. R ELATED WORKS

Recently, many algorithms have been proposed in the lit-
erature for finding frequent tree patterns from a collection
of trees. Wang et al. [26] motivate the schema discovery in
the general setting. They also investigate discovering typical
structures from web documents and propose algorithms for
discovering similar structures and structural association rules
among a collection of tree-structured data [27] and [28].

Feng et al. [9] introduce an XML-enabled association rule
template which is flexible to represent both simple and com-
plex rules. They continue the work by presenting template
models to help users to specify the interesting XML associa-
tions to be mined and propose techniques for template-guided
mining of association rules [8].

Zaki introducesTreeMiner [32] to mine embedded ordered
frequent tree patterns. For frequency counting, he uses a new
data structure calledscope-listand defines join operations for
vertical frequency counting. TreeMiner stores each occurrence
in O(k) space, wherek is the size of the tree. He also intro-
duces the rightmost path extension to generate non-redundant
candidates. Later, he proposesSLEUTHfor mining embedded
unordered tree patterns [33]. Asai et al. [2] independently
propose the rightmost candidate generation. They developed
FREQT for mining frequent induced ordered tree patterns. In
FREQT, for each occurrence, a list stores all nodes in the
database for which the rightmost node of the occurrence can
be mapped.

Independently, Asai et al. and Nijssen et al. extend FREQT
to discover induced unordered tree patterns and presentUnot
[3] and uFreqt [17] algorithms. For frequency counting, Unot
uses an occurrence list based approach in which each occur-
rence is stored inO(k) space, wherek is the size of the
tree. uFreqt uses a different occurrence list based approach



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART A 3

for frequency counting that its size is bounded by the product
of the size of the database and the size of the pattern.

HybridTreeMiner[6] discovers induced unordered tree pat-
terns and uses a breadth-first candidate generation method.
However, occurrence lists in HybridTreeMiner must record
occurrences of a candidate in all possible orders.PathJoin[29]
assumes that labels for the children of each node are unique
and finds induced unordered maximal patterns. The number
of maximal patterns is much less than the number of all the
frequent tree patterns.

Chi et al. [5] proposeFreeTreeMinerfor mining induced
unordered free trees. To compute the frequency of a candidate
C, FreeTreeMiner uses a tree isomorphism algorithm based
on bipartite graph matching. Its time complexity isO(|T | ×
|C| ×

√

|C|), where |T | and |C| are the sizes ofT and C,
respectively.

TreeFinder [24] uses an Inductive Logic Programming
approach to mine unordered, embedded subtrees, but it is
not a complete method and may loose many frequent trees.
SingleTreeMining[20] is an algorithm proposed for mining
rooted unordered trees with application to phylogenetic. Chi
et al. proposeCMTreeMiner [7] for mining both closed and
maximal frequent trees. This algorithm traverses an enumera-
tion tree that systematically enumerates all subtrees, anduses
an enumeration DAG to prune the branches of the enumeration
tree that do not correspond to closed or maximal frequent
subtrees.

Xiao et al. [30] proposeTreeGrow for mining unordered
maximal embedded tree patterns. However, TreeGrow assumes
that the labels for the children of each node are unique.
Their candidate generation method is localized so as to avoid
unnecessary computational overhead.

The methods of [15], [16] and [21] discover frequent tree
patterns in web documents by usingtag tree patternsas
hypotheses. A tag tree pattern is an edge labeled tree which has
structured variables and a variable can match to an arbitrary
subtree.

XSpanner[25] is a pattern growth-based method and can
mine embedded ordered trees. The pseudo-projection step in
XSpanner is expensive that reduces its performance. Tatikonda
et al. [23] propose a generic approach for mining tree pat-
terns. They developeTRIPSandTIDESalgorithms using two
sequential encodings of trees to systematically generate and
evaluate the candidate patterns. However, TRIPS and TIDES
can only work with per-tree support. Tan et al. [22] present
a unique embedding list representation of the tree structure,
which enables efficient implementation of theirTree Model
Guided(TMG) candidate generation.

To find frequent unordered tree patterns, most of the
proposed algorithms use acanonical formand extend only
candidates that are in the canonical form. A canonical form is
a unique way to represent a labeled tree. Luccio et al. [13],
[14] define sorted pre-order string method. This method for
a rooted unordered tree is defined as the lexicographically
smallest one among those preorder strings of the ordered trees
that can be obtained from the unordered tree. They show that
for a rooted unordered tree, its canonical representation based
on the pre-order traversal can be obtained in linear time, using

the tree isomorphism algorithm ofAho [1]. Later, Asai et al.
[3], Nijssen et al. [17], and Chi et al. [5] independently define
similar canonical representations.

Efficient algorithms for mining frequent graph patterns
which are the general form of frequent tree patterns can be
found in [10], [12] and [31]. In [10] a graph transaction
is represented by an adjacency matrix and frequent patterns
appearing in the matrices are mined using the basket analysis
algorithms. Kuramochi et al. [12] proposeFSG to find all
connected subgraphs that appear frequently in a large graph
database. FSG incorporates some optimizations for candidate
generation and counting to scale to large graph databases. Yan
et al. [31] presentCloseGraphfor mining closed graph patterns
and develop pruning techniques based on early termination.

The tree matching problem, i.e. finding occurrences of a
pattern tree in a target tree is studied in [11], and several
dynamic programming methods are presented. Shasha et al.
[18] survey the algorithms proposed for processing querieson
trees and describe algorithms for search in graphs. In [19] the
authors present an algorithm to the nearest neighbor search
problem for unordered labeled trees. Their algorithm is based
on storing the paths of the trees in a suffix array and then
counting the number of mismatching paths between a query
tree and a data tree.

In general, finding frequent patterns includes two main
steps: candidate generation and frequency counting. The well-
known method for candidate generation in trees is theright-
most path extensionmethod, andequivalence class extension
has widely been used in embedded pattern mining algorithms
to improve rightmost path extension. Initial frequency count-
ing methods, in fact, are tree matching algorithms which
compute frequencies of patterns, independently. Later, vertical
frequency counting methods are introduced that are highly
data structure dependent. They usually define join operations
on the used data structure and compute frequencies of larger
candidates by joining occurrences of smaller ones.

IV. CANDIDATE GENERATION

Our candidate generation method, which is in fact an
extension of the well-known rightmost path extension method,
generates candidates in a breadth-first way. The rightmost path
extension is shown to be complete and non-redundant for
generating embedded and induced candidates [2], [32] and
[34]. In this method a node is added anywhere in the rightmost
path of ak-candidateC and generates ak + 1-candidateC′.
In its simple form, it extends each candidate by connecting all
frequent nodes to all nodes of the rightmost path.

Algorithms such as [32] try to improve candidate generation
using equivalence class extension. The main observation be-
hind equivalence class extension is that only known frequent
elements are used to extend a candidate [32]. An equivalence
class is defined as follows: two treesC and C′ are in the
same equivalence class if they differ only in the rightmost
node. Equivalence class extension has been vastly used to
improve embedded candidate generation. In the following, a
new equivalence class based extension method is presented for
induced candidate generation. Our method extends a candidate
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Fig. 2: An example of rpextension.minsup is equal to 2.

C through two different classes. One class is the class to which
C belongs. To find the other class an efficient indexing scheme
is presented.

In equivalence class extension, twok-candidatesC andC,

join together and the rightmost node ofC, (the second tree) is
added to a position in the rightmost path ofC (the first tree). In
the extendedk+1-candidate, the parent of the rightmost node
of C′ is either the rightmost node ofC or another node in the
rightmost path ofC. The first case, denoted byrn extension,
generates deeper candidates and in the second case, denoted
by rp extension, the number of children of the rightmost path
increases (wider candidates are generated).

A. rp extension

Definition 1: Positionof x ∈ V (T ), denoted byposT (x), is
defined as its depth inT . The position can uniquely distinguish
a node in a path. LetX be the node in the positionp− 1 of
the rightmost path ofT . When we say nodeN is added to
the positionp of the rightmost path ofT , we mean thatN
becomes the rightmost child ofX .

For rp extension, our method acts as [34] proposed
for embedded candidate generation: for every two can-
didates C and C′ belonging to a same equivalence
class, the rightmost node ofC′ is added to the position
posC′(rightmost node of C′) of the rightmost path ofC. If
posC′(rightmost node of C′) refers to the rightmost node of
C, the extension is invalid. So, we will have the following re-
striction for the rpextension:posC(rightmost node of C) ≥
posC′(rightmost node of C′).

Figure 2 shows an example of rpextension in whichT0

and T1 are two input trees,minsup is equal to 2, and
level 3 contains all the frequent candidates with 3 nodes.
Since only frequent candidates are used for future extension,

non-frequent candidates are deleted after applying a direct
frequency counting operation. For example consider the tree
”1 2 3” belonging to equivalence class 0. Since theposition

of the rightmost node of ”1 2 3”, (i.e. 2) is greater than the
position of the rightmost node of ”1 2 -1 3” (i.e. 1), ”1 2
3” can join with ”1 2 -1 3”. The resultant candidate, ”1 2
3 -1 -1 3”, is generated by adding the rightmost node of ”1
2 -1 3”, (i.e. ”3”) to the position 1 of ”1 2 3”. ”1 2 3”
can also join with itself and generate candidate ”1 2 3 -1 3”.
Extension of each candidate generates a new equivalence class.
Figure 2 contains all 4-candidates (frequent and non-frequent)
generated via rpextension.

B. rn extension

Definition 2: Indexof an equivalence class, denoted byE,
is defined as the tree consisting of the firstk− 1 nodes which
are shared among all members of the class.

Definition 3: First k − 1 subtree of tree T , denoted by
firstk−1(T ), is the subtree generated by removing the right-
most node ofT .

Definition 4: If tree T has more than one leaf, itssecond
rightmost leaf, denoted bysrl, is defined as the leaf which
has the greatest preorder number among all the leaves except
the rightmost node.

Definition 5: The lastk − 1 subtree of treeT , denoted by
lastk−1(T ), is the subtree generated by removing either: 1)
the root ofT (if T has only one leaf), or 2) thesrl of T (if
T has more than one leaf).

For example, in Figure 2,firstk−1 of ”1 2 3 -1 -1 3” is
”1 2 3”, its srl is the node ”3” inposition2 and itslastk−1

is ”1 2 -1 3”. The lastk−1 of ”1 2 3” is ”2 3”, since it has
only one leaf.

Theorem 6 helps us to find the equivalence class that
rn extends a candidate.

Theorem 6:k-candidateCk can be rnextended if there
exists a k-candidate C′

k
such that lastk−1(Ck) and

firstk−1(C
′

k
) are identical.

Proof: Consider candidateCk+1 generated by adding a
child N to the rightmost node ofCk. If another nodeM ,
M 6= N , is deleted fromCk+1, candidateC′

k
is generated.

Then,Ck+1 can be generated by joiningCk andC′

k
.

• M can not be an intermediate node (intermediate node is
neither root nor leaf); because in this situation, removing
M converts a parent-child relation into an ancestor-
descendant relation and for induced patterns these rela-
tions are not equivalent.

• M can be the root ofCk+1. If the root ofCk+1 has only
one child, no problem arises. However, if the root ofCk+1

has more than one child, removing the root generates a
forest in which the size of each tree is smaller thank,
instead of generating a singlek-candidate.

• M can be an arbitrary leaf node, e.g. thesrl. If Ck+1 has
more than one leaf, no problem arises. However, ifCk+1

has only one leaf, nodesM andN will be equivalent and
therefore, in this stateM can not be removed.

If Ck+1 has one leaf, its root will have only one child. So,
in this case the root can be deleted. Now we can claim that
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Fig. 3: An example of rnextension. Trees with strong lines
are generated via rnextension.minsup is equal to 2.

C′

k
which rn extendsCk and generatesCk+1, looses either

the root ofCk+1 if (Ck+1 has only one leaf), or thesrl of
Ck+1 (if Ck+1 has more than one leaf). On the other hand,
Ck looses the rightmost node ofCk+1 and keeps its other
nodes. Therefore,Ck must join with a tree that hasN as
the rightmost node, instead of either thesrl or the root. This
means thatlastk−1(Ck) andfirstk−1(C

′

k
) must be identical.

Lemma 7:All trees that can rnextendCk belong to a same
equivalence class.

Proof: According to Theorem 6, the firstk − 1 nodes of
all trees rnextendingCk must generate the treelastk−1(Ck).
Therefore, they belong to a same equivalence class.

For a Ck, since members of a single equivalence class
rn extendsCk, we can use the following notation:an equiv-
alence classE′ rn extendsCk.

Lemma 8:TreeCk can be rnextended by an equivalence
classE′ if the index ofE′ and lastk−1(Ck) are identical.

Proof: Directly from Theorem 6.
The equivalence class rnextending a treeCk and the

equivalence containingCk (that rp extendsCk ) can be either
the same or not.

Figure 3 shows examples of rnextension. In this fig-
ure, trees with strong lines are 4-candidates generated via
rn extension. First consider ”1 2 3”. This tree has only one
leaf node, therefore itslastk−1 misses the root. The resultant
subtree, i.e. ”2 3”, is the index of class 1 of level 3. Therefore,
as Theorem 6 says, members of this class can rnextend ”2
3”. Some of the extensions have been depicted in the figure.
Now, consider ”2 3 -1 3” which has two leaves, so itslastk−1

misses thesrl. The resultant subtree, i.e. ”2 3”, is the index
of class 1. So, ”2 3 -1 3” can be rnextended e.g. by ”2 3 3”
to generate candidate ”2 3 -1 3 3”.

Assume that the equivalence classE′ satisfies the condition

presented in Theorem 6 for rnextension ofCk which Ck

itself belongs to the equivalence classE. E andE′ are at the
same level (their indices have the same size), therefore our
proposed method for candidate generation must construct the
state space in a breadth first manner. First,Ck is rp extended
by all members ofE. Then, we look for an equivalence class
E′ whose index islastk−1(Ck). If there exists such a class,
the elements ofE′ rn extendCk. Figure 4 shows the high
level pseudo code of our candidate generation method. Lines
4-9 demonstrate howCk can be rpextended and lines 11-14
show howCk can be rnextended. We will explain line 10 in
details in the next subsection.

C. Finding the equivalence class that rnextends a tree

An important issue is finding the equivalence classE′

that rn extendsCk. An inefficient solution is to compare
lastk−1(Ck) with all class indices, until the satisfying one
is found. The class indices of a specific level and as well
as the trees of a single equivalence class can be generated
in an ordered way. This can improve the search process.
However, still there exists a problem: although members of
an equivalence class are ordered and they sharek-1 prefix,
their lastk−1 are not ordered. The reason is that for each tree
the node which is deleted and generateslastk−1 can be either
the root or thesrl.

Here, we propose a simple and efficient indexing scheme to
find the equivalence class rnextending a tree. Lemma 9 and
Theorem 10 provide the rationale behind the indexing scheme.

Lemma 9:Assume that treeCk−1 is rp extendedby tree
C′

k−1
and generates treeCk. Then,C′

k−1
will be lastk−1(Ck).

Proof: Since the rightmost node ofC′

k−1
is added to a

non-leaf node ofCk−1 and generates a new leaf,Ck has more
than one leaf. On the other hand, when the rightmost leaf of
C′

k−1
is added toCk−1, the rightmost leaf ofCk−1 will be

the second rightmost leaf of the resultant treeCk. SinceCk−1

andC′

k−1
belong to the same equivalence class, they share the

first k-1 nodes. So removing the node corresponding to the
rightmost node ofCk−1 from Ck (which is thesrl of Ck),
will generateC′

k−1
. This means thatC′

k−1
is lastk−1(Ck).

For example, in Figure 3, ”1 2 3” is rpextended by ”1 2
-1 3” and generates ”1 2 3 -1 -1 3”. On the other hand, ”1 2
3 -1 -1 3” has more than one leaf and itslastk−1 is generated
by removing itssrl. Therefore,lastk−1 of ”1 2 3 -1 -1 3” is
”1 2 -1 3”.

Theorem 10:Suppose that treeCk−1 is extended (via either
rp extension or rnextension) by treeC′

k−1
and generates tree

Ck. Ck can be rnextended by the class whose index isC′

k−1
.

Proof:

1) First, assume thatCk−1 is rp extended byC′

k−1
. Ac-

cording to Lemma 9,C′

k−1
becomeslastk−1(Ck).

Therefore,C′

k−1
will be the index of the class which

rn extendsCk and generates candidates withk+1 nodes.
2) Then, assume thatCk−1 is rn extended byC′

k−1
. There

are two possible situations:
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Extend
1: Require: candidateCk;
2: Ensure: all (k+1)-extensions ofCk;
3: Output← ∅;
4: for all candidatesC′

k
in the equivalence class ofCk do

5: if posCk
(rightmost node of Ck) ≥ posC′

k
(rightmost node of C′

k
) then

6: Generate candidateCk+1 by adding the rightmost node ofC′

k
to posC′

k
(rightmost node of C′

k
) of Ck;

7: Output← Output ∪Ck+1;
8: end if
9: end for

10: Find the equivalence classE′ that its index satisfies the condition of Theorem 6.
11: for all candidatesC′

k
∈ E′ do

12: Generate candidateCk+1 by adding the rightmost node ofC′

k
to Ck as the child of the rightmost node ofCk;

13: Output← Output ∪ Ck+1;
14: end for
15: return Output;

Fig. 4: High level pseudo code of the candidate generation method.

a) Ck might have more than one leaf. As a result,
Ck−1 will have more than one leaf, andCk−1 and
Ck will have the sameslr. On the other hand,
lastk−2(Ck−1) andfirstk−2(C

′

k−1
) are identical

and sinceV (Ck) \ V (Ck−1) is the rightmost node
of C′

k−1
, lastk−1(Ck) will be generated by adding

the rightmost node ofC′

k−1
to lastk−2(Ck−1), and

this tree isC′

k−1
.

b) Ck might have one leaf. ThenCk−1 will have
one leaf and the roots ofCk−1 and Ck will
be the same. On the other hand,lastk−2(Ck−1)
and firstk−2(C

′

k−1
) are the same and since

V (Ck) \ V (Ck−1) is the rightmost node ofC′

k−1
,

lastk−1(Ck) will be generated by adding the right-
most node ofC′

k−1
to lastk−2(Ck−1), and this tree

is C′

k−1
.

For example, in Figure 3, ”1 2” is rnextended by ”2 3”
and generates ”1 2 3”. The class rnextending ”1 2 3” is the
class whose index is ”2 3”. ”2 3” is rpextended by ”2 3” and
generates ”2 3 -1 3”. The class rnextending ”2 3 -1 3” is the
class whose index is ”2 3”.

To find the class which rnextends a candidateCk, two
new integers are assigned toCk: Id1 and Id2. Id1 determines
Ck is which tree of levelk, and Id2 determineslastk−1(Ck)
is which class of levelk-1. lastk−1(Ck) is the index of the
class which rnextendsCk. Assume thatCk+1 is a new tree
generated by joiningCk (as the first subtree) withC′

k
(as

the second subtree). The Id2 ofCk+1 is set to the Id1 ofC′

k
.

Theorem 10 provides the rationale behind this assignment. The
Id1 of Ck+1 can be easily determined by means of a counter
that increases by one for each generated tree at levelk+1.

To correctly refer to the equivalence class rnextendingCk,
we need to generate all the classes at levelk-1, even those
having no member. If do so, Id2 will refer directly to the
equivalence class rnextending the tree. In general, the number
of classes at levelk must be equal to the number of frequent

Fig. 5: An example of the indexing scheme.

trees at levelk-1.
Figure 5 shows how the indexing scheme can be applied to

our running example. At level 3 all the classes are generated,
even those without any member. ”1 2” is rnextended by ”2
3” and generates ”1 2 3”. ”2 3” is the third tree of level 2
(so its Id1 would be 2), therefore ”1 2 3” will be rnextended
by the third class of level 3. ”2 3” is rpextended by ”2 3”
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Encoding
1: Require: an input treeT .
2: Ensure: m-codingandcm-codingof nodes ofT .
3: mid← 0.
4: m-coding(root(T ))← 0.
5: for all nodesx in preorder traversal ofT do
6: for all childrenr of x in right-to-left orderdo
7: mid← mid + 1.
8: m-coding(r)←mid.
9: end for

10: cm-coding(x)←mid.
11: end for
12: return m-codingandcm-coding.

Fig. 6: High level pseudo code ofm-codingandcm-coding

and generates ”2 3 -1 3”. ”2 3” is the third tree at level 2,
therefore, ”2 3 -1 3” will be rnextended by the third class at
level 3.

V. FREQUENCY COUNTING

In this section, we develop a new method for frequency
counting which is based on tree encodings. We first introduce
two new tree encodings, and then explain how these encodings
among with an already proposed encoding can be used to
compute frequencies of candidates.

A. M-coding

In this encoding, an auxiliary integer, calledmid, is used
which is initiated by 0.M-codingof the root is set to 0. The
tree is traversed in preorder and when a nodex is met: the
children ofx are scanned from right to left and for each child
r: mid is increased by one and them-codingof r is set to the
new value ofmid. Since the nodes of the tree are traversed in
preorder, when determining them-codingof the children of a
node, itsm-codinghas already been determined.

B. Cm-coding

Cm-codingof node x in input treeT is m-codingof its
leftmost child, i.e. the greatestm-codingamong its children.
When a node is met in preorder traversal of the tree,m-coding
of its children are assigned, thereforecm-codingof each node
can be determined inO(1) time complexity. Figure 6 presents
the high level pseudo code of determiningm-codingand the
cm-coding. By one scan ofT , m-codingandcm-codingof all
nodes ofT are determined.

As an example of the tree encodings, consider Figure 7
which presents thep-coding, m-codingand cm-codingof the
input trees of our running example.P-coding refers to the
preorder number of a node in an input tree. Whilep-codingis
a depth-first traversal,m-codingandcm-codingare combined
depth-first/breadth-first traversals.

Fig. 7: p-coding, m-codingandcm-codingof the input trees.
p refers top− coding, m refers tom− coding, andc refers
to cm− coding.

C. Frequency counting

As mentioned above, treeCk can be extended in two
different ways: rpextension and rnextension. Each extension
requires its particular method for frequency counting. In the
rest of this section, we use the following assumptions and
notations. We assume that occurrenceOk of k-candidateCk,
occurrenceON of node N and occurrenceOk+1 of k+1-
candidateCk+1 occur in the input treeT . RN refers to the
rightmost node ofCk andRP refers to the rightmost path of
Ck excluding its rightmost node, i.e.V (RP )∪V (RN) forms
the nodes of the rightmost path ofOk. ORN refers to the
rightmost node ofOk andORP refers to the rightmost path of
Ok excluding its rightmost node, i.e. inOk, ORN and ORP

are the occurrences ofRN andRP , respectively. We use the
notationparT (x) to refer to the parent of nodex in treeT .

1) Frequency counting for rpextended candidates:Sup-
pose thatCk+1 is generated by adding nodeN to Ck via
rp extension. We want to know if addingON to the rightmost
node ofOk generates occurrenceOk+1. The input treeT can
be divided into the partitions depicted in Figure 8.B1 is the
path between the root ofT and the root ofOk. RC includes
the right childrenof the nodes ofB1 and theright childrenof
the nodes ofORP . Let a be a node onB1 and assume that its
child b belongs toB1, too.Right childrenof a are the children
whose preorder numbers are greater than the preorder number
of b. Now, leta be a node inORP and assume that its childb
belongs toORP , too.Right childrenof a are the children ofa
whose preorder numbers are greater than the preorder number
of b. B2 is the path betweenORN andz, wherez is the last
node met beforeORP in the preorder traversal ofT .

To generate an occurrenceOk+1 of Ck+1, ON must belong
to the dotted region. For this purpose,ON must satisfy
Properties 11, 12 and 13.

Property 11: p-coding(ON )>p-coding(ORN).
Proof: Assume thatON is added to nodex in Ok. x is an

ancestor ofORN , andON is a right child ofx, therefore, the
preorder number ofON is greater than the preorder number
of ORN .

Property 12: m-coding(ON )<m-coding(ORN).
Proof: There exist two possible situations: 1)ON is not
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Fig. 8: Partitioning an input treeT .

(a) Hachured parts are eliminated by applying Property 11.

(b) Hachured parts are eliminated by applying Property 12.

Fig. 9: The restrictions of properties 1 and 2 on the input tree
T .

added to the parent ofORN : since thep-codingof the parent
of ON is smaller than thep-codingof the parent ofORN ,
therefore, them-codingof ON will be smaller than them-
codingof ORN . 2) ON is added to the parent ofORN : since
ON is the right sibling ofORN , the m-codingof ON will be
smaller than them-codingof ORN .

ON can be anywhere inT . It can be seen easily that if
Property 11 is applied toON , it can not be selected from the
hachured parts of Figure 9a. Property 12 limitsON to the non-
hachured parts of Figure 9b. Intersection of non-hachured parts
of Figures 9a and 9b is theRC area, i.e. applying Properties
11 and 12 toON restricts it to theRC area. It is necessary
to apply another restriction onON to limit it to the dotted
region.

Property 13: posT (ON ) − posT (ORN ) = posCk
(N) −

posCk
(RN)

Proof: The length of the path between every pair of
nodes inOk is equal to the length of the path between the
corresponding nodes inT . SinceOk is an induced subtree of
T and it preserves the parent-child relation, the length of the

Fig. 10: An example of frequency counting for rpextended
candidates.

path between every pair of nodes inOk is equal to the length
of the path between the corresponding nodes inT . SinceOk

is an occurrence ofCk in T , the length of the path between
every pair of nodes inCk is equal to the length of the path
between the corresponding nodes inT . Therefore:

posT (ON )− posT (parT (ORN )) =

posCk
(N)− posCk

(parCk
(RN))

Furthermore:

posT (parT (ORN )) = posT (ORN )− 1

posT (parT (RN)) = posT (RN)− 1

Therefore:

posT (ON )− posT (ORN ) = posCk
(N)− posCk

(RN)

If ON satisfies Properties 11, 12 and 13, it can generate an
occurrence ofCk+1 by appending toOk.

As an example, consider tree ”2 3 3 -1 -1 3” of Figure 5
generated through rpextension. Encodings of the rightmost
node of ”2 3 3” in T0 are: p-coding=4, m-coding=6, cm-
coding=6 andposition of the rightmost node of ”2 3 3” in
T0 is 3. Encodings of the rightmost node of ”2 3 3” inT 1
are: p-coding=4, m-coding=5, cm-coding=5 and position of
the rightmost node of ”2 3 3” inT1 is 3. Figure 10 shows
different occurrences of ”3”. Only one occurrence satisfiesall
the conditions mentioned in Properties 11-13. Therefore, ”2 3
3 -1 -1 3” will have one occurrence in the input trees of our
running example.

2) Frequency counting for rnextended candidates:As-
sume thatCk+1 is generated by adding nodeN to Ck through
rn extension. We want to see if addingON to the rightmost
node of Ok generates the occurrenceOk+1. Tree T can
be divided into the partitions depicted in Figure 11. This
partitioning is slightly different from the partitioning of Figure
8, especiallyRC contains the right children of the nodes of
B1 and the right children of the nodes ofORP and all children
of ORN . B1, B2 andz are defined similar to Figure 8.

ON can be anywhere inT . In order to generate an occur-
renceOk+1 of Ck+1, it must belong to the doted region of
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Fig. 11: Another partitioning of an input treeT .

(a) Hachured parts are eliminated by applying Property 14.

(b) Hachured parts are eliminated by applying Property 15

Fig. 12: How properties 4 and 5 can restrict partitions of an
input treeT .

Figure 11. For this purpose,ON must satisfy Properties 14
and 15.

Property 14: cm-coding(ON)≤m-coding(ORN).
Proof: Directly from the definition ofcm-coding.

Property 15: m-coding(ON)>m-coding(ORN).
Proof: When ON is a child of ORN , the parent ofON

is met after the parent ofORN in the preorder traversal,
therefore,m-codingof ON will be greater thanm-codingof
ORN .

It can be seen easily that if Property 14 is applied toON ,
it can not be selected from the hachured parts of Figure
12a. Property 15 limitsON to non-hachured parts of Figure
12b. Intersection of non-hachured parts of Figures 12a and
12b is the doted region. This means thatON can generate
an occurrence ofCk+1 by appending toOk iff it satisfies
Properties 14 and 15.

Figure 13 shows how Properties 14 and 15 can be used
to determine frequencies of rnextended candidates. Consider
tree ”1 2 3 3” which is generated via rnextension of ”1 2 3”.
”1 2 3” has 4 occurrences in the input trees, 2 occurrences
in T0 and 2 occurrences inT1. For each occurrence of ”1 2
3” in Ti (i ∈ {0, 1}) all occurrences of ”3” occurring inTi

Fig. 13: An example of frequency counting for rnextensded
candidates.

are tested to determine which one satisfies Properties 14 and
15. Figure 13 presents these 4 different cases. For each case,
the occurrences of ”3” with strong lines satisfy the conditions.
As depicted in the figure, two occurrences of ”3” satisfy the
conditions, therefore, ”1 2 3 3” would have 2 occurrences in
the input trees.

Exertion of the conditions presented in Properties 11-15
requires storingp-coding, m-coding, cm-codingand position
of the rightmost node of each occurrence. After extending an
occurrenceOk by ON , ON will be the rightmost node of
the resultant occurrenceOk+1, therefore the encodings and
the position ofON will be assigned toOk+1. Our algorithm
for frequency counting works very efficient: it can compute
frequency of a candidate by storing only 4 integers per each
occurrence.

The OInducedalgorithm takes as input an integer value
minsup defined by the user and a forest of rooted ordered la-
beled trees in Zaki’s string representation format. Theminsup

value can be selected to be either per-tree or occurrence-match.
OInducedperforms a breadth-first search in the state space
of candidates and determines frequency of each candidates
according to the before mentioned encodings. Figure 17 shows
the high level pseudo code ofOInduced.

VI. EXPERIMENTAL RESULTS

We perform extensive experiments to evaluate the efficiency
of the proposed algorithm using data from real applicationsas
well as synthetic datasets. We do our experiments on a 1.8GHz
Intel Pentium IV PC with a 2GB main memory, running
UNIX operating system. All the algorithms are implemented
in C++ using standard template libraries. For our comparison,
we select iMB3Miner [22] and FREQT [2] which are the
well-known algorithms developed to find induced patterns
from rooted ordered trees.OInduced, FREQT, andiMB3Miner
can work with both per-tree frequency and occurrence-match
frequency. Here, due to lack of space, we only report resultson
occurrence-match frequency. Similar results can be obtained
for per-tree frequency.

The widely used real dataset is CSLOGS [34]. This dataset
contains the web access trees of the CS department of the
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(a) Minimum support vs. running time over CSLOG1. (b) Minimum support vs. running time over CSLOG2.

(c) Minimum support vs. running time over CSLOG12. (d) Minimum support vs. running time over CSLOG3.

Fig. 15: Comparisons over user web log data.

OInduced
1: Require: a databaseD consisting of rooted ordered

labeled trees, a user definedminsup (either per-tree or
occurrence-match).

2: Ensure: All frequent induced tree patterns.
3: Output← ∅.
4: F1 SET ← the set of all frequent nodes and their

encodings.
5: F2 SET ← ∅.
6: while F1 SET 6= ∅ do
7: for all Pk ∈ F1 SET do
8: Ext← Extend(Pk).
9: for all Pk+1 ∈ Ext do

10: if support(Pk+1) ≥ minsup then
11: F2 SET ← F2 SET ∪ Pk+1.
12: end if
13: end for
14: end for
15: Output← Output ∪ F1 SET .
16: F1 SET ← F2 SET .
17: F2 SET ← ∅.
18: end while
19: return Output.

Fig. 14: High level pseudo code of OInduced.

Rensselaer Polytechnic Institute during one month and con-
tains 59,691 transactions, 716,263 nodes and 13,209 unique
vertex labels. Each distinct label corresponds to the URLs
of a web page. The average string encoding length for the
dataset is 23.3 [34]. This dataset is used for embedded pattern
mining with pre-tree frequency. When used for occurrence-
match frequency, all the algorithms have problems in finding

frequent tree patterns. The problem arises from the fact that
the dataset is a quite large dataset and during the occurrence-
match frequency, the algorithms are overwhelmed by many
occurrences.

In [35], log file of each week is separated into a dif-
ferent dataset and three different datasets are generated:
CSLOG1 for the first week, CSLOG2 for the second week
and CSLOG3 for the third week. Furthermore, they generated
a new dataset called CSLOG12 by combining CSLOG1 and
CSLOg2. CSLOG1 contains 8,074 trees, CSLOG2 contains
7,404 trees, CSLOG3 contains 7,628 trees, and CSLOG12
contains 13,934 trees. Here, we use these datasets to evaluate
our proposed algorithm. Figure 15 comparesOInducedagainst
iMB3Miner andFREQTover CSLOG1, CSLOG2, CSLOG3,
and CSLOG12, respectively. Over all the datasets,OInduced
significantly outperformsiMB3Miner and FREQT, especially
for the lower values ofminsup. For example, on CSLOG1
and atminsup = 10, OInducedworks more than 18 times
faster thanFREQT and iMB3Miner.

The second real dataset used in this paper is the Multicast
dataset which consists of MBONE multicast data measured
during the NASA shuttle launch between the 14th and 21st
of February, 1999 [4]. It has 333 distinct vertices where
each vertex takes the IP address as its label. The Multicast
dataset was sampled from this NASA dataset with 10 minutes
sampling interval and has 1,000 transactions. In this dataset,
there exist strong correlations among transactions and very
large frequent patterns occur even at a highminsup. Figure
16 compares performance of the algorithms over the Multicast
dataset. On this dataset,OInducedoutperforms the other algo-
rithms, especially; it significantly outperforms theiMB3Miner
algorithm. For example, atminsup = 750, OInducedworks
more than 5 times faster thanFREQTand more than 20 times
faster thaniMB3Miner.

We also evaluate the efficiency ofOInducedusing synthetic
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(a) Minimum support vs. running time. (b) The number of extracted patterns

Fig. 16: Comparison over the Multicast dataset.

(a) Minimum support vs. running time over D10. (b) Minimum support vs. running time over F3.

(c) Minimum support vs. running time over N1M. (d) Minimum support vs. running time over TM.

Fig. 17: Comparisons over synthetic datasets.

datasets which are generated by the method described in [34].
The synthetic data generation program mimics the web site
browsing behavior of the user. First a master web site browsing
tree is built and then the subtrees of the master tree are
generated. The synthetic tree generation program is adjusted
by 5 parameters: 1) the number of labels (N ), 2) the number
of nodes in the master tree (M ), 3) the maximum fan-out of
a node in the master tree (F ), 4) the maximum depth of the
master tree (D), and 5) the total number of trees in the dataset
(T ).

The first synthetic dataset is D10 and uses the following
default values for the parameters:N = 100, M = 10, 000,
D = 10, F = 10, T = 100, 000. Figure 17a compares the
running time of the algorithms on D10. As depicted in the
figure,OInducedalways outperformsiMB3Miner andFREQT.

We generate F3 as a narrow dataset and set all values to
the default expect forF = 3. As depicted in Figure 17b,
over this datasetOInducedworks faster thaniMB3Miner and
FREQT, and FREQT outperformsiMB3Miner. For example
at minsup = 100, OInducedoutperformsFREQTby a factor

of 4 and outperformsiMB3Miner by a factor of 8.

In N1M, N is set to1, 000, 000, so the average frequency
of distinct labels becomes very low (i.e.M ÷N = 10, 0000÷
1, 000, 000 = 0.01). Figure 17c presents the efficiency of
OInducedagainstiMB3Miner andFREQTover N1M. Similar
to the previous comparisons,OInducedoutperforms the other
algorithms.

To study how the algorithms behave on very large datasets,
we compare them on T1M. For T1M, the parameters are set
as follows: N = 100, M = 10, 000, D = 10, F = 10,
T = 1, 000, 000. Figure 17d comparesOInduced against
iMB3Miner andFREQTover T1M. As depicted in the figure,
OInducedalways outperformsiMB3Miner andFREQT.

Finally, to show how the algorithms scale, we generate three
datasets with different sizes (different values forT ), while
the other parameters are set to the default values. At a fixed
minsup (i.e. 2), as depicted in Figure 18, we can see a linear
increase in both running time and the number of patterns
with increasing the number of trees forOInduced, iMB3Miner
andFREQT. OInducedis more efficient thaniMB3Miner and
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FREQT. Both of horizontal and vertical axes in Figure 18 are
depicted in logarithmic scale.

VII. C ONCLUSION

In this paper, we introducedOInducedused to discover
all frequent induced patterns from a collection of rooted,
ordered and labeled trees.OInduceduses breadth-first search
to generate candidates and takes advantage of equivalence
classes to extend each candidate by only known frequent
candidates. Then, an indexing scheme is used to improve the
breadth-first equivalence class extension. We also presented
two new tree encodings,m-coding and cm-coding, which
are based on combined depth-first/breadth-first traversalsof
input trees.OInducedbenefits from these encodings to restrict
the nodes of input trees and quickly compute frequencies
of candidates. We comparedOInducedwith the well-known
algorithms,iMB3Miner andFREQT. Experiments on both real
and synthetic data show thatOInducedsignificantly reduces
the running time and scales linearly with respect to the size
of input trees.
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(a) Minimum support vs. running time. (b) The number of extracted patterns.

Fig. 18: Scale up comparison. Minimum-support is equal to 2.Both of horizontal and vertical axes are in logarithmic scale.
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