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Abstract We present a semiparametric generative model for supervised learning
with structured outputs. The main algorithmic idea is to replace the parameters of an
underlying generative model (such as a stochastic grammars) with input-dependent
predictions obtained by (kernel) logistic regression. This method avoids the com-
putational burden associated with the comparison between target and predicted
structure during the training phase, but requires as an additional input a vector
of sufficient statistics for each training example. The resulting training algorithm is
asymptotically more efficient than structured output SVM as the size of the output
structure grows. At the same time, by computing parameters of a joint distribution
as a function of the full input structure, typical expressiveness limitations of related
conditional models (such as maximum entropy Markov models) can be potentially
avoided. Empirical results on artificial and real data (in the domains of natural
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language parsing and RNA secondary structure prediction) show that the method
works well in practice and scales up with the size of the output structures.

Keywords Semiparametric generative model · Supervised learning ·
Structured outputs

Mathematics Subject Classification (2000) 68T05

1 Introduction

A structured output prediction problem can be formulated as a supervised learning
problem where the output or target space is not restricted in any way and can be
any set (e.g. a set of graphs or sequences). In this way, several predictions can be
made collectively on the same input instance, still maintaining that instances are
sampled independently. The supervised learning problem with structured outputs
is substantially more difficult to solve compared to the case of scalar outputs (like
binary classification or regression) because of the exponential explosion of alterna-
tive predictions to be searched. One crucial issue is the choice of the loss function.
In many large margin methods, the loss is a global measure of the discrepancy
between the predicted structure and the desired output [13, 14]. Regularized margin
maximization has desirable properties but introduces additional computational costs
in the case of structured outputs. In facts, the functional margin in these approaches is
a function f (x) = arg maxy F(x, y) = wψ(x, y) of both the input and output portions
of the data, x and y, respectively. The arg max computation (necessary during
training for verifying margin constraints), is a bottleneck for these approaches and
will dominate learning time complexity as the size of the predicted output grows. It
is important to stress that combined input and output features may bring relevant
information into the learning process, also helping generalization in practice [13].
However, a detailed theoretical analysis shows that the loss functions employed
in [13, 14] are not consistent, and that consistent versions of the losses lead to
non-convex optimization problems [9].

A somewhat different perspective is explored in kernel dependency estimation
(KDE) [3, 15], which focuses on disjoint input and output feature spaces, ψ(y) and
φ(x), respectively. KDE essentially consists of two steps: feature estimation and pre-
image calculation. In the first step, the image of the given target ψ(y) is approxi-
mated as a function g(x) of the input x. In the second step, the pre-image of g(x)

is computed in order to obtain a structured prediction f (x). The second step also
involves searching the output space by minimizing a loss between g(x) and ψ(y) with
respect to y, but it is only necessary when making predictions and not during learning.

Structured output prediction tasks have been solved for many years using efficient
generative models such as stochastic grammars. Two landmark historical applications
of stochastic context free grammars (SCFG), also employed in the experimental
section of this paper, are natural language parsing (where the input is a sentence
and the output a parse tree [2, 8]) and RNA secondary structure prediction (where
the input is a sequence of nucleotides and the output a connection graph between
nucleotides representing RNA secondary structure [12]). Generative approaches are
appealing because of their simplicity and, in practice, their usage is also necessary to
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solve the arg max problem in large margin approaches [13, 14]. Of course generative
approaches may suffer asymptotic convergence problems when the available back-
ground knowledge is incomplete or imperfect and the resulting hypothesized model
structure is incorrect. In these situations, conditional models should be preferred to
reduce bias error. Computationally efficient conditional models can be obtained by
decomposing the prediction task into separate problems associated with output parts.
One attempt in this direction is maximum-entropy Markov models (MEMM) [10],
which on the other hand are known to suffer from the label-bias problem. Label-
bias can be eliminated by evaluating the discrepancy between the whole predicted
and target structure, as in the case of large margin methods. This is essentially the
approach followed by conditional random fields (CRF) [6].

In this paper, we suggest a simple decomposable model that consist of a set
of conditional multinomial distributions associated with an underlying generative
model. For example in the case of stochastic grammars, the multinomials would
model the conditional probabilities of possible expansions for a given non-terminal
symbol, given the input sentence. Input dependency brings a discriminant aspect
into the model, which allows us to compensate for imperfect generative structures.
Assuming that the sufficient statistics (counts) for the underlying generative model
are observed for each example, the structured-output problem can be divided
into a set of polytomous scalar sub-problems that can be independently solved by
(kernel) logistic regression. In the case of partially observed counts, a (generalized)
expectation-maximization approach could be also pursued.

Our experiments suggest that our approach is less affected by label-bias problem
of MEMM, while avoiding the expensive global normalization required by CRF.
The method can also be seen as an instance of KDE where the output features are the
normalized counts of the parts of which the target structure consists and where the
pre-image calculation problem is solved by a max propagation algorithm (Viterbi
decoding) on the generative model. In the remainder of this paper we show that
this method is applicable in several realistic settings, and works well in artificial and
real-world problems.

2 Model and algorithms

2.1 General setting

Let X and Y be two arbitrary sets representing the input and the output spaces of a
supervised learning algorithm. We assume that input-output pairs are sampled from a
fixed unknown distribution p(x, y). The input to the learning algorithm consists of: 1)
a data set D = {(xi, yi), i = 1, . . . m} of i.i.d. input-output pairs; 2) a generative model
with structure S used to build elements of Y that admits as parameters θ a finite set of
M multinomials; 3) for each example (xi, yi), a complete vector of sufficient statistics
(counts) c(xi, yi) for the parameters θ associated with model structure S. The core
of the idea is to learn the parameters for a generative machinery as a function of
x in order to approximate p(x, y). More formally, the goal of learning is to find
a prediction function f : X �→ Y that approximates the probabilistic dependency
between inputs and outputs; we do this by decomposing the problem into two phases
and introducing an auxiliary function g(·). Let us denote by Θ the value space for the
parameters associated with S and let g : X �→ Θ be a function that maps each input
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object x into a corresponding vector of parameters θ = g(x) ∈ Rn. Let Pr(x, y; θ)

denote the probability of the pair (x, y) ∈ X × Y under the model structure S with
parameters θ . We then define

f (x) = arg max
y∈Y

Pr(x, y; θ) (1)

Learning in this setting only involves searching the function g, while f is computed
by an appropriate inference procedure.

2.2 Examples

We now illustrate the above setting with the help of some examples.

Example 1 A typical natural language problem is parsing. In this case, X is a set of
sentences and Y a set of parse trees. The data set is a collection of sentences each
one with its corresponding parse tree. The model structure in this case is a grammar
S = (T, N, P), where T and N are the sets of terminal and non-terminal symbols,
respectively. In a stochastic context-free grammar, rules in P have the form Ak �→ α�,
Ak ∈ N, α� ∈ (N ∪ T ∪ {ε})∗, and have an associated probability θk�. Inference in
this case is efficient, but the model cannot capture context dependencies in natural
language [8]. Context dependency can be incorporated in the model if production
probabilities are computed as function of the input string x, i.e., θk� = gk�(x). This
modification does not affect the running time of the inside-outside procedure for
computing the most likely parse tree. Sufficient statistics in this case are ck�(x, y),
counting the number of times a production rule was used to generate example (x, y),
and can readily be obtained from the data.

Example 2 SCFGs have been extensively applied to the RNA secondary structure
prediction problem [5, 12]. Here we are given a set of strings that encode the base
sequences of various types of RNA and we are required to infer their folding struc-
ture. This structure can be computed as the parse tree of a SCFG (see Section 4.3),
but since each RNA family will exhibit different preferred sub-structures, we can
think that data in this domain was actually generated by a mixture of SCFGs, one
for each RNA family, sharing the same structure but having different parameters.
Learning a SCFG mixture is challenging because the number of underlying compo-
nents is generally unknown. Rather than introducing a latent variable for modeling
family membership, we can use a single structure with input-dependent parameters
as in the above setting. This offers the advantage that the number of families does
not need to be fixed in advance nor be finite.

Example 3 Modeling sequences with high-order Hidden Markov Models (HMM)
allows to capture complex dependencies but is expensive in terms of model para-
meters. Using the above framework, we can stick to the first-order structure and
let parameters depend on the whole sequence, retaining the ability of modeling
higher-order dependencies. This can be seen as a way to use the similarity between
sequences to approximate the memory properties of a more complex generative
model. Note, however, that a first-order HMM with data-dependent parameters can-
not approximate a second order HMM with arbitrary accuracy; consider in fact the
ambiguity that is introduced when two different two-state transitions are collapsed
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into the same one, but both occur in some of the observation sequences. In these
cases the first-order HMM has to collapse two potentially different probability
distributions into a single one, and the two cases can not be disambiguated.

2.3 Learning and inference

We assume that the model structure S is characterized by a disjoint set of multinomial
distributions and denote by θ the corresponding set of parameters.1 For each mul-
tinomial distribution k, having size nk, let θk = gk(x) = σ(W ′

kφ(x)), where φ(x) ∈ Rd

is a feature vector for x, Wk ∈ Rd×nk a weight matrix, and σ the normalized exponen-
tial function:

σ�

(
W ′

kφ(x)
) = exp

((
W ′

k

)
�
φ(x)

)

∑nk
j=1 exp

((
W ′

k

)
jφ(x)

) (2)

where (M)i stands for the ith row of M. Since sufficient statistics for θ are fully
observable in the training data, learning does not require inference and reduces to
finding the weight matrices Wk in a discriminative setting. Each multinomial k can be
independently learned by maximizing its regularized log-likelihood to the normalized
counts in the training set:

arg min
Wk

m∑

i=1

nk∑

�=1

θk�(xi, yi) log σ�

(
W ′

kφ(xi)
) + μC[Wk] (3)

where μ is a regularization constant and C[W] is a penalty measuring the complexity
of W. A standard choice, which was made in all reported experiments, is that of
penalizing non uniform distributions, obtained by setting C[W] = ‖W‖2.

Assuming a valid input kernel function κ : X × X �→ R is available, gk can also
be written

gk(x) = σ

(
m∑

i=1

αiκ(x, xi)

)

(4)

where αi ∈ Rnk are the solution coefficients determined by the kernel logistic regres-
sion [16] problem arising from the dual of (3).

The procedure for inferring the output structure of an example x is the following:
first, the learned (kernel) logistic regression models are used to compute example-
dependent parameters of the multinomials; then, the most-likely output structure
is inferred maximizing the probability in (1). Polynomial time algorithms for exact
inference exist for a number of cases, such as Viterbi parsing for SCFGs. Approxi-
mate inference techniques can be employed when exact inference is intractable.

2.4 Complexity

It is crucial to observe that the prediction function f (x) is never computed during
the learning phase, thanks to our assumption that sufficient statistics c(x, y) are
observable.

1In the NLP example, the multinomials are the probability distributions of the possible expansions
of each non-terminal symbol allowed by the grammar.
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We have to solve a number of logistic regression problems equal to the number
M of multinomials in the model. It can be shown that each of these problems has a
complexity which grows with the square of the number m of training examples [16]
and linearly with the number of values of the multinomial. The overall complexity
is thus O(m2 K) where K is the sum of the number of values of all multinomials; in
the case of SCFGs, for example, this is equal to the number of production rules |P|,
hence the complexity results in O(m2|P|).

3 Related works

The proposed approach can be seen as an instance of KDE [15]. By introducing
feature mappings φ(x) and ψ(y) for inputs and outputs respectively, KDE first
learns the mapping x → ψ(y) by kernelized vector-output regression, and then solves
the pre-image problem of computing the y whose image is the most similar to the
predicted image ψ(y) under a certain norm. In [3], the pre-image problem was
addressed by a graph theoretical algorithm for the case of output strings and k-gram
output kernels. In our approach the output image ψ(y) is the vector of normalized
counts of output structure parts, and the pre-image problem is solved using an
inference algorithm on the generative model (i.e., the Viterbi algorithm in the case
of Natural Language Parsing).

From the perspective of probabilistic graphical models, our algorithm extends
reparametrization of generative models to arbitrary sets of multinomials, while
exploiting complex input dependency via the kernel function. By re-estimating para-
meters of the joint model as a function of the full input structure, the approach should
be less affected by the label bias problem [6] of MEMM [10], which is due to the local
(multinomial-wise) normalization, while avoiding the expensive global normalization
required by CRF. Artificial experiments in Section 4.1 seem to corroborate such
intuition, as our algorithm consistently outperforms those generative models (HMM
and SCFG) which are used to approximate more complex underlying ones. The first
setting—approximating a second order HMM with a first order model—is actually
very similar to the one shown in [6], where MEMM were outperformed by first
order HMM.

Collins [2] introduced the use of margin-based approaches to parameter esti-
mation in structured output prediction. Other researchers [13, 14] have proposed
different loss functions weighting the structural difference between predicted and
true output. All approaches based on large margin have to face the problem of an
exponential number of constraints (variables in the dual formulation). Taskar et al.
[13] addressed the problem by marginalizing them over the cliques of the Markov
network. Tsochantaridis et al. [14] employed an iterative procedure, adding the
single most violated constraint and retraining the model at each iteration, until no
constraint was violated by more than a given threshold. The most violated constraint
is found solving a maximization problem (arg max) for each training example; if
the violation is over a certain threshold, a new SVM is then trained starting from
the previous solution and adding the new constraint. The authors prove that the
global number of constraints added—and thus of SVM optimization problems to
be solved—is linear with the number m of training examples. The maximization
problem corresponds to the inference task described in Section 2.3. In the case of
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SCFGs, for example, it can be computed via Viterbi parsing, so its running time
is cubic in the length L of a given sentence and dominates the running time of
the algorithm, as pointed out by the authors [14]. It must be remarked that our
method, on the contrary, does not need to perform inference during learning, and
this may become a crucial factor when the data set contains large input structures
(for example, in the case of RNA sequences).

McAllester [9] showed that the loss functions employed in [2, 13, 14] are not
consistent, and that consistent versions of the losses lead to non-convex optimization
problems. This trade-off between convexity and consistency suggests that additional
restrictive assumptions may be usefully explored when learning with structured-
output data. Unlike the above methods, our solution does not employ a “global”
loss between target and predicted structures, but a measure of discrepancy between
the observed and the predicted multinomial distributions associated with “local”
building steps in the generative process. Only in very special cases it is easy to prove
consistency, for example under the assumption that at most one of the production
rules with the same left-most part is used in each output structure; otherwise, it
remains an open problem to determine practically significant and more general
hypotheses under which our approach guarantees consistency.

4 Experiments

4.1 Artificial experiments

We run a number of artificial experiments to show how data generated by large con-
text free grammars can be successfully learned by a simpler SCFG whose parameters
depend on the input. Specifically, for simpler SCFG we mean here a model that
has a reduced alphabet set—and consequently a reduced rule set—than the one
which generated the data. All the artificial data sets are generated using the Simple
Language Generator2 (SLG). In the remainder of the paper, we will refer to our
method as Kernel Logistic Regression for Structured Output (KLRSO).

4.1.1 Approximating second-order hidden Markov models

The first artificial experiment consists in label sequence learning and is similar to
the one used to show the label-bias problem in MEMM [6]: the true generative
model is a second-order HMM, where transition rules depend on the previous state
in addition to the dependency on the current state, while the simplified model is a
standard HMM.

Note that it can be readily shown how a second order HMM can be represented
with a regular grammar: a second order HMM with n states can be equivalently
expressed with a regular grammar with n2 non-terminal symbols and with a rule
for each pair state-transition and emission-transition. Using standard HMMs means
that we use a regular grammar with n states instead of n2 and a correspondingly
smaller number of rules. This implies that a simple HMM collapses several states

2http://www.cs.cmu.edu/∼dr/Projects/SLG

http://www.cs.cmu.edu/~dr/Projects/SLG
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Fig. 1 Approximation of a
second order HMM by a
first order HMM and by the
KLRSO model as the number
of data points increases
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and rules and does not have enough expressive power to represent all transitions/
emissions of the true generative model. In the approach presented, however, we
learn the parameters of the simpler regular grammar using the whole string, so that
similarity between sequences can approximate the memory properties of the real
generative model.

We run a set of experiments comparing KLRSO with both first and second order
HMM for data sets of increasing size. Input features for KLRSO are provided by a
spectrum kernel [7] working on k-mers of variable size (3–7) composed with a third
degree polynomial kernel. Figure 1 reports learning curves for the three methods,
where results at each point are averaged over ten data sets randomly generated
by second-order HMM. As expected, we observe an increase in accuracy for more
complex models (the second order HMM and the KLRSO) as more data points
become available for parameters estimation, and a higher accuracy for the KLRSO in
respect to the simple HMM. The difference between first-order HMM and KLRSO
is statistically significant with p-value equals to 0.016, when using a data set of
1000 examples.

4.1.2 Approximating context-free grammars

The second artificial experiment consists in approximating a complex stochastic
context-free grammar with a simpler one. We studied two cases: in the first one, the

Table 1 First task for artificial grammars: the true generative model is the union of n grammars
sharing the same structure

n SCFG KLRSO SCFG KLRSO

2 64.04 ± 1.67 70.09 ± 1.00 57.54 ± 2.39 67.33 ± 1.81
3 63.24 ± 2.13 67.70 ± 1.42 62.79 ± 3.69 65.53 ± 3.10
4 64.04 ± 2.05 68.72 ± 2.09 62.28 ± 2.66 65.59 ± 3.04

F-Measure Complete Match

Results obtained by our method are compared to a simple context-free grammar learned on the
training set. Different rows correspond to a different number of grammars n; results on each row are
averaged over five different experiments. Differences are statistically significant with p-value < 0.01
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Table 2 Second task for artificial grammars: the real generative model is composed by two SCFGs
having different structures

m SCFG KLRSO SCFG KLRSO

100 43.67 ± 3.63 44.94 ± 2.61 50.00 ± 4.80 52.94 ± 4.80
300 46.23 ± 1.30 51.88 ± 1.55 49.67 ± 2.36 62.33 ± 2.49
500 48.75 ± 0.15 52.54 ± 0.90 51.79 ± 0.43 62.89 ± 1.28

F-Measure Complete Match

Results obtained by our method are compared to a simple context-free grammar learned on the
training set. Different rows correspond to different training set sizes m; results on each row are
averaged over three different experiments. When m = 100 the differences are not statistically
significative, while when m = 500 they are, with p-value < 0.01

true generative process is the union of n SCFGs which share the same structure (i.e.,
the same rule set) but have different parameters (i.e., different rule probabilities).
The union grammar chooses, with a specified probability distribution, one of the
grammars to generate a sentence. In this setting we approximate the union with a
single base grammar but, once again, we allow the parameters to depend on the
generated string. We see this task as an artificial model reflecting what happens
in the RNA Secondary Structure Prediction Task (see Section 4.3). In the second
experiment, the true generative process is the union of two grammars that do not
share the same structure. Here our simpler model S is the union of all rules of each
distinct grammar.

For both experiments, we compared a standard SCFG with parameters estimated
from the training data set, to our method with a polynomial kernel of degree three
on top of a spectrum kernel. Results shown in Tables 1 and 2 indicate that the
proposed approach models the underlying generative process more accurately than
a standard SCFG. For the second experiment, results are reported for different
values of the training set dimension m: it is interesting to observe that when m is too
small, the difference between our method and a SCFG is not statistically significant;
on the contrary, when m increases, the difference is statistically significant with
p-value < 0.01, which is due to a better approximation of the probability distributions
of the sufficient statistics.

4.2 Natural language parsing

Parsing is a fundamental task in Natural Language Processing (NLP) and is one of the
most studied structured output learning problems. In parsing we are given a variable
length sequence of words (a sentence) x = x1, . . . , xk, and the goal is to build the
(most plausible) explanation y of x. The explanation usually takes the form of a
derivation tree, that is, a tree structure that represents the order in which certain rules
from a formal grammar are applied to derive the sentence [2, 4]. Although human
language cannot be fully explained by simple SCFGs, these are usually adopted as a

Table 3 Results on 163 short sentences of Penn TreeBank (length ≤ 10)

SCFG svmcfg(0/1) svmcfg(F1) KLRSO

F-Measure 84.07 86.36 87.34 87.32
Complete Match 55.97 60.25 59.63 63.35
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Fig. 2 F-Measure performance on training data, function of the Kullback-Leibler divergence
between the predicted distribution and the one observed on training data. After performing the
training, we compute the sum, over all the heads of the grammar, and over all the training examples,
of the Kullback-Leibler divergence between the observed distribution for that example, and the
predicted one. Each point is calculated using as the target distribution a different distribution
P̂ = λP + (1 − λ)U , where P is the distribution of the observed counts, and U is the uniform
distribution; the values of λ which have been used are mentioned in the figure

good approximation. Here we propose to decompose the problem of learning the
probabilities of SCFG rules in M different problems, where M is the number of
heads3 of the grammar, on a per example basis.

We performed three experiments: in the first one (proposed by [14]) we predict
the model probabilities over short sentences in the Penn TreeBank, in the second
one we predict only rules involving verbs and in the last one we worked on Italian
sentences from the Turin University TreeBank. Finally, we report some experiments
concerning the running time of our approach with respect to the length of the input,
in comparison with svmcfg by Joachims.

4.2.1 Parsing short sentences of Penn TreeBank

Our first experiment on NLP reproduces the one proposed by [14]: we select 4,071
sentences of length at most 10 from section F2–21 of the Penn TreeBank Wall Street
Journal corpus as training set, and 163 sentences of length at most 10 from section
F22 as test set. The grammar is processed4 as in [4] yielding 1,517 rules and 27
logistic regression problems (one per head). We further limit the rules involved in the
prediction task as some heads (NP, VP, S) induce logistic regression problems with
high cardinality (e.g. 547 for NP). This saves computational time and also increases
performance (possibly because of a beneficial effect in reducing the sparseness
over the regression classes). We therefore use a frequency threshold to limit the
number of rules and we resort to the SCFG probabilities estimated on the global
training set for the infrequent rules. A further improvement may include the use of

3We name head the left-most part of a production rule.
4Since the process is not explained in full details, we cannot assure that the grammar obtained is
exactly the same as the one used by [14].
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Table 4 Results on 527 sentences of Penn TreeBank selected for the experiment on the distribution
of VP expansions

SCFG KLRSO KLRSObest

F-Measure 70.52 70.99 71.43
Complete Match 17.27 21.44 23.72

The third column shows the results which would be achieved by our method, if an oracle predicted
the real distribution of VP expansions

a gating network to have a mixture of the two grammars (the context-free and the
predicted one).

We tried different kernels over sentences and finally resorted to the Weighted
Decomposition Kernel [11] on the sequence of Part-of-speech tags (i.e., discarding
the lexical information), with a selector of size 1 and a context of size 5. We compared
our method with a SCFG and with the max-margin structured output method svmcfg

by Joachims, trained using both F1 and 0/1 losses. Results are shown in Table 3.
Note that the reported results differ from those in [14] as we now do not include the
prediction of the root node (which is trivially present in all parses) in the F-Measure.5

Figure 2 shows the relation between F-Measure and Kullback-Leibler divergence
between the predicted distribution and the one observed on training data. This
experiment justifies the choice of the loss function optimized by the logistic regres-
sion algorithm, since it shows that minimizing the discrepancy between the sufficient
statistics observed on training data and the predicted ones, results in minimizing also
the error on the structured output prediction.

4.2.2 Disambiguating VP rules

In the second experiment we predict only the probability distribution of the expan-
sions of the VP head, resorting to the SCFG probabilities for all the other rules. This
experiment shows that improvement can be achieved even when dealing with specific
ambiguous grammatical phenomena rather than tackling the whole parsing task.
We extracted from the whole Penn TreeBank the trees containing only those VP
rules appearing at least 10 times in the training sections: we obtained 9,564 training
examples from sections F2–F216, and a test set of 527 instances from section F22. The
number of total VP expansions in this subset was reduced to 46. In Table 4 we report
comparative results between our method, a SCFG learned on the whole training
set, and a SCFG having the exact VP distribution (which is an upper bound on the
performance of our method): the latter column shows that our method recovers most
of the gap between the performance of the SCFG and that of the oracle informed
about the true VP distribution.

4.2.3 Parsing Italian sentences

The third experiment uses the Turin University Italian TreeBank (TuT) [1]. Despite
the small size of this data set (1,790 sentences), we report comparative results to show

5This is a common practice and is default in the standard evaluation software evalb (http://nlp.
cd.nyu.edu/evalb/).
6This time we have no limitation on the length of the sentences.

http://nlp.cd.nyu.edu/evalb/
http://nlp.cd.nyu.edu/evalb/
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Table 5 Results obtained performing a 5-fold cross validation on the 1,790 examples of the Turin
University TreeBank

SCFG KLRSO

F-Measure 60.71 ± 1.60 62.50 ± 1.49
Complete Match 12.68 ± 1.27 15.35 ± 1.82

Columns show the F-Measure bracketing and the Complete Match, averaged on the five folds.
Differences are statistically significant with p-value < 0.01

how our approach does not require any hand tuning when dealing with different
languages. In Table 5 we report the average results on a 5-fold cross validation
experiment, comparing our algorithm to a SCFG. For the Italian language, the kernel
which gave best results was again a Weighted Decompositional Kernel, but with a
selector of size 2 and a context window of size 5.

4.2.4 Complexity issues

In studying complexity issues, it must be remarked that in the method by [14], the
cost for computing the argmax becomes dominant when the dimension of the input
is large. Furthermore, its effectiveness and efficiency are strongly affected by the
choice of the regularization parameter. For the experiments described in the previous
section, the best value of C for svmcfg was 103; anyway, for measuring temporal
performance, we set the value of C to 102.

We collected four different data sets, all composed by 100 sentences extracted
from the Penn Treebank, each containing sentences whose lengths belong to a
specific range: the first set contains only sentences having at most 10 words, the
second only sentences containing a number of words between 10 and 20, the third
between 20 and 30, and the fourth between 30 and 40. As shown in Table 6, the
dependence on the length of the sentences is evident for svmcfg, and this can become
a bottleneck when the algorithm has to deal with very long input sequences, as in the
case of RNA secondary structure prediction (see Section 4.3).

As for the dependence on the data set dimension, our experiments showed an
advantage for svmcfg, when dealing with data sets of short sentences (i.e., 2 min
against 6 min with a data set of 1000 examples). Yet, when large data sets contain
sentences of any length, the inference performed during the training phase becomes
dominant for svmcfg: a final experiment on a set of 5,000 randomly selected sentences
showed a marked difference between 7 h for our approach and 2 days and a half for
the max-margin method.

Table 6 Time comparison of the two algorithms with inputs of different length

Length svmcfg KLRSO

10 3 s 9 s
20 2 min 3 s 17 s
30 1 h 7 min 23 s
40 60 h 44 min 7 s 38 s

Each training set is composed by 100 sentences of length within [L-9,L]. C for svmcfg is set to 100
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Table 7 Results averaged on 5-fold cross validation on two RNA families

Family SCFG SCFG2 KLRSO KLRSO2

Enterovirus5CRE 94.30 ± 1.09 90.18 ± 1.23 96.01 ± 1.29 95.85 ± 1.34
Flavivirus 95.55 ± 1.20 84.34 ± 1.95 98.01 ± 0.87 98.16 ± 0.99
Weighted 94.84 ± 1.14 87.67 ± 1.54 96.87 ± 1.11 96.84 ± 1.19

4.3 RNA secondary structure prediction

RNA secondary structure is composed of double-stranded RNA regions formed by
folding the single-stranded molecule back on itself: such foldings are made possible
by the presence of complementary subsequences in the downstream and upstream
of the sequence, so that Watson-Crick base pairing between the complementary
nucleotides G/C and A/U can occur.

The prediction of RNA secondary structure consists in finding base-paired regions
(stems) and non paired ones (loops) within a given RNA sequence. The use of
SCFGs for this kind of task has been studied in several works [5, 12]. Unlike the
Natural Language Parsing case, for RNA we do not have the true parse nor the
structure of the grammar: the only available information is the base-pairing (called
bracketing). In a sequence with a loop uuggaaa and a stem, for example, we are given
the following pairing information: . . . g[u[a[g[c[auuggaaau]g]c]u]a]ugua . . ..

As our approach assumes to have direct knowledge of the counts of the rules
applied in the derivation of each training string, we need to create a grammar and
pre-process the available bracketed strings to infer their most plausible derivation
under the chosen grammar. Following the approach described in [5], we assume the
grammar structure to consist of the following non-terminal symbols: S for stem, L for
loop, I for undifferentiated, and A, C, G, U for the four bases. Rules in this grammar
code for the transition from S to L through I and vice-versa allowing the recursive
nesting of loops and stems, and constrain stems to produce paired subsequences with
rules such as S → ASU .

To enhance the expressive power of the grammar (and therefore also parsing
performance), we extended the grammar rules by splitting each non-terminal T in a
certain number k of new non-terminals, where k is a parameter of the new grammar:
symbol S for stem, for example, splits up in S1, . . . , Sk, and the same happens for
other non-terminals. Initial symbol becomes I0, and each undifferentiated symbol
I j can produce a different non-terminal of superior order, that is for example
I j → Sj+1, while Sj and Lj produce non-terminals of the same level: in this way,
subscripts of the non-terminals can be seen as a sort of “nesting factor” within the
parse tree. This method increases the number of rules of the grammar, but at the
same time it enhances its expressivity, since a certain rule, say S → ASU , can have

Table 8 Results averaged on 5-fold cross validation on three RNA families

Family SCFG SCFG3 KLRSO KLRSO3

Enterovirus5CRE 94.30 ± 1.09 90.08 ± 1.02 96.01 ± 1.29 96.11 ± 1.39
Flavivirus 95.55 ± 1.20 56.56 ± 3.14 98.01 ± 0.87 98.09 ± 1.44
U5SpliceosomalRNA 85.11 ± 1.26 80.32 ± 1.78 86.34 ± 1.48 86.71 ± 1.39
Weighted 91.83 ± 1.18 77.00 ± 1.89 93.61 ± 1.22 93.79 ± 1.41
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Table 9 Results averaged on 5-fold cross validation on four RNA families

Family SCFG SCFG4 KLRSO KLRSO4

Enterovirus5CRE 94.30 ± 1.09 88.95 ± 1.58 96.01 ± 1.29 95.85 ± 1.67
Flavivirus 95.55 ± 1.20 53.80 ± 2.74 98.01 ± 0.87 98.16 ± 1.30
U5SpliceosomalRNA 85.11 ± 1.26 77.41 ± 2.67 86.34 ± 1.48 86.26 ± 1.03
HepatitisCVirusVII 70.63 ± 4.51 48.78 ± 3.37 74.41 ± 3.28 74.40 ± 4.51
Weighted 88.05 ± 1.77 70.05 ± 2.46 90.20 ± 1.59 90.17 ± 1.92

different probabilities according to different depths in the tree: p(Sj → ASjU) �=
p(Sk → ASkU), if k �= j.

In order to obtain the true parse trees consistent with the available bracketing
information, we incorporate the bracketing symbols in the grammar. The brackets
are then removed from the grammar and the sequences together to their output
structural information are now coded in the parse tree.

For our experiments we used data collected from the Rfam data set7, which
contains RNA sequences from different families, both manually and automat-
ically annotated. We collected data (both manually and automatically anno-
tated) from four families: Enterovirus5CRE, Flavivirus, HepatitisCVirusVII and
U5SpliceosomalRNA. Note that we eliminated sentences with gaps and symbols
other than [acgu]. The data set obtained was composed by 196 sequences for
Enterovirus5CRE, 150 for Flavivirus, 154 for U5SpliceosomalRNA and 108 for
HepatitisCVirusVII, for a total of 608 examples.

We run two sets of experiments: in the first one, each family was modeled
independently and we compared our method to a standard SCFGs; in the second one,
we jointly modeled the families all together, and we learned a single grammar for the
whole training set. The latter is particularly interesting, since we do not need to know
how many families compose the data set, and which family each sequence belongs
to, but we only use the kernel function to measure similarity between different
sequences. The kernel employed was a spectrum kernel with k-mers of size 5 up to 9,
composed with a third degree polynomial kernel. The experiments were run first on
the first two families (Enterovirus5CRE and Flavivirus), then we added the third
family (U5SpliceosomalRNA) and finally the fourth (HepatitisCVirusVII). For all
the experiments we performed a 5-fold cross validation.

All experiments confirm that our method always outperforms the single SCFG
learned on each single family; in addition, our second set of experiments shows
that even a grammar learned on the whole data set, composed by all the families,
outperforms the SCFG learned on the single families. As a comparison, we even
learned a single SCFG on all the families: as expected, it performs very poorly,
since the families are very different. Results are shown in Tables 7, 8 and 9:
columns labeled SCFG and KLRSO report results for models trained on each family
separately, while models in SCFG j and KLRSO j are trained on j families altogether.

Unfortunately we cannot compare our method against svmcfg, since the current
software implementation doesn’t allow to easily insert complex input dependent
features: in the case of RNA, ψ(x, y) features alone are not expressive enough,
preventing svmcfg from learning a relevant grammar for this task.

7http://www.sanger.ac.uk/Software/Rfam/

http://www.sanger.ac.uk/Software/Rfam/
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In some cases we noticed that parsing strings of a specific family with the grammar
learned from all the families together produces better results than those achieved by
a grammar learned on the single family: although the property is not exhibited by all
families, it may indicate a sort of information transfer between some families and will
be subject of further investigation.

5 Conclusions

We have presented an efficient semi-parametric approach to the structured-output
learning problem. The core idea is to learn the parameters of a grammar structure on
a per-example basis and use them to guide the inference phase producing the desired
output structure. The presented approach exhibits a lower computational cost with
respect to maximum-margin based methods by avoiding any inference step during
the learning phase. Despite its simplicity the method shows comparable experimental
results to max-margin methods while reducing the computational time when the
input size becomes large, as it happens when dealing with RNA sequences or with
unrestricted natural language sentences.

The proposed approach assumes knowledge of the sufficient statistics of the
generative model for each training example. A more general learning setting is con-
ceivable in case of partially observed counts, by relying on a generalized expectation-
maximization approach.
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