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CHR [3], short for Constraint Handling Rules, is a rule-based programming language, with similari-
ties to Term Rewrite Systems (TRS) and Logic Programming (LP). In termination analysis of rule-based
languages, the concept of a cycle is often useful. Informally, a cycle is a finite sequence of rules such that
these rules can potentially be repeatedly executed during a computation. Above, we write “potentially”
because cycles usually involve approximations. In cycles, whether one rule can actually activate the next
is only verified locally (e.g. through matching or unification). But whether all these conditions hold
simultaneously — so that the full cycle can be repeatedly traversed — is unknown.

Using cycles in termination analysis can have several advantages. They are mostly due to the fact that
an analysis based on cycles is more modular. One advantage is reduced complexity. Some termination
analysis techniques do not scale well for large programs. By performing the proof for separate cycles,
sizes remain reduced. Another potential advantage is precision. When proving termination of a program
as a whole, one typically selects a specific well-founded order. In the context of cycles, one can use a
different order for each cycle. As a result, techniques based on cycles can be very successful (e.g. [4]).

We have studied the introduction of cycles in CHR. However, we were confronted with the fact that,
due to the multi-headed rules and a multiset semantics in CHR, it is hard to define a suitable notion
of “cycle”. Consider a CHR program with one rule, a,c ⇔ a, which allows to rewrite a conjunction
a∧ c to a. Although one could consider it to be a cycle, in an actual computation it cannot result in an
infinite loop, since every application removes a c/0 constraint. Similarly, a CHR program with one rule,
a,c,c ⇔ a,a,c is terminating and the rule would better not be characterised as a cycle. Considering a
program with two rules, a,a ⇔ b,b and b ⇔ a, we should identify a cycle. However, this cycle should
contain the first rule together with two copies of the second rule.

One of our initial attempts to define cycles was very intuitive and rather precise, but it turned out
that only for specific uses of a CHR program a concept of minimality existed, resulting in general in an
infinite number of different minimal cycles. This is of course unacceptable. In this paper, we provide
a less precise but useful definition of a cycle yielding a finite number of minimal cycles, and discuss its
successful use in CHR termination analysis.

1 CHR syntax and semantics

First, we introduce the syntax and semantics of CHR [3]. The atoms of a CHR program, called con-
straints, are first-order relations on terms, collected in a constraint store. There are two kinds of con-
straints: built-in constraints, pre-defined in the host-language (CT, for Constraint Theory), and user-
defined CHR constraints.

We assume presence of only one kind of CHR rule, that is, a simplification rule:

Ri @ H(i,1), . . . ,H(i,ni) ⇔ G(i,1), . . . ,G(i,ui) | B(i,1), . . . ,B(i,vi),C(i,1), . . . ,C(i,mi).

Here, H(i,1), . . . ,H(i,ni) are head constraints, representing the CHR constraints from the store that can be
used to fire the rule. For rule application, given matching constraints for the heads, the built-in constraints
G(i,1), . . . ,G(i,ui) need to be satisfiable. Upon rule application, new built-in constraints, B(i,1), . . . ,B(i,vi),
and CHR constraints C(i,1), . . . ,C(i,mi) are added to the constraint store, replacing the head constraints.
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Example 1 (Greatest Common Divisor). The following CHR program, P, implements the Euclidean
algorithm for computing the greatest common divisor (GCD).

R1 @ gcd(0)⇔ true.
R2 @ gcd(M),gcd(N)⇔ N ≥M,M > 0 | L is N−M,gcd(M),gcd(L).

The first rule removes gcd(0) constraints, while the second replaces two gcd/1 constraints by simpler
gcd/1 constraints. ¤

The constraint store of a CHR program represents a conjunction of constraints in which multiple
occurrences of the same constraint are allowed. The constraint store thus behaves as a multiset.

Definition 1 (Multiset). A multiset is a tuple, MS = 〈S,mS〉, where S is a regular set, called the underlying
set of elements, and mS a multiplicity function, mapping the elements, e, of S to strict positive integer
numbers, mS(e) ∈ N0, representing the number of occurrences of e in MS. ¤

We may define mS as its graph, i.e. the set of ordered pairs {(s,mS(s)) : s∈ S}. Therefore, the multiset
written as Ja,a,bK is defined as 〈{a,b},{(a,2),(b,1)}〉, and the multiset Ja,bK as 〈{a,b},{(a,1),(b,1)}〉.
For adding multiset together, we introduce multiset join and denote it by ].

Since we do not consider propagation, the state transition system can be given by the abstract CHR
semantics, where a CHR state S is a constraint store and only two kinds of transitions are defined:

1. For any state JbK]S, where b is a built-in constraint satisfiable in the host-language with substitu-
tion θ , a transition (JbK]S,Sθ) exists.

2. For any state Jh1, . . . ,hnK] S, where h1, . . . ,hn are CHR constraints matching with the head of
a rule H1, . . . ,Hn ⇔ G1, . . . ,Gk | B1, . . . ,Bl,C1, . . . ,Cm resulting in a substitution σ , such that the
built-in constraints G1σ , . . . ,Gkσ are satisfiable in the host-language (CT) with substitution θ , a
transition (Jh1, . . . ,hnK]S,(JB1, . . . ,Bl,C1, . . . ,CmK]S)σθ) exists.

We assume that any call to the host-language can only introduce variable bindings and must do so
in finite time. If a built-in constraint cannot be solved, the CHR program fails. CHR is furthermore
a committed choice language. Therefore, whenever a rule is applied — which is a non-deterministic
choice between all possible applications of the CHR rules of the program — we commit on this choice.

2 CHR cycles

The rules of a CHR program relate CHR constraints. The head constraints of a rule represent the con-
straints required for rule application. The added CHR constraints represent the constraints available after
rule application. To denote these sets of constraints, we introduce abstract CHR constraints.

Definition 2 (Abstract CHR constraint). An abstract CHR constraint C = (C,B) is a pair, where C is a
CHR constraint and B a conjunction of built-in constraints. Given a mapping ℘ : (C,B) 7→ {Cσ | ∃θ :
CT |= Bσθ}, an abstract CHR constraint represents a set of CHR constraints. ¤

Two kinds of abstract CHR constraints are present in a CHR program. An abstract input constraint
in(i, j) = (H(i, j),Gi), where Gi = G(i,1) ∧ ...∧G(i,ui), represents a set of CHR constraints matching with
the head H(i, j), possibly resulting in rule application. An abstract output constraint out(i, j) = (C(i, j),Gi)
represents the CHR constraints which become available after rule application.

Example 2 (GCD cont.). In the following, we denote by I nRi and OutRi the multisets of abstract input
constraints and output constraints of a rule Ri, and by I nP and OutP, the multisets of abstract input and
output constraints of a set of rules, P. For the GCD program in Example 1, we obtain:
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I nP = I nR1 ]I nR2 = Jin(1,1), in(2,1), in(2,2)K, where
in(1,1) = (gcd(0), true)
in(2,1) = (gcd(M),N ≥M∧M > 0)
in(2,2) = (gcd(N),N ≥M∧M > 0)

OutP = OutR1 ]OutR2 = Jout(2,1),out(2,2)K, where
out(2,1) = (gcd(M),N ≥M∧M > 0)
out(2,2) = (gcd(L),N ≥M∧M > 0)

¤

The rules of a CHR program relate abstract inputs to abstract outputs.

Definition 3 (Rule transition relation). A rule transition of a CHR program P is an ordered pair Ti =
(I nRi ,OutRi), relating the multiset of abstract input constraints Jin(i,1), . . . , in(i,ni)K= I nRi of a rule Ri ∈
P to the multiset of abstract output constraints Jout(i,1), . . . ,out(i,mi)K = OutRi of Ri. The rule transition
relation T = {Ti | Ri ∈ P} of a CHR program P is the set of rule transitions Ti of a program P. ¤

Example 3 (GCD cont.). The GCD program has two rules and thus two rule transitions:

T = {T1,T2}, where T1 = (Jin(1,1)K,JK) and T2 = (Jin(2,1), in(2,2)K,Jout(2,1),out(2,2)K). ¤

Abstract outputs relate to inputs by a match transition relation, given by a dependency analysis.

Definition 4 (Match transition relation). A match transition of a CHR program P is an ordered pair
M(i, j,k,l) = (out(i, j), in(k,l)), expressing a dependency between an output out(i, j) = (C(i, j),Gi) of OutP and
an input in(k,l) = (C(k,l),Gk) of I nP, for which ∃θ : CT |= ((C(i, j) = C(k,l))∧Gi∧Gk)θ holds. The match
transition relation M is the set of all match transitions M(i, j,k,l) in P. ¤

Notice that a match transition exists if the output and input it connects represent sets of constraints
with a non-empty intersection: ℘(out(i, j))∩℘(in(k,l)) 6= /0.

Example 4 (GCD cont.). We obtain for the GCD program the following match transition relation:

M = {M(2,1,2,1),M(2,1,2,2),M(2,2,1,1),M(2,2,2,1),M(2,2,2,2)}.

Note that the first output of the second rule does not match with the input of the first rule as their
intersection ℘(out(2,1))∩℘(in(1,1)) = /0. ¤

For a program P, we call NP = 〈I nP,OutP,TP,MP〉 its CHR net.

2.1 CHR cycles

To discuss cycles, we need an abstraction for computations, one for which a concept of minimality exists.
For this purpose, we introduce CHR constructs. A CHR construct is an ordered pair of multisets. The
first multiset represents the number of applications of some rule in a subcomputation of a program. The
second multiset represents matches within the subcomputation. Note that if a universe U , in which
the elements of the multiset MS = 〈S,mS〉 must live, is specified, that we can replace mS by a function
µS : U → N, obtained by extending mS to U with values 0 outside S.

Definition 5 (Cyclic CHR construct). Let NP = 〈I nP,OutP,TP,MP〉 be the CHR net of P. Then, a
CHR construct is a pair of multisets ((P,µ),(MP,µ ′)): a multiset of rules (P,µ) and a multiset of match
transitions (MP,µ ′); such that:

∀in(i, j) ∈I nP : ∑
M(k,l,i, j)∈MP

µ ′(M(k,l,i, j))≤ µ(Ri) ∀out(i, j) ∈ OutS : ∑
M(i, j,k,l)∈MP

µ ′(M(i, j,k,l))≤ µ(Ri)
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A cyclic CHR construct or CHR cycle is a CHR construct where additionally

∀in(i, j) ∈I nC : ∑
M(k,l,i, j)∈MP

µ ′(M(k,l,i, j)) = µ(Ri).

We say that a CHR construct is traversed, if every rule in it was applied once according to the match
transitions of the construct. ¤

Notice that for a CHR construct to correspond to an actual computation, we need to constrain the
number of outgoing match transitions for a given output to the number of times its rule occurs in the
multiset of rule applications. Similarly, we need to constrain the number of incoming match transitions
for a given input to the number of times its rule occurs in the multiset of rule applications. This becomes
clear when regarding the next example computation for the GCD program from Example 2.

Example 5 (GCD cont.). Given a query I = [gcd(6),gcd(3)], the following sequence represents a com-
putation of P for I.

[gcd(6),gcd(3)] 7→R2 [gcd(3),gcd(3)] 7→R2 [gcd(0),gcd(3)] 7→R1 [gcd(3)]

A different representation of this computation uses concepts of CHR nets, as is shown in Figure 1. The

Figure 1: CHR net of the GCD program and a possible computation of GCD for I.

inputs without an incoming match transition, in the CHR construct representing a computation of P for
I, represent the constraints from the query . Outputs without an outgoing match transition represent the
constraints part of the answer. ¤

Finally, a CHR construct is cyclic if all inputs are provided for from within the construct. Thus, a
cyclic construct replaces the constraints which are removed when traversing the construct.

The set of all possible (cyclic) CHR constructs can be represented using a system of linear inequal-
ities. Such a system has a unique computable basis of solutions, called a Hilbert basis. From it, we can
compute any solution to the system by positive linear combinations of the solution vectors.

Example 6 (GCD cont.). For the GCD program, we obtain the following system of inequalities, de-
scribing the cyclic CHR constructs of the program. Note that mRi represents µ(Ri), the number of rule
applications of Ri in the construct, and that m(i, j,k,l) represents µ ′(M(i, j,k,l)) the number of match transi-
tions M(i, j,k,l) in the construct.

m(2,2,1,1) = mR1 m(2,1,2,1) +m(2,1,2,2) ≤ mR2

m(2,1,2,1) +m(2,2,2,1) = mR2 m(2,2,2,1) +m(2,2,2,2) ≤ mR2

m(2,1,2,2) +m(2,2,2,2) = mR2
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By adding slack variables we obtain a system of equations with positive integer solutions, which allows
us to compute the following Hilbert basis.

(JR2K,JM(2,1,2,2),M(2,2,2,1)K) (JR2K,JM(2,1,2,1),M(2,2,2,2)K)
We can obtain every cyclic construct of a CHR program by joining elements from the basis (Figure 2). ¤

Figure 2: Cyclic CHR constructs of the GCD program.

By considering now the cycles in the basis (See Figure 2), we can derive the subsets of rules that
demonstrate cyclic behaviour. For the GCD example, which is terminating for all queries, there is only
one such subset, {R2}, that is cyclic. So it suffices to consider only this cycle to investigate termination.

3 Evaluation and conclusion

We described an approach for analysing the cycles of a CHR program, as such safely over-approximating
the loops of the program. For termination, it is sufficient to analyse only cycles and not the entire
program, resulting in faster and more accurate termination proofs. We have developed an implementation
for deriving the CHR net of a program, for performing a Strongly Connected Component (SCC) analysis
on the CHR net of the program, and for generating systems of linear equations for each of the SCCs.

Our approach for cycle analysis in CHR is useful, however, only when regarding sufficiently large
programs, consisting of multiple cyclic subsets of rules. Our approach scales well, using first a SCC
analysis to make an initial estimate of the possible cycles of a program. Then, only afterwards for the
remaining components, a classification is obtained by computing the basis [5] of solutions. If empty, the
component is not a cycle, otherwise, it is a cycle and is analysed for termination.

Our representation of cycles can be used for more refined approaches to termination analysis of CHR
as well, e.g. approaches concerning dependency pairs [1] and Ramsey’s theorem [2]. Future work will
involve investigating whether these approaches to termination analysis can be ported to the CHR context.
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