
Towards Reusable Aspects:
the Callback Mismatch Problem

Maarten Bynens, Dimitri Van Landuyt,
Eddy Truyen and Wouter Joosen

DistriNet, Katholieke Universiteit Leuven
Celestijnenlaan 200A

B-3001 Leuven, Belgium
{maarten.bynens,dimitri.vanlanduyt,

eddy.truyen,wouter.joosen}@cs.kuleuven.be

Abstract
Because software development is increasingly expensive and time-
consuming, software reuse gains importance. Aspect-oriented soft-
ware development modularizes crosscutting concerns which en-
ables their systematic reuse. Literature provides a number of AOP
patterns and best practices for developing reusable aspects based
on compelling examples for concerns like tracing, transactions and
persistence. However, such best practices are lacking for systemat-
ically reusing invasive aspects.

In this paper, we present the ‘callback mismatch problem’. This
problem arises in the context of abstraction mismatch, in which the
aspect is required to issue a callback to the base application. As a
consequence, the composition of invasive aspects is cumbersome
to implement, difficult to maintain and impossible to reuse.

We motivate this problem in a real-world example, show that
it persists in the current state-of-the-art, and outline the need for
advanced aspectual composition mechanisms to deal with this.

Categories and Subject Descriptors D.2.13 [Software Engi-

neering]: Reusable Software—Reusable libraries; D.2.11 [Soft-

ware Engineering]: Software architectures—Information hid-
ing,Languages,Patterns

General Terms Design, Documentation

Keywords reusable aspects, invasive aspects, aspect adapter

1. Introduction
Current AOP languages and approaches often result in aspects that
are tightly coupled to the base classes they act upon. For example,
it is a common technique to write advice code that involves join
point reflection to find out the necessary contextual information
[11]. Such advice code typically hard-codes assumptions about
the structure and behavior of the base classes. This has a number
of negative consequences: the aspect must be maintained together
with the base, which makes it difficult to develop aspects and
base in parallel, and leads to fragility of aspectual composition
(lack of robustness). Additionally, the resulting aspects and their
compositions are very specific to the scope of one application, and
thus not reusable, for example in an aspect library.

To address these problems, the current state-of-the-art provides
a number of techniques and patterns that involve introducing an
abstraction layer between the base and the aspect. Examples of
this are pointcut interfaces [6], annotations and marker interfaces.
Introducing an abstraction layer enables the design of reusable
aspects, in the sense that the required interface of the aspect (the

elements it needs from the base to perform its function) can be
specified uniquely in terms of abstractions that are relevant in
the scope of the aspect itself. For example, the required interface
of a reusable authentication aspect would be defined in terms of
aspect-specific abstractions such as the principal, credentials, etc.
To compose this authentication aspect to the base application,
the developer must implement and provide these abstractions, by
mapping elements of the base application (e.g. a customer in a web
shop) to the aspect abstractions (the principal). Because the aspect
is less tightly coupled to the base application, it can be reused more
easily across applications.

A common problem in the design of reusable aspects is that of
abstraction mismatch. This occurs when the elements of the base
are not fully compatible with the abstraction required by the aspect.
For example, the credentials abstraction may consist of a password
that is encoded in MD5 —meaning that the authentication aspect
expects passwords to be provided in MD5—, while the base offers
the password in plain text. The solution to this is to introduce
an adapter [5] that converts the base abstraction into the aspect
abstraction. In the example, the adapter would be responsible for
applying the MD5 hash function to the password that is provided
by the base and providing the result to the aspect.

These techniques are sufficient to realize a loose coupling be-
tween aspect and base for both spectative and regulative aspects
[9]; i.e. aspects that respectively observe the base application with-
out affecting its functionality, or observe the base application and
redirect or block the thread of execution in some cases. However,
there is a lack of similar patterns or solutions for invasive aspects

that issue callbacks to the base application to change its state or its
behavior.

In this paper, we highlight this problem, which we call the call-

back mismatch problem. This problem arises (i) in the occurrence
of abstraction mismatch, and (ii) when the aspect is required to is-
sue a callback to the base application. As a consequence, the com-
position specification of such aspects becomes cumbersome to im-
plement, difficult to maintain and impossible to reuse.

The structure of this paper is as follows. First, we define and
illustrate the callback mismatch problem in a case study and we
show that this is a realistic problem in the context of parallel devel-
opment and reuse of aspectual modules. Then, we show that in the
current state-of-the-art in aspect-oriented programming (AOP) and
related techniques, patterns and notations, this problem persists and
there is a need for advanced aspectual composition mechanisms to
deal with this issue.

2. The callback mismatch problem
2.1 Problem definition
Pointcuts abstract not only from interesting join points in the base
program but also expose relevant context data available at these
join points. Abstraction mismatch is the problem where the repre-
sentation of these abstractions in the base program is not compati-
ble with the representation in the aspect. Dealing with abstraction
mismatches is easy by employing a binding aspect that extracts the
necessary information from the available base abstractions.

In the presence of callbacks however, specifying such a binding
aspect becomes problematic. Callbacks happen when the reusable
aspect uses the data and/or the behavior of the base application
exposed by a pointcut to intervene in the normal control flow.
As presented in Section 1, callbacks are mostly used to realize
invasive aspects. To bind the callback to the base program, the
binding aspect needs to include adapter functionality that routes the
callback to the same base object that triggered the reusable aspect
in the first place.

This problem is more complex to overcome than traditional
problems with object-oriented libraries and frameworks (e.g. API
mismatch). As the reusable aspect is never explicitly called from
the base program, the adapter (or in this case the binding aspect)
needs to adapt in both directions. It has to make sure that the
relevant join points are translated to the aspect abstractions and
that callbacks refer back to the original object. As a result, dealing
with the callback mismatch problem takes more than solving the
mismatch separately in both directions.

In summary, the callback mismatch problem leads to the follow-
ing:

Problem summary. In the current state-of-the art of AOP lan-
guages, patterns and best practices, the required composition logic
for dealing with both (1) abstraction mismatch and (2) callbacks is
cumbersome to implement, difficult to maintain and impossible to
reuse.

2.2 Motivating Example
To illustrate the problem outlined in this paper, we present a sim-
plified example from the car crash management system (CCMS)
[10, 16]. This is a large-scale and realistic distributed application
that helps the authorities dealing with car crashes more efficiently
by (i) centralizing all information related to a car crash, (ii) propos-
ing a suitable crash resolution strategy, (iii) dispatching resource
workers (e.g. first-aid workers) to the crash site, and (iv) reassess-
ing the strategy in real-time when new information comes in.

To avoid wasting resources on prank calls and witnesses as-
suming a false identity, the correct and efficient functioning of the
CCMS depends highly on witness identity validation, which is im-
plemented in the CCMS as an aspect. More specifically, as long as
the system has not successfully validated the identity of the wit-
ness, the CCMS will operate in limited mode, meaning that only
a restricted set of resources can be assigned to that particular car
crash.

Figure 1 presents this aspect in detail. The sequence starts when
a witness calls the crisis center to report a car crash. The coordi-
nator answering the call enters the name and phone number of the
witness into the CCMS.

In this example, Witness represents the base abstraction: it
provides the information needed by the aspect.

The witness identity validation aspect is provided in the form
of a reusable identity validation aspect IdentityValidation.
The required aspect abstractions in this example are Person and
ValidationReport.

This illustrates abstraction mismatch in this example: the pro-
vided abstraction of the base application is the Witness which en-

capsulates the name, the phone number, and the validity state of the
witness. On the other hand, the required interface of the aspect con-
sists of (1) the Person abstraction which encapsulates first and last
name and phone number, and (2) ValidationReport abstraction
which encapsulates the validity state.

As pointed out in Section 2.1, this issue can be resolved by
specifying a binding aspect with adapter functionality. In this ex-
ample, we have implemented a class adapter which adapts the
interface of the Witness object to match those of Person and
ValidationReport (message 2).

After this, the aspectual composition with the witness identity

validation aspect is realized. More specifically, the pointcut for this
aspect is specified in terms of the Person interface (message 3).
Both the Person and the ValidationReport are exposed through
these join points.

Finally, the IdentityValidation component contacts a third-
party telecom operator to check whether the presented person is in-
deed listed under the given phone number. The result of this verifi-
cation activity is set via the ValidationReport interface. Because
the Witness object has previously been adapted to this interface by
the adapter, the callback ends up at the witness (message 4).

Section 2.3 illustrates in further detail how the adapter code is
affected by the callback mismatch problem.

If the adapter is implemented incorrectly, the CCMS itself will
remain in limited mode, and thus addresses the car crash ineffi-
ciently, if at all. The fact that the correct functioning of the en-
tire application depends fully on the correct realization of the call-
back stresses the importance of writing an adapter that realizes the
desired behavior in a comprehensible, maintainable and reusable
manner.

2.3 Minimal solution in AspectJ
An example implementation of the scenario is included in
the appendix. The pointcut personIdNeedsChecking in aspect
IdentityValidation is defined in terms of types Person and
ValidationReport. Person contains the data that needs to be
checked and ValidationReport captures the result of the valida-
tion. Since these types are not directly supported by the base code,
an adapter needs to be written to bind the aspect to the application.
Listing 1 shows the adapter.

1p u b l i c a s p e c t Adap te r ex tends I d e n t i t y V a l i d a t i o n {
2
3d e c l a r e parent s : Wi tnes s implements

V a l i d a t i o n R e p o r t ;
4p u b l i c vo id Witnes s . v a l i d a t i o n (boolean b) {
5v a l i d a t e (b) ;
6}
7
8d e c l a r e parent s : Wi tnes s implements P e r s o n ;
9p u b l i c vo id Witnes s . s e t F i r s t N a m e (S t r i n g s) {}
10p u b l i c vo id Witnes s . se tLas tName (S t r i n g s) {}
11p u b l i c S t r i n g Wi tnes s . g e t F i r s t N a m e () {
12re turn getName () . s p l i t (" ") [0] ;
13}
14p u b l i c S t r i n g Wi tnes s . ge tLas tName () {
15re turn getName () . s p l i t (" ") [1] ;
16}
17void around (P e r s on w) : e x e c u t i o n (∗

Witnes s . setName (S t r i n g)) && t h i s (w) {
18p r o c e e d (w) ;
19w. s e t F i r s t N a m e (w. g e t F i r s t N a m e ()) ;
20w. se tLas tName (w. getLas tName ()) ;
21}
22
23p o i n t c u t r e p o r t (V a l i d a t i o n R e p o r t r e p o r t) :

t h i s (r e p o r t) ;
24}

Figure 1. UML sequence diagram to illustrate the role of the adapter (in dark gray), and the witness identity validation aspect (in grey).

Listing 1. Example implementation of the adapter
In this scenario, the adapter has two responsibilities. Firstly, it

needs to make sure that the callbacks through ValidationReport
and Person are reified in the witness object. Therefore, the class
Witness is made to implement the types ValidationReport
(lines 3–6) and Person (lines 8–16) by means of declare par-

ents and inter-type declarations (methods setFirstName and
setLastName do not need an actual implementation because they
are not used as a callback). Secondly, it needs to propagate the rel-
evant join points on Witness as required join points on Person.
This is achieved by around advice that calls proceed and addition-
ally calls the appropriate methods (lines 17–21). Because there is
a mismatch in the sense that Person has separate concepts for first
name and last name, extra mapping functionality is required.

This example shows that even in this simple (almost trivial)
case, defining the adapter is already a cumbersome task. One that
needs to be repeated for every mismatch.

3. Approaches
This section gives an overview of existing AOP languages, tech-
niques and patterns that are related to the problem and briefly ar-
gues that none of them sufficiently addresses the callback mismatch
problem.

3.1 Explicit Pointcut Interfaces
Approaches like pointcut interface[6], XPI[15] and explicit join
points[8] do not help to define bidirectional adapters more easily.
The problem is that the aspect will always use a type description
to be able to issue callbacks. This type should then be mapped to a
concrete type in the base code. The approaches mentioned describe
join points and not types and thus cannot be used in this mapping.

In the simplified case, the aspect specifies an abstract pointcut
and the callback is issued on one of the exposed parameters. An
explicit pointcut interface can help with implementing this abstract
pointcut, but the mapping of the callback to the base code still needs
to be done. A standard unidirectional adapter is sufficient in this
case.

3.2 Type parameters
At first sight, type parameters seem to solve the callback mismatch
problem, since an instantiated type parameter will behave as an
alias for a concrete type of the base code. Unfortunately, for the
aspect to be able to issue callbacks, it needs to refer to an actual
type (and e.g. use it as a bound for the type parameter). As a result
we end up with the same problems as before.

3.3 Caesar
Caesar supports on-demand remodularization to integrate indepen-
dent components. Its model is object-based and uses virtual types,
mixin composition and the concept of wrapper recycling [12]. As
a result, Caesar provides a means to specify expressive, reusable
adapters. However, Caesar does not support remodularization of
aspect abstractions. In Caesar, the aspect composition is part of the
binding and requires manual object wrapping (assisted by dynamic
wrapper selection and wrapper recycling) [1, 13]. We can conclude
that Caesar doesn’t offer a solution to the callback mismatch prob-
lem as it not aims to bind abstract aspect compositions.

3.4 Subject-oriented programming
Subject-oriented programming [7] and its descendants Hyper/J
and Theme[4] (which all involve Multi-Dimensional Separation of
Concerns (MDSOC)) represent a more symmetrical approach to
AOSD, meaning that each concern is developed independently. One
of the key features of these approaches is declarative completeness,
meaning that each concern explicitly defines the structure and be-
havior of the classes it depends on. To assemble an application,
these concerns are composed using composition rules. Composi-
tion directives includes mechanisms for name-based merging of
classes and methods, and support for renaming, overriding, . . .

Because these mechanisms are nondirectional, they are inher-
ently adequate for specifying callbacks. However, the composi-
tion mechanisms are not expressive enough to resolve sophisticated
abstraction mismatches that can only be resolved with complex
adapters involving more than renaming, overriding and merging
classes and methods. Therefore these approaches do not solve the
abstraction mismatch problem.

4. Conclusion
This paper introduces the callback mismatch problem. In essence,
this problem is triggered by two key elements: (i) abstraction mis-

match which is resolved by applying the Adapter design pattern [5],
and (ii) invasive aspects [9], i.e. aspects that issue a callback to the
base application to change its state or behavior. This situation leads
to composition logic that is cumbersome to implement, difficult to
maintain and impossible to reuse.

We have illustrated the problem in a minimal example from a
realistic case study. Additionally, we have presented a number of
factors that deteriorate this problem. Finally, we outline a number
of related approaches in which this problem persists.

From this, we conclude that the current state-of-the-art is cur-
rently is not capable of solving the callback mismatch problem ad-
equately. In our opinion, there are three distinct research directions

to be explored for a solution to this problem: (i) next-generation
language constructs that allow the described adapters to be defined
more elegantly and concisely (e.g. inspired by Caesar and SOP that
provide disjoint sets of constructs that solve the problem partly), (ii)
middleware-based solutions and framework-specific services that
are capable of hiding most of the described adapter complexity, or
(iii) AOP design patterns that provide reference solutions to this
problem.

Logging, tracing and authentication are aspects addressed per-
vasively throughout AOSD research. Based on the impact that these
aspects have on the base application, they are characterized as ei-
ther spectative or regulative [9]. The large body of research into
these particular aspects classes suggests that they are well-known,
and they can sufficiently be dealt with by current AOP techniques.
As AOP matures, it is our opinion that the research focus should
shift from spectative and regulative aspects towards more invasive

aspects, which represent the most challenging class of crosscutting
concerns. We believe that the problem brought to the forefront in
this paper is a key hurdle in the road towards advanced AO lan-
guages, middleware and patterns that deal with these types of as-
pects in an efficient, maintainable, and reusable manner.

Acknowledgments
This research is supported by the Interuniversity Attraction Poles
Programme Belgian State, Belgian Science Policy, by the Research
Fund K.U.Leuven.

References
[1] Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann.

An overview of caesarj. [14], pages 135–173.
[2] Maarten Bynens and Wouter Joosen. Towards a pattern language for

aspect-based design. In PLATE ’09: Proceedings of the 1st workshop

on Linking aspect technology and evolution, pages 13–15, New York,
NY, USA, 2009. ACM.

[3] Maarten Bynens, Bert Lagaisse, Eddy Truyen, and Wouter Joosen.
The elementary pointcut pattern. In BPAOSD’07: Proceedings of the

2nd workshop on Best practices in applying aspect-oriented software

development, pages 1–2, 2007.
[4] Siobhán Clarke and Robert J. Walker. Generic aspect-oriented design

with Theme/UML. pages 425–458.
[5] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides.

Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional, illustrated edition edition, November
1994.

[6] Stephan Gudmundson and Gregor Kiczales. Addressing practical
software development issues in aspectj with a pointcut interface. In
Advanced Separation of Concerns, 2001.

[7] William H. Harrison and Harold Ossher. Subject-oriented program-
ming (a critique of pure objects). In OOPSLA, pages 411–428, 1993.

[8] Kevin Hoffman and Patrick Eugster. Bridging java and aspectj through
explicit join points. In PPPJ ’07: Proceedings of the 5th international

symposium on Principles and practice of programming in Java, pages
63–72, New York, NY, USA, 2007. ACM.

[9] Shmuel Katz. Aspect categories and classes of temporal properties.
[14], pages 106–134.

[10] Jörg Kienzle, Nicolas Guelfi, and Sadaf Mustafiz. Crisis manage-
ment systems: A case study for aspect-oriented modeling. Technical
Report SOCS-TR-2009-3, School of Computer Science, McGill Uni-
versity, 2009. http://www.cs.mcgill.ca/research/reports/
2009/socs-tr-2009-3.pdf.

[11] Ramnivas Laddad. AspectJ in Action: Practical Aspect-Oriented Pro-

gramming. Manning Publications Co., Greenwich, CT, USA, 2003.
[12] Mira Mezini and Klaus Ostermann. Integrating independent compo-

nents with on-demand remodularization. In OOPSLA ’02: Proceed-

ings of the 17th ACM SIGPLAN conference on Object-oriented pro-

gramming, systems, languages, and applications, pages 52–67, New
York, NY, USA, 2002. ACM.

[13] Mira Mezini and Klaus Ostermann. Conquering aspects with caesar.
In AOSD ’03: Proceedings of the 2nd international conference on

Aspect-oriented software development, pages 90–99, New York, NY,
USA, 2003. ACM.

[14] Awais Rashid and Mehmet Aksit, editors. Transactions on Aspect-

Oriented Software Development I, volume 3880 of Lecture Notes in

Computer Science. Springer, 2006.
[15] Kevin J. Sullivan, William G. Griswold, Yuanyuan Song, Yuanfang

Cai, Macneil Shonle, Nishit Tewari, and Hridesh Rajan. Information
hiding interfaces for aspect-oriented design. In ESEC/SIGSOFT FSE,
pages 166–175, 2005.

[16] Dimitri Van Landuyt, Eddy Truyen, and Wouter Joosen. Discovery of
stable domain abstractions for reusable pointcut interfaces: common
case study for ao modeling. Technical report, Department of Com-
puter Science, K.U.Leuven, 2009. http://www.cs.kuleuven.be/
publicaties/rapporten/cw/CW560.abs.html.

A. Entire example

The full source code is available at http://www.cs.kuleuven.
be/~dimitri/callbackmismatch.zip.

p u b l i c a b s t r a c t a s p e c t I d e n t i t y V a l i d a t i o n {

p o i n t c u t p e r s o n I d N e e d s C h e c k i n g (P e r s o n
person , V a l i d a t i o n R e p o r t r e p o r t) :

(e x e c u t i o n (new (. .)) | | e x e c u t i o n (void
Pe r s o n . s e t ∗ (. .))) && t h i s (p e r s o n) &&
r e p o r t (r e p o r t) ;

a b s t r a c t p o i n t c u t r e p o r t (V a l i d a t i o n R e p o r t
r e p o r t) ;

O b j e c t around (P e r s o n person , V a l i d a t i o n R e p o r t
r e p o r t) : p e r s o n I d N e ed s C h e c k i n g (per son , r e p o r t) {

O b j e c t r e s = p r o c e e d (per son , r e p o r t) ;
r e p o r t . v a l i d a t i o n (Te lecomOpera to r . v a l i d C a l l e r (

p e r s o n . g e t F i r s t N a m e () + " " +
p e r s o n . getLastName () ,
p e r s o n . ge tPhone ())) ;

re turn r e s ;
}

}

Listing 2. IdentityValidation.aj

p u b l i c i n t e r f a c e P e r s o n {

p u b l i c S t r i n g g e t F i r s t N a m e () ;
p u b l i c S t r i n g getLas tName () ;
p u b l i c S t r i n g ge tPhone () ;
p u b l i c vo id s e t F i r s t N a m e (S t r i n g fname) ;
p u b l i c vo id se tLas tName (S t r i n g lname) ;
p u b l i c vo id s e t P h o n e (S t r i n g phone) ;

}

Listing 3. Person.java

