Analyzing Graph Databases by Aggregate Queries

Anton Dries

Siegfried Nijssen

K.U.Leuvgn, Cglestijnenlagn 200A, Leuven, Belgium
{anton.dries,siegfried.nijssen}@cs.kuleuven.be

ABSTRACT

An important step in data analysis is the exploration of data.
For traditional relational databases one of the most powerful
tools for performing such analysis is the relational database
and the aggregates and rankings that they can compute:
for instance, simple statistics such as the average number
of links between two types of entities (relations) are easily
computed using a query on a relational database and may
already provide valuable information. However, for the ex-
ploration of graph data, relational databases may not be
most practical and scalable. For instance, a statistic such as
the shortest path between two given nodes cannot be com-
puted by a relational database. Surprisingly, however, tools
for querying graph and network databases are much less
well developed than for relational data, and only recently
an increasing number of studies are devoted to graph or
network databases. Our position is that the development of
such graph databases is important both to make basic graph
mining easier and to prepare data for more complex types of
analysis. An important component of such databases is the
language that is used to enable aggregating queries, such as
shortest path queries.In this paper, we propose an extension
to a previously proposed query language. This extension
allows for querying and analyzing databases by using ag-
gregates and ranking. A notable feature of our language is
that it also supports probabilistic graph queries by conceiv-
ing of such queries as aggregating queries. We demonstrate
its value on a simple data analysis task.

Categories and Subject Descriptors

H.2.1 [Database Management]: Logical Design—Data
Models

General Terms
Design, Theory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MLG’10, July 24-25, 2010, Washington DC, U.S.A.

Copyright 2010 ACM 1978-1-4503-0214-2/10/07 ...$10.00.

Keywords

Graph databases, Inductive databases, Data mining

1. INTRODUCTION

Even though one can have doubts whether database sys-
tems can be called data mining systems, in practice database
systems are often used for basic analysis and preparation of
relational data, such as computing aggregates or histograms
of attributes, ranking tuples, or even computing the number
of links to a certain tuple in a table [9]. Such basic analysis
is often important to gain an initial impression of data and
understand the main distributions of attributes in data; in
many cases already interesting knowledge can be obtained
by only such basic querying.

Considering that this is the case for relational data, the
motivation for the work in this paper is that this may also be
true for graph data. In many applications it is increasingly
common to represent data as a large graph or network: ex-
amples include social networks, bibliographic networks and
biological networks. Modeling the data as graphs is conve-
nient in these applications as traditional graph-based con-
cepts, such as paths, cliques, node degrees, edge degrees, and
so on, are useful in their analysis. However, traditional rela-
tional database systems do not support these concepts and
hence can only be used for very limited types of graph anal-
ysis, which raises the question how one can build databases
that support these concepts.

The interest in integrating graphs in database systems has
led to several recent proposals for graph query languages [7,
23, 10, 13, 8, 14, 20], which support basic concepts such as
nodes, edges and paths between nodes. A distinguishing fea-
ture of graph query languages is that they allow for declar-
ative querying: they allow a user to specify which piece of
information to find instead of how to find this. Even though
declarative querying may not yield the most scalable solu-
tions for specific tasks, a good declarative language enables
more users to express problems in such a way that automatic
systems find solutions within reasonable time.

When we consider the history of database technology,
one of the early popular data models was the network data
model. To access data in the network model, the CODASYL
data management language was developed. CODASYL was
a low-level language in which a user was required to specify
the paths along which to access data; for instance, it con-
tained a NEXT statement to move to the next element of a
linked list. The relational model became more popular due
to its higher level of abstraction; it allowed user to specify
what they want to find and to no longer consider how to

find it.

The state-of-the-art in how machine learning and data
mining deal with graphs and networks is in some ways sim-
ilar to these early days of database research. Database sys-
tems [18] as well as specialized graph libraries in host lan-
guages such as Java or C++ [19, 17] do not provide a declar-
ative querying interface but rather rely on lower-level princi-
ples such as graph traversers. To the best of our knowledge,
a more declarative query language which supports aggregat-
ing queries does not currently exist.

Another recent development is that of probabilistic data-
bases. In a probabilistic database tuples or entries are no
longer strictly true or false, but are only true or false to
a certain degree; consequently, the results of queries may
also only be true to a certain degree. Recently, approaches
based on logic programming have been developed that allow
for the formulation of probabilistic logic queries on proba-
bilistic logic databases. An interesting direction of research
is to merge such approaches with graph databases; ideally a
query language supports such integration, even if currently
no underlying database management system exists that can
answer such queries on a large scale.

The problem that we hence study in this paper is the de-
velopment of a declarative query language supporting basic
graph analysis and data preparation tasks. In our opinion,
key features that such a database should support are:

e it should support graph-based concepts, such as paths
and node connectivity;

e it should support aggregates, ranging from simple ones
(such as node degrees) to more complex ones (such as
path length or even path probability in probabilistic
networks);

e it should support ranking, in order to filter results of
less interest.

In previous work we proposed a declarative query language,
called BiQL, for posing queries in a graph database. This
language included primitives which allowed for basic data
transformation steps. Such steps can be important when
preparing a database for analysis by a more complex algo-
rithm, for instance, algorithms for finding important nodes
[4, 22], important connections [22], or methods for classify-
ing [22] or clustering nodes [12]. The inclusion of aggregate
queries, needed for basic types of analysis and converting
databases in weighted or probabilistic graphs, was left as
future work. In this paper, we provide the details of an ex-
tension of our language towards aggregates, and we discuss
how to (conceptually) evaluate such queries.

The outline of this paper is as follows. In Section 2 we
summarize the motivations that led to the development of
the core BiQL data model and query language. Section 3
introduces related work. In Section 4 we summarize our data
model and the basic query language. Section 5 introduces
the extension towards aggregates and ranking. In Section 6
we illustrate how our system can be used on a showcase
application. In Section 7 we conclude.

2. REQUIREMENTS

The main motivation and target application for our data
model and query language, as presented in [6], is support-
ing exploratory data analysis on networked data. Below we
summarize the requirements and design choices.

Small is beautiful. The data model should consist of a small
number of concepts and primitives. As a consequence, we
do not wish to introduce special language constructs to deal
with complicated types of networks (directed, undirected,
labeled, hypergraphs, etc.) or sets of graphs.
Uniform representation of nodes and edges. The most im-
mediate consequence of the former choice is that we wish
edges and nodes to be represented in a uniform way. We
will do this by representing both edges and nodes as ob-
jects that are linked together by links that have no specific
semantics. This also allows one to generate different views
on a network. For instance, in a bibliographic database, we
may have objects such as papers, authors and citations. In
one context one could analyze the co-author relationship, in
which case the authors are viewed as nodes and the papers
as edges, while in another context, one could be more inter-
ested in citation-analysis, in which case the papers are the
nodes and the citations the edges.
Closure property. The result of any operation or query can
be used as the starting point for further queries and oper-
ations. The information created by a query combined with
the original database can therefore be queried again.
SQL-based. There are many possible languages that could
be taken as starting point, such as SQL, relational algebra
or Datalog. We aimed for a data model on which multiple
equivalent ways to represent queries can be envisioned. The
queries that we propose on this model are expressed in an
SQL-like notation here, as this notation is more familiar
to many users of databases, and is the prime example of a
declarative query language.

In addition to these requirements, in this paper we identify
the following requirements.
Aggregates. To support a basic analysis of graphs, we need
to be able to calculate statistics such as

e the degree of nodes;

e the number of nodes reachable from a certain node
(connected component size);

e the length of a shortest path between two nodes;

e the length of the longest shortest path from one node
to all other nodes (node centrality);

e the sum or product of weights on edges on paths.

These statistics are not only useful when obtaining an initial
insight in data. It is also important that these statistics can
be inserted when a new graph is generated (representing an-
other context). For instance, in simple random walk models
the probability of going from one node to another node may
be determined by the degrees of the nodes involved. These
probabilities can be seen as attributes of the edges; ideally, a
database query would be sufficient to put these probabilities
in a graph. The closure property entails that we can also run
queries on the attributes generated in this way. One such
type of query could be a probabilistic query, which calculates
new probabilities from probabilities present in the network.
Ranking. Once an aggregate is computed, it can be desirable
to rank results on aggregate values; for instance, one may
not be interested in the centrality of all nodes, but only in
the nodes that are most central. A database system should
support such ranking queries and ideally be optimized to an-
swer them more efficiently than by post-processing a sorted
list of all results.

3. RELATED WORK

In this section we provide a more detailed discussion of re-
lated work, which makes clear the limitations of the current
systems and languages.

Graph Query Languages. A number of query languages for
graph databases have been proposed, many of which have
been described in a recent survey [2]. GraphDB [7] and
GOQL [23] are based on an object-oriented data model, with
specific, separate types of objects for use in networks such
as nodes, edges and paths. Both languages devote a lot of
attention to querying and manipulating paths: for example,
GraphDB supports regular expressions and path rewriting.

GraphQL [10] provides a query language that is based
on graph patterns. In this model graphs are a basic unit;
the language is geared towards finding occurrences of small
graphs in both large sets of small graphs as well as small sets
of large graphs. Edges and nodes are treated separately; it
has no support for paths or aggregates.

PQL [13] is an SQL-based query language which has added
support for treating paths as objects; It does not provide
functionality for adding new nodes in a network or aggre-
gating queries.

GOOD (8] was one of the first systems that used graphs
as its underlying representation. Its main focus was on the
development of a database system that could be used in
a graphical interface. To this end it defines a graphical
transformation language, which provides limited support for
graph pattern queries. This system forms the basis of a large
group of other graph-oriented object data models such as
Gram [1] and GDM [11].

Hypernode [14] and GROOVY [15] use a representation
based on hypernodes, which make it possible to embed a
graph as a node in another graph. This recursive nature
makes them very well suited for representing arbitrarily com-
plex objects, but also makes the model more complex than
necessary for analyzing most networks in data mining.

More recently, approaches based on XML and RDF such
as SPARQL [20], are being developed. SPARQL aims at
extracting information from RDF data, where edges do not
have attributes and express relationships between nodes. It
is not focused on network data with multiple types of entities
and does not provide extensive support for adding nodes to
a network or aggregation.

Graph Databases. Whereas the previous studies propose
declarative query languages, recently several storage systems
have been proposed that do not provide a declarative query
language. Notable examples here are Neo4J [18] and DEX
[16], which provide Java interfaces to graphs persistently
stored on disk. For Neo4J an alternative programming lan-
guage called Gremlin is under development [21].

Graph Libraries. Finally, in some communities Java or C++
libraries are used for manipulating graphs in the memory
of the computer (as opposed to the above graph databases
which support typical database concepts such as transac-
tions). Examples are SNAP [19] and igraph [17].

4. BASIC DATA MODEL

Our data model consists of several parts: (1) the structural
part of the data model; (2) the manipulation part of the data
model; (3) the integrity part of the data model. We will here
summarize the basic elements involved in (1) and (2); for
details on data integrity see [6].

features

X1 {label=A, color=red} g} : i;
X2 {label=B, color=yellow} V2 o X1
X3 {label=C, color=blue} Y2 o X3
X4 {label=D, color=yellow} Vi o X2
X5 {label=E, color=red} VY3 o X3
Y1 {weight=0.2} Vi o X3
Y2 {weight=0.5} Vi o X4
Y3 {weight=0.8} Y5 o X3
Y4 {weight=0.2} V5 o X5
Y5 {weight=0.9}

(a) Object store (b) Link store

name | objects Comment
X | [XI, X2, X3, X4, X5] Nodes
Y | {YL,Y2 Y3 Y4, Y5} Edges

(c) Domain store

Table 1: Example database

4.1 Data Structures

Our data structure consists of the following components.

The object store, which contains all objects in a data-
base. Objects are uniquely identified by an object
identifier. Each object can contain an arbitrary list
of attribute-value pairs describing its features.

The link store, which contains directed links between ob-
jects. They can be represented as (ordered) pairs of
object identifiers, and do not have any attributes.

The domain store, which contains named sets of objects.
A domain name allows users to identify a set of objects.

The main design choice in this data structure is to not allow
attributes on links. Between every pair of objects a link may
or may not exist. We do not specify how links are stored.
A basic operation is to check if a link exists between two
objects.

Domains are used to group nodes of a certain type to-
gether. In a bibliographic database, groups of nodes may be
authors or papers. One may think of the objects as nodes
in a graph, and of the links as unlabeled binary edges be-
tween these nodes. However, this raises the question how
we represent edge labeled graphs or hypergraphs. This is
clarified in the following example.

ExXAMPLE 1 (EDGE LABELED GRAPH). Assume given
the objects and links in Table 1, belonging to domains X and
Y, together constituting the graph G. Then we can visualize
G as giwen in Figure 1. In this example, one may think
of nodes A, ..., E as authors, and as the edges expressing
strengths of co-authorships.

Hence, the main choice that we have made is that also
edges are represented as objects. An edge object is linked to
the nodes it connects. Even though this may not seem intu-
itive, or could seem a bloated representation, the advantages
of this choice outweigh the disadvantages because:

e by treating both edges and nodes as objects, we obtain
simplicity and uniformity in dealing with attributes;

e it is straightforward to treat (hyper)edges as nodes (or
nodes as (hyper)edges);

Figure 1: A visualization of context G in the example da-
tabase in Table 1, where we use domain X as nodes and
domain Y as edges.

Figure 2: View on the database using the new table Y'.

e it is straightforward to link two edges, for instance,
when one wishes to express a similarity relationship
between two edges.

4.2 Data Manipulation

In this section we introduce the main components of the
BiQL query language, which allows for basic (deductive)
querying using an SQL-like notation. The extensions needed
to deal with aggregates and ranking will be discussed in the
next section.

In general a query looks like this.

CREATE <domain name> AS

SELECT <definitions of domains>

FROM <selection from domains>

WHERE <predicate on attributes of objects>

A simple example of such a query is this:

CREATE Y’ AS

SELECT E

FROM Y E

WHERE E.weight > 0.4

This statement creates a new domain Y’; the objects that
are inserted in this domain are obtained by letting a variable
E range over the objects in domain Y’; those objects which
have a weight attribute with a value higher than 0.4 are
inserted.

For Y defined as in Table 1, the resulting domain contains
the following set of identifiers.

Y ={Y2,Y3 Y5}

We can define a new graph, visualized in Figure 2, by using
X as nodes and Y’ as edges (Figure 1).

Below we provide some more details on the FROM, WHERE
and SELECT parts of a query; see also [6] for more details.

4.2.1 WHERE statement

In the WHERE statement constraints are expressed based on
the features of the objects that the variables refer to. These
constraints are similar to those in SQL, and include compar-
isons of attributes of objects and compositions thereof into
formulas using ANDs and ORs.

S

Figure 3: A simple graph pattern

4.2.2 FROM statement

An important distinguishing feature is the FROM state-
ment. In our language we can use path expressions to specify
structural constraints on the variables. A simple example of
a query, which can be applied on the data in Table 1 is:

CREATE E’

SELECT E

FROM X N -- Y E

WHERE E.weight >= 0.9 AND N.color=blue

This statement creates a new domain E’ containing those
edge objects that are linked to a blue node object.

In general the FROM statement consists of a list of path ex-
pressions. The simplest form of a path expression consists of
a series of domain identifiers separated by the -- or => or <-
operators, which represent structural constraints requiring
the presence of links in any direction or the presence of links
in a given direction.

Conceptually, for every combination of variable assign-
ments a tuple of objects (or object tuple) is created. Each
element in a tuple is uniquely identified by the name of a
variable; only those tuples are selected which satisfy the
structural constraints. In our example, one such tuple is
(N:X3,E:Y5). If we let R denote a set tuples, we can denote
a selection by op(R) in analogy to the relational model,
where P expresses the connectivity conditions that should
be satisfied by the elements in a tuple.

Variables can occur multiple times in path expressions
by prefixing all but one occurrence with a #. Using this
notation, also more complex patterns than paths can be ex-
pressed. Consider the following FROM and WHERE statement:

FROM X N1 -- Y -- X N2 -- Y -- X N3,
#N2 -- Y -—- X N4
WHERE N1.color = red AND N2.color = blue
AND N3.color = yellow AND N4.color = black

One can visualize this path expression, together with the
WHERE statement, as the graph in Figure 3.

4.2.3 SELECT statement

The SELECT statement expresses which variables in the
query are used to define a new domain. In our previous
examples, queries always returned subsets of objects of ex-
isting domains. However, it can often be useful to create
new objects. We illustrate this using the following query.

CREATE PatZ AS
SELECT <N1,E1,N2,E2,N3> {E1->,E2->}
FROM X N1 -- Y E1 -- X N2 -- Y E2 ——- X N3
WHERE N1.color = red

AND N2.color blue

AND N3.color = yellow

The angle brackets (<...>) express a grouping operation;
for each objects tuple (N1, E1, N2, E2, N3) for which the path
expression matches the data, a new object is created. This
object is linked to objects E1 and E2. Essentially, each object
in the result represents an occurrence of a given subgraph.

It is important to note here that the SELECT statement
does not need to contain all variables mentioned in the WHERE
statement. If some variables are missing, the object tuples
are projected on the variables mentioned in the SELECT state-
ment; in analogy to projection in relational databases, if R
denotes a set of tuples, 7wy (R) removes those elements from
all tuples in R not corresponding to variables listed in V.
Here set semantics are applied, i.e. after projection dupli-
cate occurrences of the same tuple are removed. Simple
attributes can be assigned to new objects as follows:

SELECT <E>{E.*, weight: E.weight/2}
FROM Y E
WHERE E.weight > 0.4

which copies all the attributes from the original object but
replaces the weight attribute by its old value divided by
two. If the <...> brackets are missing, new attributes can
be added to existing objects. It is important to note that
between the braces {. ..} only variables can be used that oc-
cur within the grouping brackets <...>: the other variables
may have different values in the tuples that were merged
together in the projection. To assign additional values to
new objects based on sets of tuples, aggregates can be used.
This is discussed in the next section.

S. EXTENDED QUERY LANGUAGE

In this section we will introduce the extensions to our lan-
guage step by step. We will first discuss a basic extension
with aggregates, followed by a discussion of how to deal with
arbitrary regular expressions. We will subsequently extend
our language with ranking and will illustrate the overall pro-
cedure by which queries are (conceptually) answered.

5.1 Aggregates

The two main types of aggregates are count and attribute-
based aggregates (sum, avg, min, max, ...). The syntax of
an aggregate is illustrated by the following query:

SELECT <N> {weight: sum<E>(E.weight)}
FROM X N -- Y E -- X N2

This query determines a weight for nodes; the weight is com-
puted by summing the weights of connecting edges. Intu-
itively in this query object tuples are first partitioned on
the values for N and subsequently further partitioned on
the values for E. In the partitioning on N, all tuples within
one partition share the same object value for N; in the par-
titioning on N and FE, all tuples within one partition share
the same N and F value. For every value of N (correspond-
ing to a partition of tuples), the aggregate now sums the
weights of the E objects in its partition (hence projecting
the N2 variable away).
In general, an aggregate can be expressed as

function<grouping>(expression)

where grouping determines the variables on which the tuple-
set is partitioned (hence creating partitions within which all
tuples have the same value for the variables mentioned here),
expression selects the attribute that is used, and function
aggregates all these attribute values into a single result. The
notation is chosen to be similar to that of the object cre-
ation statement in the previous section: also here variables
are grouped by <...> brackets, and in the expression only
variables can be used mentioned in the <...> brackets (of

the current aggregate or of an enclosing block). Further-
more, the notation is aimed to be close to a mathematical
notation.

More formally, the evaluation strategy uses similar ideas
as those used in the nested relational model, which is used
to evaluate aggregates in the relational model. A tuple of
nested objects is a tuple which may not only contain objects,
but can also recursively contain sets of other tuples. A nest-
ing operator can be used to create a nested set from a flat set
of objects. When R is a set of tuples, and V = {v1,...,vn}
a set of variable names, vy _,(R) creates a nested set of
tuples,

l/vﬁb(R) =
{(v1 :v1(t), ... vt OR(t),b:r(vi(t),...vn(t))) | t € R}

where

r(ay,...,an) =
{' =Vt eR, (vi(t),...vn(t")) = (a1,...,an)}

creates a set of tuples which is nested as an element in a tu-
ple of vy (R). This new element is given name b in order
to allow other operators to refer to it; v(¢) denotes the value
of variable v in tuple t; t — V' denotes a tuple from which el-
ements corresponding to variables in V' have been removed.
Note that a nesting operator essentially partitions the orig-
inal set of tuples according to certain variables. The main
difference between vy _.;(R) and 7wy (R) is that in vv_,(R)
we associate a nested set to every projected tuple.

An aggregate is essentially a function that can be applied
to a set of objects and yields a single value: let R be a set
of nested tuples, b an element name, and f an aggregate,
then f, p—p(R) recursively considers all sets of tuples, and
to those tuples which contain a nested set of tuples called
b, adds a new element named b that takes as value the
application of the aggregating function f on the « attributes
of the nested set of objects.

In our example, assuming that R is the set of object tu-
ples corresponding to occurrences of the path expression, we
formally evaluate:

SUMweight,b—weight (VNHb (7TN,E (R)))

The resulting set of tuples is converted into new objects with
appropriate attributes. Note that mn, g(R) can equivalently
be replaced by vn g_u (R).

In our language aggregates can be used in the object con-
struction statement (SELECT), in constraints (WHERE)
and as sort order criteria (see Section 5.3). Aggregates can
also be nested, for example, sum<X>(min<Y>(Y.value)). In
this case recursively nested sets of tuples are constructed.
This means that the statement <Y> first nests on <X,Y> and
subsequently on <X>.

5.2 Regular expressions

The path expressions we used in all the previous exam-
ples were limited in their expressiveness because the length
of the connections needed to be known; effectively, the ex-
pressiveness remained close to that of the traditional rela-
tional model due to this. By using regular expressions we
can overcome this limitation.

Using regular expressions, one could express a path of
arbitrary length; for instance, consider

FROM Node -> (Edge -> Node ->)* -> Edge -> Node

This expression can be expanded into

FROM Node -> Edge -> Node
FROM Node -> Edge -> Node -> Edge -> Node

In order to express aggregates over paths and refer to paths,
we need to be able to refer to the sets of nodes matched by
a path. We allow this by making it possible to place named
variables inside a regular expression.

FROM Node -> (Edge E -> Node ->)*
-> Edge E -> Node

The multi-valued variable E is a special type of variable that
takes a set of objects as value; hence the result of the above
FROM statement is already a tuple of nested objects.

Multi-valued variables can be used as normal variables,
except that they need aggregation to access attributes of the
individual objects. For example, one can sum the weights
of the edges in a path using the aggregate sum(E.weight).
Note that unlike before, we did not specify a projection;
the aggregate only operates on one nested set of objects,
as defined by E. Also here it possible to combine multiple
aggregates, for example: avg<E>(sum(E.weight)).

A special aggregate that can be applied on multi-valued
variables is the length(E) aggregate, which counts the num-
ber of values assigned to the variable.

5.3 The LiviT statement

Often one is interested in finding the best results accord-
ing to some metric, for example, one is interested in the 10
authors with the most publications, or in the shortest path
between two given nodes. These types of restrictions can be
expressed using the LIMIT statement. It defines the (max-
imum) number of results that are to be returned and the
order of selection. The syntax of the statement is

LIMIT <number> BY <list of sort criteria>

Two variants exist, differing in the moment they are exe-
cuted. A local limit statement is executed before the SELECT
statement and is used to limit the number of results within
each group, for example, when looking for the shortest path.

SELECT <A,B>
FROM N A > (EX >N ->)* >EX >N C
LIMIT LOCAL 1 BY length(X) ASC

More formally, we can define an operator AiZ(R) which re-
duces every set of tuples named b in R to the tuples having
the n highest values in attribute or element «.

A global limit statement is executed after the SELECT state-
ment and is used to limit the final number of results, for ex-
ample, when looking for the most active authors in a citation
network.

SELECT A
FROM author A -> author_of -> publication P
LIMIT GLOBAL 10 BY count<P> DESC

More formally, we can define an operator Ay™(R) which re-
duces the set of tuples R to the tuples having the highest
values in an object’s attribute or element . A query can
contain both local and global limit statements.

5.4 Probabilistic aggregates

Recently there has been an increasing interest in using
probabilistic networks to represent information. In this sec-
tion we show that our system can deal with some of the

most common queries in such networks by adding proba-
bilistic aggregates.

Probabilities can follow different semantic models. In this
section we focus on the possible-worlds semantic as employed
in ProbLog [5]; ProbLog itself is an extended version of on
earlier work in probabilistic querying and is hence a good
representative of probabilistic querying. In BiQL we incor-
porate this model by allowing the user to identify attributes
in objects that are used as probabilities. First consider the
simple case where one is interested in determining the prob-
ability of the existence of a single path in the network, for
example, for finding the most probable path between two
nodes. Then we can run the following query:

CREATE most_probable_path AS

SELECT <A,B>{ A->, B<-}

FROM N A -> (EX >N —>)* ->EX ->NB

LIMIT LOCAL 1 BY problog_path(X.prob) DESC
Here we use the problog_path aggregate, which essentially
multiplies the probabilities of objects being present; attrib-
ute prob of an edge object is used as probability.

Another query that is common in probabilistic networks
is to determine the probability of two nodes being con-
nected. This requires combining the probabilities of all pos-
sible paths, while taking into account the disjoint sum prob-
lem.

CREATE connection AS

SELECT <A,B>{ prob: problog_connect(X.prob) }

FROM N A -> (EX >N ->)* ->EX ->NB
For this, we introduce the problog_connect aggregate that
calculates the probability of any path existing within a set
of paths. The aggregate is evaluated using the BDD-based
technology pioneered in ProbLog.

5.5 Operations and Semantics

Summarizing the execution strategy of BiQL, we can dis-
tinguish several steps. These steps are shown schematically
in Figure 5 for the following query, when executed on exam-
ple data in Figure 4:

SELECT <X> { color: X.color,

label: avg<x>(x.citations) }
FROM author X -> author_of -> publication x
WHERE x.year < 2009 AND count<x> = 3
LIMIT LOCAL 3 ON x.year DESC
LIMIT GLOBAL 2 ON avg<x>(x.citations) DESC

This query returns the two authors that have the highest
average number of citations on their three most recent pa-
pers before 2009. Authors with less than 3 papers in this
period are not taken into account. The steps to execute this
query are the following, where we also illustrate the use of
our algebra:

1. Evaluate the path expressions described in the FROM
statement. This step generates a set of tuples, where
each tuple corresponds to a valid assignment to the
variables defined in the FROM statement. Alternative
strategies can be applied to evaluate these path expres-
sions based on their internal structure and the presence
of named variables. This is shown in step 1 of Figure 5,
where the set of tuples contains all pairs of an author
X and a publication = that are connected by an ‘au-
thor_of’ edge in the network. Only named variables
are part of the tuple (so the author-of connection is
not present). We call this set of tuples R.

Figure 4: Database graph containing authors (boxes) and
publications (circles) connected through an ‘author_of’ ob-
ject (arrow). Publications contain year of publication and
number of citations.

2. Filter the set of tuples based on attribute-based con-
straints defined in the WHERE statement. It should be
possible to evaluate each constraint for each tuple indi-
vidually. For the example, this corresponds to remov-
ing all tuples containing publication d or g, as shown
in step 2 of Figure 5. In algebra, this corresponds to

Ry = 04.year<2009(R)

3. Apply nesting to the remaining tuples based on the
grouping variables given in the SELECT statement. In
Figure 5 this is done by, for each author, combining
all publications into a nested tuple. In algebra, this
corresponds to

Ry = VX—»nest(Rl)y
where a new element with name nest is introduced.

4. Order and select the top-k tuples based on the con-
ditions given in the (local) LIMIT statement for each
tuple-set. For the example, this corresponds to re-
moving the oldest publication from the nested tuples
corresponding to C' and D. The tuples for A and B
remain unchanged, since they already contain three or
less items. In algebra, we apply a local limit on the
year attribute on the nested tuples:

R3 = Ayea,r nest(RQ)

5. Filter the new tuple set based on aggregate-based con-
straints defined in the WHERE statement. As before,
it should be possible to evaluate each constraint for
each tuple individually. In the example, authors with
less (or more) than three remaining publications are
removed. Step 5 in Figure 5 shows the removal of
author B because of this. Note that this step is per-
formed after the local limit statement so tuples C' and
D also satisfy this constraint. In algebra we add an

Step 1 Step 2
R = evaluate FROM Ry = 04.year<2009(R)

x / x.year / x.cit

a/2005/10 A | a/2005/10
c/2008/13 A | ¢/2008/13
f/2008/5 A f/2008 /5
a/2005/10 B | a/2005/10
b /2003/25 B | b/2003/25

d/2009/13

b/2003/25 b /2003 /25

X
A
A
A
B
B
B
B | g/2009/11
©
C
C
C
€

d/2009/13

e /2006 /104 C |e/2006/104
h /2007 / 60 C | h/2007/60
i/2004 /34 C i/2004 /34
e/2006/104 le/2006/104
f/2008/5 f/2008/5
g /2009 /11

h /2007 / 60 l h /2007 / 60
i/2004 /34 i/2004 /34

Step 3

R2 = VX —nest (Rl)

A | a/2005/10 || /2008 /13 || £/2008/5 |I

B | a/2005/10 || b /2003 /25 |[

c | b/2003/25 ||e/2oos/1o4|| h /2007 / 60 || 112004 / 34 |

.le/2006/104|| £/2008/5 || h /2007 / 60 || 112004 /34 |

Step 4
Ry = A nest(R2)

year,nest

A |a/2005/10 || /2008 /13 || 112008 /5 ||

B | a/2005/10 || b /2003 /25 |[

|e/2006/104|| h /2007 / 60 || 112004 /34 |

.le/2006/104|| t/2008/5 || h /2007 / 60 |
Step 5

R4 = Onestcount=3 (countnestanestcount(RB))

A || as2005/10 |[c/2008/13 || 120085 |

|e/2006/104|| h /2007 / 60 || 112004 /34 |

.le/2006/104” 1/2008/5 || h /2007 / 60 |
Step 6

- Al’ (avgcztatwns nest—»zc(RAL))
|e/2006/104|| h /2007 / 60 ” i/2004 /34 |
[e/2006/104 || /2008/5 | h/2007 /60 |
Step 7

create objects

Figure 5: Schematic overview of query execution in BiQL.

rank | name | #co-authors
1 Muggleton, S. 36
2 Dzeroski, S. 28
3 Blockeel, H. 22

Table 2: Results for query Q1

attribute to represent the aggregate and select on this
new attribute:

R4 = Onestcount=3 (Countnestﬁnestcount (RS))

6. Order and select the top-k tuples based on the con-
ditions in the (global) LIMIT statement. In step 6 of
Figure 5, the tuple corresponding to author A is re-
moved because it has the lowest average number of
citations of the three remaining tuples. In algebra we
add another attribute for nested tuples and and rank
on these attributes:

Rs =)‘;lv,cz (avgcitations,nest—rwc (R4))

7. Create a new object for each of the remaining tuples
by generating the attributes and links described in
the SELECT statement. As a final result, the exam-
ple query generates two new objects corresponding to
the remaining tuples C and D.

6. EXPERIMENTS

In this section we showcase some of the capabilities of
BiQL on the ILPnet2 publication database. A prototype
of BiQL was implemented using YAP Prolog. In this im-
plementation BiQL queries are essentially transformed into
Prolog queries; we exploit the fact that YAP Prolog already
has support for BDDs to execute ProbLog-like queries.

In the following we only use three domains from this data-
base: author (A), author_of (AQO), and, publication (P).

First, we add the co-author relation to the network as a
connection between authors that have more than one publi-
cation in common.

CREATE co-author AS

SELECT <a,b> { a->, b<-, strength: count<p> }
FROM A a -> A0 > P p<-AD<-AD

WHERE count<p> > 1

Using this relation we can request the top 3 authors with
the most co-authors (Q1).

SELECT a FROM author a -> co-author co
LIMIT GLOBAL 3 BY count<co> DESC

We can also be interested in finding the authors with the
largest network of co-authors up to a certain distance (Q2).

SELECT a { network_size: count }

FROM A a -> CAca > (A ->CAca —>)x >Ab
WHERE length(ca) < 4

LIMIT GLOBAL 3 BY count DESC

Another interesting task is calculating network analysis
metrics such as centrality measures. The easiest centrality
measure is degree centrality which can be calculated using
BiQL as follows.

EXEC SELECT a { Cdegree: count<ca>/(count<n> - 1)}
FROM A a -=- CA ca, A n

rank | name | neighb. size
1 Srinivasan, S. 211
2 Page, D. 209
3 Lavrac, N. 208

Table 3: Results for query Q2

nameB | prob | dist
Bruynooghe, M. | 0.563 3
Bruynooghe, M. | 0.440 3

Ade, H. 0.439 3

rank | nameA |
1 Muggleton, S.
2 Flach, P.A.
3 Demoen, B.

Table 4: Results for query Q3

Another common centrality measure is closeness centrality
which involves determining the length of the shortest path
to all other nodes in the network. First let us define the
notion of shortest path between two nodes.

DEFINE ShortestPath AS

SELECT <a,b>{ a->, b<-, len: min<ca>(length(ca))}
FROM A a -> CA ca -> (A -> CAca ->)x > A D
WHERE a != b

LIMIT LOCAL 1 BY length(ca) ASC

Using this new domain, we can easily calculate the closeness
centrality as follows.

EXEC SELECT a { Cclose: 1/sum(min<sp>(sp.len))}
FROM A a -> ShortestPath sp -> A b

Another important aspect of BiQL is its ability of dealing
with probabilistic networks. To illustrate this, we first need
to introduce probabilities in our network. For this we as-
sume that the information in the network is very unreliable
by stating that for each publication in the network there
is only 10% probability that it actually exists. Under this
assumption we can attach a probability to each co-author
connection using the following query.

EXEC SELECT ca { prob: 1-(0.9%ca.strength) }
FROM co-author ca

We can now calculate for each pair of authors the probability
that they are connected using the probabilistic aggregate
problog_connect.

DEFINE ProbConnect AS
SELECT <a,b>{ a->, b<-,

prob: problog_connect(ca.prob) }
FROM A a -=> CA ca -> (A -> CAca ->)*x -=> A b
WHERE a != b

As a final step we can use this domain in combination with
the shortest path to find authors that are very likely con-
nected, but that are relatively far apart in the co-author
network (Q3).

SELECT <a,b,pc,sp>
{nameA: a.name, nameB: b.name,
prob: pc.prob, dist: sp.length }
FROM A a -> ProbConnect pc -> A b,
#a -> ShortestPath sp -> #b
WHERE sp.length > 2
LIMIT GLOBAL 1 BY pc.prob DESC

7. CONCLUSIONS

Motivated by the need to have database support for the
analysis and mining of large networks we proposed several

extensions to a previously proposed data model and query
language (BiQL). The main elements of these extensions
were aggregates, rankings and path expressions; they al-
lowed us to calculate well-known network statistics (such as
centrality measures), transform networks for the application
of more advanced mining algorithms or more complex prob-
abilistic measures (such as connection probabilities). We
implemented our language in a Prolog-based prototype.

The main challenge we are currently facing is the develop-
ment of a more scalable implementation. To a certain degree
our approach seems incompatible with recent work on large-
scale storage systems (such as the Hadoop File System or
Google’s BigTable). Our language supports operations such
as subgraph isomorphism, which are known to be NP hard
to compute; hence it is not likely that our language (or any
other language supporting this operation) will scale to the
datasets of billions of nodes that the HFS and BigTable are
required for. Still, we believe there is a need for expressive
query languages for smaller datasets. On such datasets, sev-
eral common queries, such as shortest path queries, may be
optimized by running specialized algorithms. A theoretical
framework for the evaluation of queries with such optimiza-
tions is currently missing, even though some more simple
optimizations are not too hard to obtain: for instance, when
a query is posed in which path expressions are used without
variables that collect the objects in the path, we can deduce
that finding one path satisfying the regular expression is suf-
ficient; in such case we can avoid considering a potentially
exponential number of paths between nodes, and can per-
form a dynamic programming style of algorithm. This may
still not be feasible on very large graphs, but already scales
much better to datasets of thousands of nodes.

Further optimizations may be obtained by more carefully
considering how graphs are stored. Our current implemen-
tation relies on an in-memory Prolog or on-disk relational
database. The first option is reasonably fast, but is not per-
sistent; the latter option is persistent but not efficient. By
implementing our language on top of a graph database, such
as Neo4J [18] or Dex [16], our language could become more
widely applicable.

A possible use of our query language is in systems for
Inductive Logic Programming. In many such systems a hy-
pothesis language needs to be defined through which the
system searches; a BiQL query may serve as a hypothesis.

Finally, we aim to study several open questions concern-
ing the formulation of graph queries. In recent work [21] a
higher-level programming language called Gremlin was de-
veloped for implementing PageRank-like measures on net-
works. This language however does not support the more
declarative querying that we are proponents of. Extending
our language with primitives for expressing measures such
as PageRank may increase the flexibility of our language.

Acknowledgements. This work was supported by the Euro-
pean Commission under the 7th Framework Programme FP7-
ICT-2007-C FET-Open, contract no. BISON-211898 and by a
Postdoc grant from the Research Foundation — Flanders.

8. REFERENCES
[1] B. Amann and M. Scholl. Gram: a graph data model
and query language. In HT, pages 201-211. 1992.
[2] R. Angles and C. Gutierrez. Survey of graph database
models. ACM Computing Surveys, 40(1):1-39, 2008.

[3] I. Bhattacharya and L. Getoor. Collective entity
resolution in relational data. Data Engineering
Bulletin, 29(2):4-12, 2006.

[4] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. Computer Networks,
30(1-7):107-117, 1998.

[5] L. De Raedt, A. Kimmig, H. Toivonen. ProbLog: A
Probabilistic Prolog and Its Application in Link
Discovery. In IJCAI, pages 24622467, 2007.

[6] A. Dries, S. Nijssen and L. De Raedt. A query
language for analyzing networks. In CIKM, pages
485-494, 2009.

[7] R. H. Giiting. GraphDB: Modeling and querying
graphs in databases. In VLDB, pages 297-308, 1994.

[8] M. Gyssens, J. Paredaens, and D. van Gucht. A
graph-oriented object database model. In PODS,
pages 417-424. ACM, 1990.

[9] J. Han, and M. Kamber. Data Mining: Concepts and
Techniques. 2nd edition, Morgan Kaufmann, 2006.

[10] H. He and A. K. Singh. Graphs-at-a-time: query
language and access methods for graph databases. In
SIGMOD, pages 405-418. ACM, 2008.

[11] J. Hidders. Typing graph manipulation operations. In
ICDT, pages 394—409. Springer-Verlag, 2003.

[12] G. Karypis and V. Kumar. Multilevel k-way
partitioning scheme for irregular graphs. J. on Parallel
and Distributed Computing, 48(1):96-129, 1998.

[13] U. Leser. A query language for biological networks.
Bioinformatics, 21(2):33-39, 2005.

[14] M. Levene and A. Poulovassilis. The hypernode model
and its associated query language. In JCIT, pages
520-530. IEEE Computer Society Press, 1990.

[15] M. Levene and A. Poulovassilis. An object-oriented
data model formalised through hypergraphs. Data and
Knowledge Engineering, 6(3):205-224, 1991.

[16] N. Martinez-Bazan, V. Muntés-Mulero, S.
Goémez-Villamor, J. Nin, M. Sdnchez-Martinez and J.
Larriba-Pey Dex: high-performance exploration on
large graphs for information retrieval. In CIKM, pages
573-582, 2007.

[17] The iGraph library.
http://igraph.sourceforge.net/.

[18] The Neo4J Project. http://neo4dj.org/.

[19] Jure Leskovec. SNAP Library.
http://snap.stanford.edu/snap/.

[20] E. Prud’hommeaux and A. Seaborne. SPARQL query
language for RDF.
http://www.w3.org/TR/rdf-sparql-query/.

[21] Marko A. Rodriguez.
http://wiki.github.com/tinkerpop/gremlin/.

[22] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Gallagher,
and T. Eliassi-Rad. Collective classification in network
data. AI Magazine, 29(3):93-107, 2008.

[23] L. Sheng, Z. Ozsoyoglu, and G. Ozsoyogly. A graph
query language and its query processing. In ICDE,
pages 572-581. IKEE Computer Society Press, 1999.

[24] J. Wicker, L. Richter, K. Kessler, and S. Kramer.
SINDBAD and SiQL: An inductive database and
query language in the relational model. In
ECMLPKDD (2), pages 690—-694. Springer, 2008.

