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Abstract

In many engineering problems, the behavior of dynamical sys-
tems depends on physical parameters. In design optimization, these
parameters are determined so that an objective function is mini-
mized. For applications in vibrations and structures, the objective
function depends on the frequency response function over a given
frequency range and we optimize it in the parameter space. Due
to the large size of the system, numerical optimization is expensive.
In this paper, we propose the combination of Quasi-Newton line
search optimization methods and Krylov-Padé type algebraic model
order reduction techniques to speed up numerical optimization of
dynamical systems. We prove that Krylov-Padé type model order
reduction allows for fast evaluation of the objective function and
its gradient, thanks to the moment matching property for both the
objective function and the derivatives towards the parameters. We
show that reduced models for the frequency alone lead to significant
speed ups. More interestingly, we show that reduced models valid
for the frequency range and a line in the parameter space are helpful
for the reduction of the computation time for minimax optimization.
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Abstract

In many engineering problems, the behavior of dynamical systems depends on physical parameters.
In design optimization, these parameters are determined so that an objective function is minimized.
For applications in vibrations and structures, the objective function depends on the frequency re-
sponse function over a given frequency range and we optimize it in the parameter space. Due to the
large size of the system, numerical optimization is expensive. In this paper, we propose the com-
bination of Quasi-Newton line search optimization methods and Krylov-Padé type algebraic model
order reduction techniques to speed up numerical optimization of dynamical systems. We prove that
Krylov-Padé type model order reduction allows for fast evaluation of the objective function and its
gradient, thanks to the moment matching property for both the objective function and the derivatives
towards the parameters. We show that reduced models for the frequency alone lead to significant
speed ups. More interestingly, we show that reduced models valid for the frequency range and a line in
the parameter space are helpful for the reduction of the computation time for minimax optimization.

Keywords: (Parameterized) Model Order Reduction, Krylov Methods, Quasi-Newton Opti-
mization, Design Optimization, Structures and Vibrations

1 Introduction

Numerical parameter studies of vibration problems arising from applications such as the design of airplane
engines, insulation panels along motor ways or in houses, and RCL oscillator circuits are often carried out
in order to choose the “optimal” values of the parameters to meet design objectives such as reducing noise,
and thus can be viewed as optimization problems. These problems are often computationally extremely
expensive, since for each single parameter value, an entire Frequency Response Function (FRF) needs to
be computed, which by itself is already quite expensive.

The computational cost for FRFs has been dramatically reduced by a factor of ten or more by
using Model Order Reduction (MOR) techniques [22]. The goal of MOR is to construct a low order
model to approximate the original large-scale model with high accuracy to reduce the computational
cost. It has already been successfully applied to many different fields such as circuit simulations [10, 25],
(vibro) acoustics [22] and MEMS design [15]. However, little work has been done to introduce MOR into
optimization although optimization problems are more expensive in general, because an FRF must be
computed on each iteration.

The goal of this paper is the efficient solution of design optimization problems arising from structures
and vibrations. The objective of our optimization is to find the values of design parameters so that some
norm of the FRF is minimized. When we use the ∞-norm, we have a so-called minimax optimization
problem, while with the 2-norm, we minimize some energy norm over a given frequency range. When a
sparse linear system solver is directly used for the computation of the FRFs, the gradients are cheaply
computed as by-products of the function evaluations. Therefore, Quasi-Newton type methods are good
choices for these problems. However, for large scale systems that often occur in real world applications,
function evaluations are quite expensive. So, Krylov-Padé type MOR methods are often used for efficient
function evaluations since they are suitable for reducing large-scale systems. Traditionally, we fix all the
design parameters and do MOR only on the frequency ω to accelerate the evaluations of the corresponding
FRF. Recently, Parameterized MOR (PMOR) [31, 14, 30, 8, 17, 11, 12, 20, 19, 18] was introduced to
reduce both ω and the design parameters. If we reduce on all parameters, we can use a single reduced
model for the computation of all FRFs. However, when the system has many design parameters, it is
not practical to do PMOR on all these parameters because 1.) PMOR algorithms with many parameters
are tricky and difficult to implement; 2.) The order of the reduced order model should increase if we
reduce on more parameters and require similar accuracy, which may make the acceleration by PMOR
less efficient. Therefore, we suggest to fix several parameters and do PMOR on the other parameters to
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obtain a reduced model that approximates the original model on a subspace of interest. If a parameter is
allowed to change in the reduced model, we call it a free parameter ; otherwise, we call it a fixed parameter.

To efficiently increase the performance of Quasi-Newton type optimization, (P)MOR should also be
able to approximate gradients. As is well known, Krylov Padé type MOR methods have a moment
matching property for the output. More recently, it was proven that the gradients are matched in the
interpolation points [13, 1]. However, for optimization problems, a reduced model should be used to
compute the gradients of several iteration points other than the interpolation point. We will prove that
the first order derivatives also satisfy a moment matching property in two-sided (P)MOR methods, both
for free parameters and for fixed parameters. This means that we can compute the derivatives accurately
via the reduced model around the interpolation point, and therefore, we can use the reduced model for
Quasi-Newton type optimization. Note that Hessians do not have a moment matching property unless
we reduce on all parameters, so Newton-type methods are not favorable. Another advantage of Quasi-
Newton methods is that they are effective even when the object function is non-smooth [16, 29], as is
the case for minimax optimization. To guarantee convergence, we use a backtracking strategy with the
Armijo condition [24]. We then propose two general frameworks to solve optimal design problems:

1. MOR Framework only takes ω as a free parameter. It builds a new reduced model for each different
value of the parameter vectors;

2. PMOR Framework also takes the line search direction as a free parameter. It uses the same reduced
model for the computation of all FRFs whose design parameters lie on the search direction in the
parameter space. It applies to linear systems that are polynomially dependent on design parameters.

When the objective function is smooth as is the case in 2-norm optimization, the probability that the
first line search point satisfies the Armijo condition is high for Quasi-Newton type optimization methods
within the convex region. This implies that backtracking is not often carried out, so that a reduced model
in the search direction can seldom be exploited. Therefore, MOR Framework appears to be more efficient
than PMOR Framework. If the objective function is non-smooth, particularly when the optimizer is a
kink point as is the case in∞-norm optimization, a line search step may contain many backtracking steps
so that the Quasi-Newton method can greatly benefit from a PMOR reduced model valid for the search
direction. PMOR Framework is also more suitable for the systems containing only one design parameter.

The paper is organized as follows. In §2, we formulate the optimization problem, present two bench-
mark problems, and review well established Quasi-Newton optimization methods. Section 3 discusses
the moment matching properties for the derivatives, which are not widely known properties of MOR and
PMOR methods. In §4, we fit MOR and PMOR into the Quasi-Newton type optimization methods. We
also introduce a two-sided PIMTAP method that is used for matching moments of the gradients. In §5,
we present the numerical examples for the proposed methods. We conclude the paper in §6.

Throughout the paper, we use lower case letters to denote vectors, and upper case letters to denote
matrices, I for identity matrices and 0 for zero matrices. We use ·∗ for the conjugate transpose of a
matrix or a vector, and also for the complex conjugate of a complex number. The real part of a complex
number z is denoted by <{z}. By convention, ·̂ in the reduced model corresponds to · in the original
model.

2 Optimal Design of Vibration Systems

In this section, we introduce optimal design problems arising from mechanical systems. The usual way
to study mechanical systems is to analyze their finite element or finite difference discretized models. If
we analyze the resulting ODE models in the frequency domain, we need to solve large-scale algebraic
systems, the solution of which is very expensive. Consider the classical vibration system{ (

K(γ) + iωC(γ)− ω2M(γ)
)
x(ω, γ) = f,

y(ω, γ) = `∗x(ω, γ), (1)

where K(γ), C(γ) and M(γ) are parameterized n× n matrices representing stiffness, damping and mass
respectively, f ∈ Cn is its excitation, ` ∈ Cn is its output vector, x is the state vector, γ ∈ Cν denotes ν
design parameters, ω is the frequency and y is the system output. For any fixed γ0, |y(ω, γ0)|2 represents
an FRF1. The optimization problem of (1) can be formulated as

min
γ
g(γ), with g(γ) = T (y(ω, γ)), (2)

1This is actually a squared FRF, we call it an FRF throughout this paper for simplicity
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where T (y(ω, γ)) picks out the criterion g(γ) that we are interested in from the FRF corresponding to
the parameter value γ, such as its average vibration amplitude over a frequency range. Our objective is
to minimize g(γ); that is, to find the optimal γ value whose corresponding FRF meets our objective best.
In this paper, we concentrate on two popular settings of T (y(ω, γ)):

• 2-norm: g2(γ) =
∫ ωH

ωL

|y(ω, γ)|2 dω, where we minimize the energy norm of the FRF;

• ∞-norm: g∞(γ) M= max
ω∈[ωL,ωH ]

|y(ω, γ)|2, where we minimize the highest peak of the FRF.

For a parameterized matrix A(γ) =
[
ai,j(γ)

]
n×n, we define its derivative ∂A(γ)

∂γi
=
[
∂ai,j(γ)
∂γi

]
n×n

. Then

we can easily derive the formulae for computing function values and derivatives

y = `∗
`
K(γ) + iωC(γ)− ω2M(γ)

´−1
f

∂y

∂ω
= `∗

`
K(γ) + iωC(γ)− ω2M(γ)

´−1`
2ωM(γ)− iC(γ)

´`
K(γ) + iωC(γ)− ω2M(γ)

´−1
f (3)

∂y

∂γj
= `∗

`
K(γ) + iωC(γ)− ω2M(γ)

´−1
„
−∂K(γ)

∂γj
− iω ∂C(γ)

∂γj
+ ω2 ∂M(γ)

∂γj

«`
K(γ) + iωC(γ)− ω2M(γ)

´−1
f

|y|2 = y∗y,
∂|y|2
∂ω

= 2<

y∗
∂y

∂ω

ff
,

∂|y|2
∂γj

= 2<

y∗

∂y

∂γj

ff
From the above formulae, we can see that computing y, ∂y

∂ω and ∂y
∂γi

at a given point (ω0, γ0) share the
same computationally dominant part: the LU factorization of the matrix K(γ0) + iω0C(γ0) − ω2

0M(γ0)
and the linear solves with f and `. Therefore, if we want to use MOR to accelerate this Quasi-Newton
type optimization efficiently, we must use the reduced model to compute both y and its derivatives.

In the remainder of this section, we give two examples of the general system (1).

2.1 Acoustic Cavity Optimization with One Design Parameter

First, we discuss an optimal design problem of a unit cubic acoustic cavity with one design parameter.
We imposed homogeneous boundary conditions on all faces except one where we imposed an admittance
boundary condition. The PDE model of this problem is −∇

2u+
(
ω
c

)2
u = f,

∂u
∂n + iωγ u = 0, for u ∈ Γ1,
u = 0, for u ∈ Γ2,

(4)

where u, ω, c, f , n, and γ denote displacement, the frequency, the speed of sound, the excitation, the
normal direction, and the admittance ratio, respectively, Γ1 denotes the face with admittance boundary
condition and Γ2 denotes the five other faces. We discretized the unit cube with finite differences and
analyzed the resulting system in the frequency domain. The frequency range of interest is [ωL, ωH ] =
[9.5 Hz, 11.5 Hz]. The system output, y(ω, γ), is the displacement of a given point inside the cavity. The
state-variable description of this dynamical system is{ (

K + iωγC − ω2M
)
x(ω, γ) = f,

y(ω, γ) = `∗x(ω, γ). (5)

For any fixed γ 0, |y(ω, γ 0)|2 defines an FRF. We show three FRFs with different γ values in Fig. 1. Our
design objective is to choose γ to minimize some norm of the FRF.

2.1.1 ∞-norm optimization

The design objective in this setting is to minimize the highest peak of the FRF by choosing the optimal
admittance ratio γ:

min
γ
g∞(γ), where g∞(γ) M= max

[ωL,ωH ]
|y(ω, γ)|2. (6)

We can see from Fig. 1 that when γ changes, both the value and the position of the local maxima change,
and even the number of local maxima may change. To study how the local maxima change w.r.t γ,
we consider the necessary condition ∂|y|2

∂ω = 0. This condition implicitly defines Local MAximum Curves
(LMAC s) and Local MInimum Curves (LMIC s). Fig. 2 shows the LMACs and LMICs projected onto the
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Figure 1: FRFs with different γ values

contour plot2. Note that an LMAC or LMIC may discontinue at certain points because of its interaction
with other LMACs or LMICs.

To better understand this optimization problem, we project the LMACs onto the |y|2 – γ plane and
this projection is shown in Fig. 3. In practice, these Projected LMAC s (PLMAC s) appear to be convex
when γ is around the optimizer. The Projected Global MAximum Curve (PGMAC ) in Fig. 3 is the
maximum of all the PLMACs and it usually has non-differentiable kink points when different PLMACs
intersect. Although a PLMAC may discontinue at some point, the PGMAC is defined everywhere except
for γ = 0 since the global maximum of an FRF always exists provided that the FRFs do not have vertical
asymptotes, which correspondes to γ 6= 0 in this example. Furthermore, the PGMAC is continuous
because all PLMACs are continuous inside their defining domains.

Figure 2: Contour Plot of |y(ω, γ)|2

} PLMAC

PGMAC

Global Kink Optimizer

γ

max |y|2
ω

Kink Point

Figure 3: Relationship Between Global Optimizer and Local Optimizers

2Because the contour plot for the frequency range [9.5 Hz, 11.5 Hz] is messy, we use another frequency range
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2.1.2 2-norm optimization

If we use the 2-norm, the optimization problem can be formulated as

min
γ
g2(γ), where g2(γ0) M=

∫ ωH

ωL

|y(ω, γ0)|2 dω. (7)

0

0.005

0.01

0.015

0.02

0.025

0.03

0 0.5 1 1.5 2 2.5 3

∫ ω H ω
L
|y
(ω

,γ
)|2

dω

γ

Figure 4: Plot of g2(γ) in 2-norm Optimization

When γ 6= 0, the corresponding FRF has no vertical asymptote and is differentiable. Therefore, the
derivative of g2(γ) can be computed as

dg2

dγ
=
∫ ωH

ωL

2<{y∗ ∂y
∂γ
}dω. (8)

As is shown in Fig. 4, g2(γ) is smoother than g∞(γ) and this fact makes it easier to optimize.

2.2 Floor Damper Optimization with Two Design Parameters

In this application, we consider a floor damper whose function is to alleviate the vibration of the
floor inside a building located near a highway. Its conceptual model is shown in Fig. 5. The floor is
10m×10m×0.3m in size. Its Young’s modulus, Poisson’s ratio, proportional damping ratio and density
are 30 GPa, 0.3, 0.1 and 2500 kg/m3, respectively. The damper can be modeled as a classical stiffness-
damping-mass system. Its mass m1 is 400 kg, and our objective is to minimize the 2-norm or the∞-norm
of the output over the frequency range [2 Hz, 100 Hz] by choosing the stiffness k1 and the damping factor
c1 of the damper.

m1

c1k1

Damper

Figure 5: The Conceptual Model of the Floor Damper Optimization Problem

We use a DKT shell element finite element model [7] for the plate and obtain the following discrete
system: { (

K0 + (k1 + iωc1)K1 − ω2M
)
x = f,

y = `∗x, (9)

where K0 =
[
Kf 0
0 0

]
∈ Cn×n, M0 =

[
Mf 0
0 m1

]
∈ Cn×n, and K1 ∈ Cn×n. The matrix K1 with

three nonzero entries describes the interaction between the damper and its attached element of the plate.
Kf and Mf ∈ C(n−1)×(n−1) are stiffness matrix and mass matrix obtained from the shell element model
of the floor respectively, and m1 denotes the mass of the damper. The contour plot of the ∞-norm of
|y|2 is shown in Fig 6.
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Figure 6: Contour Plot of max
ω∈[ωL,ωH ]

|y(ω, γ)|2 in the Floor Damper Optimization Problem

2.3 Optimization Algorithm

We divide both the 2-norm optimization and the∞-norm optimization into two phases: the Outer Phase
and the Inner Phase.

• Outer Phase: min
γ

g(γ).

• Inner Phase: g(γ) =


max

ωL≤ω≤ωH
|y(ω, γ)|2, (∞-norm optimization),∫ ωH

ωL

|y(ω, γ)|2 dω, (2-norm optimization).

The Outer Phase optimizes g(γ) in the parameter space, while to get the function value and its
gradient for a given γ, an Inner Phase is conducted.

2.3.1 Inner Phase

Here we assume that for the Inner Phase discussed, γ is fixed to γ0.
For ∞-norm optimization, the Inner Phase computes the maximum of a given FRF over the interval

[ωL, ωH ]. As is shown in Fig. 1, an FRF may have several local maxima, and to locate the global maximum,
we first do a coarse grid search, and then use the point with largest |y|2 among the grid points as the

starting point of a one dimensional Quasi-Newton search, which approximates
(
|y(ωk+1, γ)|2∣∣

γ=γ0

)′′
by

„
|y(ωk+1,γ)|2|

γ=γ0

«′
−
„
|y(ωk,γ)|2|

γ=γ0

«′
ωk+1−ωk . It is possible, although rare, that an FRF reaches its global

maximum value at two or more different frequency values. In this case, our algorithm only targets at
locating one of them. The Inner Phase for∞-norm optimization is expensive because we need to compute
y on a large number of grid points to avoid missing peaks and we also need to compute y and ∂y

∂ω for all
Quasi-Newton iteration points.

For 2-norm optimization, the Inner Phase computes the integrals of |y(ω, γ0)|2 and ∂|y(ω,γ)|2
∂γi

∣∣∣
γ=γ0

(i = 1, 2, . . . , l) over the interval [ωL, ωH ] to compute g(γ0) and ∇g|γ=γ0
. We use the Trapezoidal rule [9]

for these numerical integrations. The Inner Phase for 2-norm optimization is also expensive because we
need to compute |y(ω, γ0)|2 and ∂|y(ω,γ)|2

∂γi

∣∣∣
γ=γ0

(i = 1, 2, . . . , l) on a large number of ω values to guarantee

the accuracy of the numerical integration.

2.3.2 Outer Phase

For∞-norm optimization, the optimizer is often a kink point as is shown in Fig. 3. Therefore, we cannot
use the usual stopping criterion

∥∥∥∇ g(γ)|γ=γi

∥∥∥ ≤ τ , where γi represents the point returned by the i-th
iteration and τ is a tolerance. Instead, we use the stopping criterion ‖γi − γi−1‖ ≤ τ . We can expect
the Outer Phase of∞-norm optimization to converge slower than 2-norm optimization since non-smooth
optimization problems are more difficult and require more computational effort.

For the acoustic cavity optimization, we use a one-dimensional Quasi-Newton optimization method
for the Outer Phase; for the floor damper optimization, we have two parameters and we have freedom
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to choose which Quasi-Newton algorithm to use. The BFGS method, which is the most popular Quasi-
Newton type method, is not suitable for our application, because to make the BFGS method work, the
curvature condition must be satisfied [24], i.e. the underlying function must be a quadric, but in our
application, the objective function is only strictly convex in a small region around the optimizer, but
semi-convex in a much larger region as is shown in Fig. 6. Thus, a violation of the curvature condition is
likely to happen and the BFGS method may break down. Therefore, we chose to use the damped BFGS
method that forces the curvature condition to be satisfied [24]. The damped BFGS method updates the
approximate Hessian Bk in the following way.

Algorithm 2.1 (Update of Bk at the k-th Step of the Damped BFGS Method [24])
1. Define sk = γk+1 − γk, tk = ∇g(γk+1)−∇g(γk) and

θk =

{
1 if sTk tk ≥ 0.2sTkBksk

0.8sTkBksk
sTkBksk−sTk tk

if sTk tk < 0.2sTkBksk

Compute rk = θktk + (1− θk)Bksk.
2. Update Hessian approximation Bk as

Bk+1 = Bk − Bksks
T
kBk

sTkBksk
+
rkr

T
k

sTk rk

As was discussed in §2.1, the objective function in ∞-norm optimization often has non-differentiable
kink points, which are cross-points of two or more PLMACs. Our algorithm only locates one of these
PLMACs and use its derivatives for the Quasi-Newton type optimization.

2.3.3 Convergence

All Quasi-Newton steps in our algorithm use a backtracking strategy with the Armijo condition, which
guarantees the convergence of our algorithm [24]. To enlarge the convergence region, when the inner
product of the Quasi-Newton direction with the gradient direction is negative, we reverse the Quasi-
Newton direction to ensure that the Armijo condition can be met.

3 Derivative Computations via Krylov Padé Type MOR

As was mentioned in Section 2, using MOR to accelerate parameter optimization problems can only
be effective if also the derivatives are computed via the reduced model. In this section, we discuss the
moment matching properties of the derivatives between the original model and the reduced model. We
divide this problem into two categories: computation of derivatives w.r.t free variables in the reduced
model and computation of derivatives w.r.t fixed variables in the reduced model. We will show that we
have moment matching properties for the low order derivatives towards free variables for both one-sided
and two-sided MOR methods, while we have moment matching properties for the first order derivatives
towards fixed variables only for two-sided MOR methods.

3.1 Moment Matching Properties of Function Values

Consider the following system with l free parameters p1, p2, . . . , pl
3:{

A(p1, p2, . . . , pl)x = b,
y = `∗x, (10)

where A(p1, p2, . . . , pl) : Cl → Cn×n is a matrix function, b ∈ Cn is the system input vector and ` ∈ Cn
is the system output vector.

Krylov-Padé Type MOR generates the base vectors of two subspaces: a right Krylov subspace V
related to A(p1, p2, . . . , pl) and b, and a left subspace W related to A∗(p1, p2, . . . , pl) and `. We postpone
the details of the algorithms to generate these base vectors for §4.

Assume that we have generated V,W ∈ Cn×k, whose column vectors span V and W respectively.
Define Â(p1, p2, . . . , pl) = W ∗A(p1, p2, . . . , pl)V , b̂ = W ∗b and ˆ̀ = V ∗`. Then, we can construct the
following reduced model: {

Â(p1, p2, . . . , pl)x̂ = b̂,

ŷ = ˆ̀∗x̂,
(11)

3In this paper, we set set p1 = ω and p2 = γ1, p3 = γ2, . . . , pl = γl−1, where γ1, γ2, . . . , γl−1 are l − 1 free design
parameters.
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The key feature of Krylov methods is moment matching. Let the Taylor expansion of y be

y = `∗A(p1, p2, . . . , pl)−1b = (A(p1, p2, . . . , pl)−∗`)∗b
M=
∞∑
i1=0

∞∑
i2=0

. . .
∞∑
il=0

m(i1, i2, . . . , il)pi11 p
i2
2 . . . pill , (12)

where m(i1, i2, . . . , il) is defined as the (i1, i2, . . . , il)-th moment of y. Similarly, we can define the
(i1, i2, . . . , il)-th moment of ŷ and denote it by m̂(i1, i2, . . . , il). We say that the (i1, i2, . . . , il)-th moments
of y and ŷ match if

m(i1, i2, . . . , il) = m̂(i1, i2, . . . , il).

Similar to (12), we can also expand x and t
M= A(p1, p2, . . . , pl)−∗`:

x = A(p1, p2, . . . , pl)−1b
M=
∞∑
i1=0

∞∑
i2=0

. . .
∞∑
il=0

r(i1, i2, . . . , il)pi11 p
i2
2 . . . pill , (13)

t = A(p1, p2, . . . , pl)−∗`
M=
∞∑
i1=0

∞∑
i2=0

. . .
∞∑
il=0

ζ(i1, i2, . . . , il)pi11 p
i2
2 . . . pill , (14)

We define r(i1, i2, . . . , il) as the (i1, i2, . . . , il)-th moment of x, and ζ(i1, i2, . . . , il) as the (i1, i2, . . . , il)-th
moment of t. We can use these moments to construct Left Krylov Subspaces and Right Krylov Subspaces.

Definition 1 The (i1, i2, . . . , il)-th right Krylov subspace K(r)(i1, i2, . . . , il) is defined as the subspace
spanned by all r(j1, j2, . . . , jl) satisfying 0 ≤ j1 ≤ i1, 0 ≤ j2 ≤ i2, . . . , 0 ≤ jl ≤ il. Similarly,
the (i1, i2, . . . , il)-th left Krylov subspace K(l)(i1, i2, . . . , il) is defined as the subspace spanned by all
ζ(j1, j2, . . . , jl) satisfying 0 ≤ j1 ≤ i1, 0 ≤ j2 ≤ i2, . . . , 0 ≤ jl ≤ il.

Krylov methods approximate x (or t) with a vector in a right (or left) Krylov subspace with the moment
matching property, as is shown in Lemma 1.

Lemma 1 For system (10) and (11), assume

A(p1, p2, . . . , pl) =
∞∑
i1=0

∞∑
i2=0

. . .
∞∑
il=0

Å(i1, . . . , il)pi11 p
i2
2 . . . pill ,

where Å(i1, . . . , il) ∈ Cn×n. Assume that W ∗Å(0, 0, . . . , 0)V is nonsingular. Then, if K(r)(i1, i2, . . . , il) ⊆
colspan{V }, it follows that r(i1, i2, . . . , il) = V r̂(i1, i2, . . . , il) and m(i1, i2, . . . , il) = m̂(i1, i2, . . . , il).
Similarly, if K(l)(i1, i2, . . . , il) ⊆ colspan{W}, it follows that ζ(i1, i2, . . . , il) = Wζ̂(i1, i2, . . . , il) and
m(i1, i2, . . . , il) = m̂(i1, i2, . . . , il).

See Appendix A for the proof.
If a (P)MOR method generates only the left or the right Krylov subspaces, it is called a one-sided

method, while if it generates both the left and the right Krylov subspaces, it is called a two-sided method.
By intuition, we expect two-sided methods to match more moments. We will discuss this topic for the
one-parameter case and the two-parameter case in §4.

3.2 Moment Matching Property of Derivatives w.r.t Free Variables

Theorem 2 Let (ξ, ξ̂) be (y, ŷ), (x, V x̂) or (t,W t̂) in the system pair (10) and (11). Let

ξ =
∞∑
i1=0

∞∑
i2=0

. . .
∞∑
il=0

ξ(i1, i2, . . . , il)pi11 p
i2
2 . . . pill ,

ξ̂ =
∞∑
i1=0

∞∑
i2=0

. . .

∞∑
il=0

ξ̂(i1, i2, . . . , il)pi11 p
i2
2 . . . pill .

Then the (i1, i2, . . . , il)-th moments of ∂r1+r2+···+rlξ
∂p
r1
1 ∂p

r2
2 ···∂p

rl
l

and ∂r1+r2+···+rl ξ̂
∂p
r1
1 ∂p

r2
2 ···∂p

rl
l

match if and only if the (i1 +

r1, i2 + r2, . . . , il + rl)-th moments of ξ and ξ̂ match for i1 ≥ 0, i2 ≥ 0, . . . , il ≥ 0.

Proof :

8



Let
∂r1+r2+···+rlξ
∂pr11 ∂p

r2
2 · · · ∂prll

=
∞∑
i1=0

∞∑
i2=0

. . .
∞∑
il=0

u(i1, i2, . . . , il)si11 s
i2
2 . . . sill ,

∂r1+r2+···+rl ξ̂
∂sr11 ∂s

r2
2 · · · ∂srll

=
∞∑
i1=0

∞∑
i2=0

. . .

∞∑
il=0

û(i1, i2, . . . , il)pi11 p
i2
2 . . . pill .

It is easy to derive

u(i1, i2, . . . , il) =

 i1+r1∏
j1=i1+1

j1

i2+r2∏
j2=i2+1

j2 , . . . ,

il+rl∏
jl=il+1

jl

 ξ(i1 + r1, i2 + r2, . . . , il + rl),

û(i1, i2, . . . , il) =

 i1+r1∏
j1=i1+1

j1

i2+r2∏
j2=i2+1

j2 , . . . ,

il+rl∏
jl=il+1

jl

 ξ̂(i1 + r1, i2 + r2, . . . , il + rl).

When i1 ≥ 0, i2 ≥ 0, . . . , il ≥ 0, the coefficient between the brackets are nonzero, and ξ(i1 +r1, i2 +
r2, . . . , il + rl) = ξ̂(i1 + r1, i2 + r2, . . . , il + rl) is equivalent to u(i1, i2, . . . , il) = û(i1, i2, . . . , il).

�

For reduced models that contain only one free variable like in the acoustic cavity model (5), we have
the following corollary.

Corollary 3 Under the conditions of Theorem 2, if both (10) and (11) have only one parameter s and
the first k moments of ξ and ξ̂ w.r.t s match, the first k − r moments of ∂rξ

∂sr and ∂r ξ̂
∂sr (r < k) w.r.t s

match. If no other moments of ξ and ξ̂ w.r.t s match, exactly k − r moments of ∂rξ
∂sr and ∂r ξ̂

∂sr w.r.t s
match.

We illustrate Theorem 2 with a system parameterized with s and λ in Fig. 7, where a solid circle at
(i, j) means the (i, j)-th moment is matched.
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(c) Moment matching pattern for ∂y
∂λ

Figure 7: Illustrations of the Derivative Computation of a System Containing Two Parameters.

3.3 Moment Matching Properties the First Order Derivatives w.r.t. Fixed
Variables in the Reduced Model

Assume that we also have a fixed parameter q, which is free to change in the original model but is fixed
to q0 in the reduced model. {

A(p1, p2, . . . , pl|q)x = b,
y = `∗x. (15)

The first order derivative w.r.t q can be computed as

∂y

∂q

∣∣∣∣
q=q0

= −`∗A(p1, p2, . . . , pl|q = q0)−1 ∂A(p1, p2, . . . , pl|q)
∂q

∣∣∣∣
q=q0

A(p1, p2, . . . , pl|q = q0)−1b. (16)

To see the moment matching properties between ∂y
∂q

∣∣∣
q=q0

and ∂ŷ
∂q

∣∣∣
q=q0

, we prove the following more

general theorem.

Theorem 4 Consider the system pair (10) and (11). Assume

A(p1, p2, . . . , pl) =
∞∑
i1=0

∞∑
i2=0

. . .
∞∑
il=0

Å(i1, . . . , il)pi11 p
i2
2 . . . pill ,

9



where Å(i1, . . . , il) ∈ Cn×n and W ∗Å(0, 0, . . . , 0)V is nonsingular. Let B(p1, p2, . . . , pl) be a matrix
function and define B̂(p1, p2, . . . , pl) = W ∗B(p1, p2, . . . , pl)V . Then, if K(r)(i1, i2, . . . , il) ⊆ colspan{V }
and K(l)(i1, i2, . . . , il) ⊆ colspan{W}, it follows that the (i1, i2, . . . , il)-th moment of

`∗A(p1, p2, . . . , pl)−1B(p1, p2, . . . , pl)A(p1, p2, . . . , pl)−1b, (17)

denoted by mB(i1, i2, . . . , il), matches the (i1, i2, . . . , il)-th moment of

ˆ̀∗Â(p1, p2, . . . , pl)−1B̂(p1, p2, . . . , pl)Â(p1, p2, . . . , pl)−1b̂, (18)

denoted by m̂B(i1, i2, . . . , il).

Proof :

According to (13) and (14)

`∗A(p1, p2, . . . , pl)−1 =
∞∑
i1=0

∞∑
i2=0

. . .
∞∑
il=0

ζ∗(i0, i1, . . . , il)pi11 p
i2
2 . . . pill (19)

A(p1, p2, . . . , pl)−1b =
∞∑
i1=0

∞∑
i2=0

. . .

∞∑
il=0

r(i0, i1, . . . , il)pi11 p
i2
2 . . . pill (20)

Let the Taylor expansion of B(p1, p2, . . . , pl) be

B(p1, p2, . . . , pl) =
∞∑
i1=0

∞∑
i2=0

. . .
∞∑
il=0

B̊(i0, i1, . . . , il)pi11 p
i2
2 . . . pill . (21)

As (17) is the product of (19), (21) and (20),

mB(i1, i2, . . . , il)

=
∑

α1+β1+δ1=i1

∑
α2+β2+δ2=i2

. . .
∑

αl+βl+δl=il

ζ∗(α1, α2, . . . , αl)B̊(β1, β2, . . . , βl)r(δ1, δ2, . . . , δl) (22)

According to Lemma 1,for all α1 ≤ i1, α2 ≤ i2, . . . αl ≤ il, δ1 ≤ i1, δ2 ≤ i2, . . . , δl ≤ il and arbitrary
β1, β2, . . . , βl, we have

ζ∗(α1, α2, . . . , αl)B̊(β1, β2, . . . , βl)r(δ1, δ2, . . . , δl)

=ζ̂∗(α1, α2, . . . , αl)W ∗B̊(β1, β2, . . . , βl)V r̂(δ1, δ2, . . . , δl)

=ζ̂∗(α1, α2, . . . , αl)
ˆ̊
B(β1, β2, . . . , βl)r̂(δ1, δ2, . . . , δl).

Therefore, all terms in (22) are matched by the reduced model and

mB(i1, i2, . . . , il) = m̂B(i1, i2, . . . , il).

�

The moment matching properties for derivatives are direct results of Theorem 4 because the right
hand side of (16) is independent of q and thus, it is only a special case of (17). Note that sometimes more
moments may be matched in Theorem 4, such as the cases when B̊(0, 0, . . . , 0) = 0. Although Theorem 4
also holds for free parameters, Theorem 2 gives more precise results. For example, if we reduce a system
with no design parameter and both the left and the right Krylov subspaces are of order k, we know from
Theorem 5 in §4 that the first 2k moments of y and ŷ match, and then according to Theorem 2, the
first 2k − 1 moments of the first order derivative match, but Theorem 4 can only tell us that the first k
moments match.

4 Two Frameworks to Use MOR in Accelerating Optimization

As was analyzed in §2, parameter optimization of large scale linear systems is computationally expensive.
It requires a large amount of function and derivative evaluations of a large-scale system. Our idea is to use
two-sided Krylov-Padé type (P)MOR to reduce the computational cost since it can accurately compute
both the function values and gradients thanks to the moment matching properties. In this section, we
first give a brief introduction to Krylov-Padé type (P)MOR methods and then propose two frameworks
that apply them to Quasi-Newton type optimization algorithms.
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4.1 Background: Krylov Subspace

Given a matrix A ∈ Cn×n and a vector b ∈ Cn, the k-th Krylov subspace is defined as

Kk(A, b) = span{b, Ab,A2b, . . . , Ak−1b}, (k ≤ n and in most cases k � n).

It plays an important role in linear equations solving, algebraic eigenvalue problems, MOR, etc. Krylov
subspace methods are very suitable for large scale problems because only matrix-vector multiplication
is required and consequently, the generation of Krylov subspaces is computationally relatively cheap.
However, explicitly computing the Krylov vectors Aib (0 ≤ i ≤ k − 1) to generate the Krylov subspace
is numerically unstable because these vectors tend very quickly to become almost linearly dependent.
The Arnoldi process [2] is a numerically stable scheme that generates an orthonormal basis for Kk(A, b).

In this paper, the term “Krylov subspace” is also used in a more general sense, such as the general-
ization of Krylov subspace for second order systems and parameterized systems.

First, we examine the simplest case: Krylov-Padé type MOR on a first order linear system with one
parameter {

(K − αM)x = b,
y = `∗x, (23)

where K, M ∈ Cn×n, b, ` ∈ Cn, and K is nonsingular.
For this system,

y = `∗(K − αM)−1b =
∞∑
i=0

[
`∗(K−1M)iK−1b

]
αi, (24)

and according to Definition (12), the i-th moment mi is

mi = `∗
[
(K−1M)iK−1b

]
=
[
(K−∗M∗)iK−∗`

]∗
b. (25)

Similarly, we can also derive the i-th moment of x and t according to (13) and (14)

ri = (K−1M)iK−1b, ζi = (K−∗M∗)iK−∗`. (26)

Based on Definition 1, the k-th right Krylov subspace is Kk(K−1M,K−1b) and the k-th left Krylov
subspace is Kk(K−∗M∗,K−∗`). Then according to Lemma 1, we can use them to build a reduced model
with moment matching property. In general, we have the following theorem.

Theorem 5 For the first order system (23), if colspan{Vk} ⊇ Kk1(K−1M,K−1b), colspan{Wk} ⊇
Kk2(K−∗M∗,K−∗`) (k1, k2 ≤ k) and W ∗kKVk is nonsingular, we have that

1. (K−1M)iK−1b = Vk(K̂−1M̂)iK̂−1b̂ for all 0 ≤ i ≤ k1 − 1;

2. (K−∗M∗)iK−∗` = Wk(K̂−∗M̂∗)iK̂−∗ ˆ̀ for all 0 ≤ i ≤ k2 − 1;

3. m̂i = mi for all 0 ≤ i ≤ k1 + k2 − 1.

See [26] for a proof of Theorem 5. Due to Theorem 5, ŷ is a Padé type approximation of y [10]. So
when α is small, ŷ is a good approximation of y.

Shifting is important for real world applications. For example, if we want to compute y(α) for several
α’s clustered around σ (not an eigenvalue) far away from the origin, the first equation of the linear
system (23) is often preconditioned by left multiplying (K −σM)−1 to shift the interpolation point from
the origin to σ to increase accuracy [21]. Note that when K is singular, shift is required to make the
Arnoldi process applicable.

4.2 MOR Framework

In this part, we develop the MOR Framework that computes one reduced model that fixes all design
parameters for the solution of each point in the parameter space, which uses a whole Inner Phase to
calculate the 2-norm or the ∞-norm of the corresponding FRF. We first introduce SOAR, which is a
modification of the Arnoldi process for second order systems. Then we discuss the details of the MOR
Framework.
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4.2.1 SOAR

To reduce the second order system{
(K + iωC − ω2M)x = f,
y = `∗x, (K,C,M ∈ Cn×n and l, f ∈ Cn) (27)

we transform it to the first order system
([

K 0
0 I

]
− ω

[ −iC M
I 0

])[
x
ωx

]
=
[
f
0

]
,

y = [`∗, 0]
[

x
ωx

]
,

(28)

on which an Arnoldi process can be applied. The disadvantage of this approach is that: 1.) the dimension
of the system order is doubled; 2.) the second order system is reduced to a first order system whose
physical meaning is not so clear. Second Order ARnoldi (SOAR) [28, 5, 4, 3, 26] is an improvement of
this approach. Rather than reducing the equivalent first order system, SOAR directly reduce (27) to a
low order second order system. SOAR is therefore called structure preserving. SOAR actually projects
the second order system to a second order Krylov subspace [5, 4, 3, 26], which contains the subspace
generated by the Arnoldi process. This means: 1.) the SOAR reduced model is expected to be at least
as accurate as the Arnoldi reduced model; 2.) SOAR inherits the moment matching properties from the
Arnoldi Process: if the left second order Krylov subspace is of order k1 and the right second order Krylov
subspace is of order k2, then the first k1 + k2 moments of y and ŷ match.

4.2.2 MOR Framework: One Reduced Model for Each Inner Phase

Since in an Inner Phase, all design parameters are fixed, we can use SOAR to reduce on ω. This method is
supposed to be efficient since the computational cost of an Inner Phase is high. For∞-norm optimization,
it includes

• Computing y for all grid points in the coarse grid search;

• Computing y and ∂y
∂ω for each step in the one-dimensional Quasi-Newton search;

• Computing ∇g (g(γ) = max
[ωL, ωH ]

|y(ω, γ)|2) at the optimizer found.

For 2-norm optimization, it includes

• Computing y and ∂y
∂γi

(i = 1, 2, . . . , l) for all interpolation points in numerical integration.

The MOR Framework use a SOAR reduced model for each Inner Phase so that all these computations
within an Inner Phase can be done with a single reduced model. Therefore, the optimization performance
is expected to increase.

4.3 PMOR Framework

PMOR is a natural extension of MOR to accelerate the solution of linear systems with design parameters.
It can reduce a system on a larger subspace than MOR. In this subsection, we first give a brief introduction
to PIMTAP, a representative of PMOR methods. To use PMOR for computing derivatives, we then
propose two-sided PIMTAP and discuss its moment matching properties. Finally we propose the PMOR
Framework.

4.3.1 PIMTAP

PMOR is complicated both in complexity and numerical stability. Pioneering work includes [31, 14,
30, 8, 17, 11, 12]. PIMTAP (Parameterized Interconnect Macromodeling via a Two-directional Arnoldi
Process) [20, 19, 18] provides a flexible way for reducing linear systems with multiple parameters. The
linear system that PIMTAP reduces in the two-parameter case is:{ (

G0 + λG1 + s(C0 + λC1)
)
x = b,

y = `∗x, (G0, G1, C0, C1 ∈ Cn×n, b, ` ∈ Cn). (29)

12



Let the Taylor series of x in terms of s and λ be x =
∞∑
i=0

∞∑
j=0

rji s
iλj (rji ∈ Cn), then according to (13),

rji is the (i, j)-th 2-parameter moment of x. Substituting x with this Taylor series in (29) and comparing
the left hand side with the right hand side leads to the following recursive relationship of the moments:

rji = 0, if i < 0 or j < 0;
rji = G−1

0 b if i = 0 and j = 0;
rji = −G−1

0 (C0r
j
i−1 +G1r

j−1
i + C1r

j−1
i−1 ), otherwise.

(30)

PIMTAP projects (29) to a subspace V spanned by a selection of the moments. According to Definition 1,
the (p, q)-th right Krylov subspace is V(p, q) = span{rji | i = 0 : p− 1, j = 0 : q− 1}, If we define r[j]

[i] , G[j]

and C[j] as

r
[j]
[i] =


r0
i−1

r1
i−1
...

rj−1
i−1

 , G[j] =


G0

G1 G0

G1 G0

. . . . . .
G1 G0


︸ ︷︷ ︸

j blocks

, C[j] =


C0

C1 C0

C1 C0

. . . . . .
C1 C0


︸ ︷︷ ︸

j blocks

,

the recursive relationship (30) could be rearranged as

r
[j]
[i] = −G−1

[j] C[j]r
[j]
[i−1], for all i > 1. (31)

From the relationship (31), we can see that r[j]
[1], r

[j]
[2], . . . , r

[j]
[k] span Kk

{
−G−1

[j] C[j], r
[j]
[1]

}
, which can be

generated with the standard Arnoldi process. We can see that each Krylov vector of Kk
{
−G−1

[j] C[j], r
[j]
[1]

}
can be split into j base vectors of the (k, j)-th right Krylov subspace K(r)(k, j). Thus, we can obtain
all k × j base vectors of K(r)(k, j). In this way, PIMTAP can generate a rectangular moment matching
pattern such as the one shown in Fig 8(a). Non-rectangular moment matching patterns are sometimes
also required because in some applications, the high order cross-term moments are not so important. An
extreme example is the method proposed in [14] that matches none of the cross-term moments but is still
accurate enough for its application [14]. However, for Krylov-Padé type methods, the moment matching
pattern should be the union of several rectangles such as the one shown in Fig. 8(b), to have moment
matching properties due to Lemma 1. This kind of patterns could be expressed by a vector p ∈ Nk
satisfying 0 < p(i) ≤ p(j) when i > j, meaning that rji is matched if and only if j ≤ k and i ≤ p(j)− 1.
For example, the moment matching vector of the example in Fig. 8(b) is (10, 7, 4, 2). For non-rectangular
patterns, PIMTAP uses TAP [18], which can be regarded as an efficient rearrangement of several Arnoldi
processes, to generate the Krylov subspaces.
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(a) The moment matching pattern of PIMTAP
via Arnoldi Process. The matched moments
spans V(10, 4).
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(b) An example of moment matching pattern for
PIMTAP via TAP. The moment matching
vector is (10, 7, 4, 2).

Figure 8: Illustrations of the moment matching patterns of PIMTAP.

4.3.2 Two-sided PIMTAP

Since PIMTAP can be viewed as a rearrangement of several Arnoldi Processes, we can expect that two

sided methods also work for PIMTAP. Expand t M=
(
G0 +λG1 +s(C0 +λC1)

)−∗
` as

∞∑
i=0

∞∑
j=0

ζji s
iλj , where

ζji is the (i, j)-th moment of t due to (14). Define ζ [j]
[i] =

[
(ζ0
i−1)T , (ζ1

i−1)T , . . . , (ζj−1
i−1 )T

]T
. The recursive
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relationship of ζ [j]
[i] is ζ [j]

[i] = −G−∗[j] C
∗
[j]ζ

[j]
[i−1]. Therefore, ζ [j]

[1] , ζ
[j]
[2] , . . . , ζ

[j]
[k] spans Kk{−G−∗[j] C

∗
[j], ζ

[j]
[1]}, with

whose Krylov vectors we can obtain the base vectors of the (k, j)-th left Krylov subspace K(l)(k, j).
Using the PIMTAP to obtain V ∈ Cn×k and W ∈ Cn×k, whose column vectors form orthonormal

bases for the Krylov subspaces specified by the left and right moment matching pattern respectively, we
obtain a two-sided PIMTAP reduced order model{ (

Ĝ0 + λĜ1 + s(Ĉ0 + λĈ1)
)
x = b,

ŷ = ˆ̀∗x,
(32)

where Ĝ0 = W ∗G0V , Ĝ1 = W ∗G1V , Ĉ0 = W ∗C0V , Ĉ1 = W ∗C1V , b̂ = W ∗b, ˆ̀ = V ∗`. The following
theorem shows the moment matching properties of two-sided PIMTAP.

Theorem 6 Assume Ĝ in (32) to be nonsingular, then, the (i−1, j−1)-th moment of y in the two-sided
PIMTAP reduced model and the original model match if any of the following three conditions is satisfied:

1. K(l)(i, j) ⊆ colspan{W} or K(r)(i, j) ⊆ colspan{V };
2. there exists il, ir ≥ 0, such that the K(l)(il, j) ⊆ colspan{W}, K(r)(ir, j) ⊆ colspan{V } and

il + ir = i;

3. there exists jl, jr ≥ 0, such that the K(l)(i, jl) ⊆ colspan{W}, K(r)(i, jr) ⊆ colspan{V } and
jl + jr = j.

Proof :
1. A direct deduction of Lemma 1.

2. A direct deduction of the last statement of Theorem 5.

3. Change the roles of λ and ω in PIMTAP. Define rh
[j]
[i] =

[
(rj−1

0 )T , (rj−1
1 )T , . . . , (rj−1

i−1 )T
]T

and

we can find a relationship similar to (31), which we denote as rh
[j]
[i] = −Gh−1

[j] Ch[j]rh
[j−1]
[i] , for all

i > 1. This relationship provides an alternative implementation to generate the 2-parameter
Krylov subspace. Both of the two implementations generate the same subspace, the subspace
spanned by the moments to be matched. Using the result in case 2 for these alternative
implementations for K(l)(i, jl) and K(r)(i, jr), the (i− 1, j − 1)-th moments of y and ŷ match
according to Theorem 5.

�

Theorem 6 shows that if the left Krylov space and the right Krylov space use the same rectangular
moment matching pattern that matches k moments, then 3k moments of y are matched. When the
moment matching pattern is not rectangular, the number of matched moments of y is less than 3k. Fig 9
gives an example where the left Krylov subspace and the right Krylov subspace have different moment
matching patterns. Actually, using the same moment matching pattern for both Krylov subspaces is
favorable because according to Theorem 4, more moments of the first order derivatives are matched.
This is what we do in PMOR Framework.
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(c) Moment matching pattern for y

Figure 9: Illustrations of the moment matching property of two-sided PIMTAP

4.3.3 PMOR Framework: One Reduced Model for Each Line Search Iteration in the Outer
Phase

Since PIMTAP can reduce on more than one parameter, it can accelerate the optimization performance
more efficiently. For the acoustic cavity optimization problem, we can reduce on both iωγ and −ω2 and
the reduced system can be used for the whole optimization. In general, however, we may have several
parameters and it is impractical to reduce on all of them. An alternative is to reduce on a selection of
parameters or linear combinations of them. To accelerate the Inner Phase, we must reduce on ω. We have
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the freedom to choose design parameters or linear combinations of the design parameters to reduce. One
choice to integrate PIMTAP and Outer Phase optimization is to use line search optimization algorithm
and perform PIMTAP reduction on the search direction. Assume that the optimizer at iteration j is γ(j)

and the search direction for the next step is d(j). System (5) is reformulated for γ = γ(j) + αd(j) as{ (
K(γ(j) + αd(j)) + iωC(γ(j) + αd(j))− ω2M(γ(j) + αd(j))

)
x(ω, γ(j) + αd(j)) = f,

y(ω, γ) = `∗x(ω, γ(j) + αd(j)).
(33)

Assume that K(γ), C(γ) and M(γ) are all matrix polynomials of γ whose degrees are less than or equal

to q. We expand K(γ(j) + αd(j)) =
q∑
0

Kiα
i, C(γ(j) + αd(j)) =

q∑
0

Ciα
i, M(γ(j) + αd(j)) =

q∑
0

Miα
i,

linearize the system (33) similar as what we have done in (28), and obtain the following linearized system:{ (
K̃ + αC̃ + iωM̃

)
x̃ = f,

y = ˜̀∗x̃.
(34)

where

x̃ =

266666666666664

x
αx
...

αq−1x

iωx
iωαx

...
iωαqx

377777777777775
, ˜̀=

266666666666664

`
0
...
0

0
0
...
0

377777777777775
,

K̃ =

"
K0 0n×(q−1)n C0 0n×qn

I2qn×2qn

#
,

C̃ =

2666664
K1 K2 . . . Kq C1 C2 . . . Cq 0n×n

−I(q−1)n×(q−1)n

0qn×(2q+1)n

−In×n

3777775 ,

M̃ =

2666664
0n×qn M0 . . . Mq

0(q−1)n×(2q+1)n

−Iqn×qn
0n×(2q+1)n

3777775 .

The linearization is not unique, and for specific problems, it is possible to find a linearization with
lower order. For the linearization (34), if K0 is nonsingular, then K̃ is also nonsingular and we can use
two-sided PIMTAP to reduce on α and iω. According to Theorem 3 and Theorem 4, we can compute g
and ∇g via the reduced model with moment matching properties. Therefore, we can expect two-sided
PIMTAP to work well in accelerating a line search iteration in the Outer Phase.

For the floor damper model (9), K0 =
[
Kf 0
0 0

]
is singular, so we shift the interpolation point to

ω0 first to make MOR possible. In the j-th iteration, given the current point
(
k

(j)
1 , c

(j)
1

)
and the search

direction
(
d

(j)
1 , d

(j)
2

)
, the system (9) can be rewritten as

([
K11 0

0 I

]
+ α

[
C11 C12

0 0

]
+ i(ω − ω0)

[
M11 M12

−I 0

])[
x

i(ω − ω0)x

]
=
[
f
0

]
,

y = [`∗, 0T ]
[

x
i(ω − ω0)x

]
.

(35)

where K11 = K0 + k
(j)
1 K1 + iω0c

(j)
1 K1 − ω2

0M , C11 = d
(j)
1 K1 + iω0d

(j)
2 K1, C12 = d

(j)
2 K1, M11 =

c
(j)
1 K1 + 2iω0M and M12 = M .

5 Numerical Results and Analysis

In this section, we apply the MOR Framework and the PMOR Framework developed in §4 to the two
design optimization problems described in §2.

5.1 Acoustic Cavity Design Problem

For the acoustic cavity design problem, we have implemented both the MOR Framework and the PMOR
Framework for ∞-norm optimization. We use the direct method that uses the original model for all
computations as a reference to show the effectivity of the two frameworks. Table 1 shows the numerical
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results when the finite difference model has 15625 DOFs. Table 2 indicates that MOR is effective even
when applied to a relatively small scale system with 216 DOFs. In both examples, the grid search
step length, the frequency range and the backtracking factor is set to 0.5 Hz, [9.5 Hz,11.5 Hz] and 0.5
respectively. The initial value is 0.3.

Table 1: Numerical Results of the Order 15625 Model
Direct method MOR Framework PMOR Framework

Matrix size 15625 20 (10, 8, 5, 3, 1)4

Optimizer computed (10.1245, 0.2671) (10.1241, 0.2670) (10.1245, 0.2671)
CPU time 2764s 158s 15s

Table 2: Numerical Results of the Order 216 Model
Direct method MOR Framework PMOR Framework

Matrix size 216 30 (20, 10, 5, 3, 1)
Optimizer computed (9.44428, 0.260166) (9.44436, 0.260147) (9.44428, 0.260182)

CPU time 1.28s 1.21s 0.24s

In both test cases, PMOR Framework is cheaper but locates the optimizer more accurately. This
implies that the PMOR Framework outperforms the MOR Framework when the system has only one
design parameter since only one reduced model is needed for the whole optimization.

5.2 Floor Damper Design Problem

In this section, we applied the MOR Framework and the PMOR Framework for both∞-norm optimization
and 2-norm optimization of the floor damper design problem. We used two different finite element models
for the floor damper: a 280-order model obtained from a 10× 10 uniform mesh and a 29800-order model
obtained from a 100× 100 uniform mesh.

First, we consider the∞-norm optimization for the floor damper design problem. For the optimization
of both the 280-order model and the 29800-order model, the frequency range is [2 Hz, 100 Hz] and the
grid search interval is 4 Hz respectively. The backtracking factor is set to 0.5. The initial value is
(106 N/m, 104 Ns/m).

Table 3: Numerical Results of ∞-norm Optimization of an Order 280 Model
Direct method MOR Framework PMOR Framework

Matrix size 280 25 (15, 10, 8, 5)
Optimizer computed (1470571.461, 4351.660974) (1470571.324, 4351.660851) (1470571.353, 4351.660598)

Optimized value 1161.56029 1161.559454 1161.559633
Number of Iterations 21 21 21

Total Backtracking Steps 104 104 104
CPU time 162s 27s 14s

Table 3 shows that both the MOR Framework and the PMOR Framework work well in reducing the
optimization time. For a relatively large problem shown in Table 4, the direct method needs several
days to run and we do not complete its computation, while for SOAR and PIMTAP, we need only about
an hour to finish the optimization, which is good news for actual design in industry. From Table 3 and
Table 4, we can see that∞-norm optimization involves many backtracking steps, which makes the PMOR
Framework more efficient than the MOR Framework.

Now we turn to the 2-norm optimization problem. The problem setting is the same as what we use
for∞-norm optimization except that we use 200 uniform grid points to carry out a numerical integration
based on the Trapezoidal rule.

4For PMOR Framework, we show the moment matching pattern of two-sided PIMTAP instead to be more specific.
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Table 4: Numerical Results of ∞-norm Optimization of an Order 29800 Model
Direct method MOR Framework PMOR Framework

Matrix size 29800 25 (15, 10, 8, 5)
Optimizer computed — (1479151.998, 4432.836792) (1479151.616, 4432.873736)

Optimized value — 126.9130782 126.9129419
Number of iterations — 16 17

Total Backtracking Steps — 59 76
CPU time Several Days 2521s 1248s

Table 5: Numerical Results of 2-norm Optimization of an Order 280 Model
Direct method MOR Framework PMOR Framework

Matrix size 280 25 (15, 10, 8, 5)
Optimizer computed (1489489.106, 3542.277609) (1489489.106, 3542.277608) (1489489.106, 3542.277613)

Optimized value 18340.65632 18340.65632 18340.65632
Number of iterations 17 17 17

Total Backtracking Steps 6 6 6
CPU time 27s 7s 8s

The numerical results in Table 5 and Table 6 show that for 2-norm optimization, the MOR Framework
locates more accurate optimizers in less time. This is because backtracking steps are seldom carried out
and the freedom of the PMOR Framework in the search direction, at the expense of increasing the order
of the reduced model, is seldom exploited.

The results in Table 3 and Table 5 indicates that 2-norm optimization cost less time than ∞-norm
optimization. On the one hand, the optimization of the 2-norm converges faster because its objective
function is smoother. To show this, we show ‖γk − γk−1‖ for the example of Table 3 and the example of
Table 5 in Fig. 10. On the other hand, for 2 norm optimization, backtracking does not occur frequently
when the objective function is convex and smooth, which means that most line search steps include only
one iteration step. For ∞-norm optimization, however, the optimizer is almost always a kink point5.
Around the kink optimizer, a Quasi-Newton type method may have a too large initial step length, in
which case it needs many backtracking steps to satisfy the Armijo condition. So, the last steps of the
∞-norm optimization are very expensive. This problem can easily be alleviated by using the PMOR
Framework since in that case, all backtracking steps use the same reduced model, which is relatively
cheap. Our experience also shows that if 2-norm optimization start from a point in the non-convex
region, the number of backtracking steps increases, which may make the PMOR Framework outperform
the MOR Framework.
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Figure 10: Comparison of Convergence Rate for 2-norm and ∞-norm Optimization

In our numerical results, we chose the sizes for the reduced model so that the Krylov methods just
start to converge and the errors between the two frameworks are comparable. These errors lead to some
differences in the converging process, such as the number of iterations required to converge. Actually, if
we increase these sizes a little bit, the reduced models become much more accurate and these differences
completely disappear.

5The optimizer is also possible to be a saddle point, but this is rare as it indicates two LMACs have the same gradient
at the cross-point.
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Table 6: Numerical Results of 2-norm Optimization of an Order 29800 Model
Direct method MOR Framework PMOR Framework

Matrix size 29800 25 (15, 10, 8, 5)
Optimizer computed — (1504079.109, 3582.064791) (1504079.109, 3582.064785)

Optimized value — 2011.873086 2011.873086
Number of iterations — 17 17

Total Backtracking Steps — 2 2
CPU time Several Days 980s 1211s

5.3 MOR Eases the Choice of Optimization Parameters

For both 2-norm optimization and ∞-norm optimization, we have to deal with the trade-off between
the optimization performance and the computational cost in the Inner Phase. In the 2-norm case, we
need to use many integration points to guarantee the accuracy of the numerical integration, which is
computationally expensive when the order of the problem is high. For the ∞-norm optimization, the
step length of the grid search should be fine enough to avoid missing the global optimizer.

How to choose the number of integration points or grid points is by itself a complicated optimization
problem. But if we use MOR, all evaluations in an Inner Phase are computed with the same reduced
model and even if we use a fine grid to increase accuracy, the computational cost is not significantly
increased compared with the direct methods. In our numerical examples, we use relatively few grid
points to make a fair comparison between the direct method and MOR methods.

5.4 Open problem: Determination of the size of the reduced model

An open problem is how large the dimensions of subspaces should be for practical use in numerical
optimization. In this paper, we have shown that accurate results can be approximated well with the
results obtained from MOR. In practice, however, the number of vectors should be determined by an
error estimate. One possibility is to use error estimations as in [6], or use the residual norm for the
systems

(K(γ) + iωC(γ)− ω2M(γ))x = f

(K(γ) + iωC(γ)− ω2M(γ))∗t = `

The computed solutions are then the exact solution of a perturbed system. Such residual norms are
cheaply computed. See, e.g., [27][22][23]. The development of practical heuristics is future work.

6 Conclusion

In this paper, we have presented a Quasi-Newton based line search optimization method with backtracking
strategy for the solution of optimization problems arising from design optimization of vibrations and
structures. We used (P)MOR in order to reduce the computational cost. We hereby compare MOR
reduced models for the frequency response function with fixed parameters, and PMOR reduced models
for the frequency and the search direction. When the objective function is the 2-norm of the frequency
response function, the best choice are reduced models for the frequency only. For the ∞-norm of the
frequency response function, backtracking in the search direction is frequently required, in which case
advantage can be made of a reduced model in the frequency and the line search direction. For systems
with only one design parameter, PMOR reduced models are usually better choices.
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A Proof of Lemma 1

Proof :

18



From (13), we derive

b =
∞∑
i1=0

∞∑
i2=0

. . .

∞∑
il=0

A(p1, p2, . . . , pl)r(i1, i2, . . . , il)pi11 p
i2
2 . . . pill , (36)

b̂ =
∞∑
i1=0

∞∑
i2=0

. . .

∞∑
il=0

Â(p1, p2, . . . , pl)r̂(i1, i2, . . . , il)pi11 p
i2
2 . . . pill . (37)

As Â(p1, p2, . . . , pl) = W ∗A(p1, p2, . . . , pl)V and b̂ = W ∗b, the equation (37) can be rewritten as

W ∗b =
∞∑
i1=0

∞∑
i2=0

. . .

∞∑
il=0

W ∗A(p1, p2, . . . , pl)V r̂(i1, i2, . . . , il)pi11 p
i2
2 . . . pill . (38)

Multiplying (36) by W ∗ on the left gives

W ∗b =
∞∑
i1=0

∞∑
i2=0

. . .
∞∑
il=0

W ∗A(p1, p2, . . . , pl)r(i1, i2, . . . , il)pi11 p
i2
2 . . . pill , (39)

(38)−(39) gives,

∞X
i1=0

∞X
i2=0

. . .
∞X
il=0

W
∗
A(p1, p2, . . . , pl) (V r̂(i1, i2, . . . , il)− r(i1, i2, . . . , il)) pi11 p

i2
2 . . . p

il
l = 0,

∞X
i1=0

∞X
i2=0

. . .
∞X
il=0

∞X
j1=0

∞X
j2=0

. . .
∞X
jl=0

W
∗
Å(j1, j2, . . . , jl) (V r̂(i1, i2, . . . , il)− r(i1, i2, . . . , il)) pi1+j1

1 p
i2+j2
2 . . . p

il+jl
l = 0,

∞X
i1=0

∞X
i2=0

. . .

∞X
il=0

i1X
j1=0

i2X
j2=0

. . .

ilX
jl=0

W
∗
Å(i1 − j1, i2 − j2, . . . , il − jl) (V r̂(j1, j2, . . . , jl)− r(j1, j2, . . . , jl)) pi11 p

i2
2 . . . p

il
l = 0.

The fact that the Taylor series equals to zero means for all i1, i2, . . . , il ≥ 0,

i1∑
j1=0

i2∑
j2=0

. . .

il∑
jl=0

W ∗Å(i1 − j1, i2 − j2, . . . , il − jl) (V r̂(j1, j2, . . . , jl)− r(j1, j2, . . . , jl)) = 0. (40)

Now we prove r(i1, i2, . . . , il) = V r̂(i1, i2, . . . , il) by induction.

1. For i1 = i2 = . . . = il = 0, we have

W ∗Å(0, 0, . . . , 0) (V r̂(0, 0, . . . , 0)− r(0, 0, . . . , 0)) = 0.

Since r(0, 0, . . . , 0) ∈ colspan{V }, there exists ξ(0, 0, . . . , 0) ∈ Ck such that r(0, 0, . . . , 0) =
V ξ(0, 0, . . . , 0). Therefore,

W ∗Å(0, 0, . . . , 0)V (r̂(0, 0, . . . , 0)− ξ(0, 0, . . . , 0)) = 0.

As W ∗Å(0, 0, . . . , 0)V is nonsingular, r̂(0, 0, . . . , 0) = ξ(0, 0, . . . , 0) and

r(0, 0, . . . , 0) = V r̂(0, 0, . . . , 0).

2. Suppose r(j1, j2, . . . , jl) = V r̂(j1, j2, . . . , jl) for all j1 ≤ i1, j2 ≤ i2,. . . , jl ≤ il except j1 = i1,
j2 = i2, . . . , jl = il. Under this assumption, the equation (40) becomes

W ∗Å(0, 0, . . . , 0) (V r̂(i1, i2, . . . , il)− r(i1, i2, . . . , il)) = 0. (41)

Like the proof in 1, we have r(i1, i2, . . . , il) = V r̂(i1, i2, . . . , il).

As r(i1, i2, . . . , il) = V r̂(i1, i2, . . . , il),

m(i1, i2, . . . , il) = `∗r(i1, i2, . . . , il) = `∗V r̂(i1, i2, . . . , il) = ˆ̀̂r(i1, i2, . . . , il) = m̂(i1, i2, . . . , il).

Similarly, we can prove the second half of the lemma.
�
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