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ABSTRACT
The integration of third-party aspects into applications cre-
ates security challenges. Due to the intrusive impact of as-
pects, one cannot guarantee that the dynamic composition
of aspects does not lead to misbehavior. The newly com-
posed aspect typically has many, if not unrestricted, rights
to read and modify attributes of the base system. AspectJ,
amongst other AOP systems, suffers from this limitation,
which makes the composition of independently developed
aspects riskful.

We have defined and prototyped a run-time policy en-
forcement model based on execution history to protect pro-
grams from untrusted aspects. The dynamic nature of the
approach has the advantage that up to date run-time in-
formation allows more accurate decision making. We have
built a prototype for AspectJ and illustrate its use in a re-
alistic example. Our evaluation shows that practical use of
such a solution is feasible and that run-time overhead can
be limited.

Categories and Subject Descriptors
K.6.5 [Security and Protection]; D.2.0 [Software Engi-
neering]: Protection mechanisms; D.2.4 [Software/Program
Verification]: Assertion checkers

Keywords
Language-based security, aspect-oriented programming, per-
mission system, execution history

1. INTRODUCTION
The integration of third-party aspects into applications

creates new security challenges. Stack-based inspection, as
used in OOP languages [23, 16], is no longer sufficient, as
aspects invalidate the basic assumptions of stack-based in-
spection. Features such as before and after advice in As-
pectJ [20] leave no trace on the stack. Privileged aspects [1],
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have access to private members. And most important, as-
pects can not only cause execution of methods, they can also
observe and prevent method execution.

The relevance of third party aspects can be illustrated by
the use of the JBoss application server in the context of the
Platform as a Service (PaaS) [37] methodology. PaaS means
that a service provider offers a computing platform on which
third parties can deploy their software. Many applications
of different owners can run on the same platform instance.
This allows intensive reuse of both hardware and software.

The JBoss application server is implemented using as-
pects, the so called infrastructure aspects. Applications de-
ployed on the server can also contain aspects, the application
aspects. To ensure integrity of the server, it is important
that application aspects don’t interfere with infrastructure
aspects or other parts of the infrastructure. For the provider
of the platform instance, it is impossible to manually ver-
ify each and every application for potential interferences.
An automated policy enforcement mechanism is required to
keep the untrusted aspects in check, without disabling them
completely.

To address these issues, we present an approach of run-
time policy enforcement, based on execution history. This
model can be applied to existing AOP languages without
semantic changes. Like stack-based inspection, this model
makes policy decisions at run-time. Unlike stack-based in-
spection, the decision is not only based on the stack, but on
the complete execution history.

We have evaluated our approach by building a prototype.
Initial experience when applying the prototype solution to
some example applications indicates that development and
run-time overhead can be limited.

A number of complementary approaches have been pub-
lished. A first category is based on restricting the invasive
power of aspects by adapting (extending or restricting) the
core aspect language [24, 17, 22]. A second category is based
on redesigning the concept of an aspect and supporting this
in the underlying type system [4, 8]. These approaches re-
quire a semantic change of the language they are applied
to. As such they are all hard to apply to existing AOP
languages.

The rest of this paper is structured as follows: In Section 2
the problem is elaborated. In Section 3 the approach is
outlined. Section 4 refines the solution. Section 5 addresses
the issue of restrictiveness of our approach by detailing a
number of design patterns. Section 6 further evaluates the
approach by presenting a prototype and illustrating the run-
time and development overhead for our case study. Section 7



briefly discusses the approach. Finally, the related work is
discussed in Section 8 and Section 9 concludes.

2. PROBLEM ELABORATION
In this section we give a short overview of stack inspection

and its inability to protect AOP enabled programs. We
also illustrate the aforementioned problems with an overview
of the potential risks imposed by third party aspects. We
discuss which features should be supported by the security
infrastructure. Then we present the case study that is used
throughout this paper.

2.1 Stack Inspection and AOP
Third party components inherently pose a security threat,

for OOP as well as for AOP languages. Application servers,
for example, must be able to access the file system. But
the third party applications deployed in the sever must not
be allowed to read each others files. When an attempt is
made to open a file, the system must decide whether this
operation is permitted.

In Java this problem is solved by stack based inspec-
tion[36, 16]. When an attempt is made to do a security
sensitive operation, such as opening a file, the SecurityMan-
ager checks whether every method currently on the stack
originates from a source that is allowed to perform this op-
eration. When no third party methods are on the stack,
all files are accessible. When methods from one third party
component are on the stack, only this component’s file are
accessible.

Stack based inspection protects callees from their callers.
When a third party component calls the server to open a
file only accessible to the server, this operation will fail, as
the third party method is still on the stack. However, in
some cases, the server actually wants to perform security
sensitive operations on behalf of a third party component.
For example, if a component wants to establish a connection
to a remote component, the server will determine whether
this request is admissible. If it is, the server will assume
responsibility for all subsequent actions required to establish
the connection. This is called a privileged action.

Stack inspection protects callees from callers, however there
is no protection in the other direction. A callee is no longer
on the stack after it returns and the caller has no way of
finding out whether the returned value is trustworthy. If
this value is subsequently used as an argument to a security
sensitive operation, this may result in unintended behavior.
For example, if a server would ask a third party component
which file it should open, the third party component will no
longer be on the stack when the file is opened.

In OOP this is not a problem because each object can
maintain a pool of trusted objects on which it can safely
make calls. As long as these objects are stored in a pri-
vate field and no reference to these objects is released, they
can not be tampered with. Furthermore, method calls and
return values reach only their target and do so unaltered.
As such, each caller is sure that when it makes a call to an
object it assumes trustworthy, the call will be received unal-
tered and undisclosed by the trusted object and the return
value will reach the callee unaltered and unobserved.

For AOP these two assumptions are no longer valid [11].
Private fields for example are not only threatened by priv-
iledged aspects, which can directly access them. The inter-
ception mechanisms inherent to AOP can yield references

public aspect BadAspect{
// force c l a s s load
before ( ) : execution (void ∗ . main ( . . ) ) { }
// d i s a b l e a l l s e cur i t y
void around ( ) : execution (

void SecurityManager+. check ∗ ( . . ) ) { }
}

Listing 1: Harmfull AspectJ interaction

to any object and as such disclose a private member. Once
a reference is obtained, state may be altered and informa-
tion may be disclosed. Furthermore, method calls can be
intercepted, altered and observed.

It is arguably true that stack inspection can be extended
to enforce access control on fields and take advices into ac-
count. This would solve some of the listed problems, but
it would not protect callers from their callees. Listing 1
illustrates that the mechanism of method interception can
be used to disable the Java security manager and as such
disable all Java security features.

2.2 Requirements
In general different scenarios exist in which an aspect can

influence the execution of a system in a potentially harmful
manner. Different sources [11, 24] have described a number
of these scenarios. Without the intention of being exhaus-
tive, we briefly summarize the most important ones:

• reading and writing private fields

• executing private methods

• preventing execution of methods

• inspecting and manipulating data that flows between
methods

• accessing instances without explicitly obtaining refer-
ences to them

• bypassing the execution of other aspect’s advices by
directly accessing the target joinpoint

• influencing aspect ordering

As demonstrated above, these interactions make stack
inspection insufficient to protect aspect enabled software.
Therefore we extend stack inspection to history-based ac-
cess control, which is more restrictive, though not overly
complex.

Such access control model should support a broad spec-
trum of security policies. We distinguish three categories,
each containing a number of typical policy scenarios, which
correspond to the previously mentioned issues:

R1 Enforcing standard Java permissions

R2 Protecting a base class against aspects
This category of policy scenarios is useful for protect-
ing security-aware base classes from possibly harmful
aspects.

(a) Protect the execution of security-sensitive meth-
ods.

(b) Protect the results of the execution of a method.

(c) Restrict the access to particular private members.



(d) Prevent aspects from advising a joinpoint.

R3 Protecting an aspect against other untrusted
aspects
In this case, all scenarios that were covered in the pre-
vious category are relevant as well for protecting the
functionality of the aspect.

(e) Protect security-critical aspects from other aspects.

2.3 Case Study
Throughout this paper, we use an example application,

namely jFTPd [29]. jFTPd is an FTP server written in
Java. We have refactored authorization into aspects. The
server as well as the authorization aspects are considered the
trusted core application. More information about this case
study is available in [10, 9].

:Client

:Dispatcher

:PWD :PASV :STOR

state:State

File API

1. send(msg)

3.updateState

2. handleCMD(state,msg)

3.read
3.write

2a. authorize()

Authorization
<<aspect>>

Joinpoint Class Aspect

Figure 1: General overview of the jFTPd server

Figure 1 gives a conceptual overview of the server. A
client sends messages to the server (1). In the server, the dis-
patcher receives the message and dispatches it to the proper
handler (2). Each FTP command is handled by a specific
handler. The handlers can inspect and update the state of
the session and they can read and write files (3). Command
dispatch is intercepted by the Authorization aspect (2a).
This aspect inspects the state to see if the command is au-
thorized. If it is not, the aspect aborts the command.

We add to the server a plug-in that enforces a chroot pol-
icy. The plug-in intercepts any attempt to change the cur-
rent directory, which is part of the state. If an attempt is
made to change the current directory to a directory that
is not a sub-directory of the home directory of the current
user, the command is aborted. This plug-in also contains
nine malicious aspects, which intercept various calls in the
server. The malicious aspects enable attacks such as denial
of service, escalation of rights, selective tampering with logs
and others.

The policy we enforce on this server is one where the
trusted part of the code has access to the required systems
resources, such as network ports and files. The plug-in is
allowed to prevent a change of the current directory and
has read access to the directory that contains all home di-
rectories. No further rights are granted. If this policy is
implemented by the Java Security infrastructure [16], all of
the malicious aspects go undetected.

3. APPROACH
This section outlines the two basic parts of our approach:

a weaver-based approach to run-time enforcement and the
history-based access control model.

3.1 Weaver-based Approach
We utilize a weaver-based approach to enforce our pol-

icy model at run-time. The weaver augments the woven
software with logic to maintain the permission state of the
software. As such, only the weaver is altered and no modi-
fication of the virtual machine or language semantics is re-
quired. This approach is shown in Figure 2: at development
time, the source is annotated with actions of the permission
system, such as the demand for a particular permission. All
modules are then processed by a weaver which, apart from
doing the aspect-oriented weaving, augments the woven soft-
ware with logic to maintain the permission state of the soft-
ware. At run-time, the executing software is monitored by
the permission system, which consults a configurable aspect
policy about the rights of specific aspects.

Aspects

Binary 
Executable Aspect

Policy

Weaver

Classes

Security Annotations

AOPS

Consult 

Figure 2: General overview of a weaver-based per-
mission system

As such, this weaver-based approach builds upon two se-
curity assumptions: the weaver as well as execution envi-
ronment are controlled and trusted. The weaver protects
against scenarios in which untrusted aspects, which can orig-
inate from third party libraries, are incorrectly woven into
the rest of the application code. In the same context, we
also rely on the safety of the type system to protect against
other types of problems.

It is important to notice that the weaver-based approach
works independent of the moment of weaving and the weav-
ing techniques. Our approach only requires a trusted weaver
and run-time that will enforce security updates. Whether
weaving is done dynamically or statically, at compile-time
or at load-time, at once or in stages is of no importance.

However, Scoped weaving however is important. Scoped
weaving restricts the application of aspects to a scope. As-
pect scoping can be based on lexical scope, class loading do-
mains or any other scope. Often class loading techniques are
used to realize scoped weaving. This offers a rudimentary
form of security as scoped weaving prevents direct aspect
interference. Indirect interference however is not prevented.



Scoped weaving can be used to protect the security infras-
tructure from direct aspect interference. No aspect should
be allowed to directly prevent security updates. This allows
the security infrastructure to protects itself from indirect in-
terference. When an aspect attempts to interfere with secu-
rity updates, this will cause a nested security update, which
is detected and prevented.

3.2 History-based Access Control
The second part of our approach is the execution history-

based access control model (HBAC) [2]. In this work we
leverage upon HBAC for the protection against untrusted
aspects in woven programs. This model is based on two sets
of rights: static rights and current rights. The static rights
are assigned to aspects by the aspect policy. The current
rights are calculated at run-time, based on the static rights.
In particular, modifications to the weaver ensure that the
following properties hold at all times, and can be checked
against at run-time:

1. The current rights are the intersection of the static
rights of all aspect-related code that has executed be-
fore.

2. The current rights can only be elevated by explicit re-
quests to augment these rights.

3. The current rights upon exit of an aspect-related piece
of code can never be more extensive than the rights
that were applicable when entering that code.

Figure 3 illustrates HBAC in more detail. In this figure,
an execution scenario is depicted in which two base classes
interact with two aspects. The Authorization aspect in-
tercepts any message that was received from the user prior
to handling. The Authorization aspect inspects the con-
tent of the message and aborts handling if the message con-
tains an unauthorized command. Otherwise normal process-
ing is resumed. The BadAspect also intercepts any message
prior to execution and after authorization. This allows the
BadAspect to change the commands after they have been
authorized and as such bypass security.

When using our approach, static rights are assigned to
all classes and aspects. The names of the static rights are
written above the lifelines. At point D, the current rights
are examined to decide whether the results can be sent back
to the user.

We now illustrate what the current rights look like when
using the history-based model and the stack-based model.
History based access control is illustrated in Table 1, column
2. For history-based access control, at point A, no aspects
have been executed, so the set of current rights is the univer-
sal set. At point B the Authorization aspect is executing
and the current rights are reduced to the intersection of the
universal set and the static rights of the Authorization as-
pect. This yields a set containing the static rights of the
Authorization aspect, which is called Auth. At point C the
third party aspect BadAspect is executed and the current
rights are further reduced to the intersection of the current
rights and the static rights of the BadAspect. Up to point
D, no new aspects execute and the current rights remain the
same.

If we compare this to the stack-based model, illustrated
in Table 1, column 1, point A has the Dispatcher.send()

Authorization
<<aspect>>

2: handleCMD

1: send(msg)

HandlerDispatcher
BadAspect

3: send

Core ExtAuth

A
B

C
D

Core

<<aspect>>

2a: authorize(msg)

2a: tamper(msg)

E

Joinpoint Class Aspect

Figure 3: The execution scenario described in Sec-
tion 2.

Stack-Based History-Based
A Core All
B Core ∩ Auth Auth
C Core ∩ Auth ∩ Ext 1 Auth ∩ Ext
D Core ∩ Auth Auth ∩ Ext
E Core Auth ∩ Ext

Table 1: Run-time rights at the places marked in
Figure 3.

method on the stack. This means that the current rights at
A are those in the set Core. At point C, Dispatcher.send(),
Authorization.authorize() and BadAspect.tamper() are
on the stack. The run-time rights are thus: Core ∩ Auth ∩
Ext. At point D, only Dispatcher.send(), Handler.handleCMD()
and Authorization.authorize() are on the stack and the
current rights are Core ∩ Auth.

The current rights of the stack-based model show no trace
of the presence of BadAspect even though it has had its influ-
ence on the execution. In particular the BadAspect changed
the message passed on to be handled after it was authorized.
With stack inspection alone, this cannot be prevented. With
history-based access control, the modification leaves a clear
trace that can be used to prevent the modified command
from sending anything to the client (point D).

This history-based model will be used to monitor and con-
trol the impact aspects have on the execution of an applica-
tion. While the run-time rights of a block of code are influ-
enced only by aspect executions, the checking of rights can
occur anywhere in the application. Consequently, the sys-
tem can be used to protect classes from untrusted aspects
as well as aspects from other untrusted aspects. Protect-
ing classes from untrusted classes can be achieved using the
existing permission systems. By combining history-based
access control with the existing support for stack-based in-
spection, the run-time overhead of HBAC is minimized and
its restrictive nature must only be taken into account when
aspects are involved.

4. DETAILED SOLUTION
This section describes the structure of our Aspect Ori-

ented Permission System (AOPS). This system implements

1in AspectJ only around advice remains on the stack



history-based access control for AspectJ [20]. It is designed
to support aspects and advices in single-threaded systems.
Inter-type declarations are currently not supported. This is
not an inherent limitation of the approach, but part of the
future work.

The run-time structure of AOPS has three layers, as de-
picted in Figure 4. The lowest layer is the supporting plat-
form, in our case the Java Virtual Machine (JVM). On top
of this platform, the AOPS run-time is deployed. This run-
time collects execution information, used to calculate the
current rights. The top layer is the application layer, con-
taining the base application and the third party aspects.

The application uses AOPS for demanding rights and up-
dating the current rights. When an application demands
a right, AOPS checks whether that right is implied by the
current rights. If it is, execution continues, otherwise an ex-
ception is thrown. Updating of the current rights is realized
through two mechanisms: implicit and explicit modification.
The implicit modifications are performed by code that was
inserted by the weaver. Implicit modifications can only re-
duce the current rights. The explicit modifications on the
other hand allows the application to explicitly elevate the
current rights.

AOPS current rights

JVM

1) demand rights
2a) implicit modification
2b) explicit modification

APP static rights possible actions

Figure 4: Runtime Structure of AOPS.

The rest of this section will discuss the different parts of
the run-time structure in detail.

4.1 Rights as Permissions
Rights are implemented in the form of permissions, all

of which inherit from a single root permission that is spe-
cific to AOPS, the AOPPermission (Listing 2). The model
is compatible with standard Java permissions by means of
a special permission, JavaPermissionWrapper, that wraps
standard permissions.

The permission model is extensible, so new types of per-
missions can be defined for specific purposes. Similar to the
Java permission model, every permission instance has two
parameters (name and actions) and methods to compute
equality and implication. AOPS requires two extra meth-
ods: one to calculate the intersection of two permissions and
one to compute the union of two permissions. The AOPS
permission model is comparable to the .NET CLR permis-
sion model in this respect [23].

Because of security reasons, permissions are not inherited
between aspects, since this could enable scenarios in which
permissions assigned to trusted aspects would be unwillingly
copied to untrusted aspects via inheritance.

4.2 Static Rights
At compile time (or load time), static rights can be as-

signed to aspects. The granularity of assignment is an entire
aspect, no rights can be assigned to individual advices or any
other parts of an aspect. This is a deliberate choice for two

i n t e r f a c e Permiss ion {
boolean imp l i e s ( Permiss ion permis s ion ) ;
boolean equa l s ( Object obj ) ;

S t r ing getName ( ) ;
S t r ing getAct ions ( ) ;

}

interface AOPPermission extends Permiss ion {
AOPPermission i n t e r s e c t (AOPPermission perm) ;
AOPPermission union (AOPPermission perm) ;

}

Listing 2: Java Permission vs AOPPermission

reasons: (i) it is similar to the existing language-based pro-
tection mechanisms and (ii) no practical, convincing cases
have been encountered that required a more fine-grained as-
signment of rights. Hence, the static rights of any executable
subpart of an aspect are determined based on the static
rights of the aspect that lexically contains the executable
subpart.

The policy file used for the assignment of static rights to
aspects is based on the standard Java security policy file.
An example is depicted in Listing 3.

grant aspect ” s e c u r i t y . Authent icat ion ” {
permiss ion s e c u r i t y . AuthPermission ;
permis s ion java . i o . F i l ePermi s s i on ”/tmp/auth . txt ” ;
permis s ion java . i o . F i l ePermi s s i on ”/tmp/tmp . txt ” ;
}

Listing 3: Example policy for an aspect called ’se-
curity.Authentication’

4.3 Current Rights
The core of AOPS is the PermissionManager, which is

responsible for storing the current rights, and for all ac-
tions that must be performed on those rights: updating the
current rights, checking rights and augmenting the current
rights. The PermissionManager maintains a single set of
current rights and, hence, focuses on single-threaded appli-
cations. There are no fundamental obstacles, however, to
extend this to multi-threaded applications.

The computation of the current rights is based on intersec-
tion: every time the current rights must be updated, they
are intersected with the static rights of the aspect caused
the update, using the intersect() method defined on the
permission.

4.4 Checking
A security check in AOPS is requested by invoking the

demand method of the PermissionManager as shown in List-
ing 4. When this method is called, the current rights are
compared with the requested permission. Only if the re-
quested permission is available in (or implied by) the current
rights, the application is allowed to proceed. Otherwise, an
AOPSecurityException is thrown.

Due to the use of aspects it is not always feasible to include
checks programmatically. For instance, in order to restrict
the privileged access to a particular private class member,
one should actually include a check in the accessor-method
generated by the weaver for this purpose, which is clearly not



PermissionManager mngr =
PermissionManager . getPermissionManager ( ) ;

AOPPermission perm =
new Sens i t i veOperat i onPermi s s i on ( ) ;

mngr . demand(perm ) ;
<s e n s i t i v e operat ion>

Listing 4: Protecting a sensitive operation

accessible at development time. Similarly, an object pre-
initialization joinpoint is not visible for a developer. This
problem can be addressed by the use of automatic insertion
of checks in the (possibly generated) code during the weaving
phase. Annotations such as the ones shown in Listing 5, can
be used to instruct the weaver where to include such checks.
Alternatively aspects can be used to insert the checks, as in
Listing 6.

class Sec re t {
@CheckAOPPermission (

permis s ion=”Secre tPermis s i on ”
)
private St r ing s e c r e t ;
. . .

Listing 5: Annotation based permission demand

aspect Enforcer {
pointcut pro t e c t ( ) :

get (private Sec re t . s e c r e t ) | |
set (private Sec re t . s e c r e t ) ;

before ( ) : p ro t e c t ( ){
demand(new Secre tPermis s i on ( ) ) ;

}

dec l a r e precedence : ∗ , Enforcer ;
}

Listing 6: Aspect based permission demand

When using the aspect based approach, aspect ordering is
very important. By declaring an aspect of least precedence,
the check is guaranteed to be executed just before the actual
joinpoint. If any other advice tries to declare itself as lower
precedence, the weaver will detect the conflict and abort
weaving. Obviously the aspect demanding the permission
should hold the permission itself, or the check is bound to
fail.

In this implementation we opted for the aspect based ap-
proach, to reduce the impact on the weaver.

4.5 Implicit Modifications
One of the challenges of AOPS, is related to updating

the current rights. As a result of the weaving process, the
aspects become scattered over different modules, and tan-
gled with other code. In order to update the current rights
correctly, every execution of a piece of aspect code must be
identified and the static rights must be determined correctly.

Each time an aspect related piece of code is entered, the
current rights must be updated according to the static rights
of the newly entered aspect (by taking the intersection of the
current rights and the static rights of the aspect being en-
tered). It is important to update as early as possible to

prevent aspects or exceptions to bypass the update. In the
case of advice, care must be taken to update every occur-
rence of the advice body: since the weaver might copy and
inline the body into various places, this is not necessarily a
localized modification.

Aspects can influence the execution history in various
ways: an advice is being executed on some joinpoint, an
aspect method is being invoked or an if-pointcut is exe-
cuted. No other, more specific events can influence the
current rights. A proceed statement in an around advice
does not influence the execution history: since an advice or
a method, upon returning, can never increase the current
rights compared to when it was entered, the current rights
after a proceed statement will never be increased compared
to before the execution of the proceed statement. Therefore,
it is not necessary to update the current rights again. Simi-
larly, exception handlers do not require special attention.

The updating of the current rights depends on the identity
of the current aspect. Since it is impossible to rely on the
identity of the run-time module to determine the identity of
the newly entered aspect (because of inlining), the weaver is
responsible for inserting the identity in every relevant piece
of code. Listing 7 illustrates the body of an advice before
and after it has been processed by the AOPS weaver.

//advice be fore weaving
before {} : . . . {

<something use fu l>
}

//advice a f t e r weaving
before {} : . . . {

PermissionManager permmngr =
PermissionManager . getPermissionManager ( ) ;

permmngr . updateCurrent(<the f u l l aspect name>);
<something use fu l>

}

Listing 7: Placement of automatic update state-
ments

4.6 Explicit Modifications
In some situations, it is useful for security-aware aspects

(or classes) to increase the current rights with a selection
of rights from its static permission set. For instance, con-
sider a scenario in which the Authentication aspect has to
read a password file. This scenario only works if either all
previously executed aspects have a permission to access the
password file, or the aspect is capable of augmenting the
current rights.

At least two types of rights amplification are necessary to
make the system useful in practice: (i) to execute a piece
of code with elevated rights (known as grant) and (ii) to
increase the trust in the return result of a particular piece
of code (accept). From [2]:

Grant(P){B} Before running statement B, the initial value
of the current permissions is saved and the permission
P is added to the current permissions. When B com-
pletes (possibly with an exception), the current per-
missions are assigned the intersection with their initial
values.
Rephrased, code can temporarily increase the rights to
run a block of code, but upon returning all extra rights



and any other rights that were lost during computation
will be removed from the current set.

Accept(P){B} Before running statement B, the initial value
of the current permissions is saved. If B completes nor-
mally, then the intersection of this initial value and P
is added to the current permissions. (If B terminates
with an exception, then the current permissions are
not modified.)
Rephrased, if during the computation of a block a per-
mission contained in the initial set and implied by P
was lost, this permission will be added to the current
set again.

It is clear that the augmentation of rights is a potentially
dangerous action and, hence, its use should be controlled.
This can be achieved, for instance, using special permis-
sions that represent this type of right and assigning those
permissions only to aspects trusted for the augmentation of
rights. In order to not overly complicate the model, AOPS
allows every aspect to augment the current rights, under
the restriction that only rights that are part of the static set
can be used for augmentation. As such, an aspect with few
static rights cannot increase its permissions at run time.

5. USAGE PATTERNS
With history-based access control, the permission set al-

ways decreases. This might make HBAC seem very strict,
however, it is quite easy to simulate stack-based access con-
trol with it [2]. This implies that if HBAC is used correctly,
every policy that can be enforced by the stack-based model
can also be expressed by the history based model.

To make optimal use of AOPS, it is important to know
how to use it. We have identified three patterns that may
provide guidance: guard, grant-demand and kernel-accept.
We now explain these patterns and refer to the related re-
quirements, as defined in Section 2.2.

Guard: a field or method is decorated with a demand op-
eration that prevents access when a certain permission is not
implied by the current permissions. This pattern guarantees
that malicious code cannot influence the operation. Guards
can be used to secure private methods or fields (R2a, R2c).
It is also the key to enforcement of standard Java permis-
sions (R1).

Grant-demand: a permission is granted to make a di-
rect or indirect call to a guarded member or sensitive code-
path. When the sensitive path returns, the permission is
demanded. This ensures that the sensitive code path was
not influenced by malicious code, not holding this permis-
sion. This pattern should only be used when the parameters
used to construct the sensitive path are trustworthy. This
pattern is important to ensure correct return values (R2b)
and ensure integrity of methods and advices (R3e). This
patterns can also be used to prevent aspects from interfer-
ing with certain joinpoints (R2d). This is done by placing a
grant-demand structure in a high precedence aspect. Such
an aspect, Enforcer, is shown in Listing 8.

The Enforcer aspect will effectively enclose all other as-
pects. If a malicious aspect tries to declare itself as higher
precedence than the Enforcer, the weaving process will fail.
If any aspect influences the same joinpoint, this will be de-
tected upon return. If the policy violation must not only be
detected but also prevented, a low precedence aspect can be

aspect Enforcer {

pointcut pro t e c t ( ) : . . . ;

void around ( ) : p ro t e c t ( ){
AOPPermission pp = new ProtectedPermiss ion ( ) ;
grant (pp){

Object o = proceed ( ) ;
demand(pp ) ;
return o ;

}
}

dec l a r e precedence : Enforcer , ∗ ;
}

Listing 8: Grant-demand pattern as aspect

used to demand the permission just before the joinpoint is
entered.

Kernel-accept: a small kernel is locked tight with guards
so that its integrity can be guaranteed at all times. This ker-
nel accepts responsibility for a potentially untrusted code
path it constructs. This path is constructed based only on
information available inside the trusted kernel. When the
path terminates, permissions are restored and another un-
trusted path can be constructed. As each loop is isolated
from each other loop, the kernel can safely accept responsi-
bility for the next loop. This pattern is useful in processes
that run independent loops, such as event processing sys-
tems and servers. The Kernel-accept pattern is illustrated
in Listing 9.

//AllPermission impl ies a l l permissions
AOPPermission f u l l = new Al lPermiss ion ( ) ;
AOPPermission minimal = new CoreLoopPermission ( ) ;
PermissionManager m =

PermissionManager . getPermissionManager ( ) ;
while ( ! done ) {

//grant a l l permission in s t a t i c r i g h t s
Accept ( f u l l ){

St r ing msg = in . readLine ( ) ;
// t h i s i s point A of the overview diagram
i f ( l i n e != null ) {

St r ing r ep ly = handleCMD(msg ) ;
// t h i s i s point D of the overview diagram
// make sure no unauthorized aspect
// in f luenced the command handling
m. demand(minimal ) ;
out . wr i t e ( r ep ly ) ;

}
}

}

Listing 9: Kernel accept pattern in the main server
loop (server as in Figure 1)

This pattern is not used to protect against malicious code,
but to allow untrusted code to execute in a secure manner.
A Kernel-accept indicates an extension point were a less
trusted piece of code can augment the base code without
breaching security.

As was shown, these patterns can be installed using as-
pects, which allows for efficient deployment. Correctness
of the pointcuts is of course critical: if the guards are not
applied, the system is not protected.



6. EVALUATION
In this section we will discuss the implementation of a

prototype of our enforcement mechanism and evaluate the
complexity of the prototype. With this prototype we imple-
mented the jFTPd case study to evaluate the practical value
of AOPS. The evaluation will address development overhead
and run-time overhead. We will also apply the aforemen-
tioned patterns to illustrate that AOPS is not overly re-
strictive.

6.1 Prototype
In the ideal case, AOPS is integrated in the compiler and

run-time of the base language (the AspectJ compiler and
the Java virtual machine). From a security perspective this
is preferable since the language run-time acts as a security
micro-kernel that cannot be tampered with by the execut-
ing application. The standard Java permission system has
been designed this way. Furthermore, this would enable the
unification of the standard permission system (targeted at
classes) and the AOPS (targeted at aspects). Hence, policies
can be specified and enforced uniformly. However, this op-
tion is hard to achieve in practice since (i) the Java compiler
does not include an aspect weaver and (ii) this would require
adaptations to the virtual machine, which then has to be re-
placed on all machines where the AOPS is used. Therefore,
we opted for the strategy used by most weavers: extend-
ing (or replacing) the base language compiler and relying on
add-on libraries for the necessary run-time support.

AOPS has been implemented using the AspectBench Com-
piler (ABC [6]). ABC is an extensible compiler and weaver
framework that implements the AspectJ language, an ideal
basis for the implementation of AOPS.

The prototype consists of two core components: a (mod-
ified) compiler/weaver and a run-time library. The com-
piler part is responsible for identifying all locations where
aspect switches occur (advices, aspect methods and so forth)
and for adapting these to include aspect-specific invocations
to the PermissionManager in order to update the current
rights. The compiler must also make sure that no aspects
can influence the PermissionManager or the constructors of
Permissions. The run-time library contains the Permis-

sionManager, which is responsible for managing and safe-
guarding the current rights, and a Policy component that
represents the static aspect policy which is read from file
(via the PolicyParser).

The AspectJ language was extended with a Grant and an
Accept keyword, which are type checked and transformed
into regular Java code in the early stages of compilation.
This modification is independent of the weaving strategy.
The PermissionManager.demand() method is safeguarded
from aspect interactions by aborting compilation if any join-
point matches any call towards the PermissionManager. A
similar method is used to safeguard the constructors of Per-
missions. The internal methods in the PermissionManager

that are used to implement Grant and Accept commands
are safeguarded by offering the type checker a version of the
PermissionManager that does not have these methods.

6.2 Development Scenario
In this section we will illustrate how some of the poli-

cies that were discussed in Section 4.6 can be enforced using
AOPS and give an indication of the development overhead.
We consider three stages of the development process: secu-

rity protocol design, extension protocol design and imple-
mentation. The security protocol defines which permissions
are required for each sensitive operation. The extension pro-
tocol defines where and under which conditions the current
rights are elevated. The implementation consists of plac-
ing all required security annotations, (Grant, Accept and
demand) and create the policy file, as described in previous
sections.

The remainder of this section will discuss these phases,
based on the example application, as described in Section
2.3.

Security protocol
The design phase requires a thorough analysis of the struc-
ture of the server, as described in Section 2.3. This allows
us to identify the important security areas of the applica-
tion. In this case, we identify three security areas: 1) the
server configuration, 2) the command handling and the ses-
sion state (as shown in Figure 1) and 3) the authorization
process and the authorization state. Each security area has
its own custom permission:

• ConfigPermission is a coarse-grained permission used
to secure the configuration of the server. Before the
server is started, its configuration is read from file and
stored in a Config object. Every attempt to alter the
configuration is blocked by an aspect that demands
ConfigPermission (Guard pattern). This means that
the configuration can only be altered if all previously
executed aspects had ConfigPermission in their static
rights.

The ConfigPermission is coarse-grained, in a sense
that if it is in the current rights, all configuration is
accessible and if it is not, no configuration is accessible.

• CoreLoopPermission is a fine-grained permission that
secures the main server loop as depicted in Figure 1.
To achieve this, a grant-demand pattern is used. Be-
fore a message is received from the client, the CoreLoop-
Permission is granted. As long as this permission re-
mains in the current set, the processing of the com-
mand is trustworthy. Before the results are returned
to the client, the CoreLoopPermission is demanded.
This makes sure that if the message was not handled
properly, only error messages can be sent to the client.

The CoreLoopPermission is also used to protect the
session state. Each attempt to read or modify the state
is blocked by an aspect that demands the CoreLoop-

Permission (Guard pattern). To allow fine-grained ex-
tension, each field containing session state is protected
by a CoreLoopPermission with a specific name.

• AuthPermission is used to protect the authentication
aspects, similar to the use of the CoreLoopPermis-

sion. Before authorization, CoreLoopPermission is
demanded, to make sure the message that is authorized
has not been tampered with. Then a grant-demand
pattern is used to safeguard the flow of control. All
authorization specific state is also protected by guards.

The aspects in the ’chroot’ plug-in, including the mali-
cious aspects, are granted permissions to read the directory
to be served and alter the part of the session state that



contains the current directory. This allows no malicious be-
havior, except for sending small amounts of data through
the error messages sent to the client.

Extension protocol
The main concern that drives the extension protocol design
is the principle of least privilege: every aspect must only
be granted the rights it needs to fulfill its task. Due to
the nonincreasing nature of the current rights, this implies
that if two aspects have unrelated tasks (and as such disjoint
static rights) the current rights will be empty after they have
both executed. In order to allow fine-grained extensions
while respecting the principle of least privilege, the current
rights must be elevated after each extension point.

When using OOP, the current rights are usually elevated
when a trusted API is entered. The trusted API validates its
arguments and then elevate the current rights. When using
AOP however, it may not be clear where the untrusted code
will intercept the trusted code. Conversely it is not always
clear where the validation and the rights extension must take
place. Therefore the upfront design of an extension protocol
is required, to define all legal areas of extension.

In our example, we allow three types of extension, one for
each permission type:

• ConfigPermission. Any aspect having ConfigPer-

mission has full access to any part of configuration
and the configuration process. After configuration is
loaded, ConfigPermission is demanded to make sure
the configuration is trustworthy. Then all rights re-
quired for further operation are granted, to make sure
the required system resources are accessible.

• CoreLoopPermission. The core loop is executed once
for each command that is received. After each loop all
static rights of the Dispatcher are restored (Listing
9). This can be done safely, as each loop only depends
on session state, configuration and user input, which
are all guarded (Kernel-Accept pattern). The accept
is required because aspects influencing the core loop
may not have access to all parts of the session state
and all required system resource. If the accept were
missing and the loop would be executed a second time,
some required permissions might be missing, causing
the system to fail.

This approach allows extension of the core loop by as-
pects holding the CoreLoopPermission. However or-
dering of operations within one loop is important. If
an aspect without rights to system resources interferes
with command handling, any subsequent access to sys-
tem resources will be blocked. A more fine-grained ex-
tension protocol would grant rights to system resources
in all handlers if CoreLoopPermission is in the current
rights. We chose not to do this.

• AuthPermission. AuthPermission has an extension
protocol similar to the ConfigPermission.

Implementation
The security protocol is almost entirely implemented using
aspects. The use of aspects allows efficient deployment of
guards over large bodies of code. The extension protocol
is more complex and required more manual annotations of

the source code. During its implementation, many subtle
feature interactions were detected and refinements of the
design were required. Creation of the policy file itself is
almost trivial once the protocol had been implemented.

In terms of lines of code, we measured a 6.5% overhead:
the unsecured server has about 4280 lines of codes, the se-
cured version 4559 2.

6.3 Runtime Overhead
The run-time overhead introduced by the model is de-

pendent on a number of factors: the statements introduced
by the developer, which was discussed previously, the join-
points that involve aspect switches, the aspect policy and
the complexity of permissions. For each joinpoint, a call is
made to the PermissionManager and an intersection is cal-
culated. The run-time impact of the aspect policy is high
for aspects that are assigned many permissions, since the
intersection of permission sets is computed frequently and
this can be a costly operation. Finally, also the complexity
of permissions influences the run-time overhead: the cost of
intersection, union and implies operations can considerably
differ between permission types.

To get a better view on the run-time overhead, we bench-
marked the trusted core of the jFTPd server. We tested a
normal operation scenario and a worst case scenario. The
normal operation scenario used the FTP server over the
loopback interface and downloaded a 100 small files. The
worst case scenario was identical, but all file access was re-
placed by no-ops. This makes sure that file access is not
the dominant factor. Note that the FTP server is a multi-
threaded application, which is not well supported by the
AOPS prototype. However, since our experiment uses a sin-
gle connection at a time, it was possible to ensure that this
did not affect the validity of the experiment.

Normal No-op io
basic secured basic secured

σ 0.0055 0.0117 0.001 0.001
µ 12.2933 12.3126 0.08 0.23

overhead 0% 0.16% 0% 200%

Table 2: Execution times for the different FTP ex-
periments in seconds, with standard deviation and
and mean

These results demonstrate that the impact of using AOPS
are minimal (under 1%) compared to executing the software
without AOPS. However with CPU intensive tasks, the over-
head is significant (200%).

A second performance benchmark was performed on the
product-line example from the AspectJ benchmark [12]. This
test did no demand, grant or accept operations and mea-
sured only the update operations. Each run performed roughly
0.9 million update operations. The test was ran in four ver-
sions. The first version did no security updates as it was
not instrumented by our weaver. The second version per-
fomed the security updates with an empty policy. The third
version uses a simple policy assigning the same permission
to every aspect. The final version uses a complex policy as-
signing a few different permissions to each aspect of which
one was shared between all of them.

2counted using ‘wc’



Unsecured Empty Single Complex
σ 0.04 0.04 0.04 0.05
µ 0.84 1.05 1.13 1.63

overhead 0% 25% 34% 94%

Table 3: Execution times for the different product-
line experiments in seconds, with variance and and
mean

These results clearly show that the overhead rises with
the complexity of the policy and with the size of the current
set, as was to be expected. Caching would most likely re-
duce the overhead to a number close to the Single case, as
the intersections would have to be calculated only once, as
opposed to several thousand times.

7. DISCUSSION
First of all, AOPS increases the reliability of aspect-oriented

software. Currently, no extensive validation has been per-
formed, but based on a number of internal experiments and
on our familiarity with permission-based models, we are con-
fident that the AOPS will be a valuable add-on to the exist-
ing set of aspect-oriented tools.

Furthermore, in addition to the basic goal of AOPS, the
infrastructure also supports identifying possible feature in-
teractions. A feature interaction might not only be caused
by two aspects influencing a single joinpoint; more indirect
feature interactions can also exist. For instance, two aspects
influence a single joinpoint and a third aspect influences one
of those via some other joinpoint. Such indirect (or tran-
sitive) interactions are typically harder to identify. Using
AOPS, an application can only execute correctly if all fea-
ture interactions are controlled: either by assigning sufficient
permissions to aspects, or by augmenting rights. As such,
the model can help in tracking unknown feature interactions.

While the AOPS has been shown useful in addressing a
wide spectrum of security policies, the model has a number
of inherent issues that are important to consider when using
the model.

• The execution history-based model is rather strict: a
number of applications that would run correctly and
securely in practice, will not be allowed to execute.
This is an implication of the choice of a model in which
all the problems as described in Section 2 can be ad-
dressed. Moreover, compared to stack inspection, the
history-based model provides a safe default for poten-
tially dangerous situations. A more optimal strategy
would consist in enforcing an information flow model
and use this as a basis for deciding which permissions
to grant and revoke. Unfortunately, information flow
models have a very large run-time overhead and they
are most often provided as off-line protection mecha-
nisms (such as Jflow [27]).

• The model is based on execution history and, hence,
the order in which aspects are applied is important.
The ordering of aspects (which can be controlled, to
some extent, using the declare precedence construct
in AspectJ) influences how a program executes and de-
termines whether it meets the global property of the
AOPS model. The problem is that it is not always pos-

sible for a developer to, given a particular aspect pol-
icy file, write code that is guaranteed to work correctly
once woven (e.g., in case of unspecified orderings, the
weaver will decide on the order seemingly randomly).
This problem can be addressed by either improving
the aspect ordering or, less likely, relaxing the security
properties that have to be enforced.

8. RELATED WORK
This work is the first to present a permission system that

is capable of safeguarding software developed using aspect-
oriented programming. In that sense, no earlier work exists
with which the AOPS system can be compared to its full
extent. However, there are many results in a number of
related research domains.

The performance and usability of run-time enforcement
can be improved by attuning it to the type system and lan-
guage features of the underlying language. In this paper we
have presented a generic implementation, covering different
features. In a more restricted system, where for example
privileged aspects are regulated by the type system, policies
can be expressed and evaluated more efficiently. Much work
has been done on the subjects of typing, safety and language
design in the context of aspect orientation. We briefly high-
light some of the approaches. Join point encapsulation [24],
for instance, is a technique that supports the shielding of
inner parts of a module from aspects. Similarly, by specify-
ing the pointcuts that can be used for aspects more explic-
itly in pointcut interfaces [17, 22], the internals of modules
can be safeguarded. More recent work in the area of type
systems is also relevant in this context. For instance, the
concept of an aspect is redesigned in open modules [4] to
enable modular reasoning. Similarly, harmless advice [8] re-
stricts the way in which advice can influence the computa-
tion. Moreover, the detection of aspect-interactions [3] and
weaving-interactions [21] at development time can reduce
the run-time overhead and facilitate development.

Another possibility for optimization is the use of inline
reference monitors, which use program rewriting techniques
to enforce security policies in a software artifact [33]. Dif-
ferent types of security automata [14, 25, 15, 18] represent a
security policy as a state machine, which is then transformed
and inlined into the software at relevant places. In [13], the
inline reference monitor technique has been used to imple-
ment stack inspection. A more efficient implementation of
stack inspection is the security-passing style as described in
[35].

Apart from stack and history based security, other mod-
els exist. The most promising is information flow based
security [30, 32, 28, 5]. This model is more fine-grained
and powerful in comparison with the history based model.
However, run-time enforcement of information flow based
security requires even more security updates compared to
HBAC. This may cause a significant run-time overhead. It
remains a promising alternative and part of the future work.

There are various alternatives for the expression of poli-
cies. Security policies in Polymer [7], for example, are de-
fined based on two types of methods: query methods that
determine how a policy should be handled for a security-
sensitive action and state update methods to manage the
security state of a policy. This allows programmatic combi-
nation of policies. The specification language for policies is
more restricted compared to AspectJ-like languages. Cur-



rently it is not compatible with AOP. For security enforce-
ment in AOP, there is also the expressive approach proposed
by Kallel et al. [19]. This policy language supports very nat-
ural expression of security concerns, but relies on complete
knowledge of the execution history, which may be hard to
realize in practice.

To apply our approach in practice, the technicalities of
the run-time environment have to be taken into account.
This would raise some additional issues. A first important
concern is the interaction of aspects to the class loading
mechanism used in Java as described by Sewe et al. [34].
Taking into account classloading mechanics also invalidates
the assumption that an aspect can be identified by its name.
Furthermore, the integration with the existing Java Security
Infrastructure could be redesigned to achieve a more uniform
model. Most likely this would mean that permissions are
not assigned to individual aspects, but to their origin (i.e.
their jar file or issuer) as is the case in the Java Security
Infrastructure. This simplification would also significantly
impact the identification mechanism. Finally, the semantics
of a privileged action in Java base-code would have to be
redefined. These issues are still under investigation.

Aspect-oriented programming itself has been used to en-
force security policies within applications [10, 31]. One closely
related result in the context of this work is the enforcement
of an execution history-based access control model using
AOP [26]. The most important difference with the AOPS
model is that most of the above results are still suscepti-
ble to the problems that were discussed during this paper
and, hence, they only execute securely under very controlled
circumstances.

9. CONCLUSION
This paper presents AOPS, a permission system for aspect-

oriented software that is based on execution history. The
primary goals of AOPS is to control and minimize the harm
that advices of untrusted aspects can cause at run time by
enforcing policies on these aspects. To this aim, the devel-
oper annotates the software (classes and aspects) with extra
statements to trigger the AOPS run-time system. During
the weaving phase, the software modules are modified such
that global security properties can be correctly maintained
at run time. A configurable aspect policy, which assigns
permissions to aspects, is consulted at run time to check
whether aspects have sufficient rights for executing their be-
havior.

Experiments have shown that the AOPS increases the re-
liability and security of aspect-oriented programs. More ex-
tensive validation is necessary to improve our understanding
of the most effective policies. This will allow the finetuning
of the language extensions and the weaver behavior to im-
prove the ease of use of the system. Furthermore, this can
aid in extending the basic permission set.

The most important drawback of the permission system
is the restrictiveness of the execution history-based model.
The effort required to get applications with complex aspect
interactions operational using non-trivial policies may be-
come considerable. On the other hand, the benefit of this
investment is that all possibly harmful interactions must be
identified and appropriately dealt with, which contributes
to the overall quality of the software.

The development overhead of using and constructing this
security model are smaller than expected, due to the use

of advanced AOSD techniques. With limited implementa-
tion effort, a powerful enforcement model can be prototyped.
The prototype is not overly complex and as such open to
extension and refinement. The use of AOSD for research
into run-time enforcement of security policies is to be rec-
ommended [26].

Our future work will in the first place study and op-
timize the performance overhead of this infrastructure in
the context of complex policies and multi-threaded applica-
tions. Furthermore we will investigate the impact of inter
type declarations on security, and explore solutions to these
problems. Another interesting track is the study of specific
aspect-oriented run-time concepts, such as cflow, and the in-
vestigation of policies that can be enforced when using such
constructs.
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