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ABSTRACT
The analysis of the stability and the dispersion properties of a counterstreaming plasma
system with kappa distributions are extended here with the investigation of perpendicular
instabilities. Purely growing filamentation (Weibel-like) modes propagating perpendicular
to the background magnetic field can be excited in streaming plasmas with or without an
excess of parallel temperature. In this case, however, the effect of suprathermal tails of kappa
populations is opposite to that obtained for parallel waves: the growth rates can be higher and
the instability faster than for Maxwellian plasmas. The unstable wavenumbers also extend to
a markedly larger broadband making this instability more likely to occur in space plasmas
with anisotropic distributions of kappa-type. The filamentation instability of counterstreaming
magnetized plasmas could provide a plausible mechanism for the origin of two-dimensional
transverse magnetic fluctuations detected at different altitudes in the solar wind.

Key words: plasmas – waves – methods: analytical.

1 IN T RO D U C T I O N

Non-thermal particle distributions are ubiquitous at high altitudes
in the solar wind, their presence being widely confirmed by mea-
surements aboard spacecrafts (Montgomery, Bame & Hundhausen
1968; Feldman et al. 1975; Pilipp et al. 1987; Maksimovic, Pierrard
& Riley 1997a; Zouganelis 2008). The suprathermal populations
have been described for the first time by Vasyliunas (1968) us-
ing the so-called kappa (κ-) velocity distribution functions (VDFs).
These are power laws in particle speed and with high-energy tails
deviated from a Maxwellian. For a counterstreaming plasma sys-
tem, two kappa-like distributions are shown in fig. 1 from Lazar
et al. (2008a), hereafter Paper I.

Various mechanisms have been proposed to explain the origin of
the suprathermal tails of the VDFs and the occurrence of kappa-like
distributions in the solar wind and corona. In an ambient quasi-
static magnetic field, plasma charges gain energy through the cy-
clotron resonance and the transit time damping (Landau resonance)
of linear waves. Thus, the high-frequency whistler modes can en-
hance the energy of electrons in Earth’s foreshock (Ma & Summers
1998), and MHD waves can accelerate both the electrons and the
protons in the solar flares (Miller 1991, 1997), and in the inner mag-
netosphere (Summers & Ma 2000). When large amplitude waves
are present, the non-linear Landau damping can be responsible for
the energization of plasma particles (Miller 1991; Leubner 2000;
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Shizgal 2007). The non-thermal features of the VDFs can also re-
sult from superdiffusion processes (Treumann 1997) and due to heat
flows or the presence of the temperature anisotropies (Leubner &
Viñas 1986). An interesting mechanism of velocity filtration (in the
solar corona) has also been proposed (Scudder 1992) to explain the
high-energy electrons at higher altitudes in the solar wind.

The collisionless or weakly collisional models in the corona
(Scudder 1992; Zouganelis et al. 2005), both using VDFs with a
suprathermal tail, are able to reproduce the high-speed streams of
the fast solar wind emitted out of coronal regions where the plasma
temperature is smaller (Maksimovic, Pierrard & Lemaire 1997b;
Zouganelis et al. 2005), as well as the low-speed solar wind originat-
ing in the hotter equatorial regions of the solar corona (Maksimovic
et al. 1997b). On the other hand, the electron VDFs measured at 1
au have been used as boundary condition to determine the VDFs at
different altitudes (Pierrard, Maksimovic & Lemaire 1999, 2001),
and it was proved that, for several solar radii, the suprathermal
populations must be present in the corona as well (Pierrard et al.
1999).

As a result of low collision rates in the interplanetary plasma,
the electrons and the ions can develop temperature anisotropies and
their VDFs become skewed and develop tails and heat fluxes along
the ambient magnetic field (Marsch et al. 1982; Pilipp et al. 1987;
Salem et al. 2003; Stverak et al. 2008). Moreover, field-aligned
fluxes of (suprathermal) particles can be encountered at any altitude
in the solar wind (Pilipp et al. 1990), but they become prominent
in energetic shocks, like the coronal mass ejections or the fast solar
wind at the planetary bow shock, giving rise to counterstreaming
plasma events (Feldman et al. 1974; Gosling et al. 1993). The same
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mechanisms mentioned above can induce anisotropic non-thermal
VDFs in counterstreaming plasmas, and such complex plasmas can
hold an important amount of free energy that makes them unstable
to the excitation of waves and instabilities.

The modified plasma dispersion function is used to analyse the
dispersion properties of a hot plasma with kappa-distributed parti-
cles (Summers & Thorne 1991; Mace & Helberg 1995). The prop-
erties of longitudinal Langmuir and ion acoustic waves have been
compared for both distributions, kappa and Maxwellian, finding
that the Landau damping of long wavelength Langmuir modes is
significantly enhanced for a Lorentzian plasma (Thorne & Summers
1991). This limits the existence of the (weakly damped) Langmuir
waves in space plasmas with kappa distributions to a narrow band
just above the electron plasma frequency.

In this series of works, we investigate the dispersion properties
and the stability of a counterstreaming plasma system with intrinsic
anisotropies modelled by a bi-kappa distribution function. Plasma
flows are assumed to be naturally streaming along a magnetic guide
field. Whereas in Paper I the case of parallel wave propagation was
studied, here we investigate the waves propagating perpendicular
to the magnetic field. Streaming plasmas or an excess of parallel
temperature can destabilize the ordinary mode propagating perpen-
dicular to the background magnetic field. The instability readily
arises in plasmas with large parallel beta (β‖ = 8πn0kBT ‖/B2

0),
when the parallel kinetic energy is much greater than the magnetic
confinement energy. Due to the presence of streaming, the instabil-
ity can, however, occur in low-β plasmas as well (Bornatici & Lee
1970) and it may then play a role in pulsars, magnetostars or plasma
experiments.

2 C OU N TER STREAMING D ISTRIBUTION
F U N C T I O N

In order to describe the counterstreaming plasma system with intrin-
sic temperature anisotropies of bi-kappa-type, we reload the general
form of the unperturbed particle VDF chosen in Paper I:
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This is normalized as
∫

d3v fκ = 1. We keep the significance and
notation for all the quantities used in Paper I: the polar components
of particle velocity
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(
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Figure 1. Two plasma counterstreams with bulk velocities v1,2, and the
ordinary mode with E‖B0.

and the relative intensities of the counterstreaming plasmas is given
by ε1,2 = ωp1,2/(ωp1 + ωp2), where ωp1,2 = (4πn1,2q

2/m)1/2 are the
plasma frequencies of the two counterstreams.

3 PERPENDI CULAR WAVE DI SPERSI ON

The streams are aligned with the stationary magnetic field, B0 (par-
allel to y-axis in Fig. 1), and the unstable plasma modes propagate
perpendicular to the magnetic field, (k ⊥ B0), along the x-axis (in
Fig. 1). The general dispersion relation of the perpendicular modes,
for an arbitrary distribution function, has been provided in differ-
ent forms several decades ago [see e.g. Bornatici & Lee (1970)
or Davidson (1983) for a non-relativistic plasma, or Cary et al.
(1981) for a relativistic plasma response]. A number of weakly rel-
ativistic analyses of Bernstein modes propagating perpendicular or
nearly perpendicular to the uniform magnetic field in a Maxwellian
plasma have shown a relativistic frequency downshift (with a trans-
verse Doppler effect larger than that of the parallel motion) leading
to a smearing out of the gyroresonances at high harmonics (see e.g.
Robinson 1988 and references therein). However, for anisotropic
distributions with a surplus of free energy along the magnetic field
the dispersion relation for the ordinary mode admits an additional
aperiodic Weibel-like solution, and although a realistic description
requires for a relativistic treatment, the quantitative differences for
the Weibel instability are minimal (Schaefer-Rolffs & Schlickeiser
2006). Therefore, the non-relativistic equations are appropriate, pro-
vided that both the thermal and the streaming velocities are small
compared to the speed of light.

The equivalence of the non-relativistic dispersion relations used
by Bornatici & Lee (1970) and Davidson (1983) has recently been
proven in Tautz & Schlickeiser (2006), and below we will use the
simple general forms found there.

3.1 Ordinary mode instability

The ordinary mode, which is a transverse wave with its electric
field linearly polarized in the direction of B0, is the only wave
mode affected by the presence of a counterstream and a temperature
anisotropy (Tautz & Schlickeiser 2006). We therefore expect in this
case to obtain a cumulative filamentation/Weibel instability driven
by the counterstreaming motion of plasma (filamentation instability)
as well as the intrinsic temperature anisotropy of each plasma stream
(Weibel instability).
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For the ordinary mode, the general dispersion relation is given
by (Tautz & Schlickeiser 2006)

Dy = 1 − k2c2 + ∑
a ω2

p,a

ω2
+

∑
a

ω2
p,a

ω2

∞∑
n=−∞

∫
d3v

n
a J 2
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ω − n
a

v2
‖

v⊥

∂fa

∂v⊥
= 0, (6)

where

za = kv⊥

a

, (7)

and Jn(z) denotes the Bessel function of the first kind of order n.
The geometry for this mode is shown in Fig. 1: the polarization is
transverse, as k = k êx . Here, ω and k are, respectively, the frequency
and the wavenumber of the plasma modes, c is the speed of light in
vacuum, 
a = qaB0/(mac) is the (non-relativistic) gyrofrequency
and ωp,a = (4πnae

2/ma)1/2 is the plasma frequency for the particles
of sort a (a = e for electrons and a = p for protons). For the sake of
simplicity, in what follows we will neglect the contribution of ions,
which form the neutralizing background, and the electron plasma
counterstreams are considered homogeneous as well as charge and
current neutral.

According to Lerche (1966), equation (6) can be simplified to

Dy = 1 − k2c2 + ω2
p,e
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− ω2
p,e
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where

S(α, z) = −�(α)�(1 − α)J−α(z)Jα(z) (9)

and α = ω/
e.

3.2 Small gyroradius approximation

The integral in equation (8) can be simplified when the gyroradius
of the electrons is much smaller than the wavelength (small gyro-
radius approximation), and this is shown in Appendix B for two
symmetric counterstreaming plasmas. Thus, using equation (B3),
the dispersion relation (8) yields

ω2 − (
k2c2 + ω2

p,e

) − ω2
p,e

k2v2
0

ω2 − 
2
e

(
1 + v2

T

v2
0

)
= 0. (10)

Note that in this limit, there is no difference from plasmas
with Maxwellian distributions (Tautz & Schlickeiser 2006). Equa-
tion (10) corresponds to the classical filamentation (Weibel-like)
instability described by Fried (1959) for two cold counterflowing
plasmas. Here, equation (10) describes plasma flows with a finite
temperature but with a sufficiently small perpendicular thermal ve-
locity vT⊥ , which is not present in the dispersion relation.

Equation (10) admits purely growing solutions with the growth
rate

ωi = ωp,e(
k2c2 + ω2

p,e + 
2
e

)1/2

×
[
k2
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) − 
2
e

(
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ω2
p,e

+ 1

)]1/2

, (11)

and we should remark that in the presence of a static magnetic field,
the aperiodic solutions are found for wavenumbers larger than a
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Figure 2. The normalized growth rates, W= ωi/ωp,e, as given by equa-
tion (11) (solid line), and by equation (17) for κ = 2 (long-dashed line) and
for Maxwellian plasmas (short-dashed line). The parameters chosen for the
plasma system are v0/c = 0.05, vT/c = 0.02 (Te ∼ 106 K) and T /T ⊥ =
1.2. For the growth rates given by equation (11), we take 
e/ωp,e = 0.01,
0.04, and 0.05. The abscissa is scaled as K = kc/ωp,e.

threshold value imposed by the electron gyrofrequency

k > kt = 
e

(
v2

0 + v2
T − c2 
2

e

ω2
p,e

)−1/2

. (12)

For non-magnetized plasmas, this threshold vanishes, kt(
e = 0) =
0. This comes to confirm the recent results of Stockem, Lerche &
Schlickeiser (2006) for two cold counterstreaming plasmas, where
it was shown that the filamentation instability can grow only for an
ambient magnetic field lower than a critical value. Here, this critical
value depends on the streaming velocity as well as the parallel
thermal velocity as provided by equation (12):

B0,c =
√

4πn0me

(
v2

0 + v2
T

)1/2
. (13)

The unstable solutions exist only for an ambient magnetic field with
strength less than this critical value, B0 < B0,c (or for sufficiently
low 
e/ωp,e <

√
v2

0 + v2
T/c). The growth rates given by equa-

tion (11) are displayed with the solid line in Fig. 2 for some coun-
terstreaming plasma parameters typically encountered in the solar
flares and winds (e.g. the acceleration region of the outer corona).
Three different values of 
e/ωp,e = √

mp/me(vA/c) = 0.01, 0.04,
0.05 have been chosen to show how the instability depends on the
presence of the background magnetic field (vA = B0/

√
4πnpmp is

the Alfvén speed). The ordinary mode is completely stabilized for
intense magnetic fields, for example, in Fig. 2 for 
e/ωp,e larger
than the critical value ∼0.054 given by equation (13).

The influence of the ambient magnetic field is noticeable: it tends
to suppress the instability by introducing a minimum threshold
wavenumber, which is discussed above, and by decreasing the max-
imum growth rate reached at the saturation:

ωi,max =
(

v2
0 + v2

T

c2
ω2

p,e − 
2
e

)1/2

. (14)

3.3 Large gyroradius approximation

In the opposite limit of a large gyroradius, the integral in equation (6)
is calculated in Appendix C. Using equation (C11) in equation (6),
we find the following dispersion relation:

ω2 − k2c2
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v2

0
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C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 401, 362–370



Counterstreaming kappa-distributed plasmas. II 365

In this case, the ordinary modes become unstable for wavenumbers
less than a cut-off value, k < kc given by,

kc = ωp,e

c

{
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θ 2
⊥
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)
v2

0

θ 2

]
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}1/2

(16)

and has oscillatory frequency negligibly small, ωr � 0, and the
growth rate

ωi = ωp,e
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. (17)

In this limit, we obtain information about the maximum cut-off
wavenumber, kc, given in equation (16) that does not rely on the
background magnetic field [the cut-off derived here in equation (16)
agrees exactly to that obtained for an unmagnetized plasma; see
equation (13) in Lazar, Schlickeiser & Shukla (2008b)], but ex-
hibits a strong dependence on the particle velocity anisotropy and
the spectral index κ . The growth rates provided by equation (17)
are displayed in Fig. 2, with long-dashed line for κ = 2 and with
short-dashed line for Maxwellian plasmas (κ → ∞). Here, the crit-
ical magnetic field strength derived in equation (13) for very large
kt → ∞ must be refined by limiting this threshold to the maximum
cut-off kt = kc, which yields
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The correction introduced in equation (18) with respect to equa-
tion (13) is, however, a minor one provided that here we assume the
perpendicular temperature sufficiently small θ 2

⊥ 	 θ2 + v2
0. For the

example chosen in Fig. 2, this correction is indeed very small:

θ 2
⊥

θ 2 + (
2 − 1

κ

)
v2

0

� 0.04 	 1.

For sufficiently low strengths of the ambient magnetic field, for
example much less than the critical values derived above, the effect
of the background magnetic field therefore becomes less important
(see in Fig. 2), and the instability could be studied by using the
following equation:

k2c2
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(
ω
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. (19)

This dispersion relation has been derived by Lazar et al. (2008b) for
an unmagnetized counterstreaming plasma with anisotropic kappa-
type distributions. In the right-hand side of this equation, the sec-
ond term includes the contribution of thermal anisotropy while
the third term is given by the relative plasma motion. The disper-
sion equation (19) contains the modified plasma dispersion function
(Summers & Thorne 1991)

Zκ (f ) = 1

π1/2κ1/2

�(κ)

�
(
κ − 1

2

) ∫ +∞

−∞
dx

(1 + x2/κ)−(κ+1)

x − f
,


(f ) > 0, (20)

and according to Lazar et al. (2008b)

Z0
κ (f ) =

(
1 + f 2

κ

)
Zκ (f ) + f

κ

(
1 − 1

2κ

)
. (21)

Our assertion is confirmed in Fig. 3, where the exact numerical solu-
tion of dispersion relation equation (19), the dotted line, approaches
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Figure 3. The exact numerical solution of dispersion relation (19), the
dotted line, is quite well framed by the two limit solutions given by equa-
tion (11), the solid line and equation (17), the dashed line. The parameters
are the same as in Fig. 2, and 
e/ωp,e = 0.01 is chosen sufficiently low.

quite well the two limit solutions given by equations (11) and (17).
Despite the small discrepancy observed for very low wavenum-
bers due to the presence of the ambient magnetic field, the large
cut-off wavenumber provided by the equation (19), kc = k(ω =
0), fits exactly to that provided by the dispersion relation (17) in
equation (16). The dispersion relation (19) can therefore be used to
describe the ordinary mode instability with a good accuracy, pro-
vided the background magnetic field is weak or the anisotropy is
sufficiently large.

We note that in the presence of suprathermal particles the insta-
bility extends to large wavenumbers by increasing the maximum
cut-off (see the long-dashed line in Fig. 2). This instability is there-
fore more likely to be present in space plasmas with anisotropic
distributions of kappa-type.

4 A PPLI CATI ONS

These instabilities could provide a plausible mechanism for the
origin of the two-dimensional transverse magnetic fluctuations ob-
served in the solar wind and flares (Stockem et al. 2006), and can
also be responsible for an efficient transfer of the beam energy to
the heating of plasma electrons in the direction perpendicular to that
of the streams.

4.1 Solar wind

Here, we consider suprathermal counterstreaming beams (with in-
trinsic temperature anisotropies) expected to arise at different alti-
tudes in the solar wind but predominantly in the outer corona region,
where the plasma parameters estimated from the observations are
ne ∼ 107 cm−3, Te ∼ 106 K. The regular magnetic field is sufficiently
weak, B0 ∼ 0.1 G, so that 
e/ωp,e ∼ 0.01, and the ordinary mode
instability will be properly described by the dispersion relation (19).
The aperiodic solutions of this equation are displayed in the next
Figs 4–6 for several representative cases. For comparison with solid
line it is shown the solution for the limit Maxwellian case (κ →
∞).

Coronal mass ejections and streams can be more or less violent
leading to the formation of counterstreaming plasma structures in
solar environments. In Fig. 4, we first consider two distinct cases of
energetic (but still subrelativistic) electron beams with v0 = 0.2c (in
panel a) and with v0 = 0.05c (in panel b), and with a moderate tem-
perature anisotropy T /T ⊥ = 2. In a non-streaming plasma with an
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Figure 4. Normalized growth rates, W= ωi/ωp,e, as given by equation (19):
dotted line for κ = 2, dashed line for κ = 4 and solid line for a very large
κ → ∞ (Maxwellian). The parameters chosen for the plasma system are

e/ωp,e = 0.01, vT⊥/c = 0.02(Te ∼ 106K), (a) T /T ⊥ = 2, v0/c = 0.2 and
(b) T /T ⊥ = 2, v0/c = 0.05. The abscissa is scaled as K = kc/ωp,e.

intrinsic thermal anisotropy, the Weibel instability (Weibel 1959)
effect is diminished by the presence of the suprathermal popula-
tions (Zaheer & Murtaza 2007). In a streaming plasma, the effect of
suprathermal particles is opposite, enhancing the growth rates of the
filamentation Weibel-like instability (Lazar et al. 2008b). In Fig. 4,
we observe that this behaviour is still effective even for streams with
moderate intrinsic temperature anisotropies which enhance the in-
stability. But, the effect of suprathermal particles becomes again less
important when these anisotropies are higher and dominate the free
energy stored in the relative motion of counterstreaming plasmas,
and this is shown in Fig. 5. The growth rates become comparable
or even smaller, but the thresholds given by the wavenumber cut-
off (16) remain more important than that of Maxwellian (κ → ∞)
plasmas,

k2
c,κ − k2

c,∞ = v2
0

v2
T⊥

2

2κ − 3
> 0 (22)

so long v0 > vT⊥ . This difference obtained in equation (22) vanishes
for less energetic beams with small bulk velocities v0 < vT⊥ < vT,
as can be seen in Fig. 6, and the instability is much faster in the
absence of suprathermal populations.

For counterstreams with an excess of parallel temperature, it was
shown recently (Lazar et al. 2009b) that the cumulative filamenta-
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Figure 5. The same as in fig. 4, but for (a) T /T ⊥ = 6, v0/c = 0.05 and (b)
T /T ⊥ = 11, v0/c = 0.05.
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W

Figure 6. The same as in Fig. 4, but for T /T ⊥ = 2, v0/c = 0.002. The
abscissa is scaled as K= kc/ωp,e.

tion/Weibel instability can develop faster than the two-stream elec-
trostatic instability (which is suppressed by the thermal spread of
plasma particles). According to this, the counterstreaming plasma
structures described by the parameters chosen in Figs 4 and 5 will
mainly be destabilized by these instabilities of the Weibel type. Oth-
erwise, if the outflows are observed to be stable this demonstrates
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that plasma is confined moving along the magnetic field lines. In this
case, the ambient magnetic field is strong enough to suppress the
filamentation instability (in a confined plasma the magnetic energy
partially transforms in kinetic energy by increasing the perpendic-
ular temperature and thus diminishing the effective anisotropy of
the streaming plasma). The streams are, however, relaxed by the
two-stream instability leading to a plateau anisotropic distribution
function (with vT > vT⊥ ). Such anisotropic distributions will again
drive an instability of the Weibel type.

4.2 Solar flares

Whereas the streaming flares are observed to be stable in the first
precursor or the impulsive stage, in the decay stage, the plasma
instabilities can be responsible for their disruption and for releasing
the free energy. These solar outflows in flares are most probably in
a Maxwellian (collisional) regime, and therefore here we consider
the limit case of a sufficiently large κ � 1 that must fit to the
Maxwellian dispersion approach of Tautz & Schlickeiser (2006). In
this case the dispersion relation of the ordinary mode (8) reduces to
[see equation (14) in Tautz & Schlickeiser (2006)]

1 = k2c2

ω2
+ ω2

p,e

ω2

v2
T + 2v2

0

v2
T⊥

[
1 − F̂e(1)

]
, (23)

with the short notation for the hypergeometric function

F̂e(1) = 2F2

(
1

2
, 1; 1 + α, 1 − α; −ξ 2

)
, (24)

where α = ω/
e and ξ = kvT⊥/
e.
In solar flares, the average values of the plasma parameters cannot

be strictly given than only to some limits, ne = 109–1011 cm−3, Te =
106 − 107 K. Moreover, the electrons are strongly magnetized
(Aschwanden 2004) and can have the gyrofrequency in the inter-
val 
e/ωp,e = 0.1–10 (B0 = 102 − 5 × 102 G). Equation (23) is
solved numerically and the purely growing solutions are displayed
in Figs 7–9.

In Fig. 7, the growth rates are calculated for isotropic streams
with bulk velocity v0 = 0.2c and different temperatures: T = 107 K
(dashed line), T = 2 × 106 K (dot–dashed line) and T = 106 K
(solid line). Note that thermal spread of particles suppresses the
instability (which is Weibel-like). In Fig. 8, the growth rates are cal-
culated for anisotropic streams with different intrinsic temperature
anisotropies T /T ⊥ = 1, 2 and 4. Keeping T constant and decreasing
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Figure 7. Normalized growth rates, W= ωi/ωp,e, as given by equation (23)
for isotropic streams with different temperatures: T = 107 K (dashed line),
T = 2 × 106 K (dot–dashed line) and T = 106 K (solid line). The other
parameters are 
e/ωp,e = 0.1, v0 = 0.2c, and the abscissa is scaled as K=
kc/ωp,e.
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Figure 8. The same as in fig. 7, but for T = 106 K and anisotropic streams
with T /T ⊥ = 1 (solid line), T /T ⊥ = 2 (dashed line) and T /T ⊥ = 4
(dot–dashed line).
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Figure 9. The same as in Fig. 8, but for T /T ⊥ = 4 and three different bulk
velocities v0 = 0.2 (dashed line), v0 = 0.15 (dot–dashed line) and v0 = 0.11
(solid line).

T ⊥, the growth rate increases but it is only slightly enhanced by the
temperature anisotropy. In Fig. 9, the growth rates are displayed for
anisotropic streams, T /T ⊥ = 4, with different bulk velocities v0 =
0.20, 0.15 and 0.11. The growth rates decrease and the system is
stabilized in the presence of a regular magnetic field if the streaming
velocity is not large enough to sustain the instability.

5 D I SCUSSI ON AND C ONCLUSI ON

In this series of two papers, we have examined the effect of
suprathermal populations of kappa-type on the dispersion prop-
erties of colliding plasma shells frequently invoked in astrophysical
scenarios. In the presence of a stationary magnetic field, plasma
flows are assumed streaming along this magnetic guide field. We
have considered complex counterstreaming plasmas including a fi-
nite and anisotropic thermal spread of plasma particles. Thus, the
free energy provided by different combinations of the anisotropic
velocity distributions of plasma particles cumulates leading either
to an enhancing or to a suppression of the wave instability. In ad-
dition, here we have shown that these instabilities are markedly
altered in kappa-distributed plasmas. In order to be able to handle
the mathematics in analytical form, the two limiting cases of wave
propagation parallel and perpendicular to the background magnetic
field have been investigated. Although in Paper I the case of parallel
wave propagation has been investigated, here we have focused on
perpendicular wave propagation.

For parallel waves with respect to the regular magnetic field
(k‖B0), we have identified two principal branches, the elec-
trostatic two-stream mode developed by the free energy in the
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counterstreaming plasma motion and the whistler Weibel-like mode
excited by an excess of the transverse temperature. Both instabilities
are inhibited by the high-energy tails of the particle distributions
leading to lower growth rates with respect to those obtained for
Maxwellian plasmas. In the presence of a stationary magnetic field,
the Weibel-like instability becomes oscillatory with a finite fre-
quency ωr �= 0 (see in fig. 5 from Paper I) but this resonant regime
restraints to small wavenumbers in counterstreaming plasmas (see
in fig. 4 from Paper I). For energetic flows with a bulk velocity larger
than the parallel thermal velocity of plasma particles and an ambi-
ent magnetic field negligibly weak, the instability becomes again
dominantly resonant (Lazar, Dieckmann & Poedts 2009a). In most
of these cases, the phase velocity seems to be too small with respect
to the thermal velocity so that the contribution of these modes to the
electrons’ acceleration is a negligible one. It is, however, expected
that protons will be efficiently heated and their parallel tempera-
ture will grow anisotropic but this will make the object of our next
investigations.

In the other limit of waves propagating perpendicular to the mag-
netic field, the free energy residing in the velocity anisotropy of
plasma particles destabilizes the ordinary mode (Davidson 1983).
The dispersion relation has been derived following the approach
of Tautz & Schlickeiser (2006), and the growth rates of the unsta-
ble mode have been calculated for both small and large values of
the Larmor radius. This is the filamentation Weibel-like instability
driven by a bulk velocity anisotropy of counterstreaming plasmas
enhanced or not by an intrinsic thermal anisotropy of plasma flows.
The filamentation instability is inhibited in a magnetized plasma,
but the effect of high-energy tails in the electron distribution func-
tions is opposite to that found in Paper I for parallel waves: here,
we have found that kappa populations can make the filamentation
instability to grow faster whether the intrinsic thermal anisotropy of
plasma flows is sufficiently low (see in Fig. 4). These results are in
perfect agreement with those obtained for an unmagnetized plasma
(Lazar et al. 2008b), and we conclude that only the filamentation
two-streams driven instability (electromagnetic) is enhanced by the
suprathermal tails, while the temperature anisotropy driven insta-
bility (Weibel) and the electrostatic two-stream instability are both
inhibited in kappa-distributed plasmas.

Furthermore, two applications have been identified here for such
counterflowing plasma structures developing in solar wind and
flares and which are expected to be kappa-distributed. First, we
have considered the solar wind outflows in the outer corona region
and where the filamentation instability described above can be re-
sponsible for the 2D magnetic fluctuations detected (Stockem et al.
2006). The exact numerical growth rates have been displayed for
two kappa-distributed populations, κ = 2 and 4 (see in Figs 4–6),
and the aperiodic solutions obtained for large kappa spectra tend
to approach the Maxwellian. In this case, as was shown above, the
effect of suprathermal tails can be opposite to that obtained for par-
allel waves: the growth rates are higher and the instability faster
than for Maxwellian plasmas (Fig. 4). But it is very important to
note that the unstable wavenumbers extend to a markedly larger
broadband, making this instability more likely to be found in space
plasmas with anisotropic distributions of kappa-type.

In the second application, we have considered solar flares in
the initial impulsive stage with a sufficiently large spectral index,
κ � 1, and the distribution function have been approximated by a
Maxwellian, thus allowing for exact numerical calculation of the
growth rates using the method of Tautz & Schlickeiser (2006). In
this case, typical solar plasma parameters show that the value of the
streaming velocity has the most important influence, followed by the

absolute value of the temperature and the temperature anisotropy,
which only has a weak influence on the growth rates (see Figs 7–9).
The overarching condition, however, is the background magnetic
field strength, which enters the gyrofrequency that must not exceed
a value of 
e ≈ 0.1ωp,e. Stronger ambient magnetic fields efficiently
suppress the instability.

Therefore, the instability investigated here provides a method to
create magnetic fields and thus to heat plasma. Because the instabil-
ity is mediated by larger temperatures and magnetic field strengths,
the mechanism is self-regulated and is able to keep a steady state
as long as the counterstreaming is maintained. In the light of recent
work, e.g. Tomczyk et al. (2007), Cirtain et al. (2007), that deals
with the Alfvén waves in the solar corona and outflows, such waves
are believed to be capable of providing a heating mechanism of
the solar corona and are claimed to have been observed by several
astronomers (see Cirtain et al. 2007 and references therein). Future
work should, therefore, investigate the interplay of these unstable
modes with the Alfvén waves in order to enlarge the understanding
of the coronal heating processes.
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APPEN D IX A : D ERIVATIVES OF THE
D I S T R I BU T I O N FU N C T I O N (1 )

The partial derivatives of the distribution function (1), used in this
paper and in Paper I, are shown here as follows:

∂fκ

∂v‖
= − 2

π3/2θ 2
⊥θ‖

�(κ + 2)

κ5/2�(κ − 1/2)

×
{
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θ 2
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[
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κθ 2
1

+ v2
⊥
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]−κ−2

+ ε2
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θ 2
2

[
1 + (v‖ + v2)2

κθ 2
2

+ v2
⊥

κθ 2
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]−κ−2
}

(A1)

and

∂fκ

∂v⊥
= − 2v⊥

π3/2θ 4
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�(κ + 2)

κ5/2�(κ − 1/2)

×
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[
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⊥

κθ 2
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]−κ−2
}

. (A2)

A P P E N D I X B: IN T E G R A L I N E QUAT I O N (8 )
F O R Z � 1

In order to evaluate the integral in equation (8), here we restrict to
small wavenumbers, so that

ze = kv⊥

e

	 1 (B1)

and according to Schlickeiser (2002), p. 207, S(α, z) from (9) sim-
plifies as follows:

S(α, z 	 1) � − 1

α
+ z2

2α(1 − α2)
. (B2)

For the sake of simplicity, we consider symmetric counterstreams
with ε1 = ε2 = 1/2, v1 = v2 ≡ v0, θ 1 = θ 2 ≡ θ . Inserting the dis-
tribution function (1) and using cylindrical coordinates, the integral
in equation (8) becomes

I1 =
∫

d3v [1 + αS(α, z)]
v2
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(B3)

where vT1 = vT2 ≡ vT is given by equation (3). In this limit,
there is no difference between plasmas with Maxwellian and kappa
distributions.

APPENDI X C : INTEGRAL I N EQUATI ON (6)
F O R LA R G E Z � 1

In order to calculate the integral in equation (6) in the limit of large
z � 1, we first proceed to the evaluation of the sum in equation (6):

S1 ≡
∞∑

n=−∞

nJ 2
n (z)

α − n
= J 2

0 (z) − 1 − 2α2S2, (C1)

where

S2 ≡
∞∑

n=1

J 2
n (z)

n2 − α2
. (C2)

If we assume large z � 1,

J 2
n (z � 1) � 1

πz

[
1 + cos

(
2z − π

2
− nπ

)]
(C3)

and

S2 = 1

πz
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n=1

1

n2 − α2
+ sin(2z)
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n=1

(−1)n

n2 − α2

]
. (C4)

The sums in equation (C4) can be further reduced as follows
(Gradshteyn & Ryzhik 1965):
∞∑

n=1

1

n2 − α2
= 1

2α2
− π

2α

cos(απ )

sin(απ)
, (C5)
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∞∑
n=1

(−1)n

n2 − α2
= 1

2α2
− π

2α sin(απ)
, (C6)

and then substituting equation (C4) in equation (C1), we find
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J0 can be also simplified as
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and the sum becomes

S1(z � 1) = −1 + 1
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Assuming α = ω/
e 	 1, the sum S1 simply approximates

S1(α 	 1, z � 1) � −1. (C10)

Here, we again consider symmetric counterstreams described by
the distribution function (1), and using equation (C10) the integral

in equation (6) simplifies as follows:
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Note that in this limit, the integral exhibits a strong dependence on
the spectral index κ .
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