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1. Introduction

Fluctuation theory is a cornerstone of statistical mechanics. On the one hand fluctu-

ation theory naturally provides variational characterizations of the stationary regime.

On the other hand, the fluctuations themselves are very interesting, especially because

in recent years all kinds of mesoscopic systems have become observable and manageable.

Think of e.g. molecular motors and transport through nanotubes in biophysics. Fur-

thermore, and because of this, fluctuation theory has already helped in understanding

nonequilibrium statistical mechanics, see e.g. [1] - [14].

In fluctuation theory one one has to distinct between static and dynamical fluctuations

[14]. In static fluctuation theory one conditions on having a stationary regime in the

infinite past, and measures the system at the present (time zero). This has been exten-

sively studied in [3, 4] for the hydrodynamic limit of several driven lattice gases. There,

a Hamilton-Jacobi equation is derived for the fluctuations in the spirit of [2].

We will concentrate on dynamical fluctuation theory, as started by Onsager and Machlup

in 1953 [1]. In this theory, the system is continuously measured, and the fluctuation is a

sequence of correlated non-equilibrium states (the time interval between two successive

measurements is less than the correlation time). If the measurement time is infinite, the

measured value of the observable will coincide with the ‘typical’ value. For finite times,

averaged observables may or may not coincide with this typical value. If measurement

times are large, then the fluctuations have to persist for a long time to be significant.

One here enters in the regime of large deviations.

Extensions of the Onsager-Machlup theory have been made in recent years to

nonequilibrium dynamics. We will continue in the lines of [11, 12, 13]. More precisely,

this work is an extension of our previous work in [11]. In [11] we have considered

dynamical fluctuations of driven (by a time independent drive) overdamped diffusions.

The most important results there are:

1. The introduction of the concept of traffic, which complements the concept of entropy.

2. The computation of the joint fluctuations of occupations and currents.

3. A formulation of dynamical fluctuations in terms of thermodynamical potentials.

4. An explanation of entropy production principles close to equilibrium.

In the present contribution we carry on the program of [11] to time-dependent (but

periodic) dynamics like in [15]. We will start here by introducing the model we work

with.

1.1. The model

To introduce some notation, let us start with a simple model for an overdamped diffusion

of a Brownian particle in d dimensions, described by the Langevin equation (using the
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Itô interpretation):

dxt = −χ(xt)∇U(xt)dt +∇D(xt)dt +
√

2D(xt)dBt (1)

Here, xt is a d-dimensional vector describing the position of the particle. The d-

dimensional space that the particle can move in is denoted by Ω. Bt is a d-dimensional

vector of standard Gaussian white noises, χ is the mobility matrix and D is the diffusion

matrix. Using the Einstein relation we have χ = βD, where β is the inverse temper-

ature of the surrounding fluid (bath). The potential U can be seen as the energy of

the system (particle). We will assume that Ω is either compact with periodic boundary

conditions, or without boundaries. Think of e.g. a d-dimensional torus or Rd. In the

latter case the potential U should be sufficiently confining, which makes sure that the

particle does not ‘escape to infinity’ (which happens e.g. for pure diffusion with U = 0

in Rd). An example of such a confining potential is a harmonic potential U = k
2

∑d
i=1 x2

i .

The Langevin equation defines trajectories of the particle, a trajectory being the position

of the particle as a function of time. Instead of considering trajectories, one can also

take a probability density µ0(x) as an initial condition, and see how this evolves in time.

This evolution is given by the Fokker-Planck equation:

dµt(x)

dt
= ∇ · [D(x)∇µt(x) + χ(x)∇U(x)µt(x)] (2)

The Boltzmann distribution

ρ0(x) =
1

Z
e−βU(x)

solves (2) with left-hand side zero, and is thus a stationary distribution for this process.

We assume that U and χ are such that this stationary distribution is unique and that

for any µ0 we have that µt → ρ0 for t → ∞ (ergodicity). Indeed, we are dealing here

with a (simple) equilibrium process. This process we will use as our basic reference

process.

We add to the reference model (1) a time-dependent force ft. We take the time-

dependence to be periodic with period τ : ft = ft+τ . The Langevin equation of the

new stochastic process is now given by:

dxt = χ(xt)Ft(xt)dt +∇D(xt)dt +
√

2D(xt)dBt (3)

where we shortened notation by defining Ft(x) = ft(x) − ∇U(x). Note that the force

which the particle undergoes depends on time in two ways: first of all because the

force depends on the position of the particle and the position depends on time, and

secondly because the force changes in time according to some deterministic periodic

protocol. Note also that the system is now driven from equilibrium, because of the

time-dependence of the dynamics. Our analysis includes the case in which the force ft

is nonconservative, meaning there is no potential from which it derives, and as a result

currents are generated.
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The corresponding Fokker-Planck equation for distributions µt is now:

dµt(x)

dt
+∇ · Jµt(x) = 0 (4)

with the probability current Jµt given by

Jµt(x) = χ(x)Ft(x)µt(x)−D(x)∇µt(x) (5)

As the forcing is now time-dependent, we do not expect to find a stationary distribution.

But because the forcing is periodic in time, what we expect is that given a long enough

time, measures µt will ‘relax’ to an evolution that is also periodic in time. In other

words we assume that there is a measure ρt(x) that solves the Fokker-Planck equation

(4) and satisfies ρt = ρt+τ , and moreover µt → ρt for t → ∞. We will call this a non-

equilibrium oscillatory state (NOS). Note that such a NOS becomes a non-equilibrium

steady state (NESS) when the period of the forcing goes to infinity and the dynamics

become time-independent.

1.2. Questions

As said before, when one considers particle densities, rather than the trajectory of one

particle, the dynamics of the system is described by a Fokker-Planck equation, which

is basically a deterministic equation. The determinism arises because of the law of

large numbers, as a particle density by its very definition involves many particles. But

for mesoscopic systems this assumption is not always valid, and fluctuations from this

average “Fokker-Planck behavior” become important. The first question that then arises

is:

1. What are the right observables?

These observables will be the empirical occupations µn,t and currents jn,t, where n stands

for the number of periods (T = nτ) that have lapsed and t ∈ [0, τ ] for a specific time in

each period. Then e.g. µn,t(A) counts the number of periods in which the particle is in

a subset A of the total space at this specific time t within each period. We will explain

this more exactly in Section 3.1.

What we expect is that µn,t → ρt and jn,t → Jρt when we let n →∞. But, as the process

is stochastic, for large but finite numbers of periods, anything can happen. There is a

probability that, even after a long time, the system has not yet reached the NOS, but

µn,t resembles some other distribution, µt say. It is here that we enter the domain of

dynamical fluctuations and large deviations [17, 18]. The probability of this happening

will be exponentially small in time:

P (µn,t = µt) ∝ e−TI(µt)

where I(µt) is called a rate function, or a fluctuation functional. In the same way we

can define I(jt) for the currents, and I(µt, jt) for the joint fluctuations of occupations

and currents. It is here that the following and main questions arise:
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2. Can we calculate the fluctuation functionals?

3. What is their thermodynamical meaning?

Concerning question 2: in Section 3.2 we explicitly calculate I(µt, jt), see (21). From

this I(µt) and I(jt) can in principle be calculated through variational calculus, as

I(µt) = infjt I(µt, jt) and I(jt) = infµt I(µt, jt). Explicitly calculating these is hard,

but we work out some specific examples in the ensuing chapters.

The main purpose of this text is to discuss the thermodynamic meaning of these fluctu-

ation functionals. This is done in several steps at several places. First in Section 2 we

define and discuss the main thermodynamic ingredients used throughout our argument:

entropy and traffic. As we will see, entropy is time-antisymmetric and the less-known

traffic is its time-symmetric counterpart. The latter is a measure of the dynamical ac-

tivity of the process. Then, in Section 3, we keep track of these ingredients throughout

the calculations. Additional thermodynamic interpretation is then provided in Section

6, where we try to make a connection with the idea of thermodynamic potentials.

Finally, we study the limits of slow dynamics and small fluctuations. With a slow

dynamics we mean here that the time-derivative of the forcing is small. This will be

discussed in Section 7.

2. Entropy and traffic

Our setting is a driven diffusive system which is not in equilibrium. Constantly, there

is an entropy flux between system (the Brownian particle) and environment (the heat

bath). This entropy flux is of course just a heat flux. If the system has at a certain

time a density µt, then the heat flux into the environment is equal to minus the change

in energy of the system plus the work done on the system:

Qt(µt) =

∫
ft(x)Jµt(x)dx− d

dt

∫
U(x)µt(x)dx (6)

Indeed, the first term on the right-hand side is the work done by the nonconservative

force and the second is the energy change. Note further that this flux is a flux per unit

of time (i.e. it is a rate).

It has been known for a while now [16] that the entropy production can be defined and

computed by comparing the probabilities of trajectories to the probabilities of time-

reversed trajectories. This way of looking at entropy production is very convenient in

dynamical fluctuation theory because it makes clear why it plays such an important

role in the fluctuation functionals. On the other hand, in this way it also becomes clear

that entropy is not the only important quantity. Entropy has its counterpart, called

traffic (see [11, 12, 13]), that becomes very important when going out of equilibrium.

Therefore we will define and compute these quantities in this section, before going to

the actual computations of fluctuation functionals in the next section. To do this, we

first need to know how to compute probabilities of trajectories.
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2.1. Trajectories

In statistical physics it is important to calculate expectation values of observables. These

expectation values are actually averages over all possible realizations of the stochastic

process at hand. For our model such a realization is the successive positions the

Brownian particle visits during an interval [0, T ], this is called a trajectory or path,

which we denote by ω = (xt)0≤t≤T . The probability density of such a path is denoted

by Pµ0(ω), where µ0 denotes the density from which the initial position x0 is chosen.

Expectation values of observables O are then computed/defined by integrating over all

possible trajectories:

〈O(ω)〉µ0
:=

∫
dωPµ0(ω)O(ω) =

∫
dPµ0(ω)O(ω)

Due to the Gaussian nature of the noise in (3), the probability density of observing a

path ω is proportional to[11].

Pµ0(ω) ∝ µ0(x0) exp

{
−1

4

∫ T

0

dt[ẋt − χFt −∇D]D−1[ẋt − χFt −∇D]

}

where we have, for the sake of clarity, notationally suppressed the dependance of all

functions on xt. Actually, for the analysis in the rest of this text, we will use only relative

probability densities. In this section we discuss the relative probability density of our

process with respect to the reference process given by 1 Denoting the path-probability

density of the reference by P 0, we get

dPµ0

dP 0
ρ0

(ω) =:
µ0(x0)

ρ0(x0)
e−A(ω) (7)

where the action A is given by

A(ω) = −β

2

∫ T

0

dxt ◦ ft +
β

4

∫ T

0

dt[ft +
2

β
∇− 2(∇U)]χft (8)

in which the circle ◦ denotes a Stratonovich-type stochastic integral (see Appendix

B). This relative density, described by the action (8) is the key quantity needed to

compute the fluctuation functionals in our framework. We closely examine its physical

interpretation by splitting the action A into its time-symmetric and time-antisymmetric

parts. We define the time-reversal operator θ as follows: it reverses the trajectories in

time θω = (xT−t)0≤t≤T , and it also reverses the protocol of the forcing θft = fT−t. The

anti-symmetric and symmetric parts of the action are then defined as

S(ω) = θA(ω)− A(ω) = β

∫ T

0

dxt ◦ ft(xt) (9)

T (ω) = θA(ω) + A(ω) =
β

2

∫ T

0

dt[ft(xt) +
2

β
∇− 2(∇U(xt))]χ(xt)ft(xt)

Physically, S(ω) is the excess entropy flux into the environment during the trajectory ω,

excess with respect to the equilibrium reference process. We will name T (ω) the traffic

in accordance with[11].
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2.2. Entropy

It has been known for a while now, that entropy production is a measure of irreversibility.

In [16] it was argued that the total entropy change in the world as a consequence of the

process is given by

Stot(ω) = log
dPµ0(ω)

dPµT
θ(ω)

where µT is the measure that arises when µ0 is evolved through time via the Fokker-

Planck equation (4). Indeed, for an equilibrium process, like the reference process (1),

this will be zero:

Seq
tot(ω) = log

dP 0
ρ0

(ω)

dP 0
ρ0

θ(ω)
= 0

This means that we can write

Stot(ω) = log
dPµ0(ω)

dPρ0(ω)
− log

dPµT
θ(ω)

dPρ0θ(ω)

= log
µ0(x0)

ρ0(x0)
− log

µT (xT )

ρ0(xT )
+ S(ω)

with S(ω) the antisymmetric part of the action as defined in (9). As said before, this S is

the excess entropy flux into the environment. It is the work done by the force ft times β.

Let us compute the expectation value of Stot. The average of a Stratonovich integral

is given in Appendix B, see (B.9):

〈Stot〉µ :=

∫
dPµ(ω)Stot(ω) = SR(µ0)− SR(µT ) + β

∫ T

0

dt

∫
dxftJµt

where SR(µ) is the relative entropy of the measure µ with respect to the reference

equilibrium measure:

SR(µ) =

∫
dxµ(x) log

µ(x)

ρ0(x)

Using the explicit form of the reference equilibrium measure ρ0 ∝ e−βU , we can rewrite

Stot in a way that is independent of the reference:

〈Stot〉µ :=

∫
dPµ(ω)Stot(ω) = s(µT )− s(µ0) + β

∫ T

0

dt

∫
dx[ftJµt − µ̇tU ]

where s(µ) is now the Shannon entropy associated to the distribution µ

s(µ) = −
∫

dxµ(x) log µ(x)

Compare this to (6). We see that the total entropy production is the change in shannon

entropy plus the entropy flux between system and environment.
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Using the Fokker-Planck equation we can still rewrite the total average entropy

production in its shortest form:

〈Stot〉µ0
=

∫ T

0

dtσt(µt) (10)

with

σt(µt) :=

∫
dxJµt(µtD)−1Jµt

2.3. Traffic and its relation to entropy

There is still a part of the action we have not discussed yet, that is, the time-symmetric

part, or the traffic, second equation in (9). In contrast to the entropy production, this

traffic depends very much on the reference process we take, so one should always keep

in mind that traffic is an excess w.r.t to this reference. The average of the traffic can

be computed and will be useful:

〈T 〉µ0
=

∫ T

0

dtτt(µt) (11)

with

τt(µt) :=
β

2
µt[ft − 2(∇U) +

2

β
∇]χft

A straightforward calculation then connects this average traffic to the total entropy

production:

τt(µt) =
1

2
σt(µt)− 1

2
σft=0

t (µt) (12)

where the second term on the right-hand sign is the entropy production in the reference

equilibrium dynamics, but computed for a (nonequilibrium) distribution µt.

3. Dynamical fluctuations

In this section we want to examine the fluctuation functionals that govern the asymptotic

probabilities of observing nonstationary occupations and currents. For this it is very

important to correctly define the observables we want to consider.

3.1. Defining the observables

To correctly define our observables we assume that the time of measurement T is very

long, and a multiple of the period τ : T = nτ . We then define the empirical occupation

density µn,t(x) as follows:

µn,t(x) =
1

n

n−1∑

k=0

δ(xt+kτ − x) (13)

This density ‘counts’ for every time 0 ≤ t ≤ τ the number of periods in which the

particle is at position x at this specific time within each period. In this sense this
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empirical density is very detailed. As a function of x it satisfies
∫

dxµn,t(x) = 1. The

reason for defining this detailed density is that it has the property that for any function

wt(xt)

1

T

∫ T

0

dtwt(xt) =
1

τ

∫ τ

0

dt

∫
dxwt(x)µn,t(x) (14)

As a consequence of the ergodicity assumption we made earlier, we have that
1
T

∫ T

0
dtwt(xt) →

∫
dxwt(x)ρt(x) for T → ∞. This shows us that for T → ∞ we

have that µn,t → ρt almost surely. In other words:

lim
T→∞

P(µn,t = µt) = 0, µt 6= ρt

lim
T→∞

P(µn,t = ρt) = 1

However, if µt 6= ρt, one can compute

I(µt) := − lim
T→∞

1

T
log (P(µn,t = µt)) (15)

where I(µt) is called a rate function, or a fluctuation functional. If it is finite, then we

can schematically write

P(µn,t = µt) ∝ e−TI(µt) (16)

by which we see that the probabilities of fluctuations µt are exponentially damped in

time. If I(µt) = ∞, then the probability of the fluctuation µt is damped even stronger.

We will only consider fluctuations for which the fluctuation functional is finite. We have

to admit that the equality sign in the probabilities P(µn,t = µt) should not be taken

too seriously, the precise mathematical formulation of this and of rate functions can be

found in[17]. A more intuitive approach to large deviations is given in[18, 19].

The empirical occupation density is manifestly time symmetric. Its time antisymmetric

counterpart is given by

jn,t(x)dt =
1

n

n−1∑

k=0

dxt+kτ ◦ δ(xt+kτ − x) (17)

This measures the current at x at a specific time 0 ≤ t ≤ τ in each period, and averages

over n periods. By this definition we see that for any function wt

1

T

∫ T

0

dxt ◦ wt(xt) =
1

τ

∫ τ

0

dt

∫
dxwt(x)jn,t(x) (18)

By this and ergodicity we can also see, together with formula (B.9), that for T → ∞
we get jn,t → Jρt . In the same sense as for occupations, one can define the rate function

I(jt).

A more central and explicit starting point however is the rate function for the joint

fluctuations of µt and jt, defined by

P(µn,t = µt, jn,t = jt) ∝ e−TI(µt,jt) (19)
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An important note before we go on calculating rate functions is that I(µt, jt) = +∞
whenever µt 6= µt+τ or dµt

dt
+∇ · jt 6= 0, see Appendix A. Therefore we do not consider

these cases.

3.2. Joint fluctuations of occupations and currents

To compute I(µ, j) we use a standard large deviation technique, sometimes referred

to as Cramér tilting, see e.g. [17, 18]. Here is the recipe: modify the driving of the

original dynamics, changing ft into some gt and we take care that this new and modified

dynamics is chosen so that µt and jt become both typical in the sense that

dµt

dt
+∇ · jt = 0, jt = χ(gt −∇U)µt −D∇µt (20)

which explicitly defines gt.

We will prove that

I(µt, jt) =
1

2τ

∫ τ

0

dtτ f
t (µt)− 1

2τ

∫ τ

0

dtτ g
t (µt)+

β

2τ

∫ τ

0

dt

∫
dx(gt−ft)·jt(21)

The first two terms constitute an excess traffic averaged over one period of time (τ).

Note that from now on, we will add superscripts to quantities defining in which dynamics

they are computed, i.e. in the original dynamics with f or in the modified dynamics

with g. The second term is the average work over one period of time, done by the extra

force gt−ft that is added to the original dynamics. Note that with the relation between

average traffic and entropy production (12), we can also write

I(µt, jt) =
1

2τ

∫ τ

0

dtσf
t (µt)− 1

2τ

∫ τ

0

dtσg
t (µt)+

β

2τ

∫ τ

0

dt

∫
dx(gt−ft)·jt(22)

To prove (21), we write the probability of the fluctuations as

P (µn,t = µt, jn,t = jt) =

∫
dP f

µ0
(ω)δ(µn,t − µt)δ(jn,t − jt)

=

∫
dP g

µ0
(ω)

dP f
µ0

dP g
µ0

(ω)δ(µn,t − µt)δ(jn,t − jt)

We use the formulas from section 2.1 to compute

log
dP f

µ0

dP g
µ0

(ω) = Ag(ω)− Af (ω)

=
1

2
[T g(ω)− T f (ω) + Sf (ω)− Sg(ω)]

The expressions for entropy production and traffic are given in (9) and, and with (14)

and (18) these can be written as

log
dP f

dP g
(ω) =

T

2τ

∫ τ

0

[τ g
t (µn,t)− τ f

t (µn,t) + β(ft − gt)jn,t]

= − TI(µn,t, jn,t)
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If we substitute this in the probability of the fluctuations, we get

P (µn,t = µt, jn,t = jt) = e−TI(µt,jt)

∫
dP g

µ0
(ω)δ(µn,t − µt)δ(jn,t = jt)

The second factor on the right-hand side is proportional to one in the asymptotic limit

of T → ∞. This is because the average is now computed in the modified dynamics, in

which µt together with jt represent the NOS, i.e. the typical behavior. This proves that

the fluctuation functional is given by (21).

Using the explicit expression for τt(µt) (11), the fluctuation functional can also be

written as

I(µt, jt) =
1

4τ

∫ τ

0

dt

∫
dx[jt − Jµt ](µtD)−1[jt − Jµt ] (23)

Indeed, the fluctuation functional for the joint probability of occupations and currents

is fully explicit. To compute the fluctuations of only the occupations one ‘simply’ needs

to integrate out the currents. Schematically:

e−TI(µt) = P (µn,t = µt) =

∫
djte

−TI(µt,jt)

However, because we are considering the asymptotic limit of T → ∞, we are left with

a variational problem:

I(µt) = inf
jt

I(µt, jt) (24)

Vice versa we find the current fluctuations by taking the infimum over all µt of the joint

fluctuation functional.

4. Occupation fluctuations

Let us try to compute the infimum in (24): the Euler-Lagrange equations give

jt = Jµt − µtχVt = µtχ[ft −∇U −∇Vt]−D∇µt (25)

where Vt is a Lagrange multiplier, making sure that ∂µt

∂t
+∇·jt = 0. Unfortunately, there

is no simple general solution to this equation. On the other hand, this equation gives a

nice physical interpretation: to find the fluctuation functional for the occupations, one

has to modify the original dynamics by adding a potential Vt. This Vt has to be such

that it makes µt typical, i.e.

∂µt

∂t
= −∇ · (µtχ[ft −∇U −∇Vt]−D∇µt) (26)

The fluctuation functional is then given by (21) with gt = ft −∇Vt:

I(µt) =
1

2τ

∫ τ

0

dtτ ft(µt)− 1

2τ

∫ τ

0

dtτ ft−∇Vt(µt) +
β

2τ

∫ τ

0

dt

∫
dxµt

∂Vt

∂t
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This is thus equal to the excess in traffic plus the work done by the extra potential. The

excess here is an excess of the original w.r.t. the modified process in which µt is typical.

Equivalently:

I(µt) =
β

4τ

∫ τ

0

dt

∫
dxµt(∇Vt)χ(∇Vt)

A downside of the results above is that there is no general explicit expression for I(µt).

Therefore we will consider some (simple) examples where one can get explicit results.

4.1. One dimension

In the case of a one-dimensional space Ω, it is possible to explicitly calculate the

occupation fluctuation functional. This is because the relation dµt

dt
= −j′t (where the

prime denotes derivation with respect to x) can be rewritten as

jt(x) =

∫ x

a

dµt(y)

dt
dy + jt(a)

for some number a ∈ Ω. This immediately gives the solution to (25):

V ′
t (x) = (µt(x)χ(x))−1

[∫ x

a

dµt(y)

dt
dy + jt(a)

]
+ ft(x)− U ′(x)− 1

β

µ′t(x)

µt(x)

Finally one can then determine jt(a) from boundary conditions. For example, let us take

Ω = R, and take a = −∞. if the potential U and the force are sufficiently confining,

then jt(a) will be zero. This is for example the case when ft(x)−U ′(x) is a polynomial

in x with highest degree term equal to cxk with c > 0 and k even.

Another example is to take Ω to be the unit circle. We take a = 0, and find jt(0) by

using the periodicity condition on a unit circle V (0) = V (1):

jt(0) = − 1∫ 1

0
(µt(x)χ(x))−1dx

(∫ 1

0

ft(x)dx +

∫ 1

0

dx
1

µt(x)χ(x)

∫ x

0

dx′
dµt(x

′)
dt

)
(27)

4.2. Harmonic potential

In this example we work in Rd. We take the potential to be harmonic: U = k
∑d

i=1 x2
i ,

and both the force ft and the diffusion matrix D to be independent of x. For any fixed

time, this gives a detailed balanced process. It is the time-dependence of ft that pulls

the system out of equilibrium. The corresponding Fokker-Planck equation is given by

dµt

dt
+∇Jµt = 0 with Jµt = χ(ft − kxt)µt −D∇µt

An advantage of this model is that we can explicitly calculate the NOS:

ρt =
1

Z
e−

βk
2

P
i(xi−ai,t)

2

where the function at is given by

at =

∫ t

−∞
dse−(t−s)kχχfs
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This means that the NOS is a Gaussian with a mean that is oscillating. Even for this

harmonic potential one can not explicitly calculate I(µt) for a general µt. However, we

can calculate it for a restricted class of distributions. Inspired by the NOS we take µt

to be an oscillating Gaussian:

µt =
1

Z
e−

βk
2

P
i(xi−bi,t)

2

with bt a periodic function in time. A straightforward calculation then gives the solution

of (26):

∇Vt = ft − kbt − χ−1dbt

dt

so that the occupation fluctuation functional becomes

I(µt) =
β

4τ

∫ τ

0

dt[ft − kbt − χ−1dbt

dt
]χ[ft − kbt − χ−1dbt

dt
]

Note that the current that minimizes I(µt, jt) for this class of µt is equal to dbt

dt
µt.

5. Current and velocity fluctuations

As for the occupation fluctuations, a general explicit solution for the current fluctuations

is not possible, even not in the one-dimensional case. Therefore we will again examine

some simple examples. Before doing that, however, we will explicitly check the

fluctuation theorem[9, 10]. For this we use the expression (23)

I(µt,−jt)− I(µt, jt) =
β

τ

∫ τ

0

dt

∫
dxjt[ft −∇U − ∇µt

µt

]

=
β

τ

∫ τ

0

dt

∫
dx[jtft + (U + log µt)

∂µt

∂t
]

In the last equality, the second term within the square brackets integrates to zero,

because the integration is over exactly one period of µt. We are thus left with

I(µt,−jt)− I(µt, jt) =
β

τ

∫ τ

0

dt

∫
dxjtft

and because the right-hand side does not depend on µt we also have that

I(−jt)− I(jt) =
β

τ

∫ τ

0

dt

∫
dxjtft

By definition of the fluctuation functional, this is equivalent to

P (jn,t = jt)

P (jn,t = −jt)
= e−nβ

R
dt
R

dxjtft

which is an instance of the fluctuation theorem.
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5.1. Divergenceless force

We will consider here a dynamics in which ∇ · (χFt) = 0. In this case we immediately

see from (4) that ρt = 1
|Ω| is just the uniform distribution, regardless of the period of

the force Ft. Note that we need to have a space with a finite volume in this case.

Therefore we take Ω to be the unit torus in d dimensions, which has volume |Ω| = 1.

The corresponding NOS-current is Jρt = χFt, which is then of course divergenceless.

Let us therefore compute I(jt) for divergenceless currents. This means that we must

minimize the joint fluctuation functional I(µt, jt) over all (time-)constant distributions

µt = µ. This variational problem is straightforwardly solved, and one finds that µ = 1 is

the minimizer for any divergenceless jt. This results in a current fluctuation functional

that is quadratic in the current:

I(jt) =
β

4τ

∫ τ

0

[jt − χFt]D
−1[jt − χFt]

5.2. Velocity fluctuations for a harmonic potential

Here we will revisit the example of a harmonic potential, that was also studied for

occupation fluctuations. While it is still difficult to find an explicit expression for the

current fluctuations, it is possible to find explicit expressions for velocity fluctuations.

The velocity associated to a distribution µt and a current jt is vt = jt/µt.

We saw in the harmonic example for occupation fluctuations, that the current that

minimizes the joint fluctuation functional for gaussian distributions, can be written as

vtµt, with vt a factor independent of x. This factor is exactly the velocity. In this example

we will consider the reverse problem: what is the fluctuation functional for velocities

that are independent of x? For this we will first rewrite the fluctuation functional by a

change in variables. The new probability density P̃ for distributions and velocities is

P̃(µt, vt) = µtP(µt, µtvt)

But because the fluctuation functionals are defined as the logarithm of the probability

densities divided by the time T in the limit for large times (as in (15)), we have that

Ĩ(µt, vt) = I(µt, µtvt)

To find Ĩ(vt), we minimize the joint fluctuation functional over all µt. A straightforward,

but somewhat tedious calculation gives that the minimizing distribution is a Gaussian:

µt =
1

Z
e−

βk
2

P
i(xi−bt,i)

with the function bt equal to

bt =

∫ t

0

vsds +
1

βkτ

∫ τ

0

dt

[
D−1vt − βft + βk

∫ t

0

vsds

]

The fluctuation functional for velocities then becomes:

Ĩ(vt) =
1

4τ

∫ τ

0

[χ−1vt − (ft − kbt)]χ[χ−1vt − (ft − kbt)]
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6. A notion of thermodynamic potentials and variational principles

In equilibrium systems it is useful to consider thermodynamic potentials (like free

energy), as they have a clear physical meaning and characterize equilibrium via

variational principles. Moreover, to go from one potential to another, Legendre

transforms are used. Fluctuation functionals also bring with them variational principles.

First of all, and mainly, minimizing them characterizes stationarity. This is easily seen

for example for the occupations:

P(µn,t = µt) ≤ P(µn,t = ρt) ∝ 1 ⇒ I(µt) ≥ I(ρt) = 0

In the same way, the joint fluctuation functional characterizes the typical occupations

and the typical currents. In (21) we gave an explicit expression for this functional. Let us

analyze this from the viewpoint of thermodynamic potentials and Legendre transforms.

First of all, the first two terms in (21) are time-averages of the traffic, or equivalently

the entropy production (12). Let us consider the time-averaged traffic:

H(µt, ht) =
1

β

∫ τ

0

dtτht(µt)

where ht is an arbitrary force, which can be for example ft (the original dynamics of

the system), or gt (the force that makes µt and jt typical). This functional H can be

seen as a potential for the currents in the sense that the functional derivative of it with

respect to the force, gives

δH

δht(x)
= Jh

µt
(x)

where Jh
µt

is the probability current in a dynamics with a force ht, see (4). It is then

natural to examine the Legendre transform of H:

G(µt, jt) = sup
ht

[∫ τ

0

dt

∫
dxhtjt −H(µt, ht)

]

The Euler-Lagrange equations to find the supremum give then

jt = Jh
µt

so that ht = gt is exactly the force needed to make the current jt typical, together with

µt:

G(µt, jt) =

∫ τ

0

dt

∫
dxgtjt −H(µt, gt)

Vice versa, if we take the functional derivative of G, we get:

δG

δjt(x)
= gt

where gt is again the force that makes µt and jt typical. So G is a potential for the

forces, just like H was a potential for the currents, and by Legendre transforms we can

switch between the two.
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We can easily rewrite I(µt, jt) in terms of G and H:

I(µt, jt) =
β

2τ

[
G(µt, jt) + H(µt, ft)−

∫ τ

0

dt

∫
dxftjt

]

Note that H(µt, 0) = 0, so that β
2τ

G(µt, jt) is exactly equal to the fluctuation functional

in the case that f = 0. In other words:

Ift(µt, jt) = I0(µt, jt) +
β

2τ

[
H(µt, ft)−

∫ τ

0

dt

∫
dxftjt

]

This is nice, because the left-hand side is a fluctuation functional for a nonequilibrium

dynamics, while on the right-hand side, the first term is a fluctuation functional in an

equilibrium dynamics. The rest is thus ‘the correction to equilibrium.’

7. Small and slow

7.1. Small fluctuations

In this section we consider the regime of small fluctuations. In this regime a quadratic

approximation is made of the fluctuation functionals, meaning that we are essentially

in the regime of Gaussian fluctuations. More precisely, we take µt = ρt(1 + εµ1,t) and

jt = Jρt + εj1,t with ε a small parameter, so that µt and jt are close to the stationary

distribution and current. Up to second order in ε, the joint fluctuation functional then

becomes:

I(µt, jt) =
ε2

4τ

∫
dt

∫
dx[j1,t − Jρtµ1,t + ρtD∇µ1,t](ρtD)−1[j1,t − Jρtµ1,t + ρtD∇µ1,t]

In this formula, one can see that the currents j1,t and occupations µ1,t are coupled be-

cause of two reasons: first of all, because of cross-terms in the fluctuation functional,

secondly because of the relation ∂µ1,t

∂t
= −∇ · j1,t.

The first of these reasons disappears in the regime of small driving, meaning that we

will replace ft by εft. First of all this means that ρt = ρ0(1 + ερ1,t) and Jρt will be of

order ε. The fluctuation functional then further simplifies to

I(µt, jt) =
ε2

4τ

∫
dt

∫
dx[j1,t(ρ0D)−1j1,t + ρ0∇µ1,tD∇µ1,t] (28)

Indeed in this approximation there are no more cross-terms of currents and occupations.

7.2. Slow dynamics and a comparison to time-independent dynamics

Let us examine what happens if we take a dynamics which changes slowly in time.

To parameterize this ‘slowness’ we take a small number ε > 0, and change the time-

dependent force ft to fεt. This means that the period of the dynamics also changes to

τ/ε. What changes in the fluctuation functionals? To see this, note that the fluctuation

functionals are time integrals over a period τ , schematically:

I =
1

τ

∫ τ

0

dtI(ht, ḣt)



Dynamical fluctuations for periodically driven diffusions 17

where I is a functional, which depends on some functions, here denoted by ht, but

which can be µt, ft, etc, (see the expressions for the functionals in the previous section).

Making the dynamics slow by inserting ε, we get

I =
ε

τ

∫ τ/ε

0

dtI(hεt, εḣεt) =
1

τ

∫ τ

0

dtI(ht, εḣt)

where in the last step we just rescaled the integration variable t. So effectively, making

the dynamics slow is equivalent to putting an ε in front of all time-derivatives in the

fluctuation functionals. As an example, consider the occupation fluctuations where we

now get

I(µt) =
1

2τ

∫ τ

0

dtτ ft(µt)− 1

2τ

∫ τ

0

dtτ ft−∇Vt(µt) +
βε

2τ

∫ τ

0

dt

∫
dxµt

∂Vt

∂t

In the limit ε → 0, a time-independent dynamics is recovered. For example, in the last

formula this means that the last term drops from the fluctuation functional. As a check,

in this limit the results of [11] are recovered.

7.3. Small, close to equilibrium and slow

If we consider the situation of (28), and take also a dynamics that is slow (with the same

ε), then the coupling between the currents and the occupations completely disappears,

up to second order in ε. As a consequence, we can write

I(µt, jt) = I(µt) + I(jt)

with

I(µt) =
ε2

4τ

∫
dt

∫
dxρt∇µ1,tD∇µ1,t

and

I(jt) =
ε2

4τ

∫
dt

∫
dxj1,t(ρtD)−1j1,t

Moreover, because of this uncoupling one can write down a minimum entropy production

principle for the occupations and a maximum entropy production principle for the

currents, just like in the case of time-independent dynamics [11]. On the other hand,

here so many approximations have been made that one could question the relevance of

this.

8. Summary of the results

In the calculation of the joint rate functional or fluctuation functional we have made use

of the technique called Cramer’s tilting, in which one changes the forcing such that the

deviated observables become ‘typical.’ The joint rate functional consists of excess traffic

and work done by the excess forcing both averaged over one period of forcing, see (21).

For the calculation of single rate functions (i.e. only for currents or for occupations) in

the asymptotic limit of large T , this problem can be put in the form of a variational
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problem. For some specific cases the occupation and current functionals are derived

explicitly. For the current rate functional the fluctuation theorem is verified.

Importantly, in analogy with equilibrium thermodynamic potentials (like free

energy) the non-equilibrium rate functionals (for example occupation rate functional)

give us variational principles that lead to stationarity or the typical behavior.

The time averaged traffic can be seen as a potential for the currents, as the

functional derivative of it with respect to the corresponding force gives us the probability

current (as explained in section IV). The Legendre transform of the potential for currents

(the time averaged traffic) is the potential for the forces, i.e., the functional derivative

of it with respect to the current gives us force. Thus Legendre transforms can switch

between the two. Importantly, the joint rate functional can also be written in terms of

this Legendre transform pair.

Finally, we have considered the case of small fluctuations (the regime of Gaussian

fluctuations). The joint fluctuational functional can be expressed in terms of the small

occupation and current deviations. Interestingly, their coupling disappears in the regime

of a driving that is both small and slow (section V C). As a cross check, we approximated

the rate functional to the case of slow driving (the forcing period was extended to τ/ε,

where ε → 0+), and it reduces to the case of time independent forces, as expected.

Acknowledgments

N.S. would like to thank Prof. Christian Maes for inviting him to the the Instituut

voor Theoretische Fysica, K. U. Leuven, where this work was started, and both authors

thank him for many fruitful discussions. B.W. is supported by FWO Flanders.

Appendix A. Restrictions on fluctuations

Here we will show that I(µt, jt) = +∞ whenever µt 6= µt+τ or dµt

dt
+∇ · jt 6= 0.

First of all, by definition (13) we see that the difference between µt and µt+τ is quite

small:

µn,t+τ (x) = µn,t(x) +
1

n
[δ(xt+nτ − x)− δ(xt − x)]

which is true for any ω = (xt)0≤t≤nτ . This also means that for any smooth bounded

function wt we have∫ τ

0

dt

∫
dxwt(x)[µn,t+τ (x)− µn,t(x)] =

1

n

∫ τ

0

dt[wt(xt+nτ )− wt(xt)]

→ 0 for T →∞
So we see that for any path, µn,t − µn,t+τ → 0 in the distributional sense. Secondly, for

any smooth bounded function wt we have that
∫ T

0

dt

∫
dxwt[

dµn,t

dt
+∇ · jn,t] = − 1

n

∫ T

0

dxt ◦ ·∇wt(xt)− 1

n

∫ T

0

dtẇt(xt)
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=
w0(x0)− wT (xT )

n
→ 0 for T →∞

So we see that for any path, dµn,t

dt
+ j′n,t → 0 in the distributional sense.

Al this means that fluctuations that do not satisfy µt = µt+τ and dµn,t

dt
+∇· jn,t = 0 will

have a probability that does not even survive in the asymptotic limit.

Appendix B. Stochastic Integrals

For the readers that are unfamiliar with the concept of stochastic integrals we give a

brief description here, together with some useful formulas. The formulas in this ap-

pendix resemble very much the formulas in the appendix of ref [11]. However, the fact

that we have now time dependent forces complicates things a little, though not much.

During computations in this article, one frequently encounters integrals over specific

trajectories (paths) ω = (xt)0≤t≤T . As for diffusions these paths are nowhere

differentiable, integrals like
∫

dxtwt(xt) are not well defined if one interprets them in the

Riemann way. Instead there is room for different interpretations, the most common of

which are the Itô and Stratonovich interpretations.

Itô integral. For the Itô interpretation, the integral domain [0, T ] is split up in a

set of discrete points 0 = t0 < t1 < . . . < tn = T , with ∆tj = tj − tj−1, such that

∆t ≡ maxj ∆tj → 0 for n → ∞. It is important to note that for diffusions as used in

this article we have that for ∆tj → 0,

(∆xj)
2
ab = (xa

tj
− xa

tj−1
)(xb

tj
− xb

tj−1
) → 2Dab∆tj (B.1)

where xa is the a-th component of the vector x, and Dab is the corresponding matrix

element. The stochastic integral interpreted in the Itô way is then computed as
∫ T

0

wt(xt) dxt = lim
n→∞,∆t→0

n∑
j=1

(xtj − xtj−1
)wtj(xtj−1

) (B.2)

Note that the function wt is a general time-dependent function. We do however assume

that the time dependence of the function is smooth. This has as a consequence that it

does not matter if we take wtj−1
or wtj in the definition of the integral. On the other

hand it does matter that one takes the evaluation point xtj−1
in the definition.

For the Itô integral one cannot use the normal rules of integration. Instead one can

check from (B.1) and (B.2) that for any function w,
∫ T

0

∇wt(xt)·dxt = wT (xT )−w0(x0)−
∫ T

0

dtẇt(xt)−
∫ T

0

D∇·∇wt(xt) dt(B.3)

where a dot means a derivative of the function with respect to time, and D∇ ·∇wt is a

shorthand notation for
∑

a,b Dab
∂2wt

∂xa∂xb .
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Stratonovich integral. The Stratonovich interpretation differs from the Itô

interpretation only in the points of evaluation of the function wt. In this case wt is

evaluated in the midpoints of the time intervals:
∫ T

0

wt(xt) ◦ dxt = lim
n→∞,∆t→0

n∑
j=1

(xtj − xtj−1
)wt(

xtj + xtj−1

2
) (B.4)

where the symbol ◦ is commonly added as a notation to distinguish between Itô and

Stratonovich interpretations. Our definition of time reversal is that xt → xT−t and

wt → wT−t. With this definition, the Stratonovich integral is time-antisymmetric. Note

also that ∫ T

0

∇w(xt) ◦ dxt = w(xT )− w(x0)−
∫ T

0

dtẇt(xt) (B.5)

so that the Stratonovich interpretation allows us to use the normal rules of integration.

Relation between Itô and Stratonovich. It is easily found from (B.2) and (B.4) that
∫ T

0

wt(xt) ◦ xt =

∫ T

0

wt(xt)dxt +

∫ T

0

D∇wt(xt)dt (B.6)

Averages of stochastic integrals. We can compute the average value of an Itô integral

by using that xt solves the Itô-stochastic equation (3):

〈∫ T

0

wt(xt)dxt

〉
µ0

=
〈∫ T

0

wt(xt)[χt(xt)Ft(xt)+∇D(xt)]dt
〉

µ0

+
〈∫ T

0

wt(xt)
√

2DdBt

〉
µ0

(B.7)

Observe that the last Itô-integral has mean zero since the integrand (evaluated at each

mesh point xtj−1
) and the increment Btj − Btj−1

of the Brownian motion are mutually

independent, and the latter has zero mean. Hence, the mean value of the Itô integral is
〈∫ T

0

wt(xt)dxt

〉
µ0

=
〈∫ T

0

wt(xt)[χ(xt)Ft(xt) +∇D(xt)]dt
〉

µ0

=

∫ T

0

dt

∫
dxµtwt[χFt +∇D] (B.8)

The second equality uses that µt, defined by the Fokker-Planck equation (4), is the

evolved density at time t when starting from µ0 at time zero.

Using the relation between Itô and Stratonovich, we also get:
〈∫ T

0

wt(xt) ◦ dxt

〉
µ0

=
〈∫ T

0

[wtχtFt + wt∇D + D∇wt]dt
〉

µ0

=

∫ T

0

dt

∫
dxwtJµt (B.9)
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