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Induced Patterns from Rooted Ordered Trees
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Abstract—Frequent tree patterns have many practical appli- dense datasets in which the correlation among trees is very
cations in different domains such as XML mining, web usage high.
analysis, etc. In this paper, we preseninduced, a novel and  pacenilyiMB3Miner [22] tries to restrict invalid candidates
efficient algorithm for finding frequent ordered induced tree . ¢ del quided h. For f fi
patterns. Olnduced uses a breadth-first candidate generation _usmga_ ree mode gL_" e ap_proac - For requer!cy coun |r_19,
method and improves it by means of an indexing scheme. We IMB3Miner uses the information gathered for guided candi-
also introduce frequency counting using tree encoding. Fothis date generation. However, the amount of this information is
purpose, we present two novel tree encodingsi-coding and cm-  high. Each occurrence of a candidateis encoded as an
coding, and show how they can restrict nodes of input trees occurrence coordinator whose size|(¥

and compute frequencies of generated candidates. We perfor In thi d | fficient data struct f
extensive experiments on both real and synthetic datasete show n this paper, we aevelop more etiicient data struciures for

efficiency and scalability of Ol nduced. storing the information used in frequency counting. To dp so
I ndex .Terms—Rooted ordered Iapeled tree, frequent tree \live Inltlat?bfr?quen?y Countll?g basec]ic (|)|n tr(f:e encoding. The

pattern, induced subtree, breadth first candidate generatn, ey contributions of our work are as follows:

frequency counting, tree encoding. 1) We develop a new equivalence class extension to extend

each candidate by only frequent trees. We use breadth
first search and take advantage of an indexing scheme
|. INTRODUCTION to perform the class extension, effectively.

2) We present two new tree encodings and accordingly,
develop a novel and efficient approach for frequency
counting. We show that successful occurrences of a
candidate must satisfy a number of conditions and
the presented tree encodings can check the conditions,
efficiently. The size of each occurrence in the proposed
method isO(1).

) We introduce a new and efficient algorithm, called
Olnduced for the problem of finding all the frequent
induced ordered tree patterns from a single tree or from
a forest of trees. We compam®Induced with most
efficient previous works, and by performing extensive

INING frequent tree patterns is very useful in domains

such as user web log analysis, XML document mining,
web mining, bioinformatics and network routing. For exaepl
in [35], tree patterns are used as a powerful tool to disistgu
users according to their behavior on the web. In this work,
first, log data are converted into rooted ordered trees and a
set of frequent patterns is extracted from them. Then, based
on these patterns, a structural classifier is built to diassi
different users. Structural classifiers show higher pentorce
compared to traditional classifiers which treat each trea as
bag of words [35].

In this paper, we focus on the problem of extracting induced ) . o
patterns from a database of rooted ordered trees. Several expe_rlments, we show th&dinducedprovides 5'9’?'“'
algorithms have been proposed to find induced patterns from cant improvements for both real data and synthetic data.
a collection of rooted ordered tree. The well-known algorit ~ The rest of this paper is organized as follows. In section 2,
in this context isSFREQT [2]. FREQT uses an occurrence-So0me preliminaries and definitions related to tree mining an
list based approach for frequency counting. For each seiptr€e patterns are given. In section 3, we have a brief ovarvie
all the nodes in the database are stored in a list in whi€ the related works. Section 4 describes our proposed-candi
the rightmost node of the subtree can be mapped. The Sflate generation method. In section 5 we present two new tree
of the occurrence list kept for each frequent pattern can Becodings as well as the method used for frequency counting.
large O(|V]), where |V| is the number of nodes of the\We experimentally evaluate the effectivenessOdhducedin

database). This makes the algorithm inefficient, espgdiatl Section 6. Finally, the paper is concluded in section 7.
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follows:

supporto(S, D) = Z NumlInd(S,T)

e TeD
T = where NumInd(S,T) is the number of occurrences 6fin
T.
Fig. 1. An example of occurrences) and O’ are two f) Frequent tree: Tree C is frequent if its per-tree sup-
occurrences ot in T'. port (occurrence-match support) is more than or equal to a

user-specified per-tree (occurrence-matalipsup value. The
problem of mining frequent tree patterns in a database ef tre
considered as the root, and for any other nadéhere is a stryctured data is concerned with finding all frequent tr&as
unique path from- to z. A rooted labeled ordered treBas a desired type of patterns in the mining process can diffeethas
left-to-right ordering among each set of siblings. on the type of the application. In this paper, our concern is
b) Zaki's string representationZaki's string representa- mining frequent induced patterns from rooted ordered kel
tion S for a treeT is defined as follow: labels of the nodesrees. Both of per-tree frequency and occurrence-match fre
are added toS in the preorder traversal df, and when a guency are allowed in this work. There is no overall agreemen
backtracking from a child to its direct parent occurs, a URiq on the definition of support for different applications. It
symbol (e.g. -1) is added t6 [32]. For convenience, throughseems that occurrence-match frequency is more applicable f
the paper, we present each tree by its string representatigiyctured data [22]. For simplicity, through the paper, we
For example, tred” of Figure 1 is presented as "1 2 -1 3 -1se the term frequency (support) to refer to occurrencemat
33" frequency (occurrence-match support); unless we explicit

c) Induced subtree:For a rooted labeled tred” = say that frequency (support) refers to per-tree frequepey (
(V,E, L), arooted labeled treE’ = (V', E’, L') is aninduced  tree support).

subtreeof T' (or T’ is isomorphicto a subtree ofl"), if and
only if: (1) V' CV, (2) E' C E, (3) L' C L and the labeling
of V' in T is preserved inl” and (4) if defined for rooted
ordered trees, the left-to-right ordering among the sgdim Recently, many algorithms have been proposed in the lit-
T is preserved among the corresponding nod€s’in erature for finding frequent tree patterns from a collection
If a k-candidate (a candidate tree withnodes)C), is an of trees. Wang et al. [26] motivate the schema discovery in
induced subtree of an input trd& anoccurrenceD;, of C, in  the general setting. They also investigate discoveringcéyp
T is the subtree of” which is isomorphic ta’;. Two distinct structures from web documents and propose algorithms for
occurrences can share some nodes in common, but they camligtovering similar structures and structural assoaiatides
consist of entirely the same nodes. For example, in Figuredaimong a collection of tree-structured data [27] and [28].
T is an input tree( is a candidate, and and O’ are two Feng et al. [9] introduce an XML-enabled association rule
occurrences of” in T. O andO’ share two nodes in common:template which is flexible to represent both simple and com-

IIl. RELATED WORKS

the nodes with lable$ and2. plex rules. They continue the work by presenting template
d) Embedded subtreeFor a rooted labeled tre® = models to help users to specify the interesting XML associa-
(V,E,L), a rooted labeled tred’ = (V/,E’,L') is an tions to be mined and propose techniques for template-duide

embedded subtree @f if and only if: (1) V' C V, (2) v1 mining of association rules [8].
is the parent ofvs in 7" if vy is an ancestor of, in T, (3) Zaki introducesTreeMiner[32] to mine embedded ordered
L' C L and the labeling ofV” in T is preserved irl” and frequent tree patterns. For frequency counting, he usesva ne
(4) if defined for rooted ordered trees, the left-to-righdening data structure calledcope-listand defines join operations for
among the siblings ifi" is preserved among the correspondingertical frequency counting. TreeMiner stores each oenge
nodes in7"”. in O(k) space, wheré is the size of the tree. He also intro-
e) Per-tree support (per-tree frequency, per-transactiotiuces the rightmost path extension to generate non-redtinda
frequency) and occurrence-match support (occurrencesinatcandidates. Later, he propos@sEUTHfor mining embedded
frequency): Given a databas® consisting of rooted orderedunordered tree patterns [33]. Asai et al. [2] independently
labeled trees and a subtreg the per-tree support (or per-propose the rightmost candidate generation. They develope
tree frequency) ofS is the number of trees i) for which FREQT for mining frequent induced ordered tree patterns. In
S is an induced subtree. The occurrence-match support EREQT, for each occurrence, a list stores all nodes in the
occurrence-match frequency) 6f is defined as the numberdatabase for which the rightmost node of the occurrence can
of occurrences of in D. Per-tree support can be expresselde mapped.
more formally as follows: Independently, Asai et al. and Nijssen et al. extend FREQT
to discover induced unordered tree patterns and preseot
supportr(S, D) = Z IsInd(S,T) [3] and uFreqt[17] algorithms. For frequency counting, Unot
Teb uses an occurrence list based approach in which each occur-
wherelsInd(S,T) is 1 if S is the induced subtree @ and rence is stored irD(k) space, where: is the size of the
0 otherwise. Occurrence-match support can be represestedr@e. uFreqt uses a different occurrence list based approac
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for frequency counting that its size is bounded by the produte tree isomorphism algorithm @ého [1]. Later, Asai et al.
of the size of the database and the size of the pattern. [3], Nijssen et al. [17], and Chi et al. [5] independently defi

HybridTreeMiner[6] discovers induced unordered tree patsimilar canonical representations.
terns and uses a breadth-first candidate generation methodkfficient algorithms for mining frequent graph patterns
However, occurrence lists in HybridTreeMiner must recondhich are the general form of frequent tree patterns can be
occurrences of a candidate in all possible ordeashJoin[29] found in [10], [12] and [31]. In [10] a graph transaction
assumes that labels for the children of each node are unidsigepresented by an adjacency matrix and frequent patterns
and finds induced unordered maximal patterns. The numlagpearing in the matrices are mined using the basket amalysi
of maximal patterns is much less than the number of all ttagorithms. Kuramochi et al. [12] propo$eSG to find all
frequent tree patterns. connected subgraphs that appear frequently in a large graph

Chi et al. [5] proposerreeTreeMinerfor mining induced database. FSG incorporates some optimizations for catedida
unordered free trees. To compute the frequency of a camdidgéneration and counting to scale to large graph databaaas. Y
C, FreeTreeMiner uses a tree isomorphism algorithm baseidal. [31] presenCloseGraptHor mining closed graph patterns
on bipartite graph matching. Its time complexityGY|T| x and develop pruning techniques based on early termination.
|C| x +/]C]), where|T| and |C| are the sizes of" and C, The tree matching problem, i.e. finding occurrences of a
respectively. pattern tree in a target tree is studied in [11], and several

TreeFinder [24] uses an Inductive Logic Programmingdynamic programming methods are presented. Shasha et al.
approach to mine unordered, embedded subtrees, but iff1i8] survey the algorithms proposed for processing quemnies
not a complete method and may loose many frequent tregrees and describe algorithms for search in graphs. In f] t
SingleTreeMining[20] is an algorithm proposed for miningauthors present an algorithm to the nearest neighbor search
rooted unordered trees with application to phylogenetiu. Cproblem for unordered labeled trees. Their algorithm issHas
et al. proposeCMTreeMiner[7] for mining both closed and on storing the paths of the trees in a suffix array and then
maximal frequent trees. This algorithm traverses an enametounting the number of mismatching paths between a query
tion tree that systematically enumerates all subtreesuard tree and a data tree.
an enumeration DAG to prune the branches of the enumerationn general, finding frequent patterns includes two main
tree that do not correspond to closed or maximal frequesteps: candidate generation and frequency counting. The we
subtrees. known method for candidate generation in trees isrgbt-

Xiao et al. [30] proposelreeGrow for mining unordered most path extensiomethod, ancequivalence class extension
maximal embedded tree patterns. However, TreeGrow assumas widely been used in embedded pattern mining algorithms
that the labels for the children of each node are uniqu@ improve rightmost path extension. Initial frequency ebu
Their candidate generation method is localized so as taav@ig methods, in fact, are tree matching algorithms which
unnecessary computational overhead. compute frequencies of patterns, independently. Latetica

The methods of [15], [16] and [21] discover frequent trefrequency counting methods are introduced that are highly
patterns in web documents by usiigg tree patternsas data structure dependent. They usually define join operstio
hypotheses. A tag tree pattern is an edge labeled tree wagh bn the used data structure and compute frequencies of larger
structured variables and a variable can match to an arpitraandidates by joining occurrences of smaller ones.
subtree.

XSpannen25] is a pattern growth-based method and can
mine embedded ordered trees. The pseudo-projection step in
XSpanner is expensive that reduces its performance. Tatiko Our candidate generation method, which is in fact an
et al. [23] propose a generic approach for mining tree patxtension of the well-known rightmost path extension metho
terns. They develop&€RIPSand TIDES algorithms using two generates candidates in a breadth-first way. The rightnaakt p
sequential encodings of trees to systematically generade @&xtension is shown to be complete and non-redundant for
evaluate the candidate patterns. However, TRIPS and TIDB&nerating embedded and induced candidates [2], [32] and
can only work with per-tree support. Tan et al. [22] presefi34]. In this method a node is added anywhere in the rightmost
a unique embedding list representation of the tree stractupath of ak-candidateC' and generates &+ 1-candidateC".
which enables efficient implementation of thdiree Model In its simple form, it extends each candidate by connectihg a
Guided (TMG) candidate generation. frequent nodes to all nodes of the rightmost path.

To find frequent unordered tree patterns, most of the Algorithms such as [32] try to improve candidate generation
proposed algorithms use @nonical formand extend only using equivalence class extension. The main observation be
candidates that are in the canonical form. A canonical famind equivalence class extension is that only known frejuen
a unique way to represent a labeled tree. Luccio et al. [1&ements are used to extend a candidate [32]. An equivalence
[14] define sorted pre-order string method. This method fatass is defined as follows: two tre€% and C’ are in the
a rooted unordered tree is defined as the lexicographicadlgme equivalence class if they differ only in the rightmost
smallest one among those preorder strings of the orderes treode. Equivalence class extension has been vastly used to
that can be obtained from the unordered tree. They show tiraprove embedded candidate generation. In the following, a
for a rooted unordered tree, its canonical representatiged new equivalence class based extension method is presented f
on the pre-order traversal can be obtained in linear timeagus induced candidate generation. Our method extends a cdadida

IV. CANDIDATE GENERATION
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(1 (1) non-frequent candidates are deleted after applying a tdirec
BORG () frequency counting operation. For example consider the tre
DG 90 "1 2 3" belonging to equivalence class 0. Since thaition
of the rightmost node of "1 2 37, (i.e. 2) is greater than the
©, ® position of the rightmost node of "1 2 -1 3" (i.e. 1), "1 2
Input tree To Input tree T1 3” can join with "1 2 -1 3". The resultant candidate, "1 2
3 -1 -1 3", is generated by adding the rightmost node of "1
2 -1 3", (i.e. "3") to the position 1 of "1 2 3". "1 2 3"
gg % %é can also join with itself and generate candidate "1 2 3 -1 3.
_____ !
|
-
Equivalence class 1,
class index: 2 3

Extension of each candidate generates a new equivalerss cla
Figure 2 contains all 4-candidates (frequent and non-gatju
generated via rextension.

@O®

s —————— ——

Equivalence class 0,
clasgindex: 12

B. rn_extension
Definition 2: Indexof an equivalence class, denoted by

|
L
(1) 3 7 (2) @ @ is defined as the tree consisting of the fitst 1 nodes which
O® @ AEOG || OO (& are shared among all members of the class.
® G G OO0 Definition 3: First k — 1 subtreeof tree T', denoted by
Equivalence dass 0, Equivalence dass 1, Equivalence dlass 2, _ first,_1(T'), is the subtree generated by removing the right-
dassindex:12-13  cassindex: 12 3 cassindex:23-13  Eduvalence dass 5 most node off".
Definition 4: If tree T" has more than one leaf, itecond
Fig. 2: An example of rpextensionminsup is equal to 2.  rightmost leaf denoted bysrl, is defined as the leaf which
has the greatest preorder number among all the leaves except
the rightmost node.
C through two different classes. One class is the class tolwhic pefinition 5: The lastk — 1 subtree of tred’, denoted by
C belongs. To find the other class an efficient indexing schermestkfl(T)’ is the subtree generated by removing either: 1)

is presented. the root of T (if T has only one leaf), or 2) therl of T (if
In equivalence class extension, twecandidate<” andC, T has more than one leaf).

join together and the rightmost node ©f (the second tree) is  For example, in Figure 2first,_; of "1 2 3 -1 -1 3" is
added to a position in the rightmost path@f{the firsttree). In "1 2 3" its srl is the node "3” inposition2 and itslast)_;

the extended + 1-candidate, the parent of the rightmost nodg "1 2 -1 3”. Thelast,_; of "1 2 3" is "2 3, since it has
of C" is either the rightmost node @f or another node in the only one leaf.

rightmost path ofC'. The first case, denoted bip_extension  Theorem 6 helps us to find the equivalence class that
generates deeper candidates and in the second case, dengtegtends a candidate.

by rp_extensionthe number of children of the rightmost path  Theorem 6:4-candidateC;, can be rnextended if there

q———————q

increases (wider candidates are generated). exists a k-candidate C, such that last,_1(Cy) and
first,—1(C},) are identical.
A. rp_extension Proof: Consider candidat€’;; generated by adding a

child N to the rightmost node of’;. If another nodelM,

defined as its depth ifi. The position can uniquely distinguishM # N, is deleted fromCy.1, ca}nQi_dateC,’c is 7qenerated.
a node in a path. LeX be the node in the position— 1 of 11€N:Ck+1 can be generated by joiningy, andC;.
the rightmost path of. When we say nodéV is added to ¢ M can not be an intermediate node (intermediate node is

the positionp of the rightmost path of’, we mean thatV neither root nor leaf); because in this situation, removing
becomes the rightmost child of. M converts a parent-child relation into an ancestor-

For rp extension, our method acts as [34] proposed descendant relation and for induced patterns these rela-
for embedded candidate generation: for every two can- tions are not equivalent.
didates C and C’ belonging to a same equivalence ¢ M can be the root o€ . If the root of )11 has only

Definition 1: Positionof z € V(T'), denoted byosr(x), is

class, the rightmost node af’ is added to the position one child, no problem arises. However, if the rootqf, |

posc: (rightmost node of C') of the rightmost path of'. If has more than one child, removing the root generates a

posc: (rightmost node of C') refers to the rightmost node of ~ forest in which the size of each tree is smaller thign

C, the extension is invalid. So, we will have the following re-  instead of generating a singlecandidate.

striction for the rpextensionposc (rightmost node of C) > « M can be an arbitrary leaf node, e.g. thé. If C1, has

poscr (rightmost node of C'). more than one leaf, no problem arises. Howevef;f
Figure 2 shows an examp|e of_m(tension in whichTj has only one leaf, node® and N will be equivalent and

and 7; are two input treesyninsup is equal to 2, and therefore, in this statd/ can not be removed.

level 3 contains all the frequent candidates with 3 nodd$.Cy.1 has one leaf, its root will have only one child. So,
Since only frequent candidates are used for future extansin this case the root can be deleted. Now we can claim that
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(1) O presented in Theorem 6 for rextension ofCy which Cj,
Ol010, (2@ itself belongs to the equivalence claBs E and E’ are at the
016 99 same level (their indices have the same size), therefore our
D @ proposed method for candidate generation must constract th
ot ree T state space in a breadth first manner. Fit&t,is rp_extended

by all members off. Then, we look for an equivalence class
E’ whose index idast;_1(Cy). If there exists such a class,
-------- &)—{é
42
Equivalence class 0,

the elements of’ rn_extendC. Figure 4 shows the high
&) N . level pseudo code of our candidate generation method. Lines
clasg index: 12

Input tree T1

4-9 demonstrate how, can be rpextended and lines 11-14
show howC}, can be rnextended. We will explain line 10 in
details in the next subsection.

Equivalence class 1,
class index: 2 3

-

-
i

|

|

i

|

|

i
¥

|
v
0 Q. o © 5 (7) @) C. Finding the equivalence class that extends a tree
OONO g GG @) An important issue is finding the equivalence claB5
® OO ® A

- —————

¢ (@ | that rmextendsCy. An inefficient solution is to compare
: lasty—1(Cy) with all class indices, until the satisfying one

Fquivalenoo dass 0, Equivlence dass 1, oo 2343 CaaencedessS is found. The class indices of a specific level and as well

as the trees of a single equivalence class can be generated
Fig. 3: An example of rnextension. Trees with strong linesin an ordered way. This can improve the search process.
are generated via rextensionminsup is equal to 2. However, still there exists a problem: although members of

an equivalence class are ordered and they shateprefix,

their last;,_; are not ordered. The reason is that for each tree
Cj, which m_extendsC), and generate€’,,1, looses either the node which is deleted and generdtes;,_; can be either
the root of Ci41 if (Cr41 has only one leaf), or therl of the root or thesri.
Cr+1 (if Crya has more than one leaf). On the other hand, fere we propose a simple and efficient indexing scheme to
C}, looses the rightmost node dfy., and keeps its other fing the equivalence class_rextending a tree. Lemma 9 and
nodes. ThereforeC’, must join with a tree that ha®/ as Thegrem 10 provide the rationale behind the indexing scheme
the rightmost node, instead of either the or the rpot. ThIS Lemma 9: Assume that tre€’,_; is rp_extendedby tree
means thatast,_(Cy) and first,_,(Cj,) must be |dent|c:1I. C!_, and generates tra8,. Then,C,_, will be last;_1(Cy)

Lemma 7:All trees that can rnextendC}, belong to a same
equivalence class.

Proof: According to Theorem 6, the firét— 1 nodes of
all trees rnextendingC, must generate the tréest;_1(Cy).
Therefore, they belong to a same equivalence class. B

For a C%, since members of a single equivalence cla

Proof: Since the rightmost node af;_, is added to a
non-leaf node of”;_; and generates a new le&f;, has more
than one leaf. On the other hand, when the rightmost leaf of
C._, is added toC%_1, the rightmost leaf ofCj;_; will be
the second rightmost leaf of the resultant t€ge SinceCy,_

. . . %‘ldC’,’c_1 belong to the same equivalence class, they share the
m_extendsCy, we can use the following notatioan equiv- first k-1 nodes. So removing the node corresponding to the

alence classt’ rn_extendsC}. . .
Lemma 8:Tree C), can be rnextended by an equivalence”ghtmost node ofC . from Cj (which is thesrl of Cy),

; ; . B
classE’ if the index of E’ andlast;_1(C}) are identical. W|I|I:gfr;e;a:]ecl'£7.1r; "I;msrrge;nit;ag{cg ;s l?;%‘éé%’“)',,l.z
Proof: Directly from Theorem 6. [ ] xampie, in Figu ' IS [ex y

The equivalence class rextending a treeC) and the -1 3" and generates "1 23 -1 -1 3". On the other hand, "1 2

. . . 3 -1 -1 3" has more than one leaf and ltst;,_; is generated
tehqeug/:ﬁgc; %c;r;ta|n|n@'k (that rp extendsC), ) can be either by removing itssrl. Thereforejast;_; of "1 2 3-1-1 3" is

Figure 3 shows examples of rextension. In this fig- 12-13

ure, trees with strong lines are 4-candidates generated Vi&'heorer_n 10:Suppose .that tre@k_l)s extended (via either
rn_extension. First consider "1 2 3". This tree has only on@-extension or rnextension) by tre€;_, and generates tree

leaf node, therefore itaist,_; misses the root. The resultantCs- Cx ¢an be rnextended by the class whose indexls ;.
subtree, i.e. "2 3", is the index of class 1 of level 3. Therefo

as Theorem 6 says, members of this class caextend "2 Proof:

3”. Some of the extensions have been depicted in the figurel) First, assume thaf’,_; is rp_extended byC; ;. Ac-
Now, consider "2 3 -1 3" which has two leaves, solist;_1 cording to Lemma 9,C;_, becomesliasty_1(Ck).
misses thesrl. The resultant subtree, i.e. "2 3", is the index Therefore,C;_, will be the index of the class which
of class 1. So, "2 3 -1 3" can be raextended e.g. by "2 3 3" rn_extendsC;, and generates candidates withl nodes.
to generate candidate "2 3 -1 3 3". 2) Then, assume that;,_; is rn_extended byCj,_,. There

Assume that the equivalence classsatisfies the condition are two possible situations:
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Extend

: Require: candidateCy;

: Ensure: all (k+1)-extensions of’;

: Output — 0;

: for all candidateg”;, in the equivalence class @f;, do

if posc, (rightmost node of Ck) > posc; (rightmost node of C}) then
Generate candidat€y 1 by adding the rightmost node @} to posc; (rightmost node of Cy,) of Cy;
Output «— Output U Ci1;

end if

. end for

: Find the equivalence clags’ that its index satisfies the condition of Theorem 6.

: for all candidates”;, € E’ do

Generate candidat€; by adding the rightmost node @f}, to C}, as the child of the rightmost node 6f;;

Output «— Output U Ci41;

: end for

. return Output;

=

e N e el

Fig. 4: High level pseudo code of the candidate generatiotihoae

a) C; might have more than one leaf. As a result, (0 ()
Cr_1 will have more than one leaf, and,_; and 016010 2)(3)
C;, will have the samesir. On the other hand, €0 90
lasty—2(Ck—1) and firsty_o(C},_,) are identical & @
and sinceV (Cy) \ V(Ck—1) is the rightmost node ot ree To
of C}_,, last,_1(Cy) will be generated by adding nputiree T
the rightmost node of},_, to last,_2(Ck—1), and
this tree isCj,_;.
b) C, might have one leaf. The@w)_; will have % % %
one leaf and the roots of,_; and Cy will d1=0  Id1=1 W=2 || 1d1=3
be the same. On the other hardsts—2(Cr—1)
and first,_o(C;_,) are the same and since
V(Cr) \ V(Ck-1) is the rightmost node of’},_,, &) ng
lasty—1(Cy) will be generated by adding the right-
most node of”;_; to lasty_2(Ck—1), and this tree
is Cl_,. =0 - 2oz l@os
k—1 Id2=1 Id2=2
. Equivalgnce class 0, Equivalgnce class 1, Equivale_nce c!ass 2, Equivalence diass 3,

For example, in Figure 3, "1 2" is rextended by "2 3" cassindex:12 cessindex: 13 cesshAR23 oassinder: 33
and generates "1 2 3". The class extending "1 2 3" is the
class whose index is "2 3". "2 3" is rextended by "2 3” and
generates "2 3 -1 3". The class_extending "2 3 -1 3" is the © o O @ ©
class whose index is "2 3”. : OO & @ (@) @%

To find the class which rrextends a candidaté€’, two @G ® OO® &
new integers are assigned@.: 1d1 and 1d2. I1d1 determines ® OO é} ® 606G
C. is which tree of level, and 1d2 determine&usty_1(Ck) . _ © Eoaencs ez E
is which class of levek-1. last,_1(Cy) is the index of the casnieci2:13  dessidoc 123 dassindex 23413 daseindex.233
class which rnextendsCy. Assume thatC; is a new tree . ] )
generated by joining’ (as the first subtree) witl), (as Fig. 5: An example of the indexing scheme.

the second subtree). The 1d2 €} is set to the 1d1 of”},.

Theorem 10 provides the rationale behind this assignméret. T

Id1 of Cjy1 can be easily determined by means of a counttiees at levek-1.

that increases by one for each generated tree at kenkl Figure 5 shows how the indexing scheme can be applied to
To correctly refer to the equivalence classertendingCy, our running example. At level 3 all the classes are generated

we need to generate all the classes at lévél, even those even those without any member. "1 2” is_extended by "2

having no member. If do so, 1d2 will refer directly to the3” and generates "1 2 3". "2 3" is the third tree of level 2

equivalence class rextending the tree. In general, the numbe(so its 1d1 would be 2), therefore "1 2 3” will be raxtended

of classes at levet must be equal to the number of frequenby the third class of level 3. "2 3" is rgxtended by "2 3"
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Encoding
1: Require: an input treeT".

: Ensure: m-codingand cm-codingof nodes ofT'.

: mid «— 0.

: m-codingroot(7))« 0.

: for all nodesz in preorder traversal df' do

for all childrenr of x in right-to-left orderdo
mid «— mid + 1.
m-codindr)«— mid.

end for

Cm-COdingx)H mad. Input tree Tt

: end fOF Input tree To

: return m-codingand cm-coding Fig. 7: p-coding m-codingand cm-codingof the input trees.
p refers top — coding, m refers tom — coding, andc refers
to em — coding.

[l

Fig. 6: High level pseudo code @fi-codingand cm-coding

and generates "2 3 -1 3". "2 3" is the third tree at level 2(,:' Frequency counting

therefore, "2 3 -1 3" will be rnextended by the third class at As mentioned above, tre€’, can be extended in two
level 3. different ways: rpextension and rrextension. Each extension

requires its particular method for frequency counting.He t
rest of this section, we use the following assumptions and
V. FREQUENCY COUNTING notations. We assume that occurrerie of k-candidateCy,

. . +1-
In this section, we develop a new method for frequencoccu”enceoN of node N and occurrenc@y of k+1

counting which is based on tree encodings. We first introdu(éy%nd'datec’“+1 occur in the input tred”. RN refers to the

two new tree encodings, and then explain how these encodi) thOSt node of’ and 1P refers to the rightmost path of

among with an already proposed encoding can be used_ tb excluding its nghtmost node, i.&(RP)UV(RN) forms
. . the nodes of the rightmost path @¥,. Ory refers to the
compute frequencies of candidates.

rightmost node o), andOgp refers to the rightmost path of

O, excluding its rightmost node, i.e. i@, Ogry and Ogp

A. M-coding are the occurrences @tN and RP, respectively._ We use the
notationpary(x) to refer to the parent of node in tree 7.

I_n th_is _e_n_coding, an auxili_ary integer, ca_lledz‘d, is used 1) Frequency counting for rgextended candidatesSup-
Whlch is initiated py 0.M-codingof the root is sgt to 0. The pose thatCy. 1 is generated by adding nod¥ to Cj, via
tre_e is traversed in preorder aqd when a nadis met: the. rp_extension. We want to know if addin@y to the rightmost
chlldren qfx are scanned from right to Igft and.for each chilgode of0, generates occurrene®;. ;. The input treel’ can
r: mid is increased by one and tine-codingof  is set to the pe gjvided into the partitions depicted in FigureBl is the
new value ofmid. Since the nodes of the tree are traversed Bhth between the root &F and the root 0of0,. RC includes
preorder, when determining the-codingof the children of a theright children of the nodes of31 and theright children of
node, itsm-codinghas already been determined. the nodes oD gp. Leta be a node orB1 and assume that its
child b belongs taB1, too. Right childrenof a are the children
whose preorder numbers are greater than the preorder number
of b. Now, leta be a node irOgp and assume that its child

Cm-codingof node z in input treeT is m-codingof its belongs toOrp, too. Right childrenof a are the children of
leftmost child, i.e. the greatesh-codingamong its children. whose preorder numbers are greater than the preorder number
When a node is met in preorder traversal of the tregoding of b. B2 is the path betweefWry and z, wherez is the last
of its children are assigned, therefan@-codingof each node node met befor@rp in the preorder traversal Gf.
can be determined i®(1) time complexity. Figure 6 presents To generate an occurrenc€h.; of Cj41, On must belong
the high level pseudo code of determinimgcodingand the to the dotted region. For this purposéy must satisfy
cm-coding By one scan ofl", m-codingandcm-codingof all  Properties 11, 12 and 13.
nodes of7" are determined. Property 11: p-codin{0Oy)>p-codindOgn).

As an example of the tree encodings, consider Figure 7 Proof: Assume thaOy is added to node in Oy. x is an
which presents the-coding m-codingand cm-codingof the ancestor 00gzy, andOy is a right child ofz, therefore, the
input trees of our running exampl®-coding refers to the preorder number oDy is greater than the preorder number
preorder number of a node in an input tree. Wipteodingis of Ogy. ]

a depth-first traversaim-codingandcm-codingare combined  Property 12: m-codinf0D x)<m-codingOgn).
depth-first/breadth-first traversals. Proof: There exist two possible situations: @)y is not

B. Cm-coding



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART A 8

To generate
an oCcurrence
of Chu. O
| mustbelong
to this region

-7 Path B2

Fig. 10: An example of frequency counting for_gxtended
candidates.

Fig. 8: Partitioning an input tre@'.

path between every pair of nodesdan, is equal to the length
of the path between the corresponding node%'irsince Oy,
is an occurrence of’;, in T, the length of the path between
every pair of nodes irC;, is equal to the length of the path
between the corresponding nodeslinTherefore:

post(On) — post(parr(OrnN)) =

poscy, (N) — poscy, (pa’rck (RN))

(a) Hachured parts are eliminated by applying Property 11.

Furthermore:
post (parr(Orn)) = post(Orn) — 1
post(parr(RN)) = posp(RN) — 1
Therefore:
posT(On) — posT(Orn) = posc, (N) — posc, (RN)

(b) Hachured parts are eliminated by applying Property 12.

]
Fig. 9: The restrictions of properties 1 and 2 on the input tre If Oy satisfies Properties 11, 12 and 13, it can generate an
T. occurrence of”1 by appending ta)y,.
As an example, consider tree "2 3 3 -1 -1 3" of Figure 5
generated through rextension. Encodings of the rightmost
added to the parent @z : since thep-codingof the parent node of "2 3 3” in T, are: p-coding=4, m-coding-6, cm-
of Oy is smaller than theg-codingof the parent ofOgry, coding=6 andposition of the rightmost node of "2 3 3" in
therefore, them-codingof On will be smaller than then- T; is 3. Encodings of the rightmost node of "2 3 3" il
codingof Ogy. 2) Oy is added to the parent @ry: since are: p-coding=4, m-coding=5, cm-coding5 and position of
Oy is the right sibling ofOgy, the m-codingof O will be  the rightmost node of "2 3 3” ifl} is 3. Figure 10 shows
smaller than then-codingof Ogxy. m different occurrences of "3". Only one occurrence satiséiks
Opn can be anywhere if'. It can be seen easily that ifthe conditions mentioned in Properties 11-13. Therefd2e§ ”
Property 11 is applied t®y, it can not be selected from the3 -1 -1 3” will have one occurrence in the input trees of our
hachured parts of Figure 9a. Property 12 lindits to the non- running example.
hachured parts of Figure 9b. Intersection of non-hachuaeidp 2) Frequency counting for rrextended candidatesAs-
of Figures 9a and 9b is thBC' area, i.e. applying Propertiessume thaC}; is generated by adding nodé to Cj, through
11 and 12 toOy restricts it to theRC' area. It is necessary rn_extension. We want to see if addirgy to the rightmost
to apply another restriction o®y to limit it to the dotted node of O, generates the occurrene@;.,. Tree T' can

region. be divided into the partitions depicted in Figure 11. This
Property 13: posp(On) — post(Orn) = posc,(N) — partitioning is slightly different from the partitioning &igure
posc, (RN) 8, especiallyRC' contains the right children of the nodes of

Proof: The length of the path between every pair oB1 and the right children of the nodes©f; » and all children
nodes inOy, is equal to the length of the path between thef Orx. B1, B2 andz are defined similar to Figure 8.
corresponding nodes . SinceO;, is an induced subtree of Oy can be anywhere iff". In order to generate an occur-
T and it preserves the parent-child relation, the length ef thence O, of Cy11, it must belong to the doted region of
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RC: right children of B1
U right children of Qg

7| U children of Oy

To generate an
eccurrence of &),
Oy mustbelong to

this region

Fig. 11: Another partitioning of an input treég.
Fig. 13: An example of frequency counting for_extensded
candidates.

are tested to determine which one satisfies Properties 14 and
15. Figure 13 presents these 4 different cases. For each case
the occurrences of "3” with strong lines satisfy the coruis.
As depicted in the figure, two occurrences of "3” satisfy the
conditions, therefore, "1 2 3 3" would have 2 occurrences in
the input trees.

Exertion of the conditions presented in Properties 11-15
requires storingp-coding m-coding cm-codingand position
of the rightmost node of each occurrence. After extending an
occurrenceOy, by Oy, Oxn will be the rightmost node of
the resultant occurrenc@y.1, therefore the encodings and
the position ofOx will be assigned ta)y,. Our algorithm
for frequency counting works very efficient: it can compute
frequency of a candidate by storing only 4 integers per each

(a) Hachured parts are eliminated by applying Property 14.

(b) Hachured parts are eliminated by applying Property 15

occurrence.
Fig. 12: How properties 4 and 5 can restrict partitions of an The Olnducedalgorithm takes as input an integer value
input treeT". minsup defined by the user and a forest of rooted ordered la-

beled trees in Zaki’s string representation format. #hesup
value can be selected to be either per-tree or occurrenteima
Figure 11. For this purpos&)y must satisfy Properties 14 Olnducedperforms a breadth-first search in the state space
and 15. of candidates and determines frequency of each candidates
Property 14: cm-codin@ x)<m-codindOry). according to the before mentioned encodings. Figure 17 show
Proof: Directly from the definition oftm-coding B the high level pseudo code @induced
Property 15: m-codin) )>m-codingOrx).

Proof: When Oy is a child of Ogy, the parent o0y
is met after the parent 0Oy in the preorder traversal,
therefore,m-codingof Oy will be greater tharm-codingof We perform extensive experiments to evaluate the efficiency
ORN. m of the proposed algorithm using data from real applicatass

It can be seen easily that if Property 14 is appliedo, well as synthetic datasets. We do our experiments on a 1.8GHz
it can not be selected from the hachured parts of Figuhatel Pentium IV PC with a 2GB main memory, running
12a. Property 15 limit€)y to non-hachured parts of FigureUNIX operating system. All the algorithms are implemented
12b. Intersection of non-hachured parts of Figures 12a amdC++ using standard template libraries. For our compariso
12b is the doted region. This means tlaf;, can generate we selectiMB3Miner [22] and FREQT [2] which are the
an occurrence o’ 1 by appending toO; iff it satisfies well-known algorithms developed to find induced patterns
Properties 14 and 15. from rooted ordered tree@Induced FREQT, andiMB3Miner

Figure 13 shows how Properties 14 and 15 can be useah work with both per-tree frequency and occurrence-match
to determine frequencies of rextended candidates. Considefrequency. Here, due to lack of space, we only report results
tree "1 2 3 3” which is generated via_rextension of "1 2 3". occurrence-match frequency. Similar results can be ofdain
"1 2 3" has 4 occurrences in the input trees, 2 occurrencks per-tree frequency.
in T, and 2 occurrences iff}. For each occurrence of "1 2 The widely used real dataset is CSLOGS [34]. This dataset
3"in T; (¢ € {0,1}) all occurrences of "3” occurring iff; contains the web access trees of the CS department of the

VI. EXPERIMENTAL RESULTS
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Fig. 15: Comparisons over user web log data.

Olnduced

frequent tree patterns. The problem arises from the fadt tha

1: Require: a databaseD consisting of rooted orderedthe dataset is a quite large dataset and during the occerrenc

labeled trees, a user definedinsup (either per-tree or

occurrence-match
2: Ensure: All frequent induced tree patterns.
: Output — 0.

AW

encodings.
: F2_SET « (.
: while F1_SET # 0 do
forall P, € F1_SET do
Ext «— Extend(Py).
for all Py, € Fxt do
10: if support(Pxy1) > minsup then
11 F2_SET «— F2_SET U Py1.
12: end if
13: end for
14: end for
15: Output — Output U F1_SET.
16: F1_SET «— F2_SET.
17: F2_SET «— 0.
18: end while
19: return Output.

© X NG

Fig. 14: High level pseudo code of Olnduced.

match frequency, the algorithms are overwhelmed by many
occurrences.

In [35], log file of each week is separated into a dif-
ferent dataset and three different datasets are generated:

. F1_SET « the set of all frequent nodes and theiCSLOGL1 for the first week, CSLOG2 for the second week

and CSLOGS3 for the third week. Furthermore, they generated
a new dataset called CSLOG12 by combining CSLOG1 and
CSLOg2. CSLOGL1 contains 8,074 trees, CSLOG2 contains
7,404 trees, CSLOG3 contains 7,628 trees, and CSLOG12
contains 13,934 trees. Here, we use these datasets totevalua
our proposed algorithm. Figure 15 compa@aducedagainst
iMB3Miner and FREQT over CSLOG1, CSLOG2, CSLOG3,
and CSLOG12, respectively. Over all the dataséisduced
significantly outperform$MB3Miner and FREQT, especially

for the lower values ofninsup. For example, on CSLOG1
and atminsup = 10, Olnducedworks more than 18 times
faster thanFREQT and iMB3Miner.

The second real dataset used in this paper is the Multicast
dataset which consists of MBONE multicast data measured
during the NASA shuttle launch between the 14th and 21st
of February, 1999 [4]. It has 333 distinct vertices where
each vertex takes the IP address as its label. The Multicast
dataset was sampled from this NASA dataset with 10 minutes
sampling interval and has 1,000 transactions. In this datas
there exist strong correlations among transactions ang ver
large frequent patterns occur even at a higihsup. Figure

Rensselaer Polytechnic Institute during one month and cdk compares performance of the algorithms over the Multicas
tains 59,691 transactions, 716,263 nodes and 13,209 unigiaéaset. On this datas€)nducedoutperforms the other algo-
vertex labels. Each distinct label corresponds to the URLighms, especially; it significantly outperforms tidB3Miner

of a web page. The average string encoding length for tatgorithm. For example, atvinsup = 750, Olnducedworks
dataset is 23.3 [34]. This dataset is used for embeddedpatteore than 5 times faster th&REQT and more than 20 times
mining with pre-tree frequency. When used for occurrencéaster thaniMB3Miner.

match frequency, all the algorithms have problems in finding We also evaluate the efficiency 6inducedusing synthetic
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Fig. 17: Comparisons over synthetic datasets.

datasets which are generated by the method described in [34]4 and outperformgMB3Miner by a factor of 8.

The synthetic data generation program mimics the web sitej, N1M, N is set tol, 000,000, so the average frequency
browsing behavior of the user. First a master web site bregvsins gistinct labels becom’es véry low (i.8f = N = 10,0000 =

tree is built and then the subtrees of the master tree 3rg,yn gop — 0.01). Figure 17c presents the efficiency of
generated. The synthetic tree generation program is @djusg|nducedagainsiMB3Miner andFREQT over N1M. Similar

by 5 parameters: 1) the number of labe)( 2) the number 4 the previous comparison®inducedoutperforms the other
of nodes in the master tred4), 3) the maximum fan-out of algorithms.

a node in the master treé’), 4) the maximum depth of the T dv h he algorithms beh | d
master tree D), and 5) the total number of trees in the dataset 0 study how the algorithms behave on very large datasets,
(7). we compare them on T1M. For T1M, the parameters are set

as follows: N = 100, M = 10,000, D = 10, F = 10,

The first synthetic dataset is D10 and uses the following = 1,000,000. Figure 17d compare®Induced against
default values for the paramete®: = 100, M = 10,000, iMB3Miner andFREQTover T1M. As depicted in the figure,
D =10, F = 10, T = 100,000. Figure 17a compares theoinducedalways outperforméviB3Miner and FREQT
running time of the algorithms on D10. _AS depicted in the Finally, to show how the algorithms scale, we generate three
figure,Olnducedalways outperform3B3Miner andFREQT datasets with different sizes (different values By, while

We generate F3 as a narrow dataset and set all valueghe other parameters are set to the default values. At a fixed
the default expect foi' = 3. As depicted in Figure 17b, minsup (i.e. 2), as depicted in Figure 18, we can see a linear
over this dataseDInducedworks faster thaiMB3Miner and increase in both running time and the number of patterns
FREQT, and FREQT outperformsiMB3Miner. For example with increasing the number of trees fGinducediMB3Miner
at minsup = 100, Olnducedoutperforms=REQT by a factor andFREQT Olnducedis more efficient thaiMB3Miner and
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FREQT Both of horizontal and vertical axes in Figure 18 arg2] M. Kuramochi and G. Karypis, Frequent Subgraph DisepvBroceed-

depicted in logarithmic scale.

VIl. CONCLUSION

ings of the IEEE International Conference on Data MiningQ{NO1),
November 2001.

[13] F. Luccio, A. M. Enriguez, P. O. Rieumont and L. Pagli, a€k

Rooted Subtree Matching in Sublinear Time, Technical Rep&-01-
14, Universita Di Pisa, 2001.

In this paper, we introduce®Inducedused .to discover [14] F. Luccio, A. M. Enriquez, P. O. Rieumont and L. Pagli, tBen-up
all frequent induced patterns from a collection of rooted, Subtree Isomorphism for Unordered Labeled Trees, TechRigport TR-

ordered and labeled tree®Induceduses breadth-first search

04-13, Universita Di Pisa, 2004.
15] T. Miyahara, T. Shoudai, T. Uchida, K. Takahashi, H. &BeD. Cheung,

to generate candidates and takes advantage of equivalence, . wiliams, L. Qing, Discovery of Frequent Tree StruetiiiPatterns
classes to extend each candidate by only known frequentin Semistructured Web Documents, PAKDD, Hong Kong, Chiré)12

candidates. Then, an indexing scheme is used to improve H

T. Miyahara, Y. Suzuki, T. Shoudai, T. Uchida, K Takahiadd. Ueda,
Discovery of Maximally Frequent Tag Tree Patterns with Cactible

breadth-first equivalence class extension. We also predent variables from Semistructured Documents, PAKDD, 133-12804.

two new tree encodingsm-coding and cm-coding which

are based on combined depth-first/breadth-first traversfals

[17] S. Nijssen and J. N. Kok, Efficient Discovery of Frequéiiordered
Trees, Proc. First Intl Workshop Mining Graphs, Trees, apdueénces,

input treesOlInducedbenefits from these encodings to restrigtig) p. Shasha, J. Wang, and R. Giugno, Algorithms and Apitims of
the nodes of input trees and quickly compute frequencies Tree and Graph Searching, In Proceedings of the ACM Intiemeit

of candidates. We comparédinducedwith the well-known

algorithms,iMB3Miner andFREQT Experiments on both real

and synthetic data show th&lnducedsignificantly reduces

the running time and scales linearly with respect to the si®

of input trees.
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