
Noninterference Through Secure Multi-Execution

Dominique Devriese
DistriNet Research Group, KULeuven

E-mail: dominique.devriese@cs.kuleuven.be

Frank Piessens
DistriNet Research Group, KULeuven
E-mail: frank.piessens@cs.kuleuven.be

Abstract—A program is defined to be noninterferent if
its outputs cannot be influenced by inputs at a higher
security level than their own. Various researchers have
demonstrated how this property (or closely related proper-
ties) can be achieved through information flow analysis,
using either a static analysis (with a type system or
otherwise), or using a dynamic monitoring system.

We propose an alternative approach, based on a tech-
nique we call secure multi-execution. The main idea is to
execute a program multiple times, once for each security
level, using special rules for I/O operations. Outputs are
only produced in the execution linked to their security
level. Inputs are replaced by default inputs except in
executions linked to their security level or higher. Input
side effects are supported by making higher-security-level
executions reuse inputs obtained in lower-security-level
threads.

We show that this approach is interesting from both a
theoretical and practical viewpoint. Theoretically, we prove
for a simple deterministic language with I/O operations,
that this approach guarantees complete soundness (even
for the timing and termination covert channels), as well
as good precision (identical I/O for terminating runs of
termination-sensitively noninterferent programs).

On the practical side, we present an experiment imple-
menting secure multi-execution in the mainstream Spider-
monkey Javascript engine, exploiting parallelism on a cur-
rent multi-core computer. Benchmark results of execution
time and memory for the Google Chrome v8 Benchmark
suite show that the approach is practical for a mainstream
browser setting. Certain programs are even executed faster
under secure multi-execution than under the standard
execution.

We discuss challenges and propose possible solutions for
implementing the technique in a real browser, in particular
handling the DOM tree and browser callback functions.
Finally, we discuss how secure multi-execution can be
extended to handle language features like exceptions,
concurrency or nondeterminism.

I. I

The identification and suppression of illegal infor-
mation flows in software programs has been an active
research topic for several decades. Roughly speaking,
existing approaches can be classified as static tech-
niques based on type systems [1]–[3], abstract interpre-
tation [4] or other static analysis methods [5], dynamic
techniques based on execution monitoring [6], [7], or
combinations of static and dynamic techniques [8].

However, while progress in both static and dynamic
approaches has been impressive, there are fundamental
limits on what can be achieved with a combination
of static analysis and execution monitoring. It is easy
to show that noninterference (the absence of infor-
mation flow from public inputs to secret outputs) is
undecidable statically, and it has been shown that
execution monitoring can not enforce noninterference
precisely [9].

In this paper, we propose a novel approach based
on a technique we call secure multi-execution. The main
idea is to execute a program multiple times, once
for each security level, using special rules for I/O
operations. Outputs on a given output channel are only
produced in the execution linked to the security level
assigned to this output channel. Inputs from a given
input channel are replaced by default inputs except
in executions linked to a security level higher than
or equal to the level of this input channel. Input side
effects are supported by making higher-security-level
executions reuse inputs obtained in lower-security-
level threads.

Secure multi-execution has strong advantages. First,
it is sound: any program is noninterferent under secure
multi-execution. This is relatively easy to see: an exe-
cution at a given security level can only output at that
level, and never even see inputs from a higher level.
So outputs could not possibly depend on inputs from
higher levels. Second, secure multi-execution is precise:
if a program is (termination-sensitively) noninterferent
under normal execution, then its behaviour under a
terminating normal execution and under secure multi-
execution are the same. As discussed above, techniques
based on static analysis and/or execution monitoring
can not achieve both soundness and precision. We
believe our enforcement mechanism is the first one that
is both provably sound and precise in the sense that the
enforcement mechanism is transparent for terminat-
ing runs of every termination-sensitively noninterferent
program (a notion we will define later).

One obvious disadvantage of multi-execution is its
cost in terms of CPU time and memory use. However,
we argue in this paper for the practicality of the
approach in at least one important application area:

Javascript web applications. We have implemented
secure multi-execution in the mainstream Spidermon-
key Javascript interpreter [10], and we show using
the Google Chrome v8 benchmarks [11] that memory
costs and CPU time costs can be traded off against
each other. More surprisingly, we show that secure
multi-execution can actually be faster than standard
execution. This is due to the fact that Javascript is a
sequential language and hence necessarily serialises
all I/O operations. Parallel multi-execution provides
more opportunity for I/O parallelism, and this can lead
to a faster execution time. One could say that secure
multi-execution uses the noninterference property of a
program to automatically parallelise the program.

In summary, this paper makes the following contri-
butions:
• We propose secure multi-execution as a new enforce-

ment mechanism for noninterference. We propose
rules for correctly handling a generic form of I/O.

• We formally prove soundness and precision of
secure multi-execution for a small model language
with I/O operations.

• We present experimental benchmark results for
multi-execution implemented in a mainstream
Javascript engine. This makes secure multi-
execution to our knowledge the first provably
sound dynamic noninterference-enforcing tech-
nique for which benchmark results are available.

• We argue for the practicality of multi-execution in
a mainstream browser setting, based on our bench-
mark results and outlines of proposed solutions
for handling the DOM tree and browser callbacks.

The remainder of this paper is structured as follows.
First, in Section II we give a motivation and informal
overview of our approach. Next, in Section III we
provide a formal model, and we prove soundness and
precision in Section IV. Section V then reports on our
implementation and the experiments we performed. In
Sections VI, VII and VIII we discuss further extensions,
related work and offer a conclusion.

II. I 

A. Information Flow Analysis
Imagine the following Javascript code is running in

a typical web-based e-mail client.

1 var text = document.getElementById
2 (’email-input’).text;

3 var abc = 0;
4 if(text.indexOf(’abc’)!=-1) { abc = 1 };
5 var url = ’http://example.com/img.jpg’
6 + ’?t=’ + escape(text) + abc;

7 document.getElementById(’banner-img’)

8 .src = url;

Note that setting the src property of an img element
will trigger an HTTP request to the url set. Clearly,
this code represents an important breach of privacy.
The owners of the example.com domain can obtain
the body of any e-mail a user sends. This type of
code could have been injected through a cross-site
scripting (XSS) attack, or hidden in an ad included by
the web-mail server into the application. Many authors
have discussed this vulnerability in current browsers,
and various countermeasures have been studied in the
research literature [7], [12]–[14].

A first step at analysing the above program
is to classify inputs and outputs into
security levels. For example, the expression
“document.getElementById(’email-input’).text”
could be seen as an input at security
level H (high, confidential). The expression
“document.getElementById(’banner-img’).src”
could be seen as an output at security level L
(low, public). The example above exhibits a flow of
information from a H input into a L output. Note that
in this classification, it is important to ensure that no
input or output can affect subsequent inputs that are
not on higher or equal security levels.

Countermeasures are often shown to be effective at
eliminating these unacceptable flows by showing that
they guarantee a property called noninterference, which
comes in different variants. Termination-insensitive non-
interference is a common variant, guaranteeing that two
terminating executions of a program produce output
that agrees on public data when started with input
that agrees on public data. The assumption behind
this notion is that information is only disclosed by the
program when it terminates.

Termination-insensitive noninterference forbids two
types of information flow, both of which are present
in the example above. The variable text which is sent
to the L output, was assigned data directly coming
from the H input. This type of information flow is
commonly referred to as an explicit flow. The variable
abc was not directly assigned data from the H input,
but it was assigned a value in a conditional branch
on a condition involving H variables. This type of
information flow is called an implicit flow. A program
cannot be termination-insensitively noninterferent if
these types of flows are present.

This variant of noninterference can thus already offer
some protection, but there are still ways to bypass it
using what are generally called covert channels. Fig-
ure 1 shows two programs exploiting respectively the
timing and termination covert channels. Using either
program, an attacker can get hold of the value of the
variable abc above.

1 function time(f) {
2 var t = new Date().getTime();
3 f();

4 return new Date().getTime() - t;
5 }

6 function f() {
7 if(abc != 0) {
8 for(var i = 0; i < 10000; ++i) {}
9 }

10 }

11 var abcLo = 0
12 if(time(f) > 10) {
13 abcLo = 1;

14 }

(a) Exploiting the timing covert channel.

1 while(abc == 0) {}
2 img.url = ’http://example.com/img.jpg’;

(b) Exploiting the termination covert channel.

Figure 1. Bypassing information flow analysis using covert chan-
nels.

Using secure multi-execution, we can close the tim-
ing and termination covert channels as well. We guar-
antee a stronger notion, which we call timing- and
termination-sensitive noninterference. This stronger no-
tion states that after any number of execution steps, two
executions of a program will have produced output
which agrees on public data when run with input that
agrees on public data.

B. Secure Multi-Execution
As its name suggests, secure multi-execution

will execute a program multiple times, once for
each security level. Statements producing externally
observable output are only executed in the execution
linked to their security level. Input at high security
levels is replaced by the Javascript undefined
value in executions at lower security levels. In
Figure 2a and 2b, we illustrate how the example
Javascript program from Section II-A would be
executed on respectively the L and H security
level. Recall that we had associated the expressions
“document.getElementById(’email-input’).text”
and “document.getElementById(’banner-img’).src”
respectively to the H and L security levels.
Modifications to the behaviour of input and output
statements are indicated by crossing them out and,
if necessary, putting a replacement expression on the
side.

It is clear how multi-execution ensures noninterfer-
ence. Output statements are only executed from an

1 var text = document.getElementById
2 (’email-input’).text undefined;

3 var abc = 0;
4 if(text.indexOf(’abc’)!=-1) { abc = 1 };
5 var url = ’http://example.com/img.jpg’
6 + ’?t=’ + escape(text) + abc;

7 document.getElementById(’banner-img’)

8 .src = url;

(a) Execution at L security level.

1 var text = document.getElementById
2 (’email-input’).text;

3 var abc = 0;
4 if(text.indexOf(’abc’)!=-1) { abc = 1 };
5 var url = ’http://example.com/img.jpg’
6 + ’?t=’ + escape(text) + abc;

7 document.getElementById(’banner-img’)

8 .src = url;

(b) Execution at H security level.

Figure 2. Multi-Execution of example Javascript program from
Section II-A.

execution at the associated security level, and this ex-
ecution simply does not get access to the actual values
of inputs at higher security levels. Even the timing and
termination covert channels are thus easily blocked.
Because the program is executed once for every se-
curity level, all input and output statements are still
executed and the effects of noninterferent programs
should not be modified. An interesting question is
how multi-execution will handle interferent programs.
A partial answer is that it will always execute them
in a noninterferent way, modifying their behaviour if
necessary to ensure this. We discuss this further in
Section VI-B.

Contrary to what the illustration in Figure 2 sug-
gests, both in our formal work in Sections III and
IV and in our experiment described in Section V,
we do not implement secure multi-execution through
program transformation. Instead, we run multiple exe-
cutions in parallel, using a scheduler to determine the
interleaving. We intercept input and output commands
and execute them according to the rules we described,
depending on the security level of the execution they
are called from.

C. Input Side Effects

One problem that still remains is how multi-
execution will handle inputs with side effects. For
example, the following program uses the commonly
supported browser window.confirm method:

1 var r = window.confirm("Are you sure?");

If we execute this program at multiple security
levels, each higher than the one associated to the
window.confirm input, then the user will need to reply
multiple times to the question.

To solve this problem, we assume that each such
input will correspond to exactly one identical input
in the execution at the input’s own security level. We
will show in the formal derivations in Section IV that
for terminating runs of termination-sensitively non-
interferent programs, this assumption holds. We can
therefore let the executions at higher levels wait for the
execution at the lower level and reuse the input value
collected there. In fact, this solution also solves the
problem of exposing timing and termination channels
related to the side effects of the input function.

Note, finally, that our inputs with side effects are in
fact a more general concept than outputs. The outputs
we will consider are limited to producing a certain side
effect in the outside world and cannot return a result
to the program. A statement producing both an effect
in the outside world and returning a result must in
fact be treated as an input statement, and its effects as
side effects of producing the result.

D. Scheduling and Expected Performance
The basic idea of secure multi-execution is executing

a program one time per security level. Clearly, this is
not a cheap approach in terms of performance. First
intuition would suggest that both execution time and
memory usage would be multiplied by the number
of security levels. In Section V, we provide detailed
measurements of both execution time and memory
usage in an experimental implementation of secure
multi-execution in a Javascript engine. In this section,
we already discuss some results informally.

The impact of secure multi-execution on execution
time and memory usage depends heavily on the choice
of a scheduling strategy for the different executions.
The choice of a scheduling strategy is free, except for
two important remarks. First, as we discussed above,
high security executions need to wait for low security
ones when they read from low security inputs. Second,
if we want to completely close timing covert channels,
it must not be possible for any low security execution
to ever have to wait for a high security one. This does
not mean that serialising the executions is the only
option. Higher security execution can still be allowed
to progress while lower security threads are waiting for
I/O. On multi-core systems, more than one execution
can progress at the same time.

A simple scheduling strategy is to run the differ-
ent executions serially, running lower security execu-
tions first. This is an important strategy, corresponding

command ::= x := e
| c; c
| if e then c else c
| while e do c
| skip
| input x from i
| output e to o

Figure 3. Command syntax of our model language.

to what we will later describe as the selectlowprio
scheduling function. In general, this strategy will mul-
tiply execution time by the number of security levels,
but will not add significant memory usage overhead,
because each previous execution is completely finished
before the next one starts, so its memory can immedi-
ately be reclaimed.

Probably a more practical strategy consists of run-
ning the different executions each in a parallel thread,
giving priority to lower security ones. Especially on
multi-core systems (which seem to be becoming stan-
dard on consumer PC’s), this strategy will significantly
reduce execution time overhead, at the expense of
increased memory usage. We think that for typical web
applications, this is a preferable compromise.

In Section V, we discuss a somewhat unexpected fea-
ture of secure multi-execution using this last schedul-
ing strategy. For programs incurring I/O latency from
I/O channels on different security levels, secure multi-
execution can actually speed up a program’s execution.
In this situation, secure multi-execution functions as an
automatic program paralleliser, based on the assump-
tion of noninterference of a program.

III. F
A. Model language

We introduce a simple imperative model language
and related concepts, to explain and prove the tech-
nical properties of our approach. Our model language
and semantics are deterministic.

Our model language is fairly standard, and is based
on the one used by Russo et al. [15]. We have removed
threading primitives and added simple input and out-
put commands. Values can be booleans or integers.
We assume atomic, deterministic and side-effect-free
expressions. A program P is a command intended for
execution by the system. We define the language’s
command syntax in Figure 3.

We assume a set of input channels Cin and output
channels Cout. We define a program input I as a mapping
from input channels i ∈ Cin to channel input queues q,

I(i) = q p(i) = n q(n) = v

read
(
I, i, p

)
= v

(1)

O(o) = [v1, · · · , vn]

write (O, o, v) = O [o 7→ [v1, · · · , vn, v]]
(2)

Figure 4. Primitive read and write operation for working with
program inputs and program outputs.

mapping non-negative integers to values. We define
an input pointer p as a mapping from input channels
i ∈ Cin to integers. The symbol p0 denotes an initial
input pointer mapping every input channel to position
0 (7→ 0). A program output O is defined as a mapping
from output channels o ∈ Cout to lists of values. The
symbol O0 denotes an initial program output mapping
every output channel to the empty list (7→ []). In
Figure 4, we define primitive read and write operations
on program inputs and program outputs.

We define standard small-step execution semantics
of the language in Figure 3. These are defined for exe-
cution configurations 〈c, m, p, I, O〉, with c a command,
m a memory (a function mapping variables to their
values), p an input channel pointer, I a program input
and O a program output.

We define m [x 7→ v] to represent a new memory
mapping variable x to value v, and all other variables y
to m(y). We also extend memories m to expressions, so
that m(e) = v means that v is the value of the expression
e evaluated with respect to the variable values in m.
The notation m0 denotes an initial memory mapping
every variable to the value 0 (7→ 0).

The complete semantics can be found in Figure 5.
Note that standard semantics are represented using the
symbol _, in order to be able to easily distinguish
them from the multi-execution semantics we will de-
fine later.

A program P can be executed with respect to a given
initial program input I. It is executed by applying the
semantic rules in Figure 5 to the execution configura-
tion 〈P, m0, p0, I, O0〉.

We write _∗ for the transitive and reflexive clo-
sure of the _ relation for execution configurations.
A program P terminates for a given initial input I if
〈P, m0, p0, I, O0〉 _∗

〈skip, m f , p f , I, O f 〉 for some
final memory m f , final input pointer p f and final
program output O f . In such a case, we say that the
execution of P for program input I produces final
input pointer p f and program output O f . We write
(P, I) _∗

(
p f ,O f

)
.

We also introduce a time-limited execution relation.
We write 〈c, m, p, I, O〉 _n

〈c′, m′, p′, I, O′〉 iff exe-
cution configuration 〈c, m, p, I, O〉 can be transformed

c = if e then ctrue else cfalse m(e) = b

〈c, m, p, I, O〉_ 〈cb, m, p, I, O〉
(1)

〈c1, m, p, I, O〉 _ 〈c′1, m′, p′, I, O′〉

〈c1; c2, m, p, I, O〉 _ 〈c′1; c2, m′, p′, I, O′〉
(2)

〈skip; c, m, p, I, O〉 _ 〈c, m, p, I, O〉
(3)

c = while e do cloop m(e) = true

〈c, m, p, I, O〉 _ 〈cloop; c, m, p, I, O〉
(4)

c = while e do cloop m(e) = false

〈c, m, p, I, O〉 _ 〈skip, m, p, I, O〉
(5)

m(e) = v m′ = m [x 7→ v]

〈x := e, m, p, I, O〉 _ 〈skip, m′, p, I, O〉
(6)

c = output e to o
m(e) = v O′ = write (O, o, v)

〈c, m, p, I, O〉 _ 〈skip, m, p, I, O′〉
(7)

c = input x from i read
(
I, i, p

)
= v

p′ = p[i 7→ p(i) + 1] m′ = m[x 7→ v]

〈c, m, p, I, O〉 _ 〈skip, m′, p′, I, O〉
(8)

Figure 5. Standard small-step semantics of the model language.

to execution configuration 〈c′, m′, p′, I, O′〉 by n exe-
cution steps. If 〈P, m0, p0, I, O0〉 _n

〈c′, m′, p′, I, O′〉,
we write that (P, I) _n (

p′,O′
)
.

Note also that the final memory m f is assumed not to
be publicly observable. As discussed by Le Guernic et
al. [6] (who take the same view), public final variables
x can if necessary be encoded by introducing an output
channel o at an appropriate security level and by
adding a command output x to o at the end of the
program.

B. Secure Multi-Execution
In this section, we proceed to modeling secure multi-

execution semantics. The main difficulty lies in the
handling of inputs with side effects (see section II-C),
requiring scheduling and synchronisation between the
executions at different security levels. In order to
model this, we will define secure multi-execution se-
mantics on two levels. The local semantics model steps
in a single execution at a certain security level, while
the global semantics model the scheduling and synchro-
nisation semantics needed between the separate local
executions.

We assume a security level lattice L and functions
σin : Cin → L and σout : Cout → L, mapping each input
channel i or output channel o to a security level. We

assume L to be finite. This can be achieved by limiting
L to the security levels for which I/O statements are
present in the program at hand. The lattice order on
L can always be extended to a total order (since L is
finite), and we assume as given one such extension.

Note that initial security levels for variables are not
directly supported. However, we can encode a variable
x with an initial security level l and initial value v
by introducing a dummy input channel ix, such that
σin(ix) = l and using an input channel state I such that
I(ix) = (7→ v).

Let’s proceed to modelling the separate executions at
the different security levels. These different executions
normally do not interact, except when the execution
for an execution level l1 reads from a channel i with
σin(i) = l2 ≤ l1. In that case, as explained in Section II-C,
the execution at level l1 will wait for the execution at
level l2 to read the next value from channel i and then
use that value as well.

To model this, we define one local execution configu-
ration for each security level, as well as a single global
execution configuration describing the global state of the
execution. A local execution configuration

〈
c, m, p

〉
l

is defined by a command c, a memory m, an input
pointer p and a security level l. A global execution
configuration 〈[lec1, · · · , lecn] , wq, r, I, O〉 is defined by
a set of local execution configurations [lec1, · · · , lecn], a
waiting queue wq, mapping pairs (i,n) to sets of local
execution configurations, a global input pointer r, a
program input I and a program output O.

In Figure 6, we define local semantics, modelling
steps in a single execution at a security level l. The local
semantics are defined for local execution states with
respect to a global input pointer r, program input I
and program output O. Local execution steps can emit
a signal � (i, n), indicating that the execution at security
level σin(i) has just read from channel i at position
n. They can also emit a signal ⊗ (i, n) indicating that
the execution cannot proceed until the execution at
security level σin(i) has read from channel i at position
n.

Figure 7 shows the global semantics, modelling a
scheduler and keeping track of global state. They are
defined assuming a procedure select, which maps a
list of local execution states ([lec1, · · · , lecn]) onto the
execution state leci next to be run. We define select
as a procedure, not a function, to allow for modelling
nondeterministic schedulers and schedulers keeping
state, like a round-robin scheduler.

The scheduler selectlowprio, which we need for prov-
ing one of our main results, is a function mapping a list
of local execution states ([lec1, · · · , lecn]) onto the local
execution state with minimal security level, according
to the assumed total extension of the lattice order

c = if e then ctrue else cfalse m(e) = b〈
c, m, p

〉
l , r, I,O =.

〈
cb, m, p

〉
l , r, I,O

(1)

〈
c1, m, p

〉
l , r, I,O =.

〈
c′1, m′, p′

〉
l
, r′, I,O′〈

c1; c2, m, p
〉

l , r, I,O =.
〈
c′1; c2, m′, p′

〉
l
, r′, I,O′

(2)

〈
skip; c, m, p

〉
l , r, I,O =.

〈
c, m, p

〉
l , r, I,O

(3)

m(e) = true c = while e do cloop〈
c, m, p

〉
l , r, I,O =.

〈
cloop; c, m, p

〉
l
, r, I,O

(4)

m(e) = false c = while e do cloop〈
c, m, p

〉
l , r, I,O =.

〈
skip, m, p

〉
l , r, I,O

(5)

m(e) = v m′ = m [x 7→ v]〈
x := e, m, p

〉
l , r, I,O =.

〈
skip, m′, p

〉
l , r, I,O

(6)

c = output e to o m(e) = v
σout(o) = l O′ = write (O, o, v)〈

c, m, p
〉

l , r, I,O =.
〈
skip, m, p

〉
l , r, I,O

′
(7)

c = output e to o σout(o) , l〈
c, m, p

〉
l , r, I,O =.

〈
skip, m, p

〉
l , r, I,O

(8)

c = input x from i
σin(i) � l m′ = m[x 7→ vdefault]〈

c, m, p
〉

l , r, I,O =.
〈
skip, m′, p

〉
l , r, I,O

(9)

c = input x from i σin(i) = l
v = read

(
I, i, p

)
m′ = m[x 7→ v]

p′ = p[i 7→ p(i) + 1] r′ = r[i 7→ p′(i)]〈
c, m, p

〉
l , r, I,O

�(i, p(i))
=.

〈
skip, m′, p′

〉
l , r
′, I,O

(10)

c = input x from i σin(i) < l r(i) ≤ p(i)〈
c, m, p

〉
l , r, I,O

⊗(i, p(i))
=.

〈
c, m, p

〉
l , r, I,O

(11)

c = input x from i σin(i) < l r(i) > p(i)
v = read

(
I, i, p

)
m′ = m[x 7→ v]〈

c, m, p
〉

l , r, I,O =.
〈
skip, m′, p

〉
l , r, I,O

(12)

Figure 6. Local semantics for secure multi-execution.

select(L) = lec lec, r, I,O =. lec′, r′, I,O′
L′ = L \ {lec} ∪ {lec′}

〈L, wq, r, I, O〉 =. 〈L′, wq, r′, I, O′〉
(1)

select(L) = lec =
〈
skip, m, p

〉
l L′ = L \ {lec}

〈L, wq, r, I, O〉 =. 〈L′, wq, r, I, O〉
(2)

select(L) = lec lec, r, I,O
�(i,n)
=. lec′, r′, I,O′

wq(i,n) = Lw L′ = L \ {lec} ∪ {lec′} ∪ Lw
wq′ = wq [(i,n) 7→ {}]

〈L, wq, r, I, O〉 =. 〈L′, wq′, r′, I, O′〉
(3)

select(L) = lec lec, r, I,O
⊗(i,n)
=. lec′, r′, I,O′

wq(i,n) = Lw wq′ = wq [(i,n) 7→ Lw ∪ {leci}]
L′ = L \ {lec}

〈L, wq, r, I, O〉 =. 〈L′, wq′, r′, I, O′〉
(4)

Figure 7. Global semantics for secure multi-execution.

on L. The need for this scheduler corresponds to the
intuition that we cannot make a low thread wait for the
execution of steps in a high thread if we wish to avoid
timing covert channels. We need the total order on L to
make the scheduler function deterministic, which we
require in some of our lemmas below.

Variables wq denote waiting queues. If a local execu-
tion state

〈
c, m, p

〉
l ∈ wq(i,n) for some input channel

i ∈ Cin and n ≥ 0, this means that the local execution
state has tried to read from input channel i at position
n, before the thread at security level σin(i) has done.
In such a case, the first thread will be placed in a
waiting queue until the other thread executes the read
operation. When that happens, the first thread will be
executed further. The notation wq0 denotes an initial
waiting queue, mapping all pairs (i,n) onto the empty
list.

Variables r in global execution states denote global
input pointers. For any channel i, r(i) is the position
up to which the execution at security level σin(i) has
already read from channel i. We define r0 as a synonym
for the initial input channel pointer p0, to be used when
a global input pointer is meant.

We assume L to be finite and we define LP,0, the
initial set of local execution states for a program P, as
the set of local execution states

〈
P, m0, p0

〉
l for all l ∈ L.

The program P is executed for input I by applying
the global semantic rules from Figure 7 to the initial
global execution state 〈LP,0, wq0, r0, I, O0〉. We write =.∗

for the transitive and reflexive closure of the =. relation
for global execution states. Suppose

〈LP,0, wq0, r0, I, O0〉 =.∗ 〈L f , wq f , r f , I, O f 〉 ,

with 〈L f , wq f , r f , I, O f 〉 such that no semantic rule

from Figure 7 applies, then we say that the secure
multi-execution of program P with input channel state
I produces final input pointer r f and program output
O f , or (P, I) =.∗ (r f ,O f). From inspection of global and
local semantics in Figures 7 and 6, we know that in
such a case, L f must be equal to the empty set ∅.

As we did for standard execution, we introduce a
time-limited secure multi-execution execution relation
=.n. We say that

〈L, wq, r, I, O〉=.n
〈L′, wq′, r′, I, O′〉

if 〈L, wq, r, I, O〉 can be transformed into
〈L′, wq′, r′, I, O′〉 by n steps of the global execution
semantics in Figure 7. If

〈LP,0, wq0, r0, I, O0〉=.
n
〈L′, wq′, r′, I, O′〉 ,

then we write (P, I) =.n (r′,O′).
The following lemma identifies certain invariants on

global execution states that the global semantics from
Figure 7 preserve.

Lemma 1 (Global Execution State Invariants). Suppose
that

〈LP,0, wq0, r0, I, O0〉 =.∗ 〈L, wq, r, I, O〉 .

Then
• for all

〈
c, m, p

〉
l ∈ wq(i,n), we have that l > σin(i),

p(i) = n and n ≥ r(i).
• if

〈
c, m, p

〉
l is in L or wq(i′,n) for any (i′,n), then

r(i) = p(i) for all i ∈ Cin with σin(i) = l.
• for any security level l, there is only a single execution〈

c, m, p
〉

l at security level l in L or wq(i,n) for any
(i,n).

Proof: It is clear that the results hold for the
initial global execution state 〈LP,0, wq0, r0, I, O0〉 and is
preserved by the global semantics from Figure 7.

IV. T P

A. Noninterference
We give both a regular definition of noninterference

and a stronger one. Both definitions are termination-
sensitive, but the strong definition is also timing-
sensitive, while the normal one is not. We will show
that secure multi-execution guarantees strong nonin-
terference for any program P, and that it is precise
for terminating runs of programs meeting the normal
noninterference property.

For a given security level l ∈ L, we define two
program inputs I and I′ to be equal up to l (I =l I′) iff
I(i) equals I′(i) for all i ∈ Cin where σin(i) ≤ l. Likewise,
we define two program outputs O and O′ to be equal
up to l (O =l O′) iff O(o) equals O′(o) for all o ∈ Cout,
σout(o) ≤ l. Finally, we define two input pointers p and

p′ to be equal up to l (p =l p′) iff p(i) = p(i′) for all
i ∈ Cin, σin(i) ≤ l.

The normal noninterference property does not take
into account the timing covert channel. We formulate
its definition in terms of an abstract transitive execu-
tion relation ↪→∗ . Both the standard execution relation
_∗ and the secure multi-execution execution relation
=.∗ can be substituted for ↪→∗ .

Definition 1 ((Normal) NonInterference). A program P
is timing-insensitively noninterferent or simply nonin-
terferent with relation to a given semantics ↪→∗ if for all
security levels l ∈ L and for all inputs I and I′ such that
I =l I′, we have that

(P, I) ↪→∗
(
p f ,O f

)
if and only if

(P, I′) ↪→∗
(
p′f ,O

′

f

)
and p′f =l p f and O′f =l O f .

The strong definition takes into account both termi-
nation and timing covert channels. Again, we formu-
late this definition using a time-limited abstract tran-
sitive execution relation ↪→n. Both the standard time-
limited execution relation _n and the time-limited
secure multi-execution execution relation =.n can be
substituted for ↪→n.

Definition 2 (Strong noninterference). A program P is
timing-sensitively noninterferent or strongly noninter-
ferent with relation to a given semantics ↪→∗ if for all
security levels l ∈ L, for all n ≥ 0, for all program inputs I
and I′ such that I =l I′ holds that if

(P, I) ↪→n (
p,O

)
,

then
(P, I′) ↪→n (

p′,O′
)

,

and p′ =l p and O′ =l O.

B. Soundness

The first of our two main results is the following
soundness result.

Theorem 1 (Soundness of Secure Multi-Execution).
Any program P is strongly noninterferent under secure
multi-execution, using the selectlowprio scheduler func-
tion.

Because of space constraints, we prove only this
result for the selectlowprio scheduler. We do believe
however that the same result would hold if we were
to allow for the exceptions mentioned in Section II-D
(I/O latency and independent progress on multi-core
CPU’s). In addition, we believe that a more relaxed

form of noninterference (termination-sensitive nonin-
terference) could be proven for a class of schedulers
conforming to some basic fairness property.

We will need some lemmas in order to be able to
prove this theorem.

Lemma 2 (Soundness Preservation for Local Seman-
tics). Let lg be a security level, and l ≤ lg. Suppose that〈

c, m, p
〉

l , r1, I1,O1
σ

=.
〈
c′, m′, p′

〉
l , r
′

1, I1,O′1 ,

where σ can denote a signal � (i, n), ⊗ (i, n) or no signal at
all.

Suppose that r2 =lg r1, I2 =lg I1 and O1 =lg O2. Then〈
c, m, p

〉
l , r2, I2,O2

σ
=.

〈
c′, m′, p′

〉
l , r
′

2, I2,O′2 ,

with r′2 =lg r′1 and O′2 =lg O′1. In addition, if σ = � (i, n),
then σin(i) = l ≤ lg.

Proof: The steps are executed according to one
of the rules from Figure 6. The result is clear from
examining every rule.

Lemma 3 (Soundness Preservation for Local Semantics
part two). Let lg be a security level and l � lg. Suppose
that 〈

c, m, p
〉

l , r, I,O
σ

=.
〈
c′, m′, p′

〉
l , r
′, I,O′ ,

where σ can denote a signal � (i, n), ⊗ (i, n) or no signal at
all. Then r′ =lg r and O′ =lg O. In addition, if σ = � (i, n),
then σin(i) = l � lg.

Proof: The execution step occurs according to one
of the rules from Figure 6. The result is clear from
examining every rule.

Before we continue, we need to define security-level
limited equality for some additional concepts. We say
that sets of local execution states L and L′ are equal
up to security level lg (written L =lg L′) iff for all local
execution states lec =

〈
P, m, p

〉
l ∈ L with l ≤ lg, there is

a local execution state lec′ ∈ L′ such that lec′ = lec and
vice versa. We say that waiting queues wq =lg wq′ iff
wq(i,n) =lg wq′(i,n) for all n ≥ 0 and input channels i
such that σin(i) ≤ lg.

Lemma 4 (Soundness Preservation for Global Seman-
tics). Let lg be a security level. Suppose that

〈L1, wq1, r1, I1, O1〉 =. 〈L′1, wq′1, r′1, I1, O′1〉 ,

and that

〈L2, wq2, r2, I2, O2〉 =. 〈L′2, wq′2, r′2, I2, O′2〉 ,

with L1 =lg L2, wq1 =lg wq2, r1 =lg r2, I1 =lg I2 and O1 =lg

O2. Suppose that the scheduler function selectlowprio is
being used.

Then we also have that L′1 =lg L′2, wq′1 =lg wq′2, r′1 =lg r′2,
O′1 =lg O′2.

Proof: We define lec1 =
〈
P1, m1, p1

〉
l1 =

selectlowprio(L1) and we write lec2 =
〈
P2, m2, p2

〉
l2 =

selectlowprio(L2). We first handle the case that l1 ≤ lg.
Because L1 =lg L2, we have that lec1 = lec2. Inspection
of the rules from Figure 7, together with Lemma 2 now
easily yields the result.

In the alternate case l1 � lg, we know from Lemma 3
that r′1 =lg r1 =lg r2 =lg r′2, and O′1 =lg O1 =lg O2 =lg O′2.
In addition, it is clear from inspecting the rules of the
global semantics in Figure 7 that L′1 =lg L′2 and wq′1 =lg

wq′2.
We are now ready to give the proof of Theorem 1.

Proof of Theorem 1 (Soundness): Take a program P,
any security level l ∈ L and two input channel states I
and I′, such that I =l I′. Suppose that (P, I) =.n (r,O), or

〈LP,0, wq0, r0, I, O0〉=.
n
〈L, wq, r, I, O〉

and (P, I′) =.n (r′,O′), or

〈L0, wq0, r0, I′, O0〉=.
n
〈L′, wq′, r′, I′, O′〉 .

By induction on n, and using Lemma 4, we can easily
prove that L′ =l L, wq′ =l wq, r′ =l r and O =l O′.

C. Precision

Informally, we call a technique transparent for a
program P with input I if it makes P produce the
same externally observable results for this input. The
precision of a technique is a measure of the set of
pairs (P, I) for which the technique is transparent.
More such pairs means higher precision. The second
of our two main theorems gives a lower bound on
the precision of secure multi-execution. We show that
the technique is transparent for terminating runs of
termination-sensitively noninterferent programs. This
set of programs strictly includes all programs which
are well typed under the type system described by
Volpano and Smith [16].

Theorem 2 (Precision of Secure Multi-Execution). Sup-
pose we have a noninterferent program P. Suppose that

(P, I) _∗
(
p,O

)
for some I, p and O. Then

(P, I) =.∗ (p,O) .

Before we continue, we define the limitation of an
input I to a security level l ∈ L:

I|l (i) =

I(i) if σin(i) ≤ l,
7→ vdefault otherwise.

It is clear that I|l =l I.

Lemma 5 (Correspondence between Standard Execu-
tion and Secure Multi-Execution). Let l ∈ L. Let P be a
program. Suppose that

〈LP,0, wq0, r0, I, O0〉 =.∗ 〈L, wq, r, I, O〉 ,

with
〈
c, m, p

〉
l ∈ L. Define Il = I|l, then

〈P, m0, p0, Il, O0〉 _∗
〈c, m, p, Il, O′〉 ,

with O′(o) = O(o) for all o such that σout(o) = l.
Furthermore, the number of global execution steps using

rules (1), and (3) and involving a local execution step for a
local execution state at security level l in the derivation of

〈LP,0, wq0, r0, I, O0〉 =.∗ 〈L, wq, r, I, O〉

is equal to the number of standard execution steps in the
derivation of

〈P, m0, p0, Il, O0〉 _∗
〈c, m, p, Il, O′〉 .

Proof: We present a proof by induction on the num-
ber of global execution steps used in the derivation of
the statement

〈LP,0, wq0, r0, I, O0〉 =.∗ 〈L, wq, r, I, O〉 .

If a global execution step was used with a local
transition on a local execution state at security level
l′ , l, then the result is directly clear by inspection of
the rules for the global and local semantics in Figure 7
and Figure 6.

For global execution steps from the list in Figure 7
involving a local execution step on a local execution
state at security level l, we prove that we can make
a corresponding step in the standard execution, main-
taining the properties of this lemma.

For global semantic rule (1) from Figure 7 instanti-
ated with one of the local semantic rules (1) through (6)
from Figure 6, it is easy to verify that a corresponding
standard execution step from Figure 5 applies to the
standard execution state.

For both global semantic rule (1) instantiated with
local semantic rule (12) or (9) and global semantic rule
(3) with local semantic rule (10), standard semantic rule
(8) can be applied to the standard execution state, en-
suring the results of this theorem. For global semantic
rule (4), with local semantic rule (11), the result is clear
without an execution step on the standard execution
state.

For global semantic rule (1) instantiated with local
semantic rule (7) or (8), applying standard semantic
rule (7) provides the correct result.

We can now prove Theorem 2.
Proof of Theorem 2 (Precision): We know that

〈P, m0, p0, I, O0〉 _∗
〈skip, m f , p, I, O〉 .

1) Termination: Let 〈LP,0, wq0, r0, I, O0〉 be the initial
global execution configuration for program P. We first
prove that execution of 〈LP,0, wq0, r0, I, O0〉 terminates.
Let’s assume that it doesn’t. Then there is an infinite
list of global execution states

〈LP,0, wq0, r0, I, O0〉=. 〈L1, wq1, r1, I, O1〉

=. 〈L2, wq2, r2, I, O2〉=. · · ·

Because the sets of security levels for which there are
local execution states in Li are finite and descending,
and because each global execution step applies a local
execution step to one element of Li there must be at
least one security level l such that an infinite amount
of global execution steps in this chain apply a local
execution step to a local execution state at security
level l. Clearly, at most one such execution step can
be done using the global semantic rule (2), so because
of Lemma 5, there must be an infinite set of standard
execution states 〈ci, mi, pi, Il, Oi〉 such that

〈P, m0, p0, Il, O0〉_1
〈c1, m1, p1, l, Il〉O1

〈P, m0, p0, Il, O0〉_2
〈c2, m2, p2, l, Il〉O2

· · · ,

with Il = I|l. However, we know that (P, I) _∗
(
p,O

)
and that P is noninterferent. Therefore, we also know
that (P, Il) _∗

(
p′,O′

)
with p′ =l p and O′ =l O, and the

standard execution of P with input Il must terminate.
Because standard execution is deterministic for our
model language, this is a contradiction.

Now let 〈L f , wq f , r f , I, O f 〉 be the global execution
state such that

〈LP,0, wq0, r0, I, O0〉 =.∗ 〈L f , wq f , r f , I, O f 〉 ,

and 〈L f , wq f , r f , I, O f 〉 is terminated. It is clear that L f
is empty because otherwise one of the global execution
rules would apply.

2) No eternal waiters: We prove by induction on the
security levels l ∈ L, ordered according to the total
order on L, that wq f (i,n) contains no execution states
for security levels ≤ l for any pair (i,n).

Let l be a security level such that the induction
hypothesis holds for all l′ < l. Suppose that wq f (i,n)
contains a local execution state

〈
cwq, mwq, pwq

〉
l
. Because

of Lemma 1, we know that σin(i) = l′ < l and that
pwq(i) = n and cwq , skip. Because of Lemma 5, we
then know that

〈P, m0, p0, Il, O0〉 _∗
〈cwq, mwq, pwq, Il, Owq〉 ,

where Il = I|l. This last state cannot be stuck and
because of noninterference of P, we know that P must
terminate for the input Il, so that

〈P, m0, p0, Il, O0〉_∗
〈cwq, mwq, pwq, Il, Owq〉

_∗
〈skip, m f ,l, p f ,l, Il, O f ,l〉 .

Because cwq must start with a statement of the form
input x from i, we know that p f ,l(i) > pwq(i).

On the other hand, there is no local execution state at
security level l′ in L f or wq(i,n) for any (i,n). Therefore,
global execution rule (2) from Figure 7 must have
been applied to a local execution state of the form〈
skip, m′, p′

〉
l′ . But then again Lemma 5 tells us that

〈P, m0, p0, Il′ , O0〉 _∗
〈skip, m′, p′, Il′ , O′〉 ,

with Il′ = I|l′ . Because of noninterference and because
Il′ =l′ Il and I =l′ Il, we know that p′ =l′ p and p =l p f ,l,
so p′(i) = p(i) = p f ,l(i) > pwq(i). However, Lemma 1
tells us that p′(i) = r f (i) and r f (i) ≤ pwq(i), which is a
contradiction.

3) Correct I/O: All that remains to prove is that r f = p
and O f = O. Because L f and wq(i,n) are empty for all
(i,n), global semantic rule (2) must have been applied
to an execution of the form

〈
skip, ml, pl

〉
l for any level

l ∈ L. Lemma 5 then tells us that

〈P, m0, p0, Il, O0〉 _∗
〈skip, ml, pl, Il, Ol〉 ,

where Il = I|l and Ol(o) = O f (o) for all o such that
σout(o) = l. Because P is noninterferent and Il =l I, we
have that Ol =l O and pl =l p. We know from Lemma
1 that r f (i) = pl(i) = p(i) for all i such that σin(i) =
l. Because the above holds for any l, the theorem is
proven.

V. E B

In order to get a better understanding of the practical
behaviour of secure multi-execution, we performed an
experiment. We implemented a model browser using
the Mozilla Spidermonkey Javascript engine [10], and
tested it on the set of benchmarks used by the develop-
ers of another major Javascript engine (Google Chrome
V8) [11]. In this section, we discuss the results.

A. A model browser using secure multi-execution

Implementing secure multi-execution in a model
browser does not require any modifications to the
Javascript engine internals. Instead, several instances
of the engine need to be constructed, and all input/out-
put operations need to be modified according to the
appropriate rules from Figure 6 and 7.

We have done this exercise using the Mozilla Spi-
dermonkey Javascript engine. We exposed model in-
put/output functions on two security levels (“hi” and
“lo”). We have implemented the modified secure
multi-execution semantics for I/O operations using
the Mozilla NSPR library of concurrency primitives.
Each I/O function contains an artificial 10 milli-seconds
“sleep” call, simulating I/O latency. Two scheduling

1 for (var i = 0; i < 100; ++i) {
2 var test = 0;
3 for (var j = 0; j < 10000; ++j) {
4 test += j;

5 }

6 if (i % 10 == 0) {
7 var hi_in = hi_input();
8 var lo_in = lo_input();
9 lo_output("#" + i + ". lo_in: ’"

10 + lo_in + "’. hi_in is: ’"

11 + hi_in + "’");

12 hi_output("#" + i + ". hi_in: ’"

13 + hi_in + "’. lo_in is: ’"

14 + lo_in +"’");

15 }

16 }

Figure 8. Source code for the additional IO benchmark (not
including administrative benchmark-related code).

strategies were implemented, one implementing a sim-
ple serial scheduling of the different executions, start-
ing with the lo one. The other scheduling strategy
executed both executions in parallel, while indicating
to the OS that the “lo” execution should be priori-
tised. For comparison, we have also built a standard
Javascript engine, implementing the I/O functions in
a standard way, and only executing a Javascript pro-
gram a single time. All concurrency operations were
removed in this last implementation.

B. An Experiment

For our experiment, we have worked with the
Google Chrome V8 Benchmark suite. This suite is
constructed by the developers of the Google Chrome
V8 Javascript engine in order to compare their engine
to others. The suite contains a set of 7 benchmarks
(Richards, DeltaBlue, Crypto, RayTrace, EarleyBoyer,
RegExp, Splay), some explicitly focusing on certain
components of the Javascript engine (such as the
garbage collector in Splay or the regular expression
engine in RegExp), some more general. These bench-
marks were modified in two ways. First, we removed
calls to the load function, instead concatenating all
relevant files in a single file. Second, we modified
the benchmarking code to execute each benchmark 5
times, instead of stopping after 1 second has passed.

Furthermore, we have added a benchmark called
IO, simulating a program performing a large amount
of I/O operations on channels at different security
levels. The source code for this benchmark is shown
in Figure 8.

0%

50%

100%

150%

200%

crypto

deltablue

earley-boyer

raytrace

regexp

richards

splay
io

Execution Time

Normal Execution
Serial Multi-Execution

Parallel Multi-Execution

(a) Execution Time (Percentage of normal).

0%

50%

100%

150%

200%

crypto

deltablue

earley-boyer

raytrace

regexp

richards

splay
io

Memory Usage

(b) Memory Usage (Percentage of normal).

Figure 9. Experimental Results.

C. Results

In Figure 9, we show graphs of our measurements
for execution time and memory usage of the three
Javascript executors described above, for each of the
benchmarks. The tests were run on a recent dual-
core computer with a sufficient amount of RAM 1.
We define execution time as elapsed wall clock time
as measured by the Ubuntu 7.10 time utility. Memory
usage was measured in a separate run of the programs
instrumented using the Valgrind Massif tool [17], and
is defined as the amount of heap memory allocated
through malloc and similar functions.

The results allow us to make certain important
observations, both for the parallel and serial multi-

1CPU: Intel Core 2 Duo P8600 2.4 GHz, Amount of RAM: 2GB.

execution. Serial multi-execution has only a limited
impact on memory usage. This could have been ex-
pected, because the high security level execution is
only started when the low security one has completely
terminated. On the other hand, serial multi-execution
increases execution time by a factor of two or more.
This is clearly also what would be expected for this
situation. For the I/O benchmark, the added execution
time is limited, thanks to a phenomenon we discuss
further below.

For parallel multi-execution, the situation is more
or less reversed with respect to serial multi-execution.
Memory usage increases by a factor between 50% and
100%. Two instances of the program are continuously
running in parallel, each with their own copy of the
internal state of the program. The increase in execution
time is rather limited, ranging between 2% and 25%.
Both executions execute in parallel on the two cores of
the CPU.

When we first ran these benchmarks, we had not
anticipated the surprisingly good results for the IO
benchmark. It is counterintuitive that executing a pro-
gram twice can actually decrease total execution time.
This phenomenon can be attributed to a better han-
dling of I/O latency by the parallel runs of the program
(recall that we have simulated I/O latency by adding
a 10ms sleep in each I/O operation). For the example
in Figure 8, one should imagine that a single program
performing all four I/O operations serially is replaced
by two programs, each performing only the two I/O
operations on its security level, and progressing in
parallel on separate cores of the CPU (reusing an I/O
result from a lower execution does not produce any
latency). For this benchmark, secure multi-execution
in effect performs an automatic parallelisation, based
on the assumption of noninterference. Any application
performing I/O operations at different security levels
serially, will benefit from this effect, although it will
of course be more limited than in this artificial bench-
mark.

D. Discussion

We think the results in Figure 9 show that secure
multi-execution is not only of theoretical significance,
but is also viable in real-life browser environments.
Especially parallel multi-execution seems to provide
a good compromise on modern consumer computer
systems where memory is often no longer the bottle-
neck and multi-core CPUs are common. We think these
results indicate an interesting direction for further
research.

Note also that we did not perform any optimisa-
tion in our benchmarks. One technique which looks
promising in this respect is program slicing [18]. An

execution of a program at a security level l could
be optimised by slicing the program for a slicing
criterion consisting of all input and output statements
at security level l, and the variables they depend on.
Depending on the structure of the dependency rela-
tions in the program, this could lead to a considerable
increase in efficiency.

The source code for this experiment is available
online [19].

VI. D
A. Secure Multi-Execution in a Real Browser

In Section V we discussed how the technique can
be implemented in a model browser. In order to im-
plement it in a real browser, support needs to be
added for some additional concepts. In this section,
we discuss some such concepts, and outline some
proposed solutions for supporting them. We do not
provide full details and further research into this topic
is needed.

One concept we have not modelled in our formal
presentation are browser callbacks. At certain moments
in time, the browser will call certain Javascript func-
tions to allow the program to react to certain events.
For example, “document.onload” event handlers will
be called after the HTML page has finished loading, to
allow Javascript programs to perform some initialisa-
tion. Browser callbacks can be encoded in our model
language by adding an event loop at the end of a
program P, looping on an input from a INextEvent input
channel. On this input channel, the default value vdefault
would correspond to an empty event. By placing event
sources from more than one channel in the event loop,
a policy could be encoded where not all callbacks are
associated to the same security level.

This formal encoding of browser callbacks corre-
sponds to an implementation where callbacks are ex-
ecuted only in executions at security level l or higher,
with l the security level assigned to the relevant event.
Typically, a browser’s “document.onload” event would
be associated to a lower security level than an “el-
ement.onkeypress” event. Note finally, that by also
modelling an event when leaving the page, event-
driven web applications can still be considered as
terminating.

Another important feature to support is the
browser’s DOM tree. The DOM tree can be described
as the complete set of interfaces which a browser
exposes to Javascript programs. It is a tree structure
consisting of DOM nodes. Certain DOM nodes are
intended to be called as functions, or to be read from
and assigned as variables. Some represent parts of
the current HTML document. DOM nodes can also be
added or deleted etc. Nodes have names and can be

referred to using top-down paths of the form “docu-
ment.body.firstDiv”.

For implementing support for the DOM tree in an
implementation of secure multi-execution, we need to
distinguish different types of interaction with the DOM
tree. First of all, certain function calls and DOM node
property assignments will trigger side effects in the
outside world. For example, setting the URL of an
HTML img element may cause an HTTP request to
be made to get the new image. Adding an HTML
div element with some text to document.body will
add text in the user-visible document. These types of
interactions have to be modelled using a separate input
channel for every possible list of arguments to the
function or assignment. It would be useful to support
that for a single node, not all of these input channels
are assigned the same security level. For example,
when setting the URL of a HTML img element, the
standard same origin policy (see e.g. Johns [12]) could be
used to determine whether the assigned URL is trusted
or not.

Interactions with the DOM tree not producing exter-
nal side effects can be implemented in one of two ways.
The distinction comes down to the question whether
the DOM tree is modelled as part of a Javascript pro-
gram’s state or as part of the outside world. The latter
alternative means mapping every possible interaction
with the DOM tree to an input channel, with security
level corresponding to the security level of the DOM
tree nodes and their values. This is a viable option, but
probably introduces quite some overhead for programs
interacting heavily with the DOM tree because of the
bookkeeping associated with input handling in secure
multi-execution. In addition, we think this choice will
result in a lower precision technique than the alterna-
tive.

The alternative solution is to incorporate the DOM
tree into each Javascript execution’s state, in effect
giving each execution its own copy of the DOM tree, as
is done for program variables. Different executions will
not see identical copies of the DOM tree, but instead an
evaluation of the DOM tree in terms of security levels
could be used to decide what each exposed DOM
tree should look like. One could imagine a situation
where all security levels except the highest only get
to see a dummy version of the HTML document. In
mash-up applications, one could even imagine having
different security levels each seeing only separate parts
of the real DOM tree. Care should be taken to align
this approach with the handling of DOM tree nodes
producing external side effects.

We suspect the latter alternative is preferable, even
though it adds a certain memory overhead for the
additional copies of the DOM tree. This additional

memory overhead can be argued to be similar to the
general overhead of secure multi-execution for objects
manipulated by a program. In addition, if necessary,
we think optimisations can be imagined like a copy-
on-write-based sharing of the tree etc.

In this section, we have described some of the
challenges we anticipate in a real-life browser-based
implementation of secure multi-execution. We think
there is interesting further research to be done in this
direction.

B. What about Non-Noninterferent Programs?

In Section IV-C, we have proven that termination-
sensitively noninterferent programs produce the same
results as they do under normal execution, if the
normal execution terminates for a given input. An
important question is then what results secure multi-
execution produces for interferent programs. Theo-
rem 1 in Section IV-B tells us that any program
is noninterferent under secure multi-execution. This
means that multi-execution has some way of replacing
interferent behaviour by noninterferent behaviour. In
this section, we explore how it achieves this for some
example programs.

Secure multi-execution in fact has different ways to
block unwanted information flows. The examples in
the informal overview in Section II already show how
explicit and implicit information flows are handled.
The offending assignments and conditional statements
will still be executed, but any data they don’t have
access to will be replaced by default data. In the
high security executions, the offending statements will
be executed with the real data, but no leaks to low
security output channels will be possible.

Another mechanism in effect blocking certain types
of covert flows can be observed for the example in
Figure 10a. We assume that reading a value from L can
produce external side effects. Under standard execu-
tion, this program will read from L iff x == vdefault and is
thus clearly interferent. Under secure multi-execution,
the low execution will not read any input from L. The
high execution will try to read from L iff x == vdefault,
but if it does, it will block and wait indefinitely for
the low execution to read from L. This behaviour
is termination- and timing-sensitively noninterferent.
Secure multi-execution blocks the undesirable flow by
making the high security thread wait indefinitely in
the global waiting queue. Figure 10b shows the same
phenomenon for a termination-insensitively noninter-
ferent program.

Figure 10c shows a nonterminating termination-
sensitively noninterferent program, for which multi-
execution is not transparent using the selectlowprio

input x from H
if x == vdefault then skip else input x from L

(a) An interferent program.

input x from H
if x == vdefault then while true do skip else skip
input x from L

(b) A termination-insensitively noninterferent program.

output 1 to H
while true do skip;

(c) A termination-sensitively noninterferent program.

Figure 10. Example programs highlighting some interesting be-
haviour under multi-execution.

scheduler. In this example, the high security execu-
tion will never be selected because the low-security
thread diverges. This is an unfortunate effect, which
can be mitigated by using a more relaxed scheduler. An
interesting question is whether this is possible with-
out compromising timing-sensitivity in the soundness
guarantee.

The fact that secure multi-execution can enforce
noninterference for any program makes it well suited
for situations where one has little control over the code
to be executed, for example in a web browser. When
such code is interferent, secure multi-execution will
still execute it, but will modify its behaviour to be
non-interferent. For this to work well, it is important
that the modified behaviour remains as meaningful
as possible. We believe that in many situations, the
modifications that secure multi-execution makes are
as meaningful as possible without compromising non-
interference. For example, a web application which
accidentally sends private information to a website
statistics service, will be modified to send a request
based on the default values replacing the private data
in the low execution. We consider this to be desirable
behaviour in a situation where transparency conflicts
with noninterference.

In some situations, secure multi-execution is not
able to produce such meaningful behaviour, e.g. when
finishing execution with non-empty waiting queues. In
other situations, secure multi-execution can detect that
modifications to the behaviour have been made, e.g.
when a H execution would have sent different data to
public outputs than the L execution. In these situation,
an implementation could issue an appropriate warning

to the user, explaining that the original program was
probably interferent and what kind of effects should
be expected. To support this, we think it could be
interesting subsequent work to perform a detailed
formal analysis of the results that can be expected
for programs conforming to different noninterference
criteria.

C. Exceptions, Concurrency and Nondeterminism

Exceptions, concurrency and nondeterminism are
programming language features which pose additional
challenges for various techniques enforcing noninter-
ference. First of all, in the context of noninterference,
concurrency and nondeterminism are difficult to work
with from a theoretical perspective. Noninterference
then becomes a property one can no longer expect to
enforce, and trickier concepts like possibilistic or prob-
abilistic noninterference [20] are needed to formulate
the desired properties. In addition to this additional
challenge for researchers, exceptions and concurrency
also poses additional challenges for the techniques
themselves. For example, Smith and Volpano need to
impose considerable extra restrictions in their type
system to handle exceptions [16] and concurrency [21].

An appealing feature of secure multi-execution, is
that there is no fundamental obstacle for it to support
exceptions, concurrency or nondeterminism. The basic
idea of executing the program once on every security
level and handling input and output in each execu-
tion as described above, remains valid if we let each
separate execution handle exceptions, concurrency and
nondeterminism internally. It is intuitively still clear
that no information on higher levels can leak to an
execution on a lower level, because it simply does
not get access to the information, and has no way
of communicating with executions on higher levels.
Nevertheless, developing these ideas into a formal
proof remains a considerable challenge.

VII. RW

There is a vast amount of related work in the
research area of information flow security. We point
the reader to the excellent survey by Sabelfeld and
Myers [20] for an overview of static techniques, and
to the PhD thesis of Le Guernic [22] for an overview
of dynamic techniques. In this related work section,
we limit our discussion to papers that propose ideas
or approaches closely related to our notion of secure
multi-execution, and to work that applies information
flow analysis to Javascript.

In order to close internal timing channels [15], Russo
et al. describe an approach based on program transfor-
mation. For any conditional branching on high security
variables, they rewrite the program to execute the

branches in dedicated threads. In these high secu-
rity threads, they replace low security variables by
high security images (copies) and implement careful
synchronisation to avoid introducing data races. We
believe their technique can in fact be seen as a sort
of multi-execution. Their base thread is the equivalent
of a low security thread, while the high threads they
launch are in fact serialised by the added synchroni-
sation commands to the equivalent of a single high
thread. The difference comes down to the fact that
instead of executing the full program on the low
security level with fake high data, their equivalent of
the low thread skips assignments to and branches on
high security variables and forbids the use of high
security variables. Because of this, they do not need
to duplicate low variables or parts of the program
not using high variables. On the results side, secure
multi-execution seems to provide stronger guarantees
(timing- and termination-sensitive noninterference vs.
termination-insensitive noninterference). Russo et al.
do not prove any form of precision, but our impression
is that secure multi-execution is more precise than their
transformation technique.

Pottier and Simonet [23] discuss an approach to
prove noninterference using standard preservation and
progress theorems for a security type system for Core
ML. Since noninterference is not a safety property (one
needs to consider two executions to reason about non-
interference), they propose adding a pairing construct
to the language that makes it easy to reason about
two executions of a program. This pairing construct
is somewhat similar to bi-execution in our approach.
However, Pottier and Simonet use it as a theoretical
construct to reduce noninterference to subject reduc-
tion for an extended programming language.

Somewhat similarly, Barthe et al. [24] propose the
use of self-composition, another pairing construct, to
reason about noninterference in program logics. Their
goal is to support the use of (Hoare-logic like) pro-
gram verification techniques to verify noninterference
properties.

Vogt et al. [25] describe a practical taint tracking
technique for Javascript. Their main goal is provid-
ing reliable and efficient protection against cross-site-
scripting attacks. While practical and useful, their tech-
nique is not fully sound: Russo et al. [7] identify a
number of issues where the technique by Vogt et al.
is unsound. They go on to propose a provably sound
execution monitor for tracking information flow in
DOM-tree like data structures, but this monitor has
not yet been implemented. The only existing approach
for tracking information flow in Javascript that is
provably sound and has been implemented for full
Javascript is a technique recently proposed by Chugh

et al. [13]. They propose a framework for staging infor-
mation flow intended to handle dynamically generated
Javascript. They limit attention to specific types of flow
policies such that the residual checks that the browser
needs to perform can be efficient. They also propose a
static instantiation of the framework using an analysis
technique based on set inclusion constraints. As any
static technique, this technique is not fully precise and
will reject programs for which secure multi-execution
can enforce noninterference transparently.

Yumerefendi et al. [26] describe a comprehensive
information flow control system called TightLip, imple-
mented in the Linux kernel. In order to detect insecure
information flows, TightLip will spawn a doppelganger
(look-alike) process in parallel to processes accessing
confidential files. The doppelganger process inherits
most of the state of the original, but is only given access
to a scrubbed (having all confidential data removed)
version of the file. All subsequent system calls of both
processes are then tracked and compared to each other.
If all of these system calls are identical, the process
is assumed to be noninterferent and its execution is
left unmodified. If a difference is detected, TightLip’s
policy module decides whether to block the system
call, kill the process, scrub output buffers, replace the
original process by its doppelganger, transitively mark
affected files or pipes as sensitive or do nothing.

TightLip and secure multi-execution share the idea
of executing a process multiple times on different
security levels and replacing high security input in
the low-security execution. However, Yumerefendi et
al. use this idea only to detect divergence of outputs
and thus information leaks. Because it is their original
process which produces all output, and because one
can no longer meaningfully compare system calls after
the first difference, they have to treat all further output
as sensitive, and resort to relatively crude mitigation
techniques. They do not provide any formal results and
as they seem to recognize, their transitive marking of
files affected by system calls as sensitive is unsound
because of improper flow-sensitivity [27].

VIII. C

We have proposed secure multi-execution, a novel
dynamic enforcement mechanism for noninterference
policies. Secure multi-execution enjoys interesting the-
oretical properties. We have shown that it is sound
for a very strong notion of noninterference taking into
account the termination and timing covert channels,
and that it is precise in the sense that the enforcement is
transparent for all terminating runs of all termination-
sensitively noninterferent programs. We have also pro-
vided evidence that secure multi-execution can be

practical by reporting benchmark results on an imple-
mentation of the technique for Javascript.

IX. A

The idea of secure multi-execution grew from an
interesting question that Nicky Mouha raised in a
summer school lecture on information flow security.
Nicky: we hope this paper finally provides a satisfac-
tory answer to your question!

We are grateful to Andrei Sabelfeld, Bart Jacobs and
Dave Clarke for interesting feedback and comments
on draft versions of this paper. This research is par-
tially funded by the Interuniversity Attraction Poles
Programme Belgian State, Belgian Science Policy, and
by the Research Fund K.U.Leuven.

R

[1] D. Volpano, C. Irvine, and G. Smith, “A sound type
system for secure flow analysis,” Journal of computer
security, vol. 4, no. 2/3, pp. 167–188, 1996.

[2] N. Heintze and J. G. Riecke, “The SLam calculus: pro-
gramming with secrecy and integrity,” in POPL, 1998,
pp. 365–377.

[3] A. C. Myers, “JFlow: Practical mostly-static information
flow control,” in POPL, 1999, pp. 228–241.

[4] M. Zanotti, “Security typings by abstract interpreta-
tion,” in Proc. Symposium on Static Analysis, 2002, pp.
360–375.

[5] D. E. Denning and P. J. Denning, “Certification of pro-
grams for secure information flow,” Comm. of the ACM,
vol. 20, no. 7, pp. 504–513, 1977.

[6] G. Le Guernic, A. Banerjee, T. Jensen, and D. Schmidt,
“Automata-based confidentiality monitoring,” in
ASIAN, 2006, pp. 75 – 89.

[7] A. Russo, A. Sabelfeld, and A. Chudnov, “Tracking in-
formation flow in dynamic tree structures,” in ESORICS,
2009, pp. 86–103.

[8] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan,
G. Ottoni, J. A. Blome, G. A. Reis, M. Vachharajani, and
D. I. August, “RIFLE: An architectural framework for
user-centric information-flow security,” in MICRO, 2004,
pp. 243–254.

[9] F. B. Schneider, “Enforceable security policies,” ACM
Trans. Information and System Security, vol. 3, no. 1, pp.
30–50, 2000.

[10] “Mozilla spidermonkey website.” [Online]. Available:
http://www.mozilla.org/js/spidermonkey/

[11] “Google chrome v8 benchmark suite instructions.”
[Online]. Available: http://code.google.com/apis/v8/
benchmarks.html

[12] M. Johns, “On JavaScript malware and related threats,”
Journal in Computer Virology, vol. 4, no. 3, pp. 161–178,
2008.

[13] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner, “Staged
information flow for javascript,” in PLDI, 2009, pp. 50–
62.

[14] S. Maffeis, J. C. Mitchell, and A. Taly, “Isolating
javascript with filters, rewriting, and wrappers,” in ES-
ORICS, 2009, pp. 505–522.

[15] A. Russo, J. Hughes, D. Naumann, and A. Sabelfeld,
“Closing internal timing channels by transformation,”
in ASIAN, 2006, pp. 120–135.

[16] D. Volpano and G. Smith, “Eliminating covert flows
with minimum typings,” in Computer Security Founda-
tions Workshop, 1997, pp. 156–168.

[17] “Valgrind user manual - massif: a heap profiler.”
[Online]. Available: http://valgrind.org/docs/manual/
ms-manual.html

[18] F. Tip, “A survey of program slicing techniques,” Journal
of programming languages, vol. 3, no. 3, pp. 121–189, 1995.

[19] D. Devriese and F. Piessens, “Secure multi-
execution experiment source code.” [Online]. Avail-
able: http://www.cs.kuleuven.be/∼dominiqu/permanent/
sme-experiment.tar.gz

[20] A. Sabelfeld and A. Myers, “Language-based
information-flow security,” IEEE Journal on selected
areas in communications, vol. 21, no. 1, pp. 5–19, 2003.

[21] G. Smith and D. Volpano, “Secure information flow in
a multi-threaded imperative language,” in POPL, 1998,
pp. 355–364.

[22] G. Le Guernic, “Confidentiality enforcement using dy-
namic information flow analyses,” Ph.D. dissertation,
Kansas State University, 2007.

[23] F. Pottier and V. Simonet, “Information flow inference
for ML,” ACM Trans. Program. Lang. Syst., vol. 25, no. 1,
pp. 117–158, 2003.

[24] G. Barthe, P. R. D’Argenio, and T. Rezk, “Secure infor-
mation flow by self-composition,” in CSFW, 2004, pp.
100–114.

[25] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Krügel,
and G. Vigna, “Cross site scripting prevention with
dynamic data tainting and static analysis,” in NDSS,
2007.

[26] A. R. Yumerefendi, B. Mickle, and L. P. Cox, “TightLip:
Keeping applications from spilling the beans,” in NSDI,
2007.

[27] A. Russo and A. Sabelfeld, “Dynamic vs. static flow-
sensitive security analysis,” 2010, unpublished.

