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ABSTRACT 
Context-aware inter-vehicular communication is considered to be 

vital for inducing intelligence through the use of embedded 

computing devices inside vehicles. Vehicles in a scalable 

environment may disseminate information about certain road 

traffic conditions, traffic incidents, free parking space or other 

relevant information to the neighboring vehicles in the vicinity. In 

this paper, we optimize the dissemination of such context 

information by predicting traffic patterns in a geographical region, 

including traffic hotspots. We optimized the relevance 

backpropagation algorithm with prediction capabilities to 

efficiently disseminate information. We evaluate our approach 

with the OMNET++ network simulator using realistic large scale 

data sets. Our experimental results show that by optimizing 

information dissemination we significantly improve the Network 

Traffic, availability and relevant information delivery in a large 

scale vehicular network. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 

and Retrieval – information filtering, selection process. H.3.5 

[Information Storage and Retrieval]: Online Information 

Services – data sharing.  

General Terms 
Performance, Design, Experimentation. 

Keywords 
Context-Awareness, Predictions, Scalability, Optimization, Inter-

vehicular. 

1. INTRODUCTION 
Intelligent telematic application development is a research area 

that has gained a lot of attention from the research community. 

Application areas include emergency message transmission, 

collision avoidance, congestion monitoring and intelligent parking 

space location. According to the European Transport Whitepaper 

[15] in the year 2000 around 40,000 people lost their lives in the 

EU by road traffic accidents and 1.7 million were injured costing 

around EUR 160 billion. The cause of such incidents is mostly 

directly related to human error with a very small number of 

technical or system failures. Such issues can be handled by 

making intelligent use of information provided by the embedded 

electronic devices inside vehicles such as GPS or PDAs which 

will assist drivers but also by the information provided by other 

vehicles or stationary beacons next to the roads. As a result a 

critical aspect in the development of such intelligent applications 

is getting the right information at the right time and place. 

“Context” is any relevant information that can be used to 

characterize the situation of entities where an entity is a person, 

place, or object that is considered relevant to the interaction 

between a user and an application, including the user and 

applications themselves [1].  A system is context-aware if it uses 

context to provide relevant information and/or services to the user, 

where relevancy depends on the user’s task [1]. Context-aware 

dynamic settings in intelligent transportation and traffic 

management systems employ sensor network technologies to 

create new opportunities for co-operation and exchange of context 

information between nodes. Traditionally, ad hoc networks have 

been commonly used as a communication medium between 

mobile devices and/or a server at the backend [7]. In order to 

establish intelligent transportation using the relevant context 

information flow between vehicles and other static nodes like a 

parking meter, traffic light or any other road sign we need context-

aware communication.  

Scalability has often been a vital but a complex facet to address. 

In terms of context-aware communication scalability can refer, 

but is not limited, to the following properties; (1) Large number of 

participants e.g. 100,000 vehicles in a metropolitan city like 

Brussels, London or Amsterdam, (2) Large number of interactions 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page. To copy 

otherwise, or republish, to post on servers or to redistribute to lists, 

requires prior specific permission and/or a fee. 

PETRA'10, June 23 - 25, 2010, Samos, Greece 

Copyright © 2010 ACM ISBN 978-1-4503-0071-1/10/06... $10.00 



in terms of message passing between the participants e.g. mobile 

social networking information exchanged between 50,000 

passengers at an international airport,  (3) Large area of 

interaction e.g. playing geo-caching within a country or a 

continent and (4) Long time span e.g. maintaining context 

information about 10,000 vehicles inside a smaller city over a 

time span of one year to predict traffic congestions on a road. For 

vehicular networks, in particular, we refer to it by covering the 

first two properties of the large number of vehicles and the large 

number of messages being passed as shown in Figure 1.  

Nodes in a vehicular network move rapidly while the sensor nodes 

are static making it inappropriate to have a comparison with the 

algorithms used in the sensor network domain. Current peer-to-

peer communication protocols like Gossip, Pastry and Chord [8] 

are inappropriate for context-aware information dissemination in a 

large scale network as the relevancy of information and routing 

patterns cannot be determined at the intermediate nodes. Dynamic 

routing of context messages supposes that at each node a decision 

is made about the most suitable candidate to forward the message 

to using the relevance of context into account. As a consequence, 

prediction of the direction likely taken by neighboring nodes is 

necessary for optimizing Network Traffic usage and for improving 

the relevancy of delivered context information. In this paper, we 

propose the use of Markov chains to predict overall traffic 

patterns in a large metropolitan area. It also allows us to identify 

traffic hotspots in that region. We optimized the relevance 

backpropagation algorithm with prediction capabilities to 

efficiently disseminate information. We evaluate our approach 

with the OMNET++ network simulator using realistic large scale 

data sets and measure various quality of service parameters in 

vehicular networks for different traffic scenarios and versatile 

telematic application requirements.  

We will describe our motivating scenario with a set of 

requirements for optimizing information dissemination in section 

2. We explain our improved relevance backpropagation algorithm 

with details about our prediction mechanism in section 3. 

Moreover in section 4, we provide insight on our simulated 

experimentation and results. In section 5 we discuss some of the 

related work. We end this paper with our conclusions and 

research ideas about future work in section 6. 

2. MOTIVATING SCENARIO 
In this section we describe a motivating scenario related to the 

health care domain. We also describe a basic set of key 

requirements for optimizing information dissemination. 

2.1 Health care scenario 
Efficient deployment of emergency response teams to a road 

traffic incident has always been a critical point. Traditionally, in 

case of an incident cellular or wired telephone networks are used 

to communicate the information about the location and time to the 

authorities. The problem with this system is that either the 

authorities are informed too late or the information is not sent to 

the closest emergency response teams. Let us consider a scenario 

where an older lady falls on the side walk of a road during the day 

time in the centre of Brussels due to some illness. The older lady 

presses the red button of the smart device she was provided with 

by the hospital in case of a medical emergency. The device sends 

out a help message by intelligently selecting the free internet 

enabled WiFi network available in the vicinity connected. The 

message instantly arrives at the nearest hospital’s emergency 

response division and an ambulance is send to the site of the 

incident. The ambulance predicts traffic congestion near the site 

of the incident being the busy hour of the day. It sends emergency 

messages using its embedded wireless network to all the cars only 

moving or planning to go towards the site of incident to avoid 

possible road traffic congestions being the busy of hour of the 

day.  

In this scenario the ‘scalability’ is mainly in terms of number of 

participants and the messages passed between them. The types of 

interactions involved in this scenario can be either in the form of a 

query or a message, for example; 

• What is the location of the incident? 

• Which response team is the nearest? 

• Which network is suitable to send information? 

• Send emergency signal to all vehicles travelling towards 

the incident. 

 

Figure 1: City-wide context-aware interactions [9]. 

 

All the vehicles involved will communicate in an ad hoc manner 

covering a large area. 

2.2 Requirements for optimizing information 

dissemination 
In order to optimize context-aware information dissemination we 

have to identify a set of requirements supporting such 

communication. We will briefly summarize the basic requirements 

[10] for large scale vehicular networks below: 

 

R1: Location and direction-aware delivery of messages   

It is always desirable to know the exact location of an incident for 

context-aware applications e.g. in the scenario 2.1 in case of an 

incident on the road the authorities should be notified about the 

exact location to react fast. Similarly, a context-aware application 

should be able to sense, manipulate and disseminate context 

information about direction and velocity of vehicles in the 

network to predict certain situations like traffic congestions or 

traffic accidents in specific regions. Moreover, to optimize the 

routing and delivery of a message, location-specific traffic 

(direction) patterns have to be taken into account. These patterns 



allow predicting the likely movement of the traffic flow in a 

specific area and depending on the time of the day.   

R2: Temporal relevance   

Temporal relevance is the desired behavior of a context-aware 

application dealing with routing efficiency. In a context-aware 

application on time arrival of information has always been a 

challenge using an efficient route. For example, if a road 

maintenance work is underway on 20th Apr 2009 between 10am 

and 5pm at Naamsestraat, Brusselsstraat and Lei in Leuven city, 

the information about traffic congestion or road condition is only 

valid on this specific date and time.  

It is required that only the relevant context information arrives at a 

particular node on the right time and place. Temporal relevance 

involves efficient filtering of irrelevant information at 

intermediate nodes for optimal routing and faster delivery of 

context information. Again, prediction techniques enable the 

optimization of the message routing.  

It is desirable to test and analyze these requirements so this 

imposes a new requirement for our simulated framework in a large 

scale vehicular network.  

R3: Analyze Filtering, communication overhead and delivery 

efficiency  

It is quite important to be able to quantify how much data that is 

being transmitted over the network is actually used by network 

peers both in total and on average for any given communication 

protocol scheme on an application basis. This quantification will 

guide the researchers to properly analyze, improve and compare 

various algorithms and protocols based on the parameters like 

Filtering, communication overhead and routing efficiency. In this 

paper, we compare our improved prediction enabled relevance 

backpropagation algorithm with the simple relevance 

backpropagation and with broadcasting technique. 

3. TOWARDS INTELLIGENT INTER-

VEHICULAR COMMUNICATION 
In this section, we will describe our relevance backpropagation 

algorithm and its improvements with prediction capabilities. We 

later also discuss our methods for predicting traffic patterns for 

improving the information dissemination in large scale vehicular 

networks. 

3.1 Relevance backpropagation 
Our Relevance backpropagation algorithm relies on feedback of 

neighboring nodes to reduce the number of peers to forward the 

information to. The information is initially forwarded to the 

adjacent nodes unless maximum number of hops is reached. Each 

forwarding node reduces the hop counter, adds its identification 

and marks the message relevancy tag if the information is relevant 

for its purpose. The feedback technique is based on context 

information like position, velocity, direction, time-to-live, interest 

etc that decides whether the data that was received is relevant or 

not and also helps determine the information relevancy on the 

intermediate nodes. The feedback to the delivering node is 

initiated if the context information is relevant, irrelevant, unused 

or duplicate information is received reducing the information 

dissemination only to the interested nodes. A vehicular network is 

highly dynamic in nature and application dependent. As the 

context information can be provided by the application itself the 

routing of the information is adapted accordingly and perhaps 

different for various applications. So the network re-calibrates 

itself if a new node sends an arrival beacon or an old node no 

longer transmits the feedback information. In this mechanism the 

goal is to efficiently filter and route the relevant information as 

close to the source as possible in a dynamic network. 

 

This algorithm is a best-effort algorithm which adapts itself 

according to the network configuration. The algorithm becomes 

intelligent with feedback information propagated in the network 

and by learning to efficiently predict patterns in a large scale 

vehicular network.  

3.2 Prediction of traffic patterns 
To predict the future movement directions of cars and thus 

optimize network traffic, we use Markov chains. A Markov chain 

describes at successive times the states of a system. Changes of 

state are called transitions. In our case, the states of the Markov 

chain correspond to locations on the map. The transitions 

represent probabilities of going from one location to another. The 

series of states of the system has the Markov property. A series 

with the Markov property is such that the probability of reaching a 

state in the future, given the current and past states, is the same 

probability as that given only the current state. So past states give 

no information about future states. If the machine is in state x at 

time n, the probability that it moves to state y at time n + 1, 

depends only on the current state x and not on past states. The 

transition probability distribution can be represented as a matrix 

P, called a transition matrix, with the (i, j)th element of P equal to 

Pij = Pr(Xn+1 = j | Xn = i) . The initial probability Pr(Xn+1 = j | Xn = 

i) is 1/m where m is the number of places that can be reached 

from the current place i. Pr(Xn+1 = j | Xn = i) could be updated by 

counting how often location j is reached from location i and 

dividing this number by the total amount of locations that were 

reached from location i. This means however that the past is as 

important as the present. In most environments the path the user 

usually takes while doing an activity will evolve through time. 

Consequently, the transition probability function should be 

updated in a way that recent transitions have more importance 

than those from the past. For that, the following exponential 



smoothing method can be used so that the past is weighted with 

exponentially decreasing weights: 

Pij = alpha * xj + (1 - alpha)P'ij 

P'ij represents the old probability and xj is the value for the choice 

taken at location i with respect to location j. xj is zero or one. If xj 

= 1 then location j was chosen after i, xj = 0 if not. Using this 

method, the sum of all outgoing probabilities remains 1, as it is 

required for a transition probability matrix. The parameter alpha is 

a real number between 0 and 1 that controls how important recent 

observations are compared to history. If alpha is high, the present 

is far more important than history. In this setting, the system will 

adapt quickly to the behavior of the user. This can be necessary in 

a rapidly changing environment or when the system is deployed 

and starts to learn. In a rather static environment, alpha can be set 

low. 

3.3 Optimizing information dissemination with 

prediction capabilities 
In order to optimize the information dissemination we have 

extended our earlier work [10] on the relevance backpropagation 

algorithm as discussed in section 3.1 with prediction capability by 

integrating the requirements mentioned in section 2.2. The 

algorithm initially learns the traffic pattern for providing input to 

the relevance backpropagation algorithm in the later stages. In the 

improved relevance backpropagation algorithm with prediction 

capabilities each node forwards the information to its immediate 

neighbors based on their highest probabilities to reach the 

destination.  

 

Figure 2: Experimental test-bed over OMNET++ to simulate 

vehicular networks. 

For example, if it is predicted that a high percentage of neighbors 

will go in the destination direction, then the information is 

forwarded to only half of the nodes. On the other hand, if there 

are a low percentage of neighbors going in the destination 

direction, then the information is forwarded to all nodes.  

The information flow patterns (probabilities) learned during the 

training / initial phase also help in determining information 

relevancy by identifying possible nodes which are moving 

towards the destination. This also limits unnecessary 

communication overhead between nodes in terms of messages 

passed. 

4. EXPERIMENTATION AND RESULTS 
In this section we will discuss our simulated experimentations and 

the results obtained. We use OMNET++ ver. 4.0, a real time 

discrete event-based network simulator, to test our improved 

relevance backpropagation algorithm with prediction capability 

over a large scale vehicular network using realistic dataset.  

We have used a realistic dataset discussed later in section 4.1 and 

simulated for 100 cars. The parameters we have taken into 

account are for each node to perform simulated experiments;  

(i) Time 

(ii) Velocity 

(iii) Direction 

(iv) x and y coordinates 

(v) Number of sent packets 

(vi) Number of received packets 

(vii) Number of forwarded packets 

(viii) Time-to-live (TTL) 

In our experiments, we let nodes move around like cars and let 

connections appear and disappear according to the range to other 

nodes. Some nodes acted as context providers whereas other 

nodes acted as context receivers. All nodes forward the 

information to their peers as long as the maximum TTL has not 

been reached and all context constraints are met.  Figures 2 and 4 

illustrate the visualization of the experiment with 100 nodes. 

There are green, red and gray nodes in the network where the 

color depicts the information interest. The antennas are 

information producers whereas the other nodes are information 

consumers. We carried out 4 experiments with (a) our improved 

relevance backpropagation mechanism with prediction capability 

(with 20%, 50% and 100% learning), (b) only relevance 

backpropagation and (c) plain broadcasting for a period of 24 

hours each. The results for these experiments are explained later 

in more detail. 

 
Figure 3: Coverage percentages per hour.  

4.1Traffic pattern learning 
The dataset used for evaluation is a set of traces from the multi-

agent microscopic traffic simulator (MMTS)1 developed by K. 

Nagel. It is capable of simulating traffic over real regional road 

                                                                 
1 http://www.lst.inf.ethz.ch/research/ad-hoc/car-traces/ 

(hrs) % 
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maps of Switzerland with a high level of realism. The behavior of 

people is modeled and their movement with vehicles is 

reproduced for a period of 24 hours. Individuals in the simulation 

are distributed over cities and villages in an area of 250 km X 260 

km. All individuals choose a time to travel and a route according 

to where they live and current road congestion. The complete 

dataset contains 260,000 vehicles with in total more than 

25,000,000 recorded direction and speed changes. 

 

Figure 4: Experimental test-bed over OMNET++ to simulate 

vehicular networks. 

Figure 5: Traffic density for simulation area. 

As a preprocessing step, movement traces were grouped per 

vehicle and coordinates were normalized to a value between 0 and 

1. As traffic movement patterns are different according to the time 

of day (e.g. a net inflow of cars into cities in the morning, and 

outflow in the evening), each hour of the day was modeled by a 

different first order Markov chain, giving 24 Markov chains. Note 

that the use of higher order Markov chains is not suited here, 

since the goal is to obtain the overall probability of going in a 

specific direction given the location, irrespective of the cars being 

at another location before. 

The area was subdivided into a 100 x 100 grid, making a total of 

10,000 locations, corresponding to the states of the Markov 

chains. Probabilities of going from one location to another were 

learned with alpha equal to 0.05 and 0.08, based on 20%, 50% 

and 100% of the dataset. Since going from one location to another 

is (per time step) only possible to neighboring locations, the 

transition probability matrix dimensions were reduced from 

10,000 X 10,000 to 10,000 X 8.   

Figure 3 shows the coverage percentages for each hour of the day. 

A location in the simulation area is covered if at least one vehicle 

visited it. E.g. at 8 am, in 20% of the locations of the grid there 

was traffic going on when looking at the whole dataset, while 

there was traffic in 16% of the locations when taking a random 

20% of the dataset.  It is clear that rush hours are from 8 to 10 am 

and from 16 to 20 pm. As can be seen from the figure, there is no 

significant difference in coverage when taking into account 20%, 

50% or 100% of the dataset. It follows that a part of the dataset is 

representative for the whole, and generalization of the learned 

probabilities is possible.  

In the MMTS dataset, there are big differences in traffic density 

depending on the location (Figure 5). In the south-east part of the 

simulation area, there is a major city where traffic density is very 

high. The X and Y axis of the graph denote longitude and latitude 

of the area. The vertical axis shows the absolute numbers of cars 

passing by at a location during one hour.  

The decision to forward messages to other cars in the 

neighborhood will therefore not only depend on the transition 

probability matrices but also on the densities of the surrounding 

locations.  

4.2 Simulated experimental results 
In the experiment using the flooding mechanism the context 

information was broadcasted in the network to every node. In our 

experiments with both the (improved and simple) relevance 

backpropagation algorithms only relevant context information was 

sent out to the interested nodes in the network.  

There are several types of messages in our simulation like (i) sent 

(Ms), (ii) unique received (Mur), (iii) unique sent (Mus) (iv) 

forwarded (Mf), (v) duplicate (Md) and (vi) dropped (Mdrop). We 

measured the following parameters during our simulated 

experimentation and present results in Figure 6. 

• Network Traffic (NT) 

NT = ∑n (Ms + Mf) 

There is a significant difference in Network Traffic 

utilization for our improved backpropagation mechanism 

with predictions capability up to 95% as shown in Figure 6. 

A lower network traffic is considered to be better. 

 

• Relevancy (R) 

 

R = ∑n ((Mur + Md) – Mdrop))/ ∑n (Mur + Md) 

100 

100 



There is also a significant difference of about 35% higher in 

our improved relevance backpropagation mechanism with 

predictions capability compared to plain broadcasting. It 

illustrates that nodes get more relevant information (i.e. the 

nodes receive less information they are not interested in) as 

shown in Figure 6. A higher relevancy ratio is considered to 

be better. 

 

• Filtering (T)  

F = (1 – (Mf / ∑n (Mur + Md))) 

The 15% filtering rate for our improved backpropagation 

mechanism with predictions capability compared to the plain 

flooding can be explained by the fact that messages are only 

routed where they are relevant, in some cases broadcasting 

may deliver messages that our approach does not. However 

our improved algorithm is still slightly better than the simple 

relevance backpropagation algorithm as shown in Figure 6. 

The higher the filtering the better it is in a network. 

 

• Message Distance (MD)  

MD = ∑t Edges / ∑t Nodes 

In our improved relevance backpropagation with prediction 

capability the message distance of the information is slightly 

higher than in plain broadcasting (10%) and simple relevance 

backpropagation algorithm (8%) as shown in Figure 6. A 

lower message distance is better in a network. 

 

• Availability (A) 

A = ∑n Mus  / ∑n Mur 

The availability of the context information is about 2% 

higher in the simulation results when using our improved and 

simple relevance backpropagation mechanism then when 

using plain flooding as shown in Figure 6.  A higher 

availability ratio is better in a network. 

 
Reduced network traffic is an achievement in the area of network 

communications. One might argue that in the current modern era 

of technology and communication the world has enough 

bandwidth available for use. But with the growing demand for 

high speed communication this resource which we enjoy today 

will be scarce in the near future.  

5. RELATED WORK 
In [6], Nadeem et al. present a formal model of data dissemination 

in Vehicle Ad-Hoc networks (VANETs). They measure how the 

performance of data dissemination is affected by bi-directional 

lane mobility. Three models of data dissemination are explained 

and simple broadcasting technique is found to be sufficiently 

enough in their simulated experiments. In our research, we deal 

with the optimized directional dissemination of context 

information with predictions. 

Mahajan et al. present an idea about the WiFi-based connectivity 

and communication between base stations and moving vehicles in 

[5]. Vehicles mobility cause gray periods of poor connectivity 

which according to the authors are caused by variability in the 

urban radio environment combined with the vehicle traversing 

areas of poor coverage. We envision that for large scale vehicle 

network the use of simple WiFi based communication will be 

impractical. 

In [4], Eichler et al. address the issue of optimal information 

dissemination in vehicular networks. The authors proposed a 

framework which integrates many of the existing broadcast based 

strategies that deal with the reduction of the superfluous 

transmissions. Our approach uses the idea of disseminating the 

optimized relevant context information using the prediction of the 

future state of a node in the network. 

The use of a propagation function for retrieving targeting areas 

and preferred routes for information delivery has been addressed 

in [2]. Costa et al.  integrate the propagation function with several 

probabilistic routing protocols with some performance overhead. 

In our research, relevance backpropagation algorithm with 

prediction capabilities handles the dynamic nature of a mobile 

network without creating a communication overhead. 

A comparative performance comparison between three data 

dissemination protocols (i) Directed Diffusion, (ii) Two-Tier Data 

Dissemination and (iii) Gradient Broadcast for wireless sensor 

networks is discussed by the authors [3]. In our research, we 

found that two-tier dissemination and gradient broadcasting over a 



large scale network are not cost efficient in terms of 

implementation complexity and processing overhead. So we make 

use of a combination of directional diffusion and gradient 

broadcast of context information in a better manner by predicting 

the area of spatial coverage and information relevance feedback 

acting as a cost function in gradient broadcast so that the context 

information can only be directed to a specific region with minimal 

cost and effort. 

Markov chains and hidden Markov models are used in a wide 

range of applications. In the domains of speech recognition and 

the prediction of genome sequences in bioinformatics they have 

proven to be a fruitful approach. Recently, hidden Markov models 

have been used to learn movement patterns in a mobile network to 

perform GSM tracking [11]. Information related to the paths 

followed by mobile phones can be learned using hidden Markov 

models and the prediction method allows for the anticipation of 

resource allocation. This means dynamic scheduling takes place. 

Chinchilla et al. [12] use Markov chains to predict to which 

access point a wireless client will connect, given the last access 

point the client was connected to. The goal is to improve the 

performance of the wireless infrastructures by load balancing, 

admission control and resource reservation across access points. 

Mobility patterns of clients are learned using historical 

information. The system has been tested on a university campus 

with a wireless infrastructure and the next access point a wireless 

client connects to can be predicted with high accuracy according 

to experimental results. Papadopouli et al. [13] present a 

methodology that shows how mobility patterns and associations 

between users and access points evolve not only in space, but also 

in time. Therefore wireless access patterns are characterized based 

on stochastic parameters such as visit duration. Chakrabortyet al.  

[14] evaluate several heuristics that, based on the movement 

history of a mobile client, estimate an optimal time for 

communication. Time is optimal when the least energy will be 

used. The goal is thus to minimize the energy consumption 

necessary for wireless communication. Statistical information 

about a client's movement history is represented as heuristics 

based on Markov models. 

6. CONCLUSION AND FUTURE WORK 
Vehicles in a scalable environment may disseminate information 

about certain road traffic conditions, traffic incidents, free parking 

space or other relevant information to the neighboring vehicles in 

the vicinity. In this paper, we optimize the dissemination of such 

context information by predicting traffic patterns in a certain 

geographical area. It also allows us to identify traffic hotspots in 

that region. We optimized the relevance backpropagation 

algorithm with prediction capabilities to efficiently disseminate 

information. We evaluate our approach with the OMNET++ 

network simulator using realistic large scale data sets and measure 

various quality of service parameters in vehicular networks for 

different traffic scenarios and versatile telematic application 

requirements.  

The simulation results show that by using our optimized relevance 

backpropagation mechanism significant improvement is realized 

in terms of Message distance and relevancy of context information 

to 8% and 35% respectively in comparison to the simple relevance 

backpropagation. Moreover, other parameters like Network 

Traffic and availability are also slightly better than the simple 

relevance backpropagation algorithm.  

We plan to investigate the network and context properties to get a 

broader view of the communication mechanisms used earlier for 

our simulated experiments.  

In the future we also plan to investigate the same network 

parameters by inter-connecting a real embedded smart device like 

a PDA, GPS or an embedded vehicular computer with the 

simulation environment to analyze the behavior of the real smart 

devices. Later on this will enable us to see how our relevance 

backpropagation mechanism can be improved over other large 

scale networks with real applications. 
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