EXAFS and DFT : Evidence for the [Tc=0]²⁺ core

Breynaert, E.; Kirschhock, C.E.A. and Maes, A.

Katholieke Universiteit Leuven, Center for Surface Chemistry and Catalysis, Kasteelpark Arenberg 23, B-3001 Leuven, Belgium

- Technetium (Tc), radioactive element with rich redox (-1 to +7) and coordination chemistry
- Important for nuclear medicine and high level radioactive waste.
- Tc⁴⁺ hydrolysis described as (TcX²⁺, TcX(OH)⁺, TcX(OH)₂ and TćX(OH)³⁻, with X either an oxygroup or two hydroxyls)
- [Tc=O]²⁺ postulated, but not confirmed
- EXAFS single scattering (SS) analysis → fairly easy
- Multiple scattering (MS) analysis \rightarrow detailed geometry required for calculation of phase shifts and amplitudes

- $TcO(OH)_2(H2O)_x$ detected in $[Tc(acac)_3]^\circ$ reference
- Impurity not visible in UV/Vis spectra
- EXAFS fitted with 30/70% TcO(OH)₂(H2O)_x / [Tc(acac)₃][°]
- XANES linear combination fit with FEFF8 generated ab inito XANES spectra results in same ratio

Path	EXAFS	DFT	XRD ^a
Tc-O	2.030	2.053	2.025
$Tc-C_1$	2.964	3.008	2.945
Tc-C ₂	3.318	3.380	3.295
Tc-C ₃	4.396	4.359	4.296

 Table 2: Comparison EXAFS fitted distances (Å) with DFT and XRD^a

[Tc(acac)₃]⁰ synthesis

- $Na_2S_2O_4 + 200 \mu I 6.2 \times 10^{-2} M NH_4TcO_4$
- in a glovebox $(N_2/H_2 95/5\%; < 2 \text{ ppm } O_2)$
- with liquid nitrogen condensation stage

K. Hashimoto *et al.* Chem. Lett., 1988, 1379-1380.D

	U		0.00100	
$\mathbf{Tc_1}$ - $\mathbf{C_1}$	6	2.964	0.00212	0.2298
Tc_1-C_2	3	3.318	0.00188	$S_0^2(Tc_1)^e$ 0.2187
Tc_1-O-Tc_1-O	6	4.097	0.00271	0.1491
$\mathbf{Tc_1}$ - $\mathbf{C_1}$ - \mathbf{O}	12	3.098	0.008^{c}	0.0794
Tc_2-O_1	1	1.728		
Tc_2-O_2	2	1.966	-2 (T \sim O)	$C^{2}(T_{a})e^{0}0.0217$
Tc_2-O_3	2	2.198	$\sigma^{-}(1\mathbf{c}_{1}\mathbf{-}\mathbf{O})$	$S_0(1C_2) 0.0317$
Tc_2-O_4	1	2.511		
Tc_1-C_3	6	4.396	0.004 ^c	0.0304
Tc_1-C_3-O	12	4.430^d	0.01292^d	$C^{2}(T_{a})e$
Tc_1-O-C_3-O	6	4.415^d	0.00892^{d}	$S_0(1C_1)$ 0.0284
$\mathbf{Tc_1} \cdot \mathbf{C_1} \cdot \mathbf{C_3} \cdot \mathbf{O}$	12	4.503^d	0.01441 ^d	
α^{2}	0 (10=			1
$S_0^{-}(\mathbf{I}\mathbf{c}_1)$	0.6135		$\Delta E_0(Tc_1)$	-1.557
$S_0^2(Tc_2)$	0.3865		$\Delta E_0(Tc_2)$	-3.828

^{*a*} Tc₁: Tc(acac)₃⁰; Tc₂: TcO(OH)₂(H₂O)₃. ^{*b*} R factor is shown for each path added to the fit, all other parameter show the final fit values. ^c fixed. ^d evaluated as function of path parameters. $^{e}S_{0}^{2}(Tc_{1}) = 1 - S_{0}^{2}(Tc_{2})$

Conclusions

- **EXAFS + DFT** \rightarrow detailed structure elucidation
- **Excellent agreement between EXAFS/DFT derived and** single crystal XRD [Tc(acac)₃]⁰ structure
- Tc⁴⁺ 'oxy' coordination identified for the first time

