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Sequential choice designs to estimate the distribution of

willingness-to-pay

Abstract

The concept of willingness-to-pay (WTP) has attracted the attention of marketeers because of its use-

fulness in many applications. Nowadays one aims at describing the market heterogeneity by estimating

the distribution of WTP. However, this poses several problems that have been discussed repeatedly in the

literature. Many authors report unrealistic, extreme or inaccurate individual-level WTP estimates.

We propose to use an adaptive sequential approach to construct conjoint choice designs for estimating the

distribution of WTP. It uses Bayesian methods to generate individually optimized choice sets. These choice

sets are computed sequentially based on the prior information of each individual which is updated after

each choice. The choices made by all respondents are then used to estimate the mixed logit model which

yields individual-level utility coe�cients and corresponding individual-level WTP estimates from which the

distribution of WTP can be derived.

This sequential approach is compared in a simulation study with two non-sequential designs: a semi-Bayesian

D-optimal design for the conditional logit model and a nearly orthogonal design. The results shows that the

sequential design performs much better than the benchmark designs. It yields more accurate individual-level

WTP estimates and produces a more accurate picture of the heterogeneity.
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1 Introduction

In market valuations, researchers often calculate marginal rates of substitution (MRS). By de�nition, MRS is

the rate at which a consumer is ready to give up one product characteristic in exchange for another product

characteristic while maintaining the same level of utility. MRS with respect to the price is called willingness-

to-pay (WTP). The concept of WTP has become an essential component in cost-bene�t analysis and has often

been using for policy making, product planning and product management a�airs. The following examples have

been taken from the literature and illustrate the broad application of willingness-to-pay.

Sonnier et al. (2007) present two discrete choice experiments to illustrate the e�ect of the model parametrization

on the accuracy of WTP estimates. The �rst study has been conducted on midsize sedans which are described

by the attributes model, engine power, audio, safety level and price. One of the important �ndings is that most

people have higher WTP-values for the Japanese models involved (Toyota Camry and for Nissan Maxima)

than for the European Volkswagen Passat. On the other hand, most consumers are willing to pay more for

Volkswagen Passat than for Ford Taurus. These results are used to determine the optimal price for a Ford

Taurus such that the �rm's expected pro�t is maximized and to predict the corresponding market shares.

Sonnier et al. (2007) also analyze the data of a choice study that was conducted by the Eastman Kodak

Company to assess the market for cameras. The results are used to price and predict market shares for a few

hypothetical cameras. The heterogeneity in WTP has also been investigated by Scarpa et al. (2008) in a study

about hikers' destination choices in the Alps conducted by the Italian Alpine Club. There were 18 di�erent

destination sites and �ve site attributes which describe the land-use of the site and the hiking conditions. They

estimated a mixed logit model and obtained interesting results about the individuals' willingness-to-pay. For

example, the results indicated that most of the hikers were willing to pay a signi�cant amount to avoid an extra

di�culty level, to obtain an extra safety and resting point and for a 1% increase in easily walkable trail length.

The results of this WTP study were helpful in planning future tours and site maintenance in order to attract

more hikers. Applications in transportation, the energy domain and the health sector can be found in Hensher

et al., 2003; Ban� et al., 2008; Ryan et al., 2008.

In all the papers mentioned above, means and variances of the WTP-distribution are given and a cautious

remark is made about the occurrence of a large number of outliers. Daly et al. (2009) however show that

for the assumptions made about the distribution of the utility coe�cients in most of these papers, the means,

variances and higher order moments of the WTP distribution do not even exist. The accuracy of the estimated

WTP-distribution can therefore only be assessed by comparing percentiles and individual-level estimates as we

will illustrate in this paper.

We are not aware of studies that aim at constructing conjoint choice designs to estimate the distribution of the

individual-level WTP-values e�ciently. Vermeulen et al. (2008) compare di�erent optimal design criteria to

estimate WTP but they assume market homogeneity. With the approach in this paper we can obtain precise

information on the preference of the individuals and hence capture market heterogeneity e�ciently. We use a

sequential procedure that was recently introduced in Yu et al. (2010). In this sequential approach, Bayesian

methods are used for design selection as well as to update the prior information of each individual's utility

coe�cients after each response. The Bayesian method allows to use a small initial design for each respondent to

start with and to update the prior information about the consumer preferences repeatedly during the study. In

this way, the respondents are provided with individually optimized choice sets which capture the heterogeneity
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most e�ciently. In the �nal estimation stage, the Hierarchical Bayes method is used to estimate the panel

mixed logit model. Yu et al. (2010) showed that this approach performs much better than the non-sequential

choice designs for estimating the individual-level part-worths. We will use this sequential approach to estimate

the individual WTP-values and investigate the e�ciency of the procedure in this context.

This paper is organized as follows. In the next section we present the panel mixed logit model and the estimation

methods involved, the concept of willingness-to-pay and the sequential design methodology we use to construct

the choice sets. In section 3 we discuss our simulation study and the corresponding results and in section 4 we

summarize our key �ndings.

2 Methodology

2.1 The panel mixed logit model

The panel mixed logit model is used in this paper to describe the population heterogeneity. The preferences

of respondent n are represented by the individual-speci�c utility coe�cient vector βn. The probability that

respondent n chooses alternative k (k = 1,...,K) in choice set s (s = 1,...,S) is

pksn(βn) =
exp (x′ksnβn)∑K
i=1 exp (x′isnβn)

, (1)

where xksn is a p-dimensional vector containing the attribute values of alternative k in choice set s for respondent

n.

Denote by ySn the K×S-dimensional individual-speci�c vector containing the S choices from respondent n that

correspond to the S choice sets of K alternatives. Conditional on βn, the likelihood function for a given ySn can

be written as

L(ySn |X
S
n ,βn) =

S∏
s=1

K∏
k=1

(pksn(βn))yksn , (2)

where yksn, element of y
S
n , is 1 if respondent n chooses alternative k in choice set s and 0 otherwise and XS

n

is a matrix containing the attribute values of each alternative in the S choice sets that has been assigned to

respondent n.

We assume that the coe�cient vector βn is randomly drawn from a p-variate normal distribution with mean

µβ and covariance matrix Σβ, that is N(βn | µβ,Σβ). Then the likelihood of a given sequence of choices ySn ,

unconditional on βn, for respondent n is

L(ySn |X
S
n ,µβ,Σβ) =

ˆ
L(ySn |X

S
n ,βn) N(βn | µβ,Σβ) dβn,

=
ˆ

(
S∏
s=1

K∏
k=1

(pksn(βn))yksn) N(βn | µβ,Σβ) dβn.
(3)
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The probabilities of a single respondent in multiple choice situations will be correlated and the above formulation

takes this dependency into account. That is, the coe�cient vector βn for a given respondent n appears in all

choice sets and ensures that the model captures the correlation across repeated choices.

L(yfull|Xfull,µβ,Σβ) is then the likelihood function of the choices of all N respondents, unconditional on βn,

and is de�ned as

L(yfull|Xfull,µβ,Σβ) =
N∏
n=1

L(ySn |X
S
n ,µβ,Σβ) (4)

where yfull contains the responses for the N respondents and Xfull is the full design matrix which concatenates

the choice designs XS
1 , ...,X

S
N of each individual respondent.

Maximizing this (simulated) likelihood function yields the maximum likelihood estimates for µβ and Σβ. In-

formation on the individual parth-worths βn can then be obtained through the procedure described in Train

(2003). However, the panel mixed logit model can also be estimated through a Hierarchical Bayes approach

which avoids the di�cult optimization of the likelihood function. Bayesian estimation techniques have often

been used in the recent discrete choice literature (Toubia et al., 2004; Arora and Huber, 2001; Rossi et al.,

1996). Under the Bayesian approach, prior beliefs (prior distribution) about parameters are combined with

sample information (likelihood) to create updated or posterior beliefs about the parameters.The joint posterior

distribution for βn, µβ and Σβ is

K(βn,µβ,Σβ | yfull) ∝ L(yfull|Xfull,βn) N(βn|µβ,Σβ) k(µβ) h(Σβ) (5)

where k and h are the hyper-prior distributions of µβ and Σβ respectively.

Draws from the joint posterior distribution K(βn,µβ,Σβ| yfull) are obtained using Gibbs sampling, which can

be used to take random draws from multi-parameter densities using full conditional draws (Casella and George,

1992). As such, we obtain posterior distributions for the population mean µβ, for the population heterogeneity

matrix Σβ and for the individual-level coe�cient vectors βn. A detailed discussion on HB estimation can be

found in Train (2003).

2.2 The willingness-to-pay (WTP)

The marginal rate of substitution quanti�es the trade-o� between two attributes and thus their relative impor-

tance. MRS with respect to the price coe�cient is called the willingness-to-pay (WTP). The WTP expresses

the maximum amount a person is willing to pay, sacri�ce or exchange to obtain a change in an attribute. In

order to compute the WTP, one of the attributes of the experiment has to be the price. The mathematical

formula of the WTP for attribute level m for a given respondent n is

WTPmn = −βmn

βpn

, (6)

where βmn
and βpn

are the utility coe�cient of respondent n of attribute level m and the price coe�cient,

respectively (Vermeulen et al., 2008). We represent by the vector WTP n all the WTP-values of respondent
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n. The individual respondents' WTP n estimates can then be used to obtain the heterogeneity distribution of

WTP.

Models with convenient distributions for the utility coe�cients however give inconvenient distributions for WTP

that cannot be derived in closed form. For estimates of the price coe�cient close to zero, the ratio will become

extremely large and the resulting distribution gets long �at tails. As already mentioned, Daly et al. (2009) show

that for many often used distributions for the utility coe�cients such as the normal and triangular distributions,

the distribution of WTP has in�nite moments.

To estimate the posterior distribution of the individual-level WTP n and the distribution of the WTP in the

market, we will use the results of the HB estimation. For each respondent n and for each draw from the posterior

distribution of βn we compute the corresponding willingness-to-pay coe�cients by taking the ratio of the utility

coe�cients and the price coe�cient. The average of this posterior distribution ofWTP n is used as the estimate

forWTP n. The distribution of these individual-levelWTP n estimates is used as the estimated heterogeneity

distribution of willingness-to-pay.

2.3 Design construction

Traditionally in optimal design of experiments, one determines the choice sets by optimizing a function of the

variance-covariance matrix of the estimates of interest but this becomes very complicated for the panel mixed

logit model. By adopting an individual sequential approach, one ensures e�cient estimation of the underlying

individual conditional logit model which simpli�es the design problem substantially. In this section, we brie�y

review the sequential design construction process of Yu et al. (2010). First we introduce the design criterion

used and then explain the algorithm behind the sequential approach.

2.3.1 Bayesian D-optimality criterion

Assuredly, one of the most frequently used design criteria is the D-criterion. D-optimal designs minimize the

determinant of the variance-covariance matrix of the parameters to be estimated. Many authors have discussed

its advantages over other design criteria (Goos, 2002; Kessels et al., 2006a). As choice models are nonlinear

in the parameters, the variance-covariance matrix depends on the values of the model parameters. Several

solutions have been proposed for this. Anderson and Wiley (1992), for example, use zero prior parameter values

to construct designs which are then called utility neutral designs. Huber and Zwerina (1996) use nonzero prior

values for all model parameters, which leads to locally optimal designs, and show that if the prior values are

close enough to the true values, the resulting design is more e�cient than the utility neutral designs. Sándor

and Wedel (2001) have introduced semi-Bayesian optimal designs in the marketing literature. They take the

uncertainty about the prior values into account by integrating the design criterion out over a distribution of

the prior values. They examine the situations where semi-Bayesian optimal designs are more e�cient than the

corresponding locally optimal designs. A detailed discussion on these design construction approaches can be

found in Yu et al. (2008). All the design approaches mentioned are based on the asymptotic covariance matrix

of the maximum likelihood estimates, so the prior knowledge on the model parameters is only taken into account

in the design stage.
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A true Bayesian optimal design is based on the expected covariance matrix of the posterior distribution of the

parameters of interest where the expectation is taken over the marginal distribution of the data (Yu et al., 2008).

An important advantage of this approach is that no asymptotic results are needed so that we can safely use these

designs for our individual sequential approach. However, as no analytical results exist, one has to approximate

the expected covariance matrix of the posterior distribution. Yu et al. (2008) compare di�erent approximations

and found that for small sample sizes the approximation based on the generalized Fisher information matrix

(GFIM) is best. Therefore the Bayesian optimal design we derive to estimate β in the sequential procedure are

based on the GFIM for the parameters β of the conditional logit model. The approximated covariance matrix

is the negative expectation of the second derivative of the log posterior density, that is

IGFIM (β|X) = −E[
∂2 log q(β|Y,X)

∂β∂β′
], (7)

where q(β|Y,X) is the posterior distribution of β conditional on the design matrix X and the corresponding

responses Y. The determinant of this IGFIM matrix will be used to assess the e�ciency of the design. As this

determinant depends on the parameter values, we consider the expected value of the determinant over a prior

distribution of the parameter values, π(β):

DB − error =
ˆ
|IGFIM (β|X)|−

1
p π(β)dβ (8)

which is called the Bayesian D-error. The optimal design is the one that minimizes the DB − error.

2.3.2 Sequential design approach

We use a sequential approach to select the choice sets. Unlike the aggregate-customization approach in which all

respondents evaluate a common design optimized for the average respondent and which has been used frequently

in the literature (Arora and Huber, 2001; Sándor and Wedel, 2001; Kessels et al., 2006b), the sequential approach

allows to construct individual designs that can take the information on the respondent heterogeneity maximally

into account. We will brie�y revisit the two-step sequential approach (for more information see Yu et al., 2010).

Initial stage:

� Using a common prior distribution for all N respondents, π(β), we generate N initial D-optimal designs

with S1 choice sets of size K using the greedy approach introduced by Sándor and Wedel (2005). We

denote the corresponding design matrix by XS1
n . For each individual n, the data from the initial stage

yS1
n are analyzed in a Bayesian way using the conditional logit model. The output of this analysis is a

posterior distribution for βn, denoted by q(βn|yS1
n ,X

S1
n ), that is a mix of the initial prior distribution

π(β) and the individual-level likelihood L(yS1
n |X

S1
n ,βn). This posterior distribution is then used as input

for the sequential stage of the experiment.

Sequential stage:

� The posterior distribution obtained from the initial stage, q(βn|yS1
n ,X

S1
n ), is used as the prior distribution

for constructing the next choice set, xS1+1
n for respondent n. The new choice set is chosen by minimizing

the DB − error of the combined design (XS1
n ,x

S1+1
n ).
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� The new choice set xS1+1
n is assigned to respondent n and the prior information is updated with all S1 +1

observations. The resulting posterior distribution, q(βn|yS1+1
n ,XS1

n ,x
S1+1
n ), is then used to obtain the

next choice set, xS1+2
n , by minimizing the DB − error. This process is repeated until a pre-speci�ed

number of choice sets S is attained.

To approximate the DB − error in both the initial and sequential stages, it is necessary to have a large number

of draws from the posterior distribution. Since there is no closed form expression available for the posterior

distribution, we use importance sampling proposed by Bedrick et al. (1997) and also discussed in Yu et al.

(2010).

3 Simulation Study

To investigate how e�cient the individual WTP values can be estimated by this sequential approach and the

Hierarchical Bayes estimation results, we perform a simulation study in which we compare the results obtained

by di�erent designs.

3.1 Simulation setup

We consider designs with four attributes, one with four levels and three with two levels including a price attribute

at two levels. We also assume that the total number of choice sets the N=250 individuals have to evaluate is

16, with three alternatives per choice set (S=16 and K=3). We use S1 = 5 choice sets in the initial stage and

11 choice sets are constructed sequentially.

We need a prior distribution π(β) for the utility coe�cients to optimize the design. In the discrete choice

literature, the utility coe�cients have been assumed to be uncorrelated by some authors (Sonnier et al., 2007;

Bliemer and Rose, 2008) and correlated by others (Train and Weeks, 2005; Dotson et al., 2009). The WTP

parameters are correlated in both cases, since the price coe�cient enters the denominator of each WTP. We use

prior values that were obtained in an empirical study with a similar setup by Dotson et al. (2009). They ob-

tained individual-level parameters with mean µβ = [0.547, 0.405, 0.163,−0.398,−0.009,−0.540] and covariance

matrix

Σβ =



1.097 0.684 0.484 0.144 0.151 0.028

0.684 1.535 0.525 0.3 0.375 −0.066

0.484 0.525 0.867 0.066 0.392 −0.007

0.144 0.3 0.066 1.323 0.264 −0.157

0.151 0.375 0.392 0.264 2.056 −0.184

0.028 −0.066 −0.007 −0.157 −0.184 0.354


.

We will use a multivariate normal distribution with this estimated mean and covariance matrix as the prior

distribution π(β) to generate our designs.
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The sequential design is compared with two non-sequential benchmark designs, a semi-Bayesian D-optimal

design and a nearly orthogonal design. The semi-Bayesian D-optimal design is constructed for the conditional

logit model and uses the same prior distribution π(β) that we use for the sequential design. Further discussion of

constructing semi-Bayesian D-optimal designs can be found in Sándor and Wedel (2001). The nearly orthogonal

design, which is close to a utility neutral design, is constructed using SPSS software (SPSS Inc., 2007).

In the sequential approach we need to simulate the individual choices in each step. We will �rst use the prior

distribution π(β) as the heterogeneity distribution from which to generate the βn that are considered to be

the true utility coe�cients of the respondents in the study. The individual-levelWTP n values calculated from

these true utility coe�cients are considered as the true WTP coe�cients of these respondents. To evaluate

the estimated heterogeneity distributions of WTP obtained with the di�erent designs we need to know the

true heterogeneity distribution of WTP. This distribution was obtained by simulating a huge number of utility

coe�cients from the prior distribution and calculating the corresponding WTP-values. To assess the e�ect of a

misspeci�ed prior distribution, we also simulate individual choices using βn drawn from di�erent heterogeneity

distributions than the prior distribution used for constructing the design.

After generating the data using the di�erent designs, we estimate for each of them the panel mixed logit model

by the Hierarchical Bayes approach. We then estimate the individual-level WTPn vectors for each design and

compare them to the true values to assess their accuracy.

3.2 Simulation results

3.2.1 Estimation accuracy of the utility coe�cients

Yu et al. (2010) show that the sequential approach improves the estimation accuracy of the utility parameters

compared to an orthogonal design and a semi-Bayesian D-optimal design. As expected, we obtained similar

results about the precision of the utility parameters. We summarize our results by the root mean squared error

values for the individual utility coe�cients βn, for the population mean µβ and for the population covariance

matrix Σβ obtained with di�erent designs. For example, the RMSE for the population mean of the utility

coe�cient µβ can be de�ned as:

RMSE(µβ) = [(µ̂β − µβ)
′
(µ̂β − µβ)]1/2 (9)

where µ̂β is the mean of the posterior distribution of µβ obtained by the HB process explained in section 2.1

and µβ is the true population mean. A similar de�nition can be obtained for Σβ when we put all the unique

elements in a vector. For βn we use the average of the RMSE-values of all respondents.

Table 1 presents the results. From the results in Table 1 we can see that with respect to the estimation accuracy

Table 1: RMSE values for the utility coe�cients obtained under di�erent design approaches

Sequential Near-Orthogonal SB D-optimal
βn 1.0218 1.2503 1.2238
µβ 0.0736 0.0894 0.0949

Σβ 0.5374 0.7380 0.6534
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of βn, the sequential design is 17% better than the semi-Bayesian D-optimal design and 18% better than the

orthogonal design. Similarly, the sequential design performs much better than the benchmark designs with

respect to the estimation accuracy of µβ and Σβ .

3.2.2 Distribution of the estimated Individual-level WTP

We assumed that the utility coe�cients come from a multivariate normal distribution. From Daly et al. (2009)

we know that the implied distribution of WTP does not have �nite moments in this case. Therefore, there

is no point in reporting the population mean and the population covariance matrix of the willingness-to-pay

values. To assess the performance of the di�erent design approaches for estimating the distribution of WTP, we

compute the percentiles of the estimated and the true individual-level WTP distributions and we look at the

estimation errors of the individual-level estimates. We report only the results of the �rst WTP parameter as

the results are similar for the other parameters.

Table 2 shows the percentiles of the heterogeneity WTP distributions obtained with the di�erent designs. It is

Table 2: Percentiles of individual-level WTP distributions obtained with di�erent designs

Percentile 5% 10% 25% 50% 75% 90% 95%

True -8.326 -3.792 -0.952 0.582 2.001 5.003 9.590
Sequential -7.209 -3.636 -0.670 0.555 2.028 4.568 8.112

Near-Orthogonal -6.118 -2.736 -1.029 0.487 1.770 3.924 12.355
SB D-optimal -15.537 -5.723 -1.439 0.393 2.469 6.006 11.146

clear from this table that the sequential design can estimate the true distribution of the individual-level WTP

more precisely than all the benchmark designs.

To assess the accuracy, we also compute the estimation error of the WTP n parameters for each respondent,

which is the di�erence between the true individual-level WTP coe�cient and its estimate. In Figure 2, the

y-axis represents the individuals' estimation error of the �rst WTP parameter and the x-axis represents the

individuals. From Figure 2, we can see that the Orthogonal design and the semi-Bayesian design lead to some

extremely inaccurate estimates. The sequential design on the contrary avoids extremely inaccurate estimates.

This is because the sequential design is tailored to each individual's preference structure and it allows us to

catch more individual information. Therefore, the important merit of the sequential approach advocated here

is that we can reduce the extremely inaccurate estimates considerably.

3.2.3 Robustness of the design on the misspeci�cation of the prior distribution

In the previous section, we studied the performance of the sequential design approach assuming that the prior

distribution on β used to construct the design contains correct information on the distribution of the utility

coe�cients. In this section we relax this assumption and examine the e�ect of misspeci�ed prior distributions.

We still use π(β) de�ned in section 3.1 to generate the designs but the choices are generated with individual-level

βn that were drawn from other distributions. In each case the utility coe�cients are drawn from a multivariate

normal distribution with mean µ̃ and covariance matrix Σβ, where

µ̃ = µβ + δ1p.
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Figure 1: Estimation error of Individual-level estimates of the WTP

Note that we do not change the correlation structure so the prior information on the variances and covariances is

still assumed to be correct. The parameter δ re�ects how much the mean of the multivariate normal distribution

that we use to generate the responses deviates from the mean value that we assumed while constructing the

designs. We report the results for δ = −0.3 to model a moderate deviation and δ = −0.6 to denote serious

misspeci�cation. Table 3 presents the percentiles of the WTP distributions obtained under di�erent designs

and for the both δ-values.

Table 3: Percentiles of the heterogeneity WTP distribution obtained under di�erent designs and for di�erent
mean deviation values

Percentile 5% 10% 25% 50% 75% 90% 95%

δ = -0.3

True -5.019 -2.608 -0.908 0.137 1.068 2.419 5.187
Sequential -5.765 -2.292 -0.751 0.198 1.074 2.415 5.092

Near-Orthogonal -8.812 -3.759 -1.070 0.068 1.113 2.475 3.822
SB D-optimal -7.336 -2.766 -1.041 -0.045 0.895 2.519 4.424

δ = -0.6

True -3.391 -1.721 -0.901 -0.141 0.598 1.445 2.416
Sequential -2.686 -1.731 -0.890 -0.101 0.602 1.430 2.383

Near-Orthogonal -3.700 -2.106 -1.039 -0.212 0.679 1.749 2.934
SB D-optimal -3.505 -2.172 -0.912 -0.085 0.593 1.455 2.942

It is clear from this table that the sequential design can estimate the true heterogeneity WTP distribution more

e�ciently than the benchmark designs in both cases as the percentiles of the WTP distribution obtained by

the sequential design are closest to those of the true WTP distribution in most of the cases. This indicates

that the performance of the sequential approach is quite robust with respect to the misspeci�cation of the prior

distribution. This is due to the sequential nature of the approach in which we update the prior information
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repeatedly over the process. Even if the starting information is inaccurate, the information will become better

in each step of the sequential procedure.

4 Discussion and Conclusions

Several design and estimation techniques have been introduced in the marketing literature to estimate the

distribution of willingness-to-pay (WTP) e�ciently. In this paper, we use an adaptive sequential approach to

construct choice designs to estimate the distribution of the WTP. The idea is motivated by �ndings of Yu et

al. (2010) who developed the sequential approach to estimate the individual-level utility coe�cients. In this

approach Bayesian methods are used for the selection of choice sets and to update the prior information on

each individual's preference after each choice. Finally the Hierarchical Bayes method is used to estimate the

individual utility coe�cients of the panel mixed logit model and the corresponding WTP values.

The sequential design was compared with two non-sequential designs: a semi-Bayesian D-optimal design for

the conditional logit model and a nearly orthogonal design constructed for the same experimental setting.

The simulation study shows that the sequential approach leads to designs that can estimate the true WTP

distribution much more precisely than the benchmark designs by comparing the percentiles of the estimated

WTP distributions based on the di�erent designs with the percentiles of the true WTP distribution. Comparison

of the estimation errors also shows that the sequential design avoids extremely inaccurate estimates of individual-

level WTP. Moreover, the sequential approach also outperforms the other designs when the prior distribution

is misspeci�ed. This is to be expected as the prior information is updated repeatedly and is as such corrected

in each step.
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