
Diversity Control in Genetic Algorithms for Protein 
Structure Prediction 

Vinicius Tragante do Ó1, Renato Tinós1 

1 Departamento de Física e Matemática - FFCLRP, Universidade de São Paulo 

Av. Bandeirantes, 3900, Ribeirão Preto - SP, Brasil 
tragante@pg.ffclrp.usp.br, rtinos@ffclrp.usp.br 

Abstract. In recent years, there is a growing interest in using Genetic 

Algorithms (GAs) in the protein structure prediction problem. However, the 

search space in this problem is very complex, what results in premature 

convergence of the GAs in their standard form, as the population generally 

gets trapped into local optima. Based on this fact, the use of two different 

strategies that can help GAs to maintain or increase the diversity of the 

population in the protein structure prediction problem are investigated in this 

paper. These strategies are Hypermutation and Random Immigrants. A new 

form of codification of the protein structure in the GA using sorted angles 

database is still proposed. Experimental results with Crambin (PDB code 

1CRN), Met-Enkephalin (PDB code 1PLW), and DNA-Ligand (PDB code 

1ENH) show that strategies to increase or maintain the population diversity 

are interesting for the protein structure prediction problem. 

Keywords: Genetic Algorithms, Hypermutation, Random Immigrants, Protein 

Structure Prediction. 

1   Introduction 

Proteins are polypeptide chains composed of a sequence of any of the 20 existing amino 

acids. In Biochemistry, the tertiary structure of a protein is its three-dimensional shape, 

also known as its fold [Lehninger, 2005]. The function of a protein is intimately related 

to its folding, which means that its tertiary structure determines what a protein is 

capable of doing, mainly because of its hydrophobic/hydrophilic cores, hydrogen bonds, 

and interactions with other molecules.  

Protein structure prediction is one of the most important unsolved problems in 

molecular biology. It is already known that the activation or inhibition of molecules is 

dependent on the docking between an activator/inhibitor and a target molecule. Based 

on this fact, it is possible, in the future, to develop specific molecular structures capable 

of acting over toxic agents using protein structure prediction, allowing the development 

of new drugs, which may help solving a huge amount of health problems for which 

there is no efficient treatment yet. 

Nowadays, the best known methods to determine an existing protein’s tertiary 

structure are crystallography and nuclear magnetic resonance, but both methods are 

either expensive or have limitations. Ideally, it would be possible to determine a protein 

structure based only on its amino acids sequence; this, however, is not possible yet for a 

large range of proteins with a medium or large number of amino acids [Lehninger, 

2005]. 
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Several approaches for the protein structure problem have been investigated 

since the 1950’s, some of them known as molecular dynamics, homology modeling, and 

ab initio. Genetic Algorithms (GAs) seem to be suitable for the protein folding problem, 

mainly in the ab initio approach, since this problem can be viewed as a search problem, 

in which, given an amino acid sequence, the best structure amongst all must be found. 

GAs are particularly attractive to this problem due to its characteristics [Mitchell, 1996]. 

In a GA, a population of chromosomes, representing a series of candidate 

solutions (called individuals) to an optimization problem, generally evolves toward 

better solutions. The evolution usually starts from a population of randomly generated 

individuals. In each generation, the fitness of every individual is evaluated, the best 

individuals are selected (elitism), and the rest of the new population is formed by the 

recombination of pairs of individuals, submitted to random mutations. The new 

population is then used in the next generation of the algorithm. Commonly, as employed 

in this problem, the algorithm ends when a maximum number of generations is reached. 

Indeed, GAs have been successfully applied to several areas where optimization 

is a requisite, such as attribute selection [Yang & Honavar, 1998], logistics [Taniguchi 

et al., 1998], electrical systems [Fukuyama et al., 1998], among others. In the protein 

folding problem, GAs in the standard configuration have been applied, but without 

major success, mainly because of the existence of several local optima over the search 

space and the use of imprecise energy function to be minimized. In fact, the choice of 

the energy function has a relevant impact in the optimization process. The energy 

function is difficult to be implemented with sufficient precision because, among others, 

there are too many interactions among a large number of atoms. This fact was clear in 

[Schulze-Kremer, 1993], a pioneer work, where GAs were applied to the protein 

structure prediction problem. In [Schulze-Kremer, 1993], a small set of angles was used 

as a set of possible solutions for each torsion angle of each amino acid of the protein, 

and the GA reached even lower energy levels than the protein in its native state; 

however, this was not enough to determine the real native state. Today, computing 

power has increased significantly, which allows us to use bigger angle database sets, 

more complete force fields, and improve the GA with new strategies in order to reach 

better results [Gabriel et al., 2007]. 

In this work, the effects of two GA’ strategies, generally applied to dynamic 

optimization problems [Cobb & Grefenstette, 1993] to increase or maintain the diversity 

of the population, were investigated in the protein structure prediction. The strategies 

are Hypermutation, which raises the mutation rates periodically, and Random 

Immigrants, which replaces a percentage of the individuals each generation by new, 

randomly generated ones. Both strategies help keep the diversity of the population, and 

can allow the GA to avoid the premature convergence around one local optimum. The 

solutions of the GAs were codified using databases of torsion angles found in proteins 

which tertiary structure determined by crystallography or nuclear magnetic resonance. 

The use of sorted databases is proposed in this paper.    

In Section 2, the methodology developed in this work is presented. Section 3 

shows the experimental results obtained with the proteins Crambin (PDB code 1CRN), 

Met-Enkephalin (PDB code 1PLW), and DNA-Ligand (PDB code 1ENH) for different 

GA’s approaches. Section 4 presents the conclusions. 
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2   Methods 

Studies found in literature state that the number of possible combinations for the torsion 

angles makes the protein structure prediction an NP-hard problem [Pierce & Winfree, 

2002]. However, not all combinations have minimum energy levels (or are frequent 

combinations), as shows the Ramachandran plot [Ramachandran & Sasiekharan, 1968], 

what results in a smaller search space. 

Based on this fact, new approaches have included angle databases composed of 

fixed values of torsion angles phi (φ) and psi (ψ) for the main chain and angles of the 
side chain (see Fig. 1 for a graphical demonstration of these angles), which may consist 

of angles χ1 to χ5 depending on the amino acid. Such databases are composed of 
angles, experimentally determined by nuclear magnetic resonance or crystallography, of 

the amino acids found in hundreds of proteins. With this in mind, this work used a set of 

these angles recorded into an angle database by the project CADB (Conformational 

Angle Database) [Sheik et al., 2003]. The side chain also has its own database, which is 

based on the Tuffery Database [Tuffery et al., 2003] (found in 

http://bioserv.rpbs.jussieu.fr/doc/Rotamers.html). This database was created starting 

from observations of protein structures determined with magnetic resonance and 

crystallography, and ordered by the frequency of appearance in these structures. 

 

Fig. 1. Angles used as inputs for the chromosome of each individual of the GA. 

Starting from Cα, which is the base carbon, we see φ and ψ angles which are the 

torsion angles from the main chain; and χ1 and χ2 angles, which are the angles from 

the side chain; depending on the amino acid, there can possibly be up to 5 χ angles. 

In this work, the chromosome of each individual is formed by the index of the 

database of each amino acid and the index of the side chain database, as shown in Fig. 

2, which means that the chromosome size is 2m, where m is the size of the protein 

(number of amino acids). All angle values are saved into an extra vector, which is faster 

than searching the database sets each time a value is needed. In this work, we propose to 

sort the main chain angles databases according to the torsion angle φ (when the angle φ 

is equal for two or more combinations, the angle ψ is also sorted). In Section 3, 
experimental results with sorted and unsorted databases are presented. 
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Fig. 2. Graphical schema of a chromosome for a protein with 5 amino acids. Each 

amino acid is represented by two values, Iφψ and Iχ, which are the indexes of the 
database set for the main chain and the side chain. An auxiliary vector stores the real 
values of the angles.  

 

In this work, the mutation rate of the GA was set to 1/(2m) and the crossover 

rate was set to 0.8. When a gene (database index position) is mutated, the index position 

is changed in one position, i.e., +1 or –1 is added to the parent index position. When a 

mutation happens, all torsion angles of that amino acid are generally changed (either 

from the main chain or the side chain). In this way, when the main chain databases are 

unsorted, a simple mutation very often generates a new gene (of the offspring) with 

angles far from the angles given by the old gene (of the parent). When the main chain 

databases are sorted, the new gene is generally generated close to the old gene if 

mutated, as the new torsion angle φ  (offspring) has a value close to the old torsion 

angle φ  (parent). 

 The crossover uses 2 parents that are chosen by tournament selection, in which 

2 individuals are picked randomly and the individual with the best fitness between them 

has 75% of being chosen for crossover, with 25% remaining for the individual with 

worst fitness [Mitchell, 1996]. The crossover method chosen is the single-point 

crossover, in which a random point is chosen, and the left side of this point is obtained 

from the first individual chosen and the right side of this point, from the second 

individual to generate the offspring 1, and the inverse method for the offspring 2 (Figure 

3). We inserted also an elitist process, by finding the two best individuals from the 

generation and automatically inserting them in the next population, without crossover or 

mutation. This procedure was used in the Schulze-Kremer approach [Schulze-Kremer, 

1993] and in [Gabriel et al., 2007], [Cui et al., 1998]. 

When the individuals are completely defined, the GA creates a file that contains 

the φ, ψ, ω, and χ angles of each amino acid and sends it to the algorithm protein from 
the molecular modeling package Tinker [Ponder et al., 1998], which can convert these 

torsion angles into a pdb or a xyz file. The pdb file is the type of representation found in 

the PDB database (http://www.rcsb.org/), while the xyz file is a representation of each 

atom of the protein in its coordinates in space. This step is necessary to evaluate the 

fitness of each candidate solution (individual), in the algorithm analyze, also a 

component of the molecular modeling package Tinker. This program uses the file 

generated by the protein algorithm to verify the interactions that are present in the 

protein and informs the total energy that each individual has. The purpose of the GA is 

to reduce this energy to the minimum possible value. 

The evaluation of the Tinker package depends on the force field chosen. In this 

work, the CHARMM27 force field was used. The total energy (fitness) is given by: 

Etot = Ebs + Eab + Eid + Eta + EVdW + Ecc  (1) 

where: Ebs is the bond stretching energy, which measures the energy according to the 

distance of the bonding; Eab is the angle bending energy; EUB is the Urey-Bradley 

energy; Eit is the improper dihedral energy, which is associated to the deformations of 

improper torsion angles; Eta is the torsional angle energy; EVdW is the Van der Waals 
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energy; and Ecc is the charge-charge energy, which is represented by the Coulomb 

potential. 

 

 

 

Fig. 3. The two selected parents for crossover (a). After the selection of the point of 
separation (b), a part from parent 1 and other part from parent 2 are recombined to 
generate offspring (c) and mutation operator may alter one or both individuals (d). 
Image adapted from [Linden, 2006]. 

In order to maintain or increase the diversity of the population of the GA over 

the generations, two approaches called Hypermutation and Random Immigrants were 

tested. Hypermutation, first described by Cobb & Grefenstette [Cobb & Grefenstette, 

1993], is a strategy that increases the mutation rate according to a given criterion; for 

example, when the fitness of the best individual decreases in dynamic optimization 

problems. Another approach for Hypermutation, which was used in this work, increases 

the mutation rate in 5 generations in a row, then returns to standard mutation rate for the 

following 5 generations, during the whole execution of the algorithm. Other numbers of 

generations could have been used, but this one worked well in this problem for keeping 

the diversity among individuals. The following pseudo-code illustrates this idea. 
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Pseudo-code for the Hypermutation procedure 

 

On the other hand, the Random Immigrants approach [Cobb & Grefenstette, 

1993], [Vavak & Fogarty, 1996] replaces a percentage of individuals from the 

population defined by a replacement rate by new, randomly generated ones. In this 

work, random individuals are automatically inserted in the next population every 

generation. The pseudo-code below describes this procedure. 

Pseudo-code for the Random Immigrants procedure 

 

These procedures, as we will see in next section, maintain or increase the 

diversity of the population, helping the algorithm to avoid the premature convergence to 

one local optimum. 

3   Results 

The algorithms were tested using three proteins obtained from the PDB bank 

(http://www.rscb.org/pdb): Met-Enkephalin (PDB code 1PLW), Crambin (PDB code 

1CRN), and DNA-Ligand (PDB code 1ENH). In the Charmm27 force field, the 

parameter “dielectric” was changed to 78.7, in order to simulate the effect of the 

presence of water around the protein. In the first generation of the GAs, individuals 

were randomly initialized by picking a random position of the database for each amino 

acid of each individual. The process was repeated n times, being n the number of 

individuals per generation. For proteins Crambin and DNA-Ligand, which are 

respectively 46 and 55 amino acid long and have been used in other works [Gabriel et 

al., 2007] [Pedersen & Moult, 1996], 500 generations of 100 individuals were evolved 
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in order to reach the final result. Some experiments with 1000 generations indicated that 

there is little improvement in the performance after 500 generations. For protein Met-

Enkephalin, which is 5 amino acids long and has also been used in other works [Nicosia 

& Stracquadanio, 2008] [Bindewald et al., 1998] [Kaiser et al., 1997], 50 generations of 

100 individuals were evolved. Each algorithm was executed for ten different random 

seeds, one per run, but the seeds were the same for all approaches. The size of the 

population, 100 (which is a standard value for GAs), remains fix along the generations 

since mutations and immigrants replace a fraction of the population, keeping constant 

the amount of individuals. 

The three GA approaches (Standard, Hypermutation, and Random Immigrants) 

were tested using both sorted and unsorted database sets. The database sets were sorted 

first by the φ angle, from –180º to 180º; in case of two equal φ angles, then ψ angle was 
used for sorting. When the Random Immigrants approach was used, four replacement 

rates (2%, 6%, 10%, and 30% of the population per generation) were tested.  

 

 

 

3.1 Crambin 

Table 1 shows the results of best fitness, population mean fitness, and standard 

deviation obtained for protein Crambin. The presented results were averaged over 10 

executions. The value of fitness for the native state of protein Crambin is also presented. 

Table 1.  Results for protein Crambin. 

Algorithm Best Fitness Average Fitness Std. Deviation 
Hypermutation (sort) 586.178 716.465 88.462 

Hypermutation (unsort) 581.893 672.237 87.112 

Random Im. 2% (sort) 561.596 574.746 11,978 

Random Im. 2% (unsort) 559.022 590.557 30.941 

Random Im. 6% (sort) 506.252 525.767 16.054 

Random Im. 6%(unsort) 517.040 538.819
 

11.936
 

Random Im. 10% (sort) 519.987 538.219 18.476 

Random Im. 30%(sort) 661.803
 

735.586 43.491 

Standard GA (sort) 695.754 831.733 110.018 

Standard GA (unsort) 626.908 816.237 247.777 

Native state 465.538 - 

From the results, it is possible to notice that both Hypermutation and Random 

Immigrants reach better results than the Standard GA. Indeed, Student’s T tests were 

performed, and when comparing Hypermutation using the sorted database against the 

Standard GA (also with sorted database), the score was 0.019, which means a strong 

probability that the results are really different (not due to sampling errors). For the 

unsorted database for both methods, the score was 0.11, which is not so strong, but 

shows that there is little probability that this difference was due to sampling errors. 

When comparing the Random Immigrants approach with 6% of replacement of 

individuals per generation (which was the best replacement rate found), the probability 

was under 10
-6
 using the sorted database sets, and under 10

-3
 for the unsorted approach, 

which indicates that this approach was better than the Standard GA for this problem. 

3.2 Met-Enkephalin 

733



Table 2 shows the results for Met-Enkephalin. One can observe that all approaches were 

able to find a lower potential energy than the real native state, a result that was already 

reported in the literature (see Section 1) [Pedersen & Moult, 1996]. 

Table 2.  Results for protein Met-Enkephalin (50 generations). 

Algorithm Best Fitness Average Fitness Std. Deviation 
Hypermutation (sort) 43.736 46.237 1.50 

Hypermutation (unsort) 44.492 46.797 1.078 

Random Im. 2% (sort) 43.420 46.577 1.284 

Random Im. 2% (unsort) 44.602 46.618 0.899 

Random Im. 6% (sort) 44.86 46.439 0.979 

Random Im. 6% (unsort) 43.404 45.737 1.246 

Random Im. 10% (sort) 44.847 46.160 0.848 

Random Im. 30%(sort) 46.426
 

47.907 0.670 

Standard GA (sort) 45.599 47.107 1.092 

Standard GA (unsort) 46.203 47.598 1.223 

Native State 345.978 - 

Analyzing the results, it is possible to observe that, again, all approaches were 

better than the Standard GA. When comparing Hypermutation and the Standard GA, 

there was a probability of only nearly 15% of sampling error in the T test, but best 

individuals were found for Hypermutation, which suggests better performance. For the 

Random Immigrants approach, once again the best replacement rate was 6% for this 

problem (in this way, the results for the unsorted database with 10% and 30% are not 

presented), and the score of the statistical comparison was under 5% when the Random 

Immigrants with 6% was compared to the Standard GA.  

3.3 DNA-Ligand 

The biggest protein tested (55 amino acids long) is also the most computationally costly 

among the proteins in this section. Table 3 presents the results for the DNA-Ligand. 

Table 3.  Results for protein DNA-Ligand. 

Algorithm Best Fitness Average Fitness Std. Deviation 
Hypermutation (sort) 1018.911 4920.488 4226.027 

Hypermutation (unsort) 1053.500 2073.168 986.010 

Random Im. 2% (sort) 795.085 1047.238 183.626 

Random Im. 2% (unsort) 704.036 1196.289 458.129 

Random Im. 6% (sort) 691.593 713.582 12.922 

Random Im. 6% (unsort) 673.558 728.646 60.821 

Random Im. 10% (sort) 746.979 868.154 101.005 

Standard GA (sort) 1446.176 3721.321 2794.986 

Standard GA (unsort) 1077.668 4290.645 5047.524 

Native State 427.305 - 

Random Immigrants with replacement rate equal to 30% (sorted and unsorted) 

and 10% (unsorted) were not executed for DNA-Ligand. Once again, the approach with 

6% of replacement rate reached the best results among all tested algorithms, and except 

for the Hypermutation with the sorted database, all algorithms were statistically better 

than the Standard GA, with under 5% probability of sampling error. 

4   Analysis and Concluding Remarks 

In this paper, we studied the effects of inserting diversity control strategies in GAs and 

the use of sorted angles databases applied to the problem of protein structure prediction. 
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In problems with a large solutions’ space, it is difficult for the GA to extend the search 

over many spots because of its characteristics of converging the population to local 

optima. Because of this, it is useful to use mechanisms to maintain the diversity of the 

population, and to minimize the premature convergence problem. 

For the proteins studied here, both strategies, Hypermutation and Random 

Immigrants, were capable of reaching better performance than the Standard GA, 

specially using a replacement rate of 6% for new immigrants. This rate is ideal because 

it is not so small that this diversity cannot be assimilated by the population, as the 

replacement rate of 2% shows us, and it is also not so big that there is no convergence, 

since individuals are replaced too fast for their best characteristics to be kept, which is 

the case of the 30% replacement rate. However, the fitness function has proved not to be 

very suitable, because when the original structures obtained from PDB and the 

structures created by the GAs were compared, there was low similarity. So, more 

interactions should be considered in modeling the fitness function, for example the 

hydrophilic/hydrophobic interactions with other atoms. Nonetheless, this does not alter 

the fact that maintaining or increasing the diversity on the population helps the 

algorithm to reach better results, what can be generalized if fitness function with more 

details is used, as the presence of a large amount of local optima is an intrinsic 

characteristic of the protein prediction problem. It is important to observe that the 

diversity produced by the introduction of random individuals (Random Immigrants) or 

by increasing mutation rates (Hypermutation) helps the population escape local optima. 

Also, the use of sorted and unsorted databases can produce difference on the 

overall performance. In general, the use of unsorted databases resulted, in some cases, 

in a better performance, what can be explained because the mutation of only one gene 

eventually caused a great change in the representation of the mutated gene (amino acid), 

allowing a large jump in the search space which was beneficial. However, it was 

observed that more improvements in the best-of-generation fitness was reached when 

sorted databases were employed, what can be explained because, in this case, a mutation 

causes a small change in the angles of the amino acid, what can result in a deeper 

exploration of the current best solution neighborhood, as shown in [Tragante & Tinós, 

2008]. In this way, if more generations are considered for the problem, the use of sorted 

databases should be more interesting. 

In the future, new approaches for the Random Immigrants should be investigated 

in order to make the population replacement rates a dynamic process. New schemes to 

increase the population diversity should still be tested. Also, the use of GAs should be 

compared to other known methods in the protein structure prediction problem. 
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