
Strictness Meets Data Flow

Tom Schrijvers1 and Alan Mycroft2

1 Dept. of Computer Science, K.U.Leuven
Celestijnenlaan 200A, 3001 Heverlee, Belgium

tom.schrijvers@cs.kuleuven.be
2 Computer Laboratory, University of Cambridge
JJ Thomson Avenue, Cambridge CB3 0FD, UK

http://www.cl.cam.ac.uk/users/am

Abstract. Properties of programs can be formulated using various tech-
niques: dataflow analysis, abstract interpretation and type-like inference
systems. This paper reconstructs strictness analysis (establishing when
function parameters are evaluated in a lazy language) as a dataflow anal-
ysis by expressing the dataflow properties as an effect system. Strict-
ness properties so expressed give a clearer operational understanding
and enable a range of additional optimisations including implicational
strictness. At first order strictness effects have the expected principality
properties (best-property inference) and can be computed simply.

1 Introduction

Fosdick and Osterweil [3] introduced the notion of path expressions for data flow
analysis. A path expression is a regular expression that summarises a program’s
control graph in terms of events of interest on program variables, branches,
sequences and loops.

This paper adapts the idea of path expressions to strictness analysis for lazy
functional languages such as Haskell [5]. In this setting, the events of interest
are evaluations of (potentially) lazy values. What sets our approach apart from
traditional forms of strictness analysis based on boolean functions [2, 7] or pro-
jections [9], is the combination with data flow information available in path
expressions.

The combination of strictness and data flow information enables two addi-
tional forms of optimisation in addition to those based on conventional strict-
ness and absence information. Firstly, it also captures implicational strictness
between variables: whenever variable y is evaluated, then x has already been
evaluated. Secondly, the path information reveals whether particular optimisa-
tions would apply to some but not all paths. Hence, it guides inlining to expose
optimisation opportunities.

Lazy functional languages only evaluate expressions when required to progress
the computation. This is similar to call-by-name in Algol60 or normal order eval-
uation in the lambda-calculus but with the additional ‘laziness’ requirement that
repeated requests to evaluate the same expression only evaluate it once and make

its value available immediately to subsequent requests. The standard implemen-
tation of a value is therefore a pointer to a thunk; multiple references to the same
value become copies of this pointer. The thunk has two states: an unevaluated
state (in which the payload is a pointer to code to compute the value and change
the thunk’s state) and an evaluated state in which the payload holds the value.
GHC represents the is-evaluated flag by one of two code pointers; before eval-
uation the flag is the thunk (which does then not need storing in the payload,
and which stores its result in payload offset zero), afterwards it is a simple “load
payload offset zero” code sequence. Causing a thunk to move into evaluated state
is called forcing it.

There are two costs borne by lazy languages which their eager counterparts
do not pay. Firstly, a thunk which is created but inevitably later evaluated
is pointless waste of resources. Classical strictness optimisation detects this at
compile time, typically to create a pre-evaluated thunk when the expression-to-
be-suspended appears and to optimise away the is-evaluated test at references
to the value. (Unboxing optimisations remove the heap allocation too.) Secondly,
the is-evaluated tests on thunks are repeated on repeated references to a value.
For a single variable these can often be removed at control flow points which
are dominated by a force operation, but a contribution of this work is that this
can be generalised to consider dependencies between the evaluation state of two
different variables—we call this ‘implicational strictness’.

2 Type-and-Effect System

Source Language We consider a first-order functional language (see Figure 1),
where a program p consists of a sequence of potentially recursive function def-
initions f(x1, . . . , xk) = e. Expressions e are variables x, function application
f(e1, . . . , ek), integer (natural number) literals n, constructor application succ(e)
and case elimination case(e1, e2, x→ e3) (where either e2 is returned if e1 eval-
uates to 0, or e3 is returned if e1 evaluates to succ(x)).

Types and Effects Figure 1 lists the syntax for types and effects. Value types τ
consist so far only of the type Nat of naturals;3 function types are of the form
τ1, . . . , τk

φ−→ τ where τi are the argument types, τ the return type, and φ its
effect.

An effect φ is either a parameter xi denoting the effect of evaluating the
ith function argument xi (variables bound by case are effectively eager), the
constant 0 for non-terminating programs, the constant 1 for effect-free programs,
the sequential composition of effects φ1 ·φ2 and non-deterministic choice of effects
φ1 + φ2. By abuse of notation, a name xi denotes both a source-level variable
and its associated effect.
3 This means that, not counting effects, all variables and functions have exactly one

type, so we do not need to introduce polymorphic types to discuss the principality
of inference for types containing effects.

2

Source Language

programs p ::= d1 · · · dm

definitions d ::= f(x1, . . . , xk) = e

expressions e ::= x
| f(e1, . . . , ek)
| n
| succ(e)
| case(e1, e2, x→ e3)

Types and Effects

effects φ, ψ ::= xi
| 0
| 1
| φ1 · φ2

| φ1 + φ2

value types τ ::= Nat

function types σ ::= τ1, . . . , τk
φ−→ τ

φ1 + φ2 ≡ φ2 + φ1 (1)

(φ1 + φ2) + φ3 ≡ φ1 + (φ2 + φ3) (2)

(φ1 · φ2) · φ3 ≡ φ1 · (φ2 · φ3) (3)

φ+ φ ≡ φ (4)

φ+ 0 ≡ φ (5)

0 · φ ≡ 0 (6)

φ · 0 ≡ 0 (7)

φ · 1 ≡ φ (8)

1 · φ ≡ φ (9)

φ3 · (φ1 + φ2) ≡ φ3 · φ1 + φ3 · φ2 (10)

(φ1 + φ2) · φ3 ≡ φ1 · φ3 + φ2 · φ3 (11)

x · φ · x ≡ x · φ (12)

Fig. 1. Syntax and Equivalence Laws

Operational Semantics Figure 2 lists the small-step operational semantics of
our language, inspired by Launchbury’s big-step semantics [6] for lazy evalua-

tion. The judgement ρ; e
φ
� ρ′; e′ denotes a small step from expression e and

environment ρ to expression e′ and environment ρ′. Values n do not reduce.
An environment ρ is a map from variables to unevaluated expressions (denoted
x 7→ e) or evaluated values (denoted x = n). An expression e is an evaluated nat-
ural number n in ρ, denoted e

ρ
= n, iff e is n, or e is a variable x and (x = n) ∈ ρ;

otherwise e is unevaluated in ρ, denoted e 6 ρ=.
Rule (Var1) evaluates one step of unevaluated variable x, while rule (Var2)

recognises that x has been fully evaluated and issues effect x. Subsequent occur-
rences of x are handled by rule (Var3). Rule (App) for function call is note-
worthy: it replaces the call by the function body, and updates the environment
with mappings from the formal arguments to the actual arguments. Following
Launchbury, we assume that a renamed-apart copy of the function definition
(including internal case bindings) is used to avoid name capture.

Not listed in the figure is the usual context rule, with context C ::= succ(·) |
case(·, e2, x→ e3):

(Context)
ρ; e

φ
� ρ′; e′

ρ; C[e]
φ
� ρ′; C[e′]

The trace φ of a single step is either 1 or an x (for some variable x). The

transitive closure judgement ρ; e
φ
�∗ ρ

′; e′ sequences the effects φ1, . . . , φn of its

3

ρ; e
φ
� ρ′; e′

(Var1)
ρ; e

φ
� ρ′; e′

ρ[x 7→ e];x
φ
� ρ′[x 7→ e′];x

(Var2)
ρ[x 7→ n];x

x
� ρ[x = n];n

(Var3)
ρ;x

1
� ρ;n

if (x = n) ∈ ρ (Succ)
ρ; succ(n)

1
� ρ;n+ 1

(App)
ρ; f(e1, . . . , ek)

1
� ρ[x1 7→ e1, . . . , xk 7→ ek]; e

if f(x1, . . . , xk) = e

(Case2)
ρ; case(0, e2, x→ e3)

1
� ρ; e2

(Case3)
ρ; case(n+ 1, e2, x→ e3)

1
� ρ[x = n]; e3

Fig. 2. Small-Step Operational Semantics

constituent steps into a string φ1 · . . . · φn. Note that 0 and + effects only arise
in the type-and-effect system, not through evaluation. Because the semantics
does not garbage collect the local variables introduced by rule (App), we write
φ|{x1,...,xn} to project φ onto a set of variables of interest {x1, . . . , xn}. This is
needed to express effect system soundness (Section 2.4).

Effect Algebra In addition to syntactic equivalence, equivalence of effects is gov-
erned by a number of laws, listed in Figure 1. These are the forms and equality
laws for regular languages (operators + and · with units 0 and 1 and with ·
distributing over +) over alphabet {x1, . . . , xk}, but with the additional equa-
tion (12) expressing the fact that repeated elements later (but not earlier) in a
sequence are redundant.

This last law is motivated by the meaning of the parameters: xi denotes
that xi is evaluated at the latest at this point. Once the effect has taken place,
xi is definitely in evaluated form. The conservative approximation lies in the
fact whether xi is evaluated at this point, or has already been evaluated before.
Hence, in xi ·xi we know that xi is evaluated at the latest at the first occurrence
of xi. The second occurrence is thus redundant, because we know that xi is
already evaluated before it. In summary, we conclude that xi · xi ≡ xi.

Definition 1 (Disjunctive Normal Form). The Disjunctive Normal Form
φn of any effect φ is the effect obtained after exhaustive rewriting with the AC
rewrite system comprised of the equivalence laws (4)–(12) interpreted as left-to-
right rewrite rules. We also denote the DNF of φ as dnf (φ).

4

0

y⋅x x y x⋅y 1

1+x 1+y 1+x⋅y1+y⋅x x+y x+x⋅yx+y⋅x y+x⋅yy+y⋅x x⋅y+y⋅x

1+x+yx+y+x⋅yx+y+y⋅x 1+x+x⋅y1+x+y⋅x 1+y+x⋅yy+x⋅y+y⋅x 1+y+y⋅xx+x⋅y+y⋅x 1+x⋅y+y⋅x

1+x+y+x⋅y1+x+y+y⋅x 1+y+x⋅y+y⋅x1+x+x⋅y+y⋅xx+y+x⋅y+y⋅x

1+x+y+x⋅y+y⋅x

Fig. 3. The 32 different effects involving the two variables x and y

The Disjunctive Normal Form (DNF) is a non-deterministic choice of sequen-
tial compositions. Each effect has a DNF that is unique modulo associativity and
commutativity. All equivalent effects have the same DNF.

Number of Distinct Effects The number of distinct effects over a finite set of
parameters is finite. For instance, the set of different effects over two parameters
contains 32 elements (see Figure 3). The lines in the figure denote the “subeffect”
relation, which is explained later.

The basic building blocks for effects are all permutations of k variables with
0 ≤ k ≤ n; there are

∑n
k=0

n!
k! such building blocks for n variables. Note that the

permutation of length 0 denotes the effect 1. For instance, for n = 1 there are 2
building blocks: 1 and x1. For n = 2 there are 5: 1, x1, x2, x1 · x2 and x2 · x1.

These building blocks are combined into effects with the + operator; this
yields 2

Pn
k=0

n!
k! distinct effect terms that range over n parameters. Note that if

none of the building blocks is selected, we obtain the effect 0. For instance, for
n = 1 there are 4 distinct effects, and for n = 2 there are 32 distinct effects.

Definition 2 (Chaos). We define the chaos effect X∗ ranging over a set of
parameters X = {x1, . . . , xn} as

X∗ = (1 + x1 + . . . xn) · . . . · (1 + x1 + . . . xn)︸ ︷︷ ︸
n times

Bitvector Representation The observation about the composition of effects from
building blocks suggests a bitvector representation b̄ for effects where bit bi
denotes whether the ith building block is present or not. The ordering of building

5

x1 1 φ

0 0 0
0 1 1
1 0 x1

1 1 x1 + 1

x1 + 1

1

wwwwww
x1

HHHHHH

0

GGGGGGG
uuuuuu

Fig. 4. The effect domain ranging over a single effect variable x1.

blocks in the bitvector representation may be chosen arbitrarily. Figure 4 lists
the distinct effects for n = 1 with their bitvector representation.

Subeffects Effects have a natural (partial) ordering—the subeffect ordering.

Definition 3. The subeffecting relation <: is the minimal relation that satisfies
(up to ≡) the following axiom:

φ1 <: φ1 + φ2

We say that φ1 is a subeffect of φ1 + φ2.

Note that this relation is indeed a partial order. For instance, the reflexivity
property φ1 <: φ1 follows from choosing φ2 ≡ 0. The minimal element is 0
and the maximal element is chaos X∗. The subeffect lattice for a single variable
x1 is shown in Figure 4. The least upper bound t and greatest lower bound
u operators on this lattice are defined in the usual manner. Observe that they
correspond to bitwise or ∨ and bitwise and ∧ on the bit vector representation.

The <: relation and u and t operations are lifted pointwise to function types:

τ̄
φ1−→ τ <: τ̄

φ2−→ τ iff φ1 <: φ2

(τ̄
φ1−→ τ) u (τ̄

φ2−→ τ) = τ̄
φ1uφ2−−−−→ τ

and (later) to environments Γ .

2.1 Type-and-Effect Inference System

The expression typing judgement is of the form Γ ` e : τ & φ, and denotes that
expression e has type τ and its evaluation has effect φ with respect to the type
environment Γ . In the first-order language there are separate syntactic variable
names for values (x) and functions (f). Type assumptions Γ contain constraints

such as x : τ & φ and f : τ1, . . . , τk
φ−→ τ .

Figure 5 lists the rules for the type-and-effect system. Rule (Var) looks up
the type of a function argument in the type environment and returns the effect
corresponding to that argument. Rule (App) makes sure that the types of the
arguments match the function typing in the environment.

Rules (Lit) and (Succ) cover the predefined constants. Note that to model
standard implementation of arithmetic, the succ data constructor is strict in its
argument e: the effect of evaluating succ(e) is the effect of evaluating e.

6

Γ ` e : τ & φ
(Var)

Γ ` x : τ & φ
if (x : τ & φ) ∈ Γ

(Lit)
Γ ` n : Nat & 1

(Succ)
Γ ` e : Nat & φ

Γ ` succ(e) : Nat & φ

(App)
Γ ` ei : τi & φi (i ∈ 1..k)

Γ ` f(e1, . . . , ek) : τ & φ[φi/xi]
if (f : τ1, . . . , τk

φ−→ τ) ∈ Γ

(Case)
Γ ` e1 : Nat & φ1 Γ ` e2 : τ & φ2 Γ [x : Nat & 1] ` e3 : τ & φ3

Γ ` case(e1, e2, x→ e3) : τ & φ1 · (φ2 + φ3)

Γ ` f(x̄) = e
(Def)

Γ [x̄ : τ̄ & x̄] ` e : τ & φ

Γ ` f(x̄) = e
if (f : τ̄

φ−→ τ) ∈ Γ

Γ ` d̄ (Prog)
Γ ` d1 · · · Γ ` dn

Γ ` d1 · · · dn

Fig. 5. Type-and-Effect Inference Rules

A function definition f(x̄) = e is well-typed w.r.t. environment Γ , denoted
Γ ` f(x̄) = e, if the function’s typing is recorded in the environment and the
function’s body is well-typed w.r.t. that typing (Rule (Def)). A program d̄ is
well-typed w.r.t. environment Γ , denoted Γ ` d̄, if all its definitions are well-
typed (Rule (Prog)).

2.2 Principality

Theorem 1 (Unique Non-Recursive Function Typing). For any Γ , there

is at most one typing f : τ̄
φ−→ τ such that Γ, f : τ̄

φ−→ τ ` f(x̄) = e, if f is not
recursive, i.e., e does not contain a call f(ē).

Note that due to our restricted setting with only one type Nat there is in fact
exactly one such function typing.

Recursive functions admit multiple typings that differ in their effect. For
instance, f(x1) = f(x1) admits typings f : Nat

φ−→ Nat for any effect φ. Similarly,
f(x1, x2) = case(x1, x2, y → f(y, x2)) has well-typings x1 · (x2 + φ) for any φ.
The cause of these multiple typings is the (Def) rule, which defines a recursive
function’s well-typing in terms of itself, i.e., as a fixpoint. Any fixpoint is a valid
solution. This issue of self-reference also exists in traditional dataflow analysis.
Usually, in that context, the analysis domain naturally has a lattice structure
and the least (sometimes greatest) fixpoint in that lattice is the preferred one.
We follow the same approach.

7

If two different well-typings are possible, then their greatest lower bound is
also a well-typing.

Lemma 1. For all environments Γ1, Γ2 and programs d̄, if Γ1 ` d̄ and Γ2 ` d̄,
then Γ1 u Γ2 ` d̄.

As the lattice is finite, it follows that there is a unique minimal well-typing:
the principal type.

Corollary 1 (Principality). For all environments Γ1, Γ2 and programs d̄, if
Γ1 ` d̄ and Γ2 ` d̄, then there exists an environment Γ such that Γ <: Γ1 and
Γ <: Γ2 and Γ ` d̄.

In contrast to the data-flow-analysis approach that we follow, effect systems
typically have a coercion rule:

(Coerce)
Γ, e : τ1 & φ1

Γ ` e : τ2 & φ2

if τ1 <: τ2 and φ1 <: φ2

but this is unnecessary here because (i) effects can express non-deterministic
choice using +, and (ii) in the first-order setting, subeffecting only applies co-
variantly and thus all coercions in a judgement can be pushed to the root of the
proof tree and thus merged into the <: of principality.

2.3 Connection to Traditional Type Inference

The type-and-effect system we have defined has the property that type inference
can be done first, followed by effect inference. Type, or type-and-effect, inference
can be explained in terms of reconstructing information removed by erasure
operators. Erasure of types, and reconstructing types without effects is standard.
So we now consider an erasure operator which removes effects from expression
types-and-effects and from function types yielding traditional types (which in our
case are simple types but could equally be Hindley-Milner polymorphic types),
and state various results. Effect erasure is defined as follows:

ε(τ & φ) = ε(τ) ε(Nat) = Nat ε(τ̄
φ−→ τ) = τ̄ → τ

and lifted to environments Γ as usual.

Results A well-typing (`) in the type-and-effect system is also a traditional
well-typing (`T). Conversely, a well-traditional-typing always has a well-typing
in the type-and-effect system (i.e. the type-and-effect system is a conservative
extension).

Theorem 2 (Conservative Extension).

(∀e, Γ, τ) ε(Γ) `T e : ε(τ) ⇔ (∃φ) Γ ` e : τ & φ

8

2.4 Effect System Soundness

We have presented a semantics and an effect system for our simple language and
now address their consistency. To establish soundness, we show an enriched form
of progress and preservation lemmas,4 after an auxiliary definition.

Definition 4 (Compatible Environments). A typing environment Γ is com-
patible with an evaluation environment ρ iff Γ = tenv(ρ) where

tenv(ρ) = {x : Nat & x | (x 7→ e) ∈ ρ} ∪ {x : Nat & 1 | (x = n) ∈ ρ}

Progress expresses that a well-typed non-value expression is never stuck.

Lemma 2 (Progress).

(∀ρ1, e1, τ, φ1) tenv(ρ1) ` e1 : τ & φ1 ⇒ (∃ρ2, e2, φ2) ρ1; e1
φ2
� ρ2; e2

where e1 is not a value.

The preservation lemma expresses that the types and effects before and after
an evaluation step are related appropriately: the type is the same and the original
effect subsumes the concatenation of the evaluation trace and the new effect.

Lemma 3 (Preservation).

(∀ρ1, ρ2, e1, e2, τ, φ1, φ2) tenv(ρ1) ` e1 : τ & φ1 ∧ ρ1; e1
φ2
� ρ2; e2

⇒ (∃φ3) tenv(ρ2) ` e2 : τ & φ3 ∧ (φ2 · φ3)|dom(ρ1)
<: φ1

3 Inference Algorithm

Figure 6 lists our first-order inference algorithm. The inference judgement for
expressions is of the form Γ `A e : τ & φ | C, which denotes that type τ and
effect φ are inferred for expression e with respect to environment Γ and with Γ
and τ subject to a set C of type equality constraints of the form τ = τ ′.5

The type-and-effect information in the inference algorithm are essentially
independent. The type-related part of the algorithm corresponds to traditional
type inference as discussed earlier.

The effect inference for expressions is fairly straightforward. A composite
expression’s effect is a composite effect, composed from the components’ effects.
Note that in each case the minimal effect of an expression is returned.

The hardest part of effect inference takes place for a function definition. For
recursive calls during the inference of the function body, we use a meta-effect γ
as a place-holder. The body’s inference returns an effect φ for the function that
potentially mentions γ. In order to obtain a proper effect for the function, the
4 The traditional lemmas are recovered through effect erasure.
5 |= C denotes that C is satisfiable, usually established by unification.

9

Γ `A e : τ & φ | C

(Var)
(x : τ & φ) ∈ Γ

Γ `A x : τ & φ | true
(Lit)

Γ `A n : Nat & 1 | true

(Succ)
Γ `A e : τ & φ | C

Γ `A succ(e) : Nat & φ | C ∧ τ = Nat

(App)
f : τ1, . . . , τk

φ−→ τ ∈ Γ Γ `A ei : τ ′i & φi (i ∈ 1..k) | Ci
Γ `A f(e1, . . . , ek) : τ & φ[φi/xi] | C̄ ∧ τ̄ = τ̄ ′

(Case)

Γ `A e1 : τ1 & φ1 | C1

Γ `A e2 : τ2 & φ2 | C2 Γ [x : Nat & 1] `A e3 : τ3 & φ3 | C3

Γ `A case(e1, e2, x→ e3) : τ2 & φ1 · (φ2 + φ3) | C1 ∧ C2 ∧ C3 ∧ τ1 = Nat ∧ τ2 = τ3

Γ1 `
A
f(x̄) = e : Γ2

(Def)

Γ [f : Nat
γ−→ Nat, x̄ : Nat & x̄] `A e : τ & φ | C
|= C ∧ τ = Nat

Γ `A f(x̄) = e : Γ, f : Nat
ψ−→ Nat

if ψ = lfp(λγ.φ)

`A d̄ : Γ

(Prog)
∅ `A d1 : Γ1 · · · Γn−1 `

A
dn : Γn

`A d1 · · · dn : Γn

Fig. 6. Syntax-Directed Inference Algorithm

equation φ <: γ must be solved. The least solutions of this inequation is obtained
as the least fixpoint of µγ.φ, starting from 0. The number of iterations needed
to obtain the least fixpoint is bounded from above by the number of distinct
variable permutations, but may be much smaller in practice.

Example 1. Consider the function definition g(x1, x2) = case(x1, x2, y → g(y, x2))
with effect equation x1 · (x2 + φ[1/x1, x2/x2]) <: φ. We obtain the least fixpoint
in two steps, and confirm it in the third step:

φ0 ≡ 0
φ1 ≡ x1 · (x2 + φ0[1/x1, x2/x2]) ≡ x1 · x2

φ2 ≡ x1 · (x2 + φ1[1/x1, x2/x2]) ≡ x1 · x2

10

3.1 Properties

Theorem 3 (Soundness & Completeness wrt. the Inference System).
If `A d̄ : Γ , then Γ ` d̄, for any program d̄ and environment Γ . If Γ ` d̄, then
`A d̄ : Γ ′, for any program d̄ and environment Γ and for some Γ ′.

Theorem 4 (Principality). If Γ ` d̄ and `A d̄ : Γ ′, then Γ ′ <: Γ for any
program d̄ and environments Γ, Γ ′.

Theorem 5 (Termination). The inference algorithm terminates for any pro-
gram d̄.

4 Optimisations

A number of different optimisations are possible.

4.1 Standard Strictness Analysis and Optimisations

Our strictness domain is more expressive than the Boolean expressions used in
traditional strictness analysis. The abstraction relation α maps our effects to
Boolean expressions.

α(1) = 1 α(φ1 · φ2) = α(φ1) ∧ α(φ2) α(xi) = xi
α(0) = 0 α(φ1 + φ2) = α(φ1) ∨ α(φ2)

Moreover α(φ[φ′/x]) = α(φ)[α(φ′)/x].

Lemma 4 (Well-definedness). Equivalent effects abstract to equivalent boolean
functions:

(∀φ1, φ2) φ1 ≡ φ2 ⇒ α(φ1) ≡ α(φ2)

The converse does not hold. Consider φ1 = 1 + x1 and φ2 = 1. While φ1 6≡ φ2,
we do have that α(φ1) ≡ α(φ2) ≡ 1. Hence, the α mapping is an abstraction
because it loses information.

Theorem 6 (Complete abstraction). Given program d̄ and writing `S for
standard boolean strictness inference using boolean functions, then `S d̄ : α(Γ)⇔
`A d̄ : Γ .

The following two optimisations are enabled by standard strictness analysis.

Eager Evaluation If a function is strict in an argument, then that argument
may be evaluated before the function call. A function is strict in argument
xi if α(φ[0/xi]) ≡ 0. Since 0 is the only effect φ for which α(φ) = 0, we can
equally check argument strictness by testing φ[0/xi] ≡ 0.

Loop Detection As in traditional strictness, if an expression e has effect 0,
then its evaluation does not terminate. Hence, it may be replaced by loop():
– If loop is defined as loop() = loop(), the transformed code should run

in constant space, whereas e may not.
– Alternatively, defining loop() = error("loop!"), using a Haskell fea-

ture, transforms the code to abort evaluation and report non-termination
to the programmer.

11

4.2 Inlining to expose Standard Strictness Optimisation

If a function is not strict in an argument, standard strictness optimisations do
not apply. However, not being strict in an argument may mean either that the
function never evaluates its argument or only sometimes evaluates it. In the
latter case, there are one or more branches that do not evaluate the argument
and one or more that do evaluate it. Inlining and floating the actual arguments
into the branches, may effectively enable standard strictness optimisations. Our
effects can be useful for guiding inlining.

For instance, if f(x1) = e has effect 1, this means that inlining of f will
not uncover any opportunities for strictness optimisation, while 1 + x1 promises
opportunities for parameter x1.

Example 2. The function f(x1, x2) = case(x1, 0, y → x2) has type

f : Nat, Nat
x1·(1+x2)−−−−−−→ Nat

which provides no direct opportunity for strictness optimisation of x2. However,
after inlining, strictness optimisation can be applied to the second branch of f .

Note that in general inlining of a single function f may not be sufficient
to uncover optimisation opportunities. Take f to be defined as f(x1) = g(x1)
where g has the effect 1 + x1 to illustrate this point. In the worse case, we may
need to inline successively all the functions in the program to expose a strictness
optimisation opportunity guaranteed by the typing.

4.3 Absent Argument Optimisation

If a function does not use (i.e. evaluate) its argument, then the argument is
effectively dead code. So instead of the actual argument, the caller may provide
a dummy argument or even no argument at all, i.e. an absent argument [9].

A function of type f : τ1, . . . , τk
φ−→ τ does not evaluate its ith argument

(on any path which can return) if xi 6∈ φ. For instance, a function of type
f : Nat 1−→ Nat does not evaluate its argument. Hence, the function definition
can be rewritten from f(. . . , xi−1, xi, xi+1, . . .) = e to f(. . . , xi−1, xi+1) = e,
and likewise the ith argument may be dropped from all calls in the program.
It is important to do Loop Detection Optimisation first (which replaces paths,
including possible references to xi on them, which can never return with loop()),
consider e.g. f(x) = case(x, f(x), y → f(x)).

Note that absent argument information is not present in the traditional strict-
ness domain. There we have that α(1) = 1 = α(1 + x1).

4.4 Implicational Strictness

A standard optimisation exploits the explicit intraprocedural data flow and
avoids consecutive evaluation of the same variable. For instance, the second oc-
currence of x in case(x, case(x, e1, y → e3), z → e4), is known to have been eval-
uated already. So the expression can be replaced with case(x, case#(x, e1, y →

12

e3), z → e4), where case# does not force its argument (i.e. reads the payload of
its discriminant directly):

(Case#)

ρ; case#(e1, e2, x→ e3)
1

� ρ; case(n, e2, x→ e3)
if e1

ρ
= n

For now, we leave case# stuck at unevaluated expressions, but come back to
this issue later. Bolingbroke and Peyton Jones [1] show how this availability op-
timisation is easily implemented using a straightforward common-subexpression
elimination in a strict core language.

Traditionally, this optimisation does not work across procedure boundaries,
because the data flow within a function definition is hidden. Our new strict-
ness domain exposes the relative evaluation order of function arguments across
procedure boundaries; this information enables the interprocedural form of the
optimisation. Consider a function f(x, y) with effect 1 + x · y; this has two re-
turning control-flow paths, one evaluating neither variable and one evaluating y
after x. While f is not strict in x or y (nor jointly strict in x and y as in arms of
a conditional) we do know that, given a call f(e1, e2), then whenever e2 is eval-
uated the thunk for e1 will already have been forced. This allows us to optimise
a call f(x, case(x, 0, z → z)), logically f(x, x− 1), to f(x, case#(x, 0, z → z))

Hence we are interested in partial order information “is-always-evaluated-
before”. Each effect φ defines a partial order ≺φ on the set of effect variables X
as follows.

Definition 5 (Variable Evaluation Order). We say that a variable x1 must6

be evaluated before variable x2 with respect to effect φ in DNF, denoted x1 ≺φ x2,
iff (with x 6= x1, x 6= x2)

x1 ≺x·φ x2 = x1 ≺φ x2 x1 ≺1 x2 = true
x1 ≺x1·φ x2 = true x1 ≺0 x2 = true
x1 ≺x2·φ x2 = false x1 ≺φ1+φ2 x2 = x1 ≺φ1 x2 ∧ x1 ≺φ2 x2

For effects φ that are not in DNF, the relation is defined as:

x1 ≺φ x2 = x1 ≺dnf (φ) x2

For instance, the effect x1 ·x2 +x1 ·x3 captures the following order information:

≺ x1 x2 x3

x1 − Y Y
x2 N − N
x3 N N −

as does x1 · (x2 + x3). Note that in the case of 0 we can choose the variable
evaluation order arbitrarily.

It is important to note that ≺φ does not respect ≡ (and hence is not a
congruence for terms not in DNF), due to the behaviour of 0. For example,
6 Only paths which can terminate are considered.

13

suppose we have code f with one path which evaluates first x and then y. This
has effect φ = x · y and so x ≺φ y holds, but not y ≺φ x. Suppose now there
is a definite loop before, or more problematically after, this code. Now its effect
is φ′ = 0 = φ · 0 = 0 · φ and note that both x ≺φ′ y and y ≺φ′ x hold.
This appears paradoxical, in that code which evaluates x first and then y and
then loops can be deduced to evaluate y before x! The resolution is that only
paths which can return a result are considered by the ≺φ relation; and using
an incorrect order of evaluation on non-terminating paths does not matter (save
for an implementation effect we explore in the next section). This effect also
occurs if the code has multiple paths; the effect of 0 is to remove guaranteed
non-terminating paths from consideration in the overall effect.

4.5 Transformation Soundness

There is a subtlety concerning the path 0 which we noted above. 0 represents
a path which can never return, the archetypal example being a function call
loop() given a definition loop() = loop(). While 0 behaves as an identity for
+ and a (left and right) zero for · these algebraic properties which are fine for
analysis need care when being used for optimisation.

This is related to partial versus total correctness: given function f(x, y) hav-
ing effect x ≺φ y should not be simply read as “x is always evaluated before y”,
but more properly should be read as “x is always evaluated before y whenever
f returns”.

While the exact behaviour of code on non-terminating paths is not in gen-
eral interesting, we must be careful that data-representation errors do not oc-
cur (these could replace non-termination with memory faults, or even seem-
ingly valid answers). Consider again optimising a call f(x, case(x, 0, z → z))
to f(x, case#(x, 0, z → z)) when we know f(x, y) has effect φ and we have
x ≺φ y. The problem is that f could have a definition such as f(x, y) =
case(y, f(x, y), z→f(x, y)) which would cause the potentially unevaluated thunk
for x in the second argument of the call to be discriminated by case#. While this
is clearly not a problem for unboxed values such as small integers and booleans
(since the question is which of two infinite loops are taken), for values repre-
sented as pointers to code or to data this can spell memory errors or branches
to arbitrary locations.

Formally, we model the issue with (i) an erroneous effect Err, that is
generated when case# encounters an unevaluated expression, and (ii) a non-
deterministic value n.

(Err)

ρ; case#(e1, e2, x→ e3)
Err
� ρ; case(n, e2, x→ e3)

if e 6 ρ= (∀n)

A transformation that introduces case# necessarily (by soundness) avoids the
(Err) transition on all terminating derivations (non-0 paths). Otherwise a
change in semantics can be observed: the Err effect shows up in the trace
of the transformed program, but not the original program. For non-terminating
derivations, we distinguish between fragile and robust implementations.

14

Fragile implementations distinguish between the erroneous transition (e.g. yield-
ing a crash) and non-termination. This is modelled by the supplementary law
Err · 0 6≡ 0 overriding the more general φ · 0 ≡ 0. Thus any (Err) transition,
whether for a terminating or non-terminating derivation, violates the soundness
of the optimisation. There are various ways to avoid (Err) on the 0 path for
fragile implementations (e.g. dropping the “right zero” law), but we prefer to
avoid the 0 path itself, analogous to traditional dataflow analysis, by adding
a dummy return node to every loop that otherwise would not have one. The
downside of avoiding the (Err) transition is of course the reduced opportunity
for optimisations, which is why we turn to robust implementations.

Robust implementations are still modelled by Err ·0 ≡ 0, and (Err) transitions
in non-terminating derivations are not observable. This is for instance possible
by ensuring that the payload of an unevaluated thunk is always interpretable as
a value of its result type; hence the non-deterministic value n in rule (Err).

5 Related Work

Jensen [4] presents a strictness analysis based on strictness logic. His strictness
language is perhaps the closest to ours, with polymorphic variables α and con-
ditional strictness φ2?φ1 similar to respectively our parameters x and sequential
composition φ1 ·φ2. However, as it lacks branching (+) and 0, our novel optimi-
sations do not apply.

We have only considered flat data, i.e. the natural numbers, where forcing the
value also forces the component. Wadler [8] shows one way to extend strictness
analysis to non-flat domains. A similar technique would apply to our domain.

Wansbrough [10] annotates function types with polymorphic “usage” an-
notations to identify thunks which are encountered at most once; these can be
optimised to remove the “is-evaluated” test. It is appealing to speculate whether
an extended effect system can capture this property too.

6 Conclusion and Future Work

We have expressed strictness as effects in a type-and-effect system which both
adds insight into strictness properties and provides additional strictness optimi-
sation opportunities.

There is a natural extension of our type-and-effect system to higher-order and
polymorphic types (we need effect variables and an effect binding construct so
that λx.x has effect ∀α.α x−→

x
α). With a subtyping rule, similar to (Coerce) in

Section 2.2, the system becomes a conservative extension of polymorphic types,
however it remains unclear whether the type-and-effect system has principal
types, necessary for a type inference algorithm.

Acknowledgements Tom Schrijvers gratefully acknowledges funding for visiting
the University of Cambridge from the Fund for Scientific Research – Flanders.
The authors thank the anonymous reviewers for their helpful comments.

15

References

1. M. C. Bolingbroke and S. L. Peyton Jones. Types are calling conventions. In
Haskell ’09: Proceedings of the 2nd ACM SIGPLAN symposium on Haskell, pages
1–12, New York, NY, USA, 2009. ACM.

2. G. L. Burn, C. L. Hankin, and S. Abramsky. The theory of strictness analysis for
higher order functions. In on Programs as data objects, pages 42–62, New York,
NY, USA, 1985. Springer.

3. L. D. Fosdick and L. J. Osterweil. Data flow analysis in software reliability. ACM
Comput. Surv., 8(3):305–330, 1976.

4. T. P. Jensen. Inference of polymorphic and conditional strictness properties. In
POPL ’98: Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, pages 209–221, New York, NY, USA, 1998. ACM.

5. S. Peyton Jones, editor. Haskell 98 Language and Libraries – The Revised Report.
2003.

6. J. Launchbury. A natural semantics for lazy evaluation. In POPL ’93: Proceedings
of the 20th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 144–154, New York, NY, USA, 1993. ACM.

7. A. Mycroft. Abstract interpretation and Optimising Transformations for Applica-
tive Programs. PhD thesis, University of Edinburgh, 1981.

8. P. Wadler. Strictness analysis on non-flat domains (by abstract interpretation over
finite domains). In Abstract Interpretation. Ellis Horwood, 1987.

9. P. Wadler and R. J. M. Hughes. Projections for strictness analysis. In G. Kahn,
editor, FPCA, volume 274 of LNCS, pages 385–407. Springer, 1987.

10. K. Wansbrough. Simple polymorphic usage analysis. Technical Report UCAM-
CL-TR-623, Cambridge University Computer Laboratory, March 2005.

16

