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Abstract

This paper proposes that, when modeling for the relation between the convenience
yield and current scarcity, time to maturity and time to harvest should interact with
current scarcity, i.e. the two should enter multiplicatively. In implementing this idea we
also compare three models for current scarcity, based on inventory levels, the spot price or
both. We use data for corn, wheat and soybeans, 1/1986 to 7/2007.

The multiplicative model performs noticeably better than the traditional version, which
only focuses on the measurement for scarcity and not on the nature of the relation between
scarcity, time to maturity, harvest and convenience yield. More importantly, though the
combination of spot price and inventory provides a better proxy for scarcity than either
spot price or inventory separately, the pure spot-price version performs nearly as well as
the spot/inventory combination, and much better than the pure inventory version. This
is useful because inventory data are typically hard to obtain and increasingly noisy. Our
model still exhibits a clear “Working curve”, albeit with slopes changing with time to
maturity and harvest periods.

We can also show that the multiplicative model still works better than the traditional
model even during the government loan program period in the middle 1980’s and that
the program seems to have little impact on modeling the convenience yield. Nor did the
changing in the delivery system for corn and soybeans, as of 2000, have a big impact.
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Introduction and research question

The theory of storage explains normal backwardation1 in commodity prices through the notion

of a convenience yield, that is, the stream of benefits that stem from having the commodity at

hand and that, therefore, accrue to inventory holders but not to holders of futures contracts

(Kaldor, 1939; and Working, 1948,1949). These benefits arise, among others, from increased

production flexibility, from avoided re-ordering costs and from the option of market timing.

The value of the premium should rise fast when markets are tightening, i.e. when inventory

positions are low. We loosely refer to such a situation as one of scarcity. Familiarly, Working

(1948,1949) proposes inventory levels as the variable underlying the convenience yield. At

about the same time, however, Hayek (1945) wrote that producers and consumers just need

the price to take rational decisions; in line with this, Brennan (1958) and others have proposed

the spot price as a sufficient statistic for scarcity, in the sense that there should be a one-to-

one relation between the spot price and the available inventories. Price data could also avoid

measurement issues in inventories, as we argue below. Middle-of-the-roaders, lastly, would

hold that both prices and inventory data contain useful information, and that data other than

price and inventories may also be useful to capture and understand the value of convenience.

One common feature of these propositions is that there is no mention of time to maturity.

In the empirical work, likewise, time to maturity is often ignored or, at best, brought in as an

additional, additive effect. A second feature of both avenues to the modeling of scarcity is that

the occurrence of a harvest, if any, during the life of the contract is deemed to be negligible;

only Fama and French (1987) mention this, and as a substitute to the explicit modeling of

scarcity rather than a consideration to be taken into account when interpreting inventory or

price data. In our view, however, n million bushels m months prior to expiration may mean

something very different depending on whether the next harvest comes during, or right after,

or far after the contract’s life. Thus, prior to empirically studying the roles of inventory and

price data as measures of scarcity we want to give the structure of the equation more thought.

We show analytically that under fairly general circumstances the convenience yield depends

on the product of time to maturity and a function of current scarcity, φ(x, S, ...), involving e.g.

inventories x and the spot price S. In addition, if there is a harvest during the contract’s life,

1Normal backwardation is the premium in the spot price relative to the futures price, after taking out the
effects of storage costs and time value. Another common name is “net convenience yield”, but this is already
more an explanation than a pure label. Yet another name is risk-adjusted spread, which refers to the futures
price as the risk-adjusted expectation.
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a new term comes up involving a product of a similar function of scarcity, ψ(x, S, ...) and the

time to maturity beyond harvest time:

Y (x, S, t;T, Th) = φ(xt, St, ...) · (T − t) + ψ(xt, St, ...) ·max(T − Th, 0), (1)

where Y is the convenience yield, t current time, x the inventory, S the spot price, T the

delivery date, and Th the time of the first harvest following t. As of now we refer to this as the

multiplicative version of the model. The first issue in this paper is whether this model does

better than the traditional versions, Y = φ(xt, St) or Y = φ(xt, St) + b · (T − t). The second

issue is what the best specification is of φ(xt, St): is it a function of just x, or just S, or both,

or possibly extra variables.

On the basis of R2 or either of the standard Information Criterions, our empirical work

supports the multiplicative regression specification against the classical versions: for any choice

of the function φ(x, S) it outperforms the above traditional models, and usually substantially

so. Regarding the issue of the specification of φ(x, S), we find that a function φ(x, S) involving

both a spline in the inverse of inventory and a linear term in S does best. From a practitioner’s

perspective, however, the good news is that a simplified version with just the price, a+ S [b ·

(T − t) + c · max(T − Th, 0)], nearly always does almost as well as the complete version, at

least more recently. This is interesting for hedgers and speculators because it is not obvious

how current inventory data should be measured (e.g. Chicago v Chicago and Toledo) and

because around harvest time the data are demonstrably lagging behind reality and, therefore,

unreliable.

We test these two issues on data between 1/1/1986 and 31/07/2007, for corn, wheat and

soybeans, from the electronic records of the cbot. The major empirical findings have already

been mentioned: the good performance of our multiplicative models compared to the tradi-

tional models and the success of the spot price as the sufficient measure of scarcity in our

new model. Another notable result, however, arises when we compare pure price and quan-

tity models, treating them as alternatives rather than complements. From 1989 to 1999, the

spot price used to capture the backwardation premium quite well, and far better than did

inventory, which means a marked reversal of the situation that prevailed in the days of Kaldor

(pre-1935). As of 2000, in contrast, while the spot price still does better than inventory and

almost as well as the mixed model, the success of all specifications, including the multiplica-

tive one, in capturing the backwardation has dropped. The drop is moderate for wheat, but

more pronounced for corn and soybeans. One possible explanation is the introduction of new

delivery system, as of 2000: delivery is now via a shipping certificate instead of a warehouse
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receipt from either Chicago or Toledo, and the barge that holds the product can be anywhere

in the Illinois or Mississippi rivers. With such a fuzzy product, the meaning of both inventory

and price data is bound to become unclear. But we also have evidence that this is definitely

not the sole explanation: also for wheat, where no change was implemented during the sample

period, explanatory power goes down in the 2000s.

The remainder of this article is structured as follows. Section 1 reviews the standard models

and proposes our new variant. Section 2 provides empirical results. In Section 2.3, we verify

whether the splines obtained from our new model have the shape of “Working-Kaldor curves”

and we present robustness checks. Section 3 concludes.

1 Modeling convenience yield and current scarcity

In this section we review the traditional test equations and derive an alternative model that

introduces time to maturity in a multiplicative way. Strictly speaking, our characterization of

futures prices applies to forward prices only, but the two are now recognized to be virtually

undistinguishable.

We first motivate our study of backwardation. Normal backwardation is defined as:

Yt,T := [St + PV(C, r, t, T )](1 + rt,T )− ft,T , (2)

where t denotes current time (the moment of valuation) and T the moment the futures contract

expires; Yt,T is the backwardation—the premium paid for cash positions; St the current spot

price; PV(C, r, t, T ) the present value of paying the storage cost C over the contract’s life;

rt,T the simple percentage rate of return on a risk-free investment maturing at T ; and ft,T the

current futures price. Interpreting the futures price as a risk-adjusted expectation of the future

spot price, the traditional finding of positive empirical values for Y suggests negative risk-

adjusted returns from holding inventory. This seemingly negative return, Kaldor and Working

argue, is an illusion because the convenience yield, a non-monetary dividend, is ignored.

In this paper we take for granted that backwardation does reflect a convenience aspect,

and we accordingly refer to Y as the convenience yield. It is important to understand the

determinants of the convenience yield because this helps to evaluate the performance and

benefits of commodity futures markets. The performance and the economic benefits of the

futures market to an industry depend on how well the market responds to the fundamentals in

the industry. According to Ward and Dasse (1976), the rationality of the basis (the difference
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between futures price and spot price) is considered as an index of performance because “basis

patterns are the key to commercial utilization of futures contracts” and there is reason for

concern about the market’s performance and its benefits if the determinants of the basis cannot

be explained. Holders of inventory need to understand the price they are paying, implicitly,

for having the inventory at hand rather than just holding a claim on future delivery. Likewise,

the success of hedgers in futures markets depends on how well they understand and forecast

the convenience yield. Understanding the mechanism and the determinants of the convenience

yield helps market participants in making successful production and marketing decisions.

1.1 Traditional Models of the Convenience Yield

Since Kaldor (1939) and Working (1948, 1949), most of the literature tests the Net Convenience

Yield theory by verifying whether Yt,T is related to time-t inventory (e.g. Working, 1948; Telser,

1958; Brennan, 1958; Thompson, 1986; Fama and French, 1987; Yoon and Brorsen, 2002;

Colin and Carter, 2007; and Gorton, Hayashi and Rouwenhorst, 2007). The typical finding

is that there is, in fact, a convex negative relationship (the “Working curve”) between the

inventory level and the convenience yield, as expected under the theory of storage. The most

extreme proposition would be that the convenience yield depends on just current inventory.

This ‘strong’ version of the theory would require that the distribution of future inventory

data depend only on the current level, and likewise for the expected future period-by-period

convenience yields that are presumably related to these future inventories. Testable hypotheses

would include the following: (i) there is a detectable effect from inventories; and (ii) no other

indicator of scarcity plays any significant role. However, there is also no consensus on the nature

of the inventory/convenience-yield relation. While Garcia and Good (1983) and Karlson,

Anderson and Dahl (1993) adopt concise functions like a+ bx or a+ b lnx or a+ bx−1, Telser

(1958), Brennan (1958), Yoon and Brorsen (2002), and Gorton, Hayashi and Rouwenhorst

(2007) take multi-term nonlinear functions. Among these, the spline inventory function applied

by Gorton et al. is the most flexible one, and it captures the time series and term structure of

backwardation better than the others:

(i model:) Yt,T = α+ θ1xt + θ2x
2
t + θ3x

3
t + θ4 1xt>k (xt − k)3. (3)

where xt is inventory, and 1xt>k = 1 if (xt > k), otherwise 1xt>k = 0. This model, augmented

with time to maturity, is one of the standard contenders against our own version.

At the other extreme, one could follow Hayek and argue that the ultimate summary statistic

for scarcity should be the price. In this view, inventory only seems to work because it is
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proxying for price, the omitted variable in the Working curve. Brennan (1959), for instance,

argues that time-t inventory is an exact function of the current spot price; therefore the spot

price should be an equally sufficient statistic for scarcity. Garcia and Good (1983) similarly

assert that the convenience yield of corn is affected by the flow of corn to the market or by

“the rate at which producers deliver corn to the market” and “the rate at which the market

is consuming corn”. They then argue that current cash price is probably the best indicator

of the corn flow to the market because it influences the storage and marketing decisions of

the farmers and thus leads to relative shifts from demand to supply. Thus the traditional

price/convenience yield model is:2

(Spot model:) Yt,T = α+ βSt−1 + εt. (4)

A third group of researchers adopt a more middle-of-the-road view. Some of these still

adhere to the inventory logic but admit that the interpretation of storage data depends on

circumstances. For instance, time to maturity would probably matter too (for instance, Jiang

and Hayenga, 1997), or the timing within the year (Fama and French, 1987). Some authors,

like Jiang and Hayenga (1997) simply add time to maturity to a traditional nonlinear inventory

model as an independent variable: Y = a+φ(x)+ b · (T − t). Augmenting Equation (3) in this

way, we get the third competitor to our own specification:3

(i+t model:) Yt,T = α+ θ1xt + θ2x
2
t + θ3x

3
t + θ4 1xt>k (xt − k)3 + γ · (T − t). (5)

Other middle-of-the-roaders such as Garcia and Good (1983) use the spot price, inventory and

time to maturity as combined measurements for scarcity:

(s+i+t model:) Yt,T = α+ βSt−1 + θ1xt + θ2x
2
t + θ3x

3
t + θ4 1xt>k (xt − k)3 + γ · (T − t). (6)

Brennan (1995), when testing his model, suggests that maybe the convenience yield depends

on the rate of depletion of the inventories rather than their level. In the same spirit, Garcia

and Good (1983) use exports and imports, and similar variables are introduced by Jiang and

Hayenga (1997).

2Garcia and Good (1983) use the current spot price (St) in their (different) model, but we cannot use (St)
as it is already involved in the calculation for the convenience yield, as can be seen from Equation (2); thus to
avoid spurious correlation stemming from microstructural noise in the spot price we use St−1 instead. Garcia
and Good (1983) also point out that the lagged price affects the marketing decision at t − 1 and, therefore,
influences the inventory carried over from t− 1 to t—hence the link with Yt,T .

3In fact, Jiang and Hayenga use either the inverse of inventory or the log of inventory not a spline. We adopt
the spline function because of its flexibility, for instance its capacity to discover non-convexities if these would
be present.
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It is clear that all of these hypotheses mainly focus on the measurement of scarcity not

on the nature of the relation between scarcity and convenience yield. There is no room for

interactions between scarcity and time to maturity nor for any impact of a harvest occurring

during the life of the contract. These considerations lead to the research questions already

listed above: in what form should time to maturity and time to harvest enter the model, and

how does one best measure scarcity.

1.2 A more structured model for convenience yields

Current time is denoted as t, and the futures contract expires at T . We define the cost of

storage (C) in dollar terms per period, not annualized percentages of the spot value, and we

define the effective risk-free rate of return for horizon T − t in the financial markets, rt,T ,

as the simple percentage growth in the value of a one-period risk-free investment. The term

structure of these (un-annualized) rates is denoted by the vector rt. We denote the present

value of paying the storage cost over many periods by PV(C, r, t, T ). Spot and futures prices,

S and ft,T , are observable, and so are the dollar cost of storage per period and the interest

rates. Convenience, measured in dollars, is the part of (minus) the basis f − S that cannot be

explained by storage costs and interest expenses from buying and holding inventory:

Yt,T := [St + PV(C, r, t, T )](1 + rt,T )− ft,T . (7)

In terms of pricing theory, one of the variables on the right-hand side can be pinned down imme-

diately: the futures price is expectation ‘under measure q’—the risk-adjusted expectation—of

the future spot price:

ft,T = Eq
t (S̃T ). (8)

Let’s now turn to the convenience premium. In the presence of a positive price for convenience,

the holders of inventory must be the users of the commodity who need a buffer stock. In fact,

other potential holders, namely users of the commodity who merely want to hedge more distant

price risks or ‘speculators’ (the players with a purely financial interest), would not be willing to

pay the premium for an advantage that has no real value for then. In the case of a representative

holder of inventory, the upper limit on Y is the marginal benefit y from holding inventory this

period. This y is the marginal expected out-of-stock cost X avoided by buying an inventory

Q immediately rather than buying Q − dQ now and postponing the purchase of dQ for one
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period, so y must be non-negative:

Ys,s+1 := (Ss + C)(1 + rs,s+1)− Eq
s(S̃s+1) (9)

e=
∂E(X̃s,s+1)

∂Qs
=: y

≥ 0. (10)

The marginal expected cost of running out of stock during the next period is known at the

beginning of the period, but obviously depends on circumstances.4 We close by linking this

period-by-period price of convenience to the multiperiod one defined in Equation (7). Consider

the futures contract that has one period to go; or, if no such contract is traded, work with the

futures price we would have seen in a complete market, namely, the risk-adjusted expectation

about the next spot price. Starting from Equation (8) for time t, t + 1, we can use Equation

(7) to obtain:

Eq
t (S̃t+1) = ft,t+1

= (St + C)(1 + rt,t+1)− Yt,t+1. (11)

This will hold also for the period starting at t+ 1, and so on. Repeatedly take expectations of

the time (t+ 1) until T version, conditional on time-t until T − 1 information, and substitute

Equation (9) into it. By comparing again to Equation (7), we obtain that the multiperiod

price of convenience is the capitalized future value of a stream of period-by-period prices of

convenience (see the Appendix for a proof):

Yt,T = Eq
t

(
Yt,t+1ΠT−t

l=2 (1 + rt+l−1,t+l) + Ỹt+1,t+2ΠT−t
l=3 (1 + rt+l−1,t+l) + ...+ ỸT−1,T

)
. (12)

From Equation (12), in order to build up a more informative scarcity model that fits

the convenience yield, we need to specify the functional forms for the function Y (xt, T −

t), with x referring to an adequate measure of scarcity. In the strict form of the Kaldor-

Working hypothesis all expected future period-by-period convenience yields would be functions

of current scarcity xt. In addition, we know that the term structure of expected future Ys,s+1

must be smooth unless there is a harvest during the contract’s life. Any unusual jump or

bump in the ex ante Y s would be smoothed out when traders alter their buying plans to

4To further characterize the equilibrium we would also need to specify the supply: what makes holders of
inventory sell how much? But at this stage all what is needed is that the equilibrium period-by-period price of
convenience is non-negative and its future value is uncertain and, plausibly, higher the lower inventories are.
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take advantage of cheap premiums or to avoid excessive ones; the only predictable jumps that

cannot be arbitraged away are those caused by a harvest.

Assuming, initially, no harvest, a functional form suitable for estimation is obtained by

approximating the term structure of expected future period-by-period yields via an exponential,

starting from the spot convenience:

Et(Ỹt+l,t+l+1) ≈ Yt,t+1(1 + gt,T )l, (13)

with both Yt,t+1 and gt,T being functions of current scarcity only. We can show that the

capitalized value, at T , of the future period-by-period convenience yields depends, to a first

approximation, on the expected final level times the time to maturity (see the Appendix for a

proof):

Yt,T ≈ Yt,t+1(1 + gt,T )T−t · (T − t)

= φ(xt, St, ...) · (T − t). (14)

where φ(xt, St, ...) := Yt,t+1(1 + gt,T )T−t or Et(YT−1,T ).

The smooth approximation in Equation (13) is implausible for contracts where there is a

harvest in the interval [t, T ]. If a harvest does occur, say at Th, we would expect the convenience

yield to drop around that time to a lower level Eq
t (YTh,Th+1), and then resume a new growth

path from that new base. In that case,

Yt,T ≈ Yt,t+1(1 + gt,T )Th−t(Th − t) + Eq
t (YTh,Th+1)(1 + gTh,T )T−Th(T − Th),

= Yt,t+1(1 + gt,T )Th−t(T − t)

+
[
Eq

t (YTh,Th+1)(1 + gTh,T )T−Th − Yt,t+1(1 + gt,T )Th−t
]
(T − Th). (15)

In the Kaldor-Working tradition, both expected marginal premiums are functions of current

scarcity only, but we can be more general and specify the model as:

Yt,T = φ(xt, St, ...) · (T − t) + ψ(xt, St, ...) ·max(T − Th, 0). (16)

In versions narrowed down to pure inventory functions, the usual Working-curve pattern

(positive-valued, negative-sloped and convex) should apply to the entire expression and to

φ(x), ψ(x), which is actually a difference between two Working curves, we have no priors.

1.3 Modeling Issues re Current Scarcity

As there is less consensus on the measurement of current scarcity, we apply our multiplicative

model with all three different scarcity proxies: inventory, spot price and both of them (the
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combined proxy).

Measuring scarcity by inventory:

We follow Gorton et al. (2007) and others to model φ(x) and ψ(x) as cubic spline functions.

Departing from the tradition, however, we take the inverse of inventory instead of the inventory.

We prefer inverses on a priori grounds: in this specification, Yt,t+1 automatically goes to

zero when inventory goes to infinity, and to infinity when inventory approaches zero. Not

surprisingly, then, also in terms of ex post goodness of fit this specification does better than a

spline in x. Thus, φ(xt) for instance is operationalized as:

φ(xt, ...) = a1x
−1
t + a2x

−2
t + a3x

−3
t + a4 1x−1

t >k1
(x−1

t − k1)3 + ... . (17)

where x is inventory or normalized inventory and k1 is the ‘knot’ where the third derivative

is allowed to change. (Specifications with more than one knot do not improve performance.)

We define k1 in our empirical model later. 1x−1
t >k1

is equal to unity if x−1
t > k1, otherwise it

equals zero.

The above still ignores the problems with the definition of inventory. Strictly-Chicago

inventory numbers ignore availabilities that may be quite nearby, so that they would be noisy

proxies of a true variable. But numbers for a wider area are probably noisy too since they

ignore the location issues: corn 200 miles away is not the same as corn available in the Chicago

harbor. We propose to go on using Chicago data,5 but we add time dummies that may provide

positive evidence that these Chicago data systematically miss part of the story.

There would, of course, be no problem if Chicago’s stocks were always a constant fraction

of the wider availabilities corrected for location effects. We have strong suspicions that the

Chicago data actually lag behind the true availabilities. Figure 1 shows the monthly average

of the normalized inventory for corn, wheat and soybeans in Chicago from 1/1986 to 8/2008.

Clearly, the graphs indicate that inventories peak in December (corn), in October (wheat) and

in November (soybeans) which is one or two months after the actual harvest times.6

We can expect the price of convenience to fall as soon as the harvest begins, which is before

5It is argued that from the end of the 1970’s, Toledo was added as the main market for grain delivery, thus
inventories in Toledo should be added to Chicago number to study the model. We also test our model with the
total inventories of Chicago and Toledo, but inventories in Chicago still gives us better result.

6Actual harvest time in most of the US and other big producing countries starts from middle of July for
corn, middle of May for wheat and September for soybeans.
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Figure 1: Seasonality of normalized total inventory from 1986 to 2008 in Chicago
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(a) Corn
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(b) Soybeans
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(c) Wheat

Note: Given that inventory data are volatile and have a trend, it is not possible to measure seasonality on the raw inventory data. Instead,
we compute the deviation from the long-term trend ((raw inventory - trend)/trend) and fit monthly dummies to this deviation to find the
seasonality.

reported inventories rise. Misreporting could thus lead to seasonal mistakes in the fitted values.

To test for this we add dummies into the spline inventory model φ(x) and ψ(x):

(i×t model:) Yt = C + [
12∑

m=1

δm 1M(t)=m + φ(xt)] · (T − t)

+[
12∑

m=1

ρm 1M(t)=m + ψ(xt)] ·max(T − Th, 0). (18)

where M(t) = {1, 2, ..., 11, 12, 1, 2, ...} identifies the month that is associated with observa-

tion t. If inventories are under-reported right after the harvest time, then actual convenience

yields should be below the average pattern that the regression is trying to predict on the basis

of the data it has. Thus, if Chicago inventories are late in reflecting the new harvests, we

expect negative regression coefficients for the dummies for the months right after the harvest.

Measuring scarcity by the spot price:

In this case, φ(x, S, ...) and ψ(x, S, ...) simplify to a + bSt−1. It may look unfair to use this

simple affine model while inventories enter via a much more flexible spline, but our finding is

that powers of prices are not significant; and even with the simple specification, the spot price

already beats a spline of x.

One potentially useful feature of prices, if they are set in efficient markets, is that they

should see through any shortcomings in published inventory data. Thus, the dummies that

we inserted into the inventory model to remedy lags in reporting the true availabilities should

now be redundant. Therefore, we test for this by also adding dummies, beside the spot price,



Remodeling the Working-Kaldor Curve 12

to get:

(s×t model:) Yt = C +

[
12∑

m=1

δm 1M(t)=m + βSt−1

]
· (T − t)

+

[
12∑

m=1

ρm 1M(t)=m + ζSt−1

]
·max(T − Th, 0). (19)

Measuring scarcity by both inventory and the spot price:

The multiplicative model for combined proxy is:

(s+i×t model:) Yt = C +

[
12∑

m=1

δm 1M(t)=m + βSt−1 + φ(xt)

]
· (T − t)

+

[
12∑

m=1

ρm 1M(t)=m + ζSt−1 + ψ(xt)

]
·max(T − Th, 0). (20)

One problem with the cash prices is that it can differ dramatically even 28 miles away. It

is easily verified that, in the proposed model, the difference between two futures prices has the

same format as the spot-futures premium. This is convenient because, if we use the nearest

futures instead of the cash price, both prices are based on the same location and so avoid

location issued in our analysis.7

We now proceed to the empirical work.

2 Data and main results

2.1 Data and estimation procedures

Data

We use weekly data for corn, wheat and soybeans from 1/1986 to 7/2007 for the March, May,

July, September and December contracts (corn and wheat) and for the January, March, May,

July, August, September and November contracts (soybeans). Data for inventory and storage

cost are from cbot (provided by the University of Illinois). Because deliverable inventories

are for delivery only, this number is a big understatement of actual inventories since they do

not reflect stocks available for delivery that can easily be shipped to official warehouses. Thus,

7We also used cash prices in Illinois region 1 in which Chicago belongs to. However, the cash price models
does worse than the nearest futures prices models. We can provide the results upon request.



Remodeling the Working-Kaldor Curve 13

we use the total inventories in selected warehouses8 in Chicago instead of only the deliverable

inventory in our test.9 Since the end of the 1970’s, Toledo was added as a main delivery

market for grain. Therefore, one could argue that Toledo inventories should be added to

Chicago inventories when considering the scarcity in Chicago. We also test our models with

such data and in fact, the total Chicago and Toledo number does worse than the Chicago

number for the period from 1986 to 2001 for corn and soybeans (we only have Toledo data in

this period for corn and soybeans) and from 1986 to 2007 for wheat. The futures price is the

daily settlement price reported at The Chicago Board of Trade (cbot). For the interest rate,

we use the 3-month libor rates.

Model selection and data preprocessing

We compare the multiplicative version with the traditional model for the three different scarcity

proxies in terms of the adjusted-R2, the Akaike information criterion (aic) and the Schwarz

or Bayesian information criterion (bic) to test whether the multiplicative model is better than

the traditional model and to see which variable is the best proxy for scarcity.10 In addition,

we also apply the P-test proposed by Davidson and Mackinnon (1981) (henceforth referred to

as dm test) for simultaneously testing the truth of a model (the base model) against several

non-nested models. dm’s P-test is a standard likelihood-ratio test. When the base model is

tested against the other models, the P statistic is asymptotically Chi-squared distributed with

degrees of freedom equal to the number of alternative non-nested models if the base model is

true. Thus, the lower the P statistic, the more plausible it becomes that the base model is the

true one.

The inventory data and the prices used in the regressions need some pre-processing: quan-

tities are normalized, and prices are deflated. Normalized inventory equals inventory divided

by its Hodrick-Prescott trend. On the basis of eyeball tests we settled for a smoothness pa-

rameter of 8 E+8. To interpret this, one can refer to the standard values for the smoothness

parameter λq in quarterly series: 1,600 for quarterly series with peak-to-peak cycles of short

8These warehouses are selected by the cbot.

9In fact, as a robustness test, we also applied deliverable data, but the result confirms our argument that
the total inventories turns out in a better result than the deliverable one. We can provide the results of this
test upon request.

10Based on our test results, the i+t model as defined in Equation (5) always outperforms the simpler i model.
Thus, we always use the i+t model as our traditional inventory model to compare with the others, instead of
the i model itself.
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duration (roughly 10 years), and 160,000 for cycles of about 30 years or longer. Gorton et

al. (2007), for instance, use 160,000. Correcting for the effect of frequency (we have weekly

instead of quarterly data), our λ is in-between these standards.11

We now turn to the second main regressor, prices. Familiarly, these are potentially unit-

root variables, which of course would create statistical problems. For commodities, the priors

in favor of unit-root characteristics are not as strong as for financial assets. In fact, for the

period from 1/1986 to 7/2007, the Phillips-Perron test statistic rejects the null of unit-root

properties for corn and soybeans (with ps of 2 and at 4%, respectively) but not for wheat (p

= 59.3%). The Augmented Dickey-Fuller (adf) test produces nearly the same results as the

Phillips-Perron test. In the older data though, unit roots are a problem not just for wheat

but for all series. Fortunately, it turns out that simple deflation by the cpi takes care of the

unit root for wheat in this period, and also in all other periods consider here. The Phillips-

Perron test comfortably rejects a unit root: the probabilities for the deflated price series are

1.18% for corn, 6.77% for soybeans and 8.63% for wheat. Deflation makes sense on economic

grounds too: deflating prices implicitly also deflates the convenience yields; so a dollar paid

for convenience is corrected for the near-doubling of the cpi over the entire 1986-2007 period.

As described below, we also do tests over subperiods. In these subperiods, unit roots

are occasionally a problem even with deflated data. When testing whether price peaks are

responsible for some of our results, we discovered that omitting the peak episodes also solved

the nonstationarity problem. As results hardly differ depending on whether the peaks are

included, we show results for the pared-down samples. Details about the starting and ending

dates of the subperiods, the omitted data, and the Phillips-Perron p-values in each period for

each commodity are given in Table 1.

The next issue to be settled is how to use the multiple close prices, one per traded contract,

that are available on any given date. A common approach is to splice together the data into

one long time series, but this means that at any given date just one price is used, even though

there may be five (for corn and wheat) or seven (for soybeans) prices available. We can do

better. Note that, in our multiplicative model, all commodity futures prices, regardless of their

11To translate λq into an equivalent for weekly data, Ravn and Uhlig (2002) recommend multiplication by the
fourth power of the relative frequency. Taking 4 weeks in a month, we would get λw = λq × 124 = λq × 20, 736,
implying an equivalent quarterly smoothness of λq = 38, 500—in-between the 1600 and 160,000 standards.

Eviews’ default option is to multiply by the square of the relative frequency instead of the fourth power. This
provides a much lower smoothness, and led to a trend that totally overfits the series.
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Table 1: Details about periods using for the tests

Periods ‘86-07’ ‘89-07’ ‘89-99’ ‘00-07’
Panel A: Corn

Starting date 1/01/86 1/01/89 1/01/89 1/12/99
Ending date 29/07/07 29/07/07 28/02/99 6/10/06
Deleting period 19/4/96− 1/06/96
No. Observations 1126 969 523 358
Phillips-Perron p-value 0.012 0.021 0.049 0.074

Panel B: Soybeans
Starting date 1/01/86 1/01/89 1/01/89 1/12/99
Ending date 29/07/07 29/07/07 28/02/99 29/07/07
Deleting period 3/12/03− 2/7/04
No. Observations 1126 969 530 369
Phillips-Perron p-value 0.067 0.011 0.022 0.038

Panel C: Wheat
Starting date 1/01/86 1/01/89 1/01/89 7/01/00
Ending date 29/07/07 29/07/07 31/12/99 30/06/06
Deleting period 19, 26/4/96
No. Observations 1126 969 572 339
Phillips-Perron p-value 0.086 0.055 0 0.076

delivery date, are driven by the same term structure of expected one-period convenience yields.

If our assumption holds that this term structure is either sloping upward or downward with,

possibly, a jump at harvest time, then the same function φ() · (T − t) + ψ() · max(T − Th, 0)

should fit all contracts. This implies a clue as to how optimally use the data. Instead of using

a single spliced-together series, we splice together all contracts with the same delivery date

into parallel time series. This gives us five time series for corn and wheat (March, May, June,

September, December) and seven time series for soybeans (January, March, May, June, August,

September, November). Each of these, at any given date, has its own ttm, T − t, and time

beyond harvest, T−Th, but all should still be driven by the same short-term convenience Yt+1,t.

Thus, we apply pooled estimation for the new models with the restriction that the current-

scarcity coefficients in φ() and ψ() are the same for all contracts. For the traditional models,

in contrast, we let the impact of spot prices and time to maturity (ttm) vary across contracts

(cross section specific coefficients). Note also that we do not include the maturity month of

the contract in the analysis because the delivery date is not fixed precisely,12 and because the

12As long as the model is linear in ttm, errors in T − t equally affect all observations, whether ttm is large
or small. But in the non-linear models that follow, errors in T − t disproportionably affect observations near
the end of the contract’s life. For the sake of comparability, we omit the final month everywhere.
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liquidity of a futures contract is very low in its delivery month. All models are estimated using

Pooled Least Squares with fixed effects and correcting for period Heteroscedasticity and Serial

Correlation (Period sur), which corrects for serial correlation and heteroscedasticity in the

residuals of a given cross-section.

2.2 Main results

Table 3 summarizes the R2, aic, bic and P statistic for traditional models (Spot, i+t and

s+i+t) and our multiplicative models (s×t, i×t and s+i×t) for four different periods: (i)

1986-2007 (‘86-07’), (ii) 1989-1999 (‘89-99’), (iii) 2000-2007 (‘00-07’) and (iv) 1989-2007 (‘89-

07’) for corn, soybeans and wheat. The conclusions for each of the criteria are quite similar,

so in the discussion we often just cite R2 figures.

Comparing the results of the periods before and after the year 2000, we find that they

are totally different for corn and soybeans but not for wheat. What exactly changed is not

obvious. It seems safe to separately report our results for the two periods, i.e. prior to and

after 2000, but we return to possible explanations toward the end of this section.

First we compare each multiplicative model to its additive counterpart. The finding is

that in terms of increased R2 and improved aic, bic and P statistics our multiplicative model

outperforms the traditional model for each of the three scarcity proxies and for all commodities

in both periods. Thus, given both the theoretical foundation and the empirical confirmation,

we conclude the multiplicative model makes more sense than the traditional additive one.

Accordingly, most of our diagnoses and comments below focus on the multiplicative versions.

The next issue is the relative performance of the three competing versions of the current-

scarcity measures, i.e. the various ways of specifying φ() and ψ(). Unsurprisingly, the combined

model, with both quantity and price data, does best even after correction for degrees of freedom;

but price always comes in second, and very often as a very close second. Inventory is third,

and usually a distant third. Interestingly (to us), the conclusion regarding the performance of

inventory would have been rather different if we had relied on the traditional, additive models:

then of the six second prizes—two periods, three goods—two would have gone to inventory

rather than zero; and the distance between the runner-up and the leader, the combined model,

would have seemed much more pronounced. Thus, the choice for a multiplicative model matters

not just in terms of performance but also for qualitative conclusions: prices do contain almost

all relevant information, quantities add very little. Theoretically this might be a puzzle, as

price and quantity are closely related endogenous variables (Brennan, 1958), but perhaps the



Remodeling the Working-Kaldor Curve 17

Figure 2: Estimated monthly dummies from i×t model
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Note: In these graph, we plot the dummy coefficients that interact with ttm in i×t model (Equation 18). The scales on the left vertical axis
refer to wheat and soybeans, and the numbers on the right refer to corn.

answer is that, in reality, price is measured with less error than is inventory.

With respect to the quality of stock data, we indeed find clear evidence of problems in the

pattern of the dummies: the Chicago inventories are actually lagging behind reality right after

the harvest. After accounting for information from reported inventories, a residual unexplained

seasonality in the convenience yield is clearly observed from the coefficients of the monthly

dummies of our multiplicative model for inventory (i×t) in both periods. From Figure 2, it

is clear that the dummies are systematically correcting the convenience yield downward right

after the harvest time, and upward later in the year. Unexpectedly, however, we observe the

same pattern for coefficients of the monthly dummies in the multiplicative price model (s×t).

This result, together with the fact that the seasonal dummies tend to be significant, remains

a bit of a puzzle, as spot prices ought to have seen through any shortcomings in the inventory

data. Still, remember that prices achieve a lot more than quantities. Thus, from a practical

point of view, the excellent performance of price as a measure of scarcity is convenient: it

allows one to model or predict the convenience yield without needing any inventory data,

where various candidates are available, all with different degrees of shortcomings.

Other factors than sluggish adjustments in the Chicago stock levels might have played a

role too. We explored two more avenues: Chicago data may be too narrow; and the way we

filter or normalize inventory, ie our choice of the Hodrick-Presscott lambda, may have been

too arbitrary. These explanations are not supported. Specifically, the same results hold when

we use the combined inventory of Chicago and Toledo or even the entire Great Lakes data,
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as already mentioned above; and using raw (un-filtered) data gives us the same outcomes,

implying that more modest changes in the Hodrick-Presscott lambda would matter even less.

Subperiod results and the role of delivery options

It is well known that one confounding factor in commodity futures, relative to, say, currency

contracts, is the existence of delivery options. If asked for delivery by the buyer, the seller

can choose his preferred moment during an entire month. There is also a location option:

traditionally, the goods could be provided in either Chicago (on Lake Michigan) or Toledo (on

Lake Erie). Recently, the location option has been substantially widened.

Until the 1999 December contract, corn and soybeans were delivered via a warehouse

receipt or warehouse certificate, whereas as of the 2000 March contract, delivery is via a

shipping certificate. For wheat, a similar change took place as of the September 2008 contract.

With a shipping certificate, deliverable grain is no longer stored at the shipping points; so

this certificate is like a call on cargo that is somewhere being barged down the Illinois and

Mississippi rivers.

The change in the delivery systems could affect the informativeness of both inventory and

price data. First, Chicago warehouse stocks are possibly less relevant since the introduction

of shipping certificates. Second, with the product becoming increasingly fuzzy, even the inter-

pretation of futures prices becomes more difficult. Thus, we expect all models to do worse in

explaining the observed yield.

To test for this, we split the ‘89-07’ period into two sub periods, pre- and post-2000. As of

1/3/1999 the new delivery system has been in vogue, starting with the March 2000 contract;

thus, the ‘1989-1999’ period starts from 1/1989 and ends on 28/2/1999.13 The ‘2000-2007’

period runs from 12/1999 until 7/2007 because from 12/1999 all quoted futures contracts were

2000 contracts for which the new delivery system was effective. Recall the change in delivery

only applies to corn and soy; for wheat it occurred outside the sample period. We nevertheless

apply the same subperiod test to wheat too, by way of control.

The picture that emerges from comparing the two middle panels in Table 3 is unclear,

We do see that the explanatory power of the multiplicative inventory model (using warehouse

13We test for the delivery system effect from 1989 instead from 1986 because we also want to be free from the
government loan program’s effect in this analysis (see below, robustness checks).
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stocks) does go down for corn, from 50 to 40 percent; but we see the same for wheat (from

46 to 39) even though there the delivery system did not change, and we see no drop in R2

for soybeans, where the change was similar to that for corn. For all three goods we also see a

drop in the performance of price-based models and combined versions. For corn and soy this

is consistent with confounding effects from the new delivery system, but the fact that we also

see this for wheat tells us that there must have been other factors at work too.

We can sum up our findings, thus far, as follows: (i) the multiplicative model does much

better than the additive contender; (ii) prices do much better than inventory data—almost

as good, in fact, as the combined models; and (iii) the post-2000 period seems to be harder

to model. To close the discussion of the results from this sample, we discuss some additional

checks.

2.3 Validity and robustness checks

The first diagnostic question is whether inventory models still exhibit the Working-curve shape,

the convex negative relation that Working predicted when plotting convenience against inven-

tory. We then end with a discussion of some additional validity and robustness checks.

Is there still a Working curve?

The fact that the price seems to be more informative than the storage data does not mean that

pure inventory-based data have no merit. In fact, their performance is still quite respectable

in terms of R2 etc. Yet, at this stage we have just considered measures of fit and significance,

not the shape of the yield/inventory relation. A good fit does not automatically mean that the

resulting curve has the Working shape, nor does a relatively poor fit mean that the Working

pattern is absent.

To calculate fitted values for the curve, we keep just the terms in the spline that were

significant. Results from the pared-down estimations are shown in column ‘i×t, pruned’ of

Tables 4. We calculate two different fitted values for the convenience yield of each commodity.

The first fitted function is φ(xt) · (T − t), and is applicable when the contract mature before

the harvest time, while the second fitted function, φ(xt) · (T − t) + ψ(xt) · max(T − Th, 0),

applies when the contract matures after the harvest. The significance of the φ(xt) · (T − t) and

ψ(xt) · (T −Th) terms indicates that the Working curve depends on time to maturity and also,

when relevant, on time to harvest. We show plots of fitted values for the December contract
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Figure 3: Convenience yield-inventory curve for wheat, corn and soybeans 2000 - 2007
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Note: The graphs show the fitted value of the convenience yields based on Equation (18) with the pooled estimation results. The graphs
are split by commodity (corn, wheat or soybeans) for the 2000-2007 period. In one graph, there are two curves: (i) for contracts mature
before the harvest time (without harvest); (ii) for after the harvest time (with harvest).

for corn, November contract for soybeans and September contract for wheat with ttm = 260

days, using the 2000-2007 estimates.14 Because in this period the corn December contract has

T − Th equal 165, the set time to maturity gives 95 days for the period beyond the harvest for

corn. These numbers are 170 for soybeans and 125 for wheat.

Figures 315 show plots of the fitted values against the normalized inventories. The top

curve refers to a situation with a harvest intervening during the contract’s life, the bottom one

has no harvest in-between. Clearly, a “Working curve” can be observed for each commodity in

each of the graph. In addition, the shape of the curve changes for different time to maturities

and when the contract goes through the harvest.

We close with two remarks. First, for very low inventory levels the slope of the curve

anomalously changes slope. Our guess is that these data points reflect under-reported inven-

tories. That is, Chicago stocks may occasionally be quite low relative to availabilities nearby,

so that the yield looks low relative to the reported inventory. Stated differently, if we had

more representative inventory figures, these data points would have been more to the right

and would have fitted in with the regular Working curve. Our second remark is that the plots

are obtained from the pure inventory model. Yet, comparing the coefficients for the inventory

terms in the regressions with and without price data in Tables 4, we recognize that the curves

14Working curves for other contracts and for the period ‘89-99’ are available upon request.

15In these figures, we delete some outliers where the reported normalized inventories are less than 0.05. Prices
in such low inventory conditions are likely to be driven more by underreporting or stock-out effects than by
inventory levels.
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change drastically between the two models, especially for the period ‘1989-1999’ when the spot

price is more informative. Exactly what the residual role of inventories is, once the spot price

has captured its part of the yields, is not clear.

Additional validity and robustness checks

We close with a discussion of issues related to (i) a potentially disturbing outside factor, the

government loan program; (ii) the price spikes in the 1990s; and (iii) the regression specification.

During the mid-1980’s, a government loan provided strong incentives to farmers to store, so

it led to huge stocks in this period. While these stocks were not available to the market, they

were still known to exist. As a result, this event may create a contamination of the convenience

yield. After the 1988 drought, the government sold off all stocks and changed it stockholding

program. Thus, in order to see whether the government loan program has any affect on our

analysis, we also do our test for the period after this program (from 1/1989 to 7/2007). The

results are shown alongside the main results, in the lower panel of Table 3, and do not reveal

any remarkable impact from omitting the potentially confounding years.

Having ditched the idea that the deliver system upset the old relations (see subperiod

results, above), we explored the idea that the power of the spot-price model may very well

depend on its variability in the sample. Notably, there were extreme peaks of the spot price

in the ‘89-99’ period. Logically, during such episodes the futures prices would rise less, as

they reflect future expected prices, so extreme spot prices would tend to go hand in hand with

high backwardation. But we get essentially the same results, with the same good R2s for the

price-based model, whether we include the peak periods into the sample or not.

In terms of regression specification the first question we raise is whether the improved

performance of the m-models is really due to the interaction of time to maturity and scarcity,

or whether it is, instead, mostly ascribable to the seasonal dummies, which are absent from the

standard models? We test for this by estimating the following two incomplete versions of the

m-models, one with just the interactive term and no dummies, and one without the interactive

term but with dummies. For the spot-price model, this would read as:

(Model 1:) Yt = C + βSt−1 · (T − t) + ζSt−1 ·max(T − Th, 0)

(Model 2:) Yt = C +
∑12

m=1 δm 1M(t)=m + βSt−1

(21)

We find that for all commodities and periods, Model 1 always beats Model 2 in terms of R2,
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aic, bic and P statistics.16 This result indicates that the interaction terms are more important

than the seasonal effects.

The second issue relates to the internal validity of our model. The question is whether the

interaction between scarcity and time to maturity succeeds in capturing all time-related effects

in the convenience yield. Specifically, by construction the average residual is zero for each

regression and sample, but zero averages should also be observed in subsets of observations,

regardless of how the subsets are composed. Thus, we sort all observations into buckets defined

by commodity and time to maturity. Specifically, for corn and wheat we have ten buckets per

sample, corresponding to 9, 13, 17, 22, 26, 30, 31, 35, 39, 43 weeks to maturity, and for

soybean we have 13 buckets (4, 8, 9, 13, 17, 22, 26, 30, 35, 39, 43, 44, 48 weeks to maturity).

We retrieve the residuals from the regressions, and compute average residuals for each bucket.

The null is that all these means are equal to each other and to zero. In Table 2, we report the

p-values from the Anova F-test and Welch F-test for the equality of the mean of these error

term series for each commodity from the s+i×t model. The Anova F-test assumes that the

series also have equal variance while the Welch test relaxes this assumption. Table 2 shows that

even the best-performing multiplicative model still misses part of the time-to-maturity effects:

of the six17 standard Anova tests, two reject the hypothesis, and the Welch test identifies an

additional suspect case. Thus, even though the results are not disastrous, there is still room for

improvement. The prime area of potential improvement is probably the theoretical assumption

that the term structure of expected future week-by-week convenience yields is approximately

exponential and that its present value is not very sensitive to the ever-changing discount rate

and slope of that term structure. This is an area that deserves future scrutiny.

We continue the discussion of the 1986-2007 results with a digression on the assumedly

additive effect of the seasonal and some additional checks.

Under the additive specification adopted above, the assumed effect of the seasonal on the

yield is always the same, regardless of the level of inventories or the level of fitted values. We

considered two alternatives. In the first, the unmodelled seasonal factors pertain not directly to

the yield but to the short-term convenience over the current week. That is, the true marginal

convenience consists of a term φ() related to current inventory and/or price plus unidentified

seasonal factors. Depending on whether we also allow for information from the spot price, the

16We can provide this estimation result on request.

17three goods, two subperiods
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Table 2: P-values (%) from the F-test for the equality of the mean error across
time-to-maturity classes

Corn Wheat Soybeans
‘89-99’ ‘00-07’ ‘89-99’ ‘00-07’ ‘89-99’ ‘00-07’

Anova F-test 12.45 18.90 0.38 96.38 2.07 73.62
Welch F-test 33.68 1.25 1.39 34.15 0.00 8.47

Key Residuals are retrieved and put into buckets defined by time to maturity. For corn and wheat we
have ten buckets per sample, corresponding to 9, 13, 17, 22, 26, 30, 31, 35, 39, 43 weeks to maturity,
and for soybean we have 13 buckets (4, 8, 9, 13, 17, 22, 26, 30, 35, 39, 43, 44, 48 weeks to maturity).
The Anova F-test assumes that the series also have equal variance while the Welch test relaxes this
assumption.

extended models become:

(i×t-ext:) Yt = C + [
12∑

m=1

δ1,m 1M(t)=m +
12∑

m=1

δ2,m 1M(t)=m · φ(xt)] · (T − t)

+[
12∑

m=1

ρ1m1M(t)=m +
12∑

m=1

ρ2m1M(t)=m · ψ(xt)] ·max(T − Th, 0). (22)

and

(s+i×t-ext:) Yt = C +

[
12∑

m=1

δ1,m 1M(t)=m + βSt−1 +
12∑

m=1

δ2,m 1M(t)=m · φ(xt)

]
· (T − t) (23)

+

[
12∑

m=1

ρ1m1M(t)=m + ζSt−1 +
12∑

m=1

ρ2m1M(t)=m · ψ(xt)

]
·max(T − Th, 0).

In this model, the slope and level of the Working curve varies across months, but the monthly

curves are still restricted to be affine transforms of each other. To test whether the coefficients

associated with the months are statistically different we apply a Wald test for H0: δ1,m = δ1, ∀m

and δ2,m = δ2, ∀m. The Wald test for the coefficients from these two models confirm that

the curves are significantly different across months. However, the explanatory power of the

extended-seasonal model for the combined proxy is hardly better than that of our proposed

model: the adjusted R2 of the extended-seasonal model is about 2% to 4% higher for most

of cases. Also, this specification seems to be more prone to overfitting, picking up nonsense

effects: plots of Working curves are not as well-behaved as the ‘representative’ curves we obtain

when the seasonal is additive.

A second variant we tried again related to the seasonal dummies. Inspired by the evidence

that the seasonals seem to pick up the effects of systematic sluggishness in Chicago storage

data, we tie the seasonal effect directly to the level of the inventory rather than to the current

short-term convenience yield φ() or to the total convenience yield. That is, we conjecture that
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the current short-term yield φ depends on true storage levels x, which are equal to reported

storage x̂ data corrected for systematic seasonal errors that are multiplicative:

xt = x̂t

12∏
m=1

(1 + δm 1M(t)=m), (24)

and substitute this function into the spline. While intellectually appealing, this model seems

to be too non-linear and complicated to estimate. We get nonsense results and, occasionally,

failure to converge.

We close with two more robustness checks, or tests with slightly different specifications.

First, in Equation (16), all convenience assumedly disappears when the contract expires; that

is, spot-futures convergence is perfect. In reality, however, even at day T the cash position

earns a premium over a futures contract because the seller of the futures contract can postpone

delivery for up to a month, and choose a location and a quality that suits him best. Thus, an

encompassing model, including the expected convenience at expiry denoted by χ(xt), would

be:

Yt,T = C + φ(xt) · (T − t) + ψ(xt) ·max(T − Th, 0) + χ(xt), (25)

possibly enriched with seasonal dummies. The results are not encouraging. The extra four

coefficients are not jointly significant. Relatedly, the nice Working curves φ(xt) we get from the

basic (i×t) model often degenerate into nonsense patterns, presumably because three splines

in the same variable x create too much collinearity. We dropped the idea in later applications.

Lastly we added flow variables, notably changes of inventories. They were not significant.

3 Conclusion

Empirical work on the relation between convenience yield and scarcity has mostly adopted

regressions of the form Y = f(x, S, ...) or Y = f(x, S, ...)+ b (T −1) and has focused on how to

specify f(x, S, ...), not on the impact of time to maturity and time to harvest on scarcity. Our

analytical contribution is that the overall scarcity effect f(x, S....) should be modeled as an

interaction with time to maturity and that, whenever relevant, a similar term should be added

for the part of time to maturity beyond harvest time: Y = φ(x, S, ...) · (T − t) + ψ(x, S, ...) ·

max(T − Th, 0).

In our empirical work we compare the multiplicative version with the traditional model for

three types of scarcity measures: inventory, spot price and both of them. We choose these
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three approaches based on the three competing views from the literature on the determinants

of backwardation. All three agree that backwardation reflects a convenience yield that rises

when scarcity is higher, as proposed by Kaldor (1939) and Working (1948); but the competing

propositions disagree as to how scarcity is best measured. The first view holds that the

convenience yield only depends on time-t inventory. At the other extreme, others propose that

the spot price is sufficient in representing all scarcity indicators, which would then leave no role

for inventory. The more middle-of-the-road proposition predicts that the convenience yield is

driven by a number of proxies for scarcity including the inventory level and time to maturity,

and sometimes the spot price. We also examine whether there is one proposition that always

outperforms the others, or whether each proposition has its merits for a specific condition or

for a special period of the commodity markets. For this purpose, we use nearly 22 years of

weekly data from 1/1986 to 7/2007, for corn, wheat and soybeans.

Our analysis shows that, for all commodities and all periods, the multiplicative specifica-

tion does a better job than the traditional model, whether scarcity is measured by the spot

price, inventory, or both. We also find that, in the quantity-based variants in our model the

traditional “Working curve” is still very present, even though these curves do change depend-

ing on time to maturity and time beyond the harvest, if any. Our results also show that the

government loan program in the middle 1980’s has little impact on the model for convenience

yield. Nor has the changing in the delivery system for corn and soybeans since 2000 had any

clear impact on the explanatory power of Chicago storage data. A new finding that emerges

from the better modeling of the yields is that prices in fact do a better job capturing the yield

than do the storage data, even though the latter get a four-parameter spline to play with while

the price term is just a simple, linear item. In fact, prices do almost as well as the combined

model. This result is useful for hedgers, farmers and practitioners, as it is not obvious what

kind of inventory data one should look for and available stock data seems to have some flaws.
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Appendices

Derivation of the multi-period convenience yield (Equation (12)): Starting from

Equation (8) for time t, t+ 1, we can use Equation (7) to obtain:

Eq
t (S̃t+1) = ft,t+1

= (St + C)(1 + rt,t+1)− Yt,t+1. (26)

This will hold also for the period starting at t + 1, and so on. Take expectations of the time

(t+ 1) until T version, conditional on time-t information, and substitute Equation (9) into it:

Eq
t (S̃t+2) = Eq

t (S̃t+1 + C)(1 + rt+1,t+2)− Eq
t (Ỹt+1,t+2),

= St (1 + rt,t+1)(1 + rt+1,t+2) + C [(1 + rt,t+1)(1 + rt+1,t+2) + (1 + rt+1,t+2)]

−[Yt,t+1(1 + rt+1,t+2) + Eq
t (Ỹt+1,t+2)]. (27)

Repeated application yields

Eq
t (S̃T ) = St ΠT−t

l=1 (1 + rt+l−1,t+l) + C
(
ΠT−t

l=1 (1 + rt+l−1,t+l) + ΠT−t
l=2 (1 + rt+l−1,t+l) + ...+ (1 + rT−1,T )

)
−Eq

t

(
Yt,t+1ΠT−t

l=2 (1 + rt+l−1,t+l) + Ỹt+1,t+2ΠT−t
l=3 (1 + rt+l−1,t+l) + ...+ ỸT−1,T

)
.
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Next we apply Equation (8) on the left-hand side while on the right-hand side we use obvious

results for risk-free term structures, to obtain

ft,T = [St + PV(C, r, t, T )] (1 + rt,T )

−Eq
t

(
Yt,t+1ΠT−t

l=2 (1 + rt+l−1,t+l) + Ỹt+1,t+2ΠT−t
l=3 (1 + rt+l−1,t+l) + ...+ ỸT−1,T

)
.

Comparing to Equation (7) we see that the multiperiod price of convenience is the capitalized

future value of a stream of period-by-period prices of convenience:

Yt,T = EQ
t

(
Yt,t+1ΠT−t

l=2 (1 + rt+l−1,t+l) + Ỹt+1,t+2ΠT−t
l=3 (1 + rt+l−1,t+l) + ...+ ỸT−1,T

)
.

Derivation of Equation (14):

To show this, consider the future value computed from the yield forecasts and the interest

rates. Once that value is known we can always compute the IRR of the operation. Let us

denote the IRR (on a per-period basis) by R. Below, we first write the defining property of

R, we rearrange by factoring out (1 + gt,T )T−t, and use some familiar properties for fixed-rate

operations; lastly, we simplify:

Yt,T = Yt,t+1

[
(1 +Rt,T )T−t + (1 + gt,T )(1 +Rt,T )T−t−1...+ (1 + gt,T )T−t−1(1 +Rt,T ) + (1 + gt,T )T−t

]
= Yt,t+1(1 + gt,T )T−t

[(
1 +Rt,T

1 + gt,T

)T−t

+
(

1 +Rt,T

1 + gt,T

)T−t−1

...+
(

1 +Rt,T

1 + gt,T

)
+ 1

]

= Yt,t+1(1 + gt,T )T−t
(1 +R′

t,T )T−t − 1
R′

t,T

where 1 +R′
t,T := (1 +Rt,T )/(1 + gt,T ),

≈ Yt,t+1(1 + gt,T )T−t
1 + (T − t)R′

t,T − 1
R′

t,T

,

= Yt,t+1(1 + gt,T )T−t · (T − t)

= φ(xt) · (T − t).

where under the strong form of the hypothesis φ(xt) := Yt,t+1(1 + gt,T )T−t = Et(YT−1,T ) is

assumed to be a function of just current scarcity.
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Abstract

This paper proposes that, when modeling for the relation between the convenience
yield and current scarcity, time to maturity and time to harvest should interact with
current scarcity, i.e. the two should enter multiplicatively. In implementing this idea we
also compare three models for current scarcity, based on inventory levels, the spot price or
both. We use data for corn, wheat and soybeans, 1/1986 to 7/2007.

The multiplicative model performs noticeably better than the traditional version, which
only focuses on the measurement for scarcity and not on the nature of the relation between
scarcity, time to maturity, harvest and convenience yield. More importantly, though the
combination of spot price and inventory provides a better proxy for scarcity than either
spot price or inventory separately, the pure spot-price version performs nearly as well as
the spot/inventory combination, and much better than the pure inventory version. This
is useful because inventory data are typically hard to obtain and increasingly noisy. Our
model still exhibits a clear “Working curve”, albeit with slopes changing with time to
maturity and harvest periods.

We can also show that the multiplicative model still works better than the traditional
model even during the government loan program period in the middle 1980’s and that
the program seems to have little impact on modeling the convenience yield. Nor did the
changing in the delivery system for corn and soybeans, as of 2000, have a big impact.
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Introduction and research question

The theory of storage explains normal backwardation1 in commodity prices through the notion

of a convenience yield, that is, the stream of benefits that stem from having the commodity at

hand and that, therefore, accrue to inventory holders but not to holders of futures contracts

(Kaldor, 1939; and Working, 1948,1949). These benefits arise, among others, from increased

production flexibility, from avoided re-ordering costs and from the option of market timing.

The value of the premium should rise fast when markets are tightening, i.e. when inventory

positions are low. We loosely refer to such a situation as one of scarcity. Familiarly, Working

(1948,1949) proposes inventory levels as the variable underlying the convenience yield. At

about the same time, however, Hayek (1945) wrote that producers and consumers just need

the price to take rational decisions; in line with this, Brennan (1958) and others have proposed

the spot price as a sufficient statistic for scarcity, in the sense that there should be a one-to-

one relation between the spot price and the available inventories. Price data could also avoid

measurement issues in inventories, as we argue below. Middle-of-the-roaders, lastly, would

hold that both prices and inventory data contain useful information, and that data other than

price and inventories may also be useful to capture and understand the value of convenience.

One common feature of these propositions is that there is no mention of time to maturity.

In the empirical work, likewise, time to maturity is often ignored or, at best, brought in as an

additional, additive effect. A second feature of both avenues to the modeling of scarcity is that

the occurrence of a harvest, if any, during the life of the contract is deemed to be negligible;

only Fama and French (1987) mention this, and as a substitute to the explicit modeling of

scarcity rather than a consideration to be taken into account when interpreting inventory or

price data. In our view, however, n million bushels m months prior to expiration may mean

something very different depending on whether the next harvest comes during, or right after,

or far after the contract’s life. Thus, prior to empirically studying the roles of inventory and

price data as measures of scarcity we want to give the structure of the equation more thought.

We show analytically that under fairly general circumstances the convenience yield depends

on the product of time to maturity and a function of current scarcity, φ(x, S, ...), involving e.g.

inventories x and the spot price S. In addition, if there is a harvest during the contract’s life,

1Normal backwardation is the premium in the spot price relative to the futures price, after taking out the
effects of storage costs and time value. Another common name is “net convenience yield”, but this is already
more an explanation than a pure label. Yet another name is risk-adjusted spread, which refers to the futures
price as the risk-adjusted expectation.
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a new term comes up involving a product of a similar function of scarcity, ψ(x, S, ...) and the

time to maturity beyond harvest time:

Y (x, S, t;T, Th) = φ(xt, St, ...) · (T − t) + ψ(xt, St, ...) ·max(T − Th, 0), (1)

where Y is the convenience yield, t current time, x the inventory, S the spot price, T the

delivery date, and Th the time of the first harvest following t. As of now we refer to this as the

multiplicative version of the model. The first issue in this paper is whether this model does

better than the traditional versions, Y = φ(xt, St) or Y = φ(xt, St) + b · (T − t). The second

issue is what the best specification is of φ(xt, St): is it a function of just x, or just S, or both,

or possibly extra variables.

On the basis of R2 or either of the standard Information Criterions, our empirical work

supports the multiplicative regression specification against the classical versions: for any choice

of the function φ(x, S) it outperforms the above traditional models, and usually substantially

so. Regarding the issue of the specification of φ(x, S), we find that a function φ(x, S) involving

both a spline in the inverse of inventory and a linear term in S does best. From a practitioner’s

perspective, however, the good news is that a simplified version with just the price, a+ S [b ·

(T − t) + c · max(T − Th, 0)], nearly always does almost as well as the complete version, at

least more recently. This is interesting for hedgers and speculators because it is not obvious

how current inventory data should be measured (e.g. Chicago v Chicago and Toledo) and

because around harvest time the data are demonstrably lagging behind reality and, therefore,

unreliable.

We test these two issues on data between 1/1/1986 and 31/07/2007, for corn, wheat and

soybeans, from the electronic records of the cbot. The major empirical findings have already

been mentioned: the good performance of our multiplicative models compared to the tradi-

tional models and the success of the spot price as the sufficient measure of scarcity in our

new model. Another notable result, however, arises when we compare pure price and quan-

tity models, treating them as alternatives rather than complements. From 1989 to 1999, the

spot price used to capture the backwardation premium quite well, and far better than did

inventory, which means a marked reversal of the situation that prevailed in the days of Kaldor

(pre-1935). As of 2000, in contrast, while the spot price still does better than inventory and

almost as well as the mixed model, the success of all specifications, including the multiplica-

tive one, in capturing the backwardation has dropped. The drop is moderate for wheat, but

more pronounced for corn and soybeans. One possible explanation is the introduction of new

delivery system, as of 2000: delivery is now via a shipping certificate instead of a warehouse
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receipt from either Chicago or Toledo, and the barge that holds the product can be anywhere

in the Illinois or Mississippi rivers. With such a fuzzy product, the meaning of both inventory

and price data is bound to become unclear. But we also have evidence that this is definitely

not the sole explanation: also for wheat, where no change was implemented during the sample

period, explanatory power goes down in the 2000s.

The remainder of this article is structured as follows. Section 1 reviews the standard models

and proposes our new variant. Section 2 provides empirical results. In Section 2.3, we verify

whether the splines obtained from our new model have the shape of “Working-Kaldor curves”

and we present robustness checks. Section 3 concludes.

1 Modeling convenience yield and current scarcity

In this section we review the traditional test equations and derive an alternative model that

introduces time to maturity in a multiplicative way. Strictly speaking, our characterization of

futures prices applies to forward prices only, but the two are now recognized to be virtually

undistinguishable.

We first motivate our study of backwardation. Normal backwardation is defined as:

Yt,T := [St + PV(C, r, t, T )](1 + rt,T )− ft,T , (2)

where t denotes current time (the moment of valuation) and T the moment the futures contract

expires; Yt,T is the backwardation—the premium paid for cash positions; St the current spot

price; PV(C, r, t, T ) the present value of paying the storage cost C over the contract’s life;

rt,T the simple percentage rate of return on a risk-free investment maturing at T ; and ft,T the

current futures price. Interpreting the futures price as a risk-adjusted expectation of the future

spot price, the traditional finding of positive empirical values for Y suggests negative risk-

adjusted returns from holding inventory. This seemingly negative return, Kaldor and Working

argue, is an illusion because the convenience yield, a non-monetary dividend, is ignored.

In this paper we take for granted that backwardation does reflect a convenience aspect,

and we accordingly refer to Y as the convenience yield. It is important to understand the

determinants of the convenience yield because this helps to evaluate the performance and

benefits of commodity futures markets. The performance and the economic benefits of the

futures market to an industry depend on how well the market responds to the fundamentals in

the industry. According to Ward and Dasse (1976), the rationality of the basis (the difference
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between futures price and spot price) is considered as an index of performance because “basis

patterns are the key to commercial utilization of futures contracts” and there is reason for

concern about the market’s performance and its benefits if the determinants of the basis cannot

be explained. Holders of inventory need to understand the price they are paying, implicitly,

for having the inventory at hand rather than just holding a claim on future delivery. Likewise,

the success of hedgers in futures markets depends on how well they understand and forecast

the convenience yield. Understanding the mechanism and the determinants of the convenience

yield helps market participants in making successful production and marketing decisions.

1.1 Traditional Models of the Convenience Yield

Since Kaldor (1939) and Working (1948, 1949), most of the literature tests the Net Convenience

Yield theory by verifying whether Yt,T is related to time-t inventory (e.g. Working, 1948; Telser,

1958; Brennan, 1958; Thompson, 1986; Fama and French, 1987; Yoon and Brorsen, 2002;

Colin and Carter, 2007; and Gorton, Hayashi and Rouwenhorst, 2007). The typical finding

is that there is, in fact, a convex negative relationship (the “Working curve”) between the

inventory level and the convenience yield, as expected under the theory of storage. The most

extreme proposition would be that the convenience yield depends on just current inventory.

This ‘strong’ version of the theory would require that the distribution of future inventory

data depend only on the current level, and likewise for the expected future period-by-period

convenience yields that are presumably related to these future inventories. Testable hypotheses

would include the following: (i) there is a detectable effect from inventories; and (ii) no other

indicator of scarcity plays any significant role. However, there is also no consensus on the nature

of the inventory/convenience-yield relation. While Garcia and Good (1983) and Karlson,

Anderson and Dahl (1993) adopt concise functions like a+ bx or a+ b lnx or a+ bx−1, Telser

(1958), Brennan (1958), Yoon and Brorsen (2002), and Gorton, Hayashi and Rouwenhorst

(2007) take multi-term nonlinear functions. Among these, the spline inventory function applied

by Gorton et al. is the most flexible one, and it captures the time series and term structure of

backwardation better than the others:

(i model:) Yt,T = α+ θ1xt + θ2x
2
t + θ3x

3
t + θ4 1xt>k (xt − k)3. (3)

where xt is inventory, and 1xt>k = 1 if (xt > k), otherwise 1xt>k = 0. This model, augmented

with time to maturity, is one of the standard contenders against our own version.

At the other extreme, one could follow Hayek and argue that the ultimate summary statistic

for scarcity should be the price. In this view, inventory only seems to work because it is
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proxying for price, the omitted variable in the Working curve. Brennan (1959), for instance,

argues that time-t inventory is an exact function of the current spot price; therefore the spot

price should be an equally sufficient statistic for scarcity. Garcia and Good (1983) similarly

assert that the convenience yield of corn is affected by the flow of corn to the market or by

“the rate at which producers deliver corn to the market” and “the rate at which the market

is consuming corn”. They then argue that current cash price is probably the best indicator

of the corn flow to the market because it influences the storage and marketing decisions of

the farmers and thus leads to relative shifts from demand to supply. Thus the traditional

price/convenience yield model is:2

(Spot model:) Yt,T = α+ βSt−1 + εt. (4)

A third group of researchers adopt a more middle-of-the-road view. Some of these still

adhere to the inventory logic but admit that the interpretation of storage data depends on

circumstances. For instance, time to maturity would probably matter too (for instance, Jiang

and Hayenga, 1997), or the timing within the year (Fama and French, 1987). Some authors,

like Jiang and Hayenga (1997) simply add time to maturity to a traditional nonlinear inventory

model as an independent variable: Y = a+φ(x)+ b · (T − t). Augmenting Equation (3) in this

way, we get the third competitor to our own specification:3

(i+t model:) Yt,T = α+ θ1xt + θ2x
2
t + θ3x

3
t + θ4 1xt>k (xt − k)3 + γ · (T − t). (5)

Other middle-of-the-roaders such as Garcia and Good (1983) use the spot price, inventory and

time to maturity as combined measurements for scarcity:

(s+i+t model:) Yt,T = α+ βSt−1 + θ1xt + θ2x
2
t + θ3x

3
t + θ4 1xt>k (xt − k)3 + γ · (T − t). (6)

Brennan (1995), when testing his model, suggests that maybe the convenience yield depends

on the rate of depletion of the inventories rather than their level. In the same spirit, Garcia

and Good (1983) use exports and imports, and similar variables are introduced by Jiang and

Hayenga (1997).

2Garcia and Good (1983) use the current spot price (St) in their (different) model, but we cannot use (St)
as it is already involved in the calculation for the convenience yield, as can be seen from Equation (2); thus to
avoid spurious correlation stemming from microstructural noise in the spot price we use St−1 instead. Garcia
and Good (1983) also point out that the lagged price affects the marketing decision at t − 1 and, therefore,
influences the inventory carried over from t− 1 to t—hence the link with Yt,T .

3In fact, Jiang and Hayenga use either the inverse of inventory or the log of inventory not a spline. We adopt
the spline function because of its flexibility, for instance its capacity to discover non-convexities if these would
be present.
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It is clear that all of these hypotheses mainly focus on the measurement of scarcity not

on the nature of the relation between scarcity and convenience yield. There is no room for

interactions between scarcity and time to maturity nor for any impact of a harvest occurring

during the life of the contract. These considerations lead to the research questions already

listed above: in what form should time to maturity and time to harvest enter the model, and

how does one best measure scarcity.

1.2 A more structured model for convenience yields

Current time is denoted as t, and the futures contract expires at T . We define the cost of

storage (C) in dollar terms per period, not annualized percentages of the spot value, and we

define the effective risk-free rate of return for horizon T − t in the financial markets, rt,T ,

as the simple percentage growth in the value of a one-period risk-free investment. The term

structure of these (un-annualized) rates is denoted by the vector rt. We denote the present

value of paying the storage cost over many periods by PV(C, r, t, T ). Spot and futures prices,

S and ft,T , are observable, and so are the dollar cost of storage per period and the interest

rates. Convenience, measured in dollars, is the part of (minus) the basis f − S that cannot be

explained by storage costs and interest expenses from buying and holding inventory:

Yt,T := [St + PV(C, r, t, T )](1 + rt,T )− ft,T . (7)

In terms of pricing theory, one of the variables on the right-hand side can be pinned down imme-

diately: the futures price is expectation ‘under measure q’—the risk-adjusted expectation—of

the future spot price:

ft,T = Eq
t (S̃T ). (8)

Let’s now turn to the convenience premium. In the presence of a positive price for convenience,

the holders of inventory must be the users of the commodity who need a buffer stock. In fact,

other potential holders, namely users of the commodity who merely want to hedge more distant

price risks or ‘speculators’ (the players with a purely financial interest), would not be willing to

pay the premium for an advantage that has no real value for then. In the case of a representative

holder of inventory, the upper limit on Y is the marginal benefit y from holding inventory this

period. This y is the marginal expected out-of-stock cost X avoided by buying an inventory

Q immediately rather than buying Q − dQ now and postponing the purchase of dQ for one
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period, so y must be non-negative:

Ys,s+1 := (Ss + C)(1 + rs,s+1)− Eq
s(S̃s+1) (9)

e=
∂E(X̃s,s+1)

∂Qs
=: y

≥ 0. (10)

The marginal expected cost of running out of stock during the next period is known at the

beginning of the period, but obviously depends on circumstances.4 We close by linking this

period-by-period price of convenience to the multiperiod one defined in Equation (7). Consider

the futures contract that has one period to go; or, if no such contract is traded, work with the

futures price we would have seen in a complete market, namely, the risk-adjusted expectation

about the next spot price. Starting from Equation (8) for time t, t + 1, we can use Equation

(7) to obtain:

Eq
t (S̃t+1) = ft,t+1

= (St + C)(1 + rt,t+1)− Yt,t+1. (11)

This will hold also for the period starting at t+ 1, and so on. Repeatedly take expectations of

the time (t+ 1) until T version, conditional on time-t until T − 1 information, and substitute

Equation (9) into it. By comparing again to Equation (7), we obtain that the multiperiod

price of convenience is the capitalized future value of a stream of period-by-period prices of

convenience (see the Appendix for a proof):

Yt,T = Eq
t

(
Yt,t+1ΠT−t

l=2 (1 + rt+l−1,t+l) + Ỹt+1,t+2ΠT−t
l=3 (1 + rt+l−1,t+l) + ...+ ỸT−1,T

)
. (12)

From Equation (12), in order to build up a more informative scarcity model that fits

the convenience yield, we need to specify the functional forms for the function Y (xt, T −

t), with x referring to an adequate measure of scarcity. In the strict form of the Kaldor-

Working hypothesis all expected future period-by-period convenience yields would be functions

of current scarcity xt. In addition, we know that the term structure of expected future Ys,s+1

must be smooth unless there is a harvest during the contract’s life. Any unusual jump or

bump in the ex ante Y s would be smoothed out when traders alter their buying plans to

4To further characterize the equilibrium we would also need to specify the supply: what makes holders of
inventory sell how much? But at this stage all what is needed is that the equilibrium period-by-period price of
convenience is non-negative and its future value is uncertain and, plausibly, higher the lower inventories are.
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take advantage of cheap premiums or to avoid excessive ones; the only predictable jumps that

cannot be arbitraged away are those caused by a harvest.

Assuming, initially, no harvest, a functional form suitable for estimation is obtained by

approximating the term structure of expected future period-by-period yields via an exponential,

starting from the spot convenience:

Et(Ỹt+l,t+l+1) ≈ Yt,t+1(1 + gt,T )l, (13)

with both Yt,t+1 and gt,T being functions of current scarcity only. We can show that the

capitalized value, at T , of the future period-by-period convenience yields depends, to a first

approximation, on the expected final level times the time to maturity (see the Appendix for a

proof):

Yt,T ≈ Yt,t+1(1 + gt,T )T−t · (T − t)

= φ(xt, St, ...) · (T − t). (14)

where φ(xt, St, ...) := Yt,t+1(1 + gt,T )T−t or Et(YT−1,T ).

The smooth approximation in Equation (13) is implausible for contracts where there is a

harvest in the interval [t, T ]. If a harvest does occur, say at Th, we would expect the convenience

yield to drop around that time to a lower level Eq
t (YTh,Th+1), and then resume a new growth

path from that new base. In that case,

Yt,T ≈ Yt,t+1(1 + gt,T )Th−t(Th − t) + Eq
t (YTh,Th+1)(1 + gTh,T )T−Th(T − Th),

= Yt,t+1(1 + gt,T )Th−t(T − t)

+
[
Eq

t (YTh,Th+1)(1 + gTh,T )T−Th − Yt,t+1(1 + gt,T )Th−t
]
(T − Th). (15)

In the Kaldor-Working tradition, both expected marginal premiums are functions of current

scarcity only, but we can be more general and specify the model as:

Yt,T = φ(xt, St, ...) · (T − t) + ψ(xt, St, ...) ·max(T − Th, 0). (16)

In versions narrowed down to pure inventory functions, the usual Working-curve pattern

(positive-valued, negative-sloped and convex) should apply to the entire expression and to

φ(x), ψ(x), which is actually a difference between two Working curves, we have no priors.

1.3 Modeling Issues re Current Scarcity

As there is less consensus on the measurement of current scarcity, we apply our multiplicative

model with all three different scarcity proxies: inventory, spot price and both of them (the
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combined proxy).

Measuring scarcity by inventory:

We follow Gorton et al. (2007) and others to model φ(x) and ψ(x) as cubic spline functions.

Departing from the tradition, however, we take the inverse of inventory instead of the inventory.

We prefer inverses on a priori grounds: in this specification, Yt,t+1 automatically goes to

zero when inventory goes to infinity, and to infinity when inventory approaches zero. Not

surprisingly, then, also in terms of ex post goodness of fit this specification does better than a

spline in x. Thus, φ(xt) for instance is operationalized as:

φ(xt, ...) = a1x
−1
t + a2x

−2
t + a3x

−3
t + a4 1x−1

t >k1
(x−1

t − k1)3 + ... . (17)

where x is inventory or normalized inventory and k1 is the ‘knot’ where the third derivative

is allowed to change. (Specifications with more than one knot do not improve performance.)

We define k1 in our empirical model later. 1x−1
t >k1

is equal to unity if x−1
t > k1, otherwise it

equals zero.

The above still ignores the problems with the definition of inventory. Strictly-Chicago

inventory numbers ignore availabilities that may be quite nearby, so that they would be noisy

proxies of a true variable. But numbers for a wider area are probably noisy too since they

ignore the location issues: corn 200 miles away is not the same as corn available in the Chicago

harbor. We propose to go on using Chicago data,5 but we add time dummies that may provide

positive evidence that these Chicago data systematically miss part of the story.

There would, of course, be no problem if Chicago’s stocks were always a constant fraction

of the wider availabilities corrected for location effects. We have strong suspicions that the

Chicago data actually lag behind the true availabilities. Figure 1 shows the monthly average

of the normalized inventory for corn, wheat and soybeans in Chicago from 1/1986 to 8/2008.

Clearly, the graphs indicate that inventories peak in December (corn), in October (wheat) and

in November (soybeans) which is one or two months after the actual harvest times.6

We can expect the price of convenience to fall as soon as the harvest begins, which is before

5It is argued that from the end of the 1970’s, Toledo was added as the main market for grain delivery, thus
inventories in Toledo should be added to Chicago number to study the model. We also test our model with the
total inventories of Chicago and Toledo, but inventories in Chicago still gives us better result.

6Actual harvest time in most of the US and other big producing countries starts from middle of July for
corn, middle of May for wheat and September for soybeans.
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Figure 1: Seasonality of normalized total inventory from 1986 to 2008 in Chicago
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(a) Corn
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(b) Soybeans

-.6

-.4

-.2

.0

.2

.4

.6

JA
N

F
E
B

M
A
R

A
P
R

M
A
Y

JU
N

JU
L

A
U
G

S
E
P

O
C
T

N
O
V

D
E
C

(c) Wheat

Note: Given that inventory data are volatile and have a trend, it is not possible to measure seasonality on the raw inventory data. Instead,
we compute the deviation from the long-term trend ((raw inventory - trend)/trend) and fit monthly dummies to this deviation to find the
seasonality.

reported inventories rise. Misreporting could thus lead to seasonal mistakes in the fitted values.

To test for this we add dummies into the spline inventory model φ(x) and ψ(x):

(i×t model:) Yt = C + [
12∑

m=1

δm 1M(t)=m + φ(xt)] · (T − t)

+[
12∑

m=1

ρm 1M(t)=m + ψ(xt)] ·max(T − Th, 0). (18)

where M(t) = {1, 2, ..., 11, 12, 1, 2, ...} identifies the month that is associated with observa-

tion t. If inventories are under-reported right after the harvest time, then actual convenience

yields should be below the average pattern that the regression is trying to predict on the basis

of the data it has. Thus, if Chicago inventories are late in reflecting the new harvests, we

expect negative regression coefficients for the dummies for the months right after the harvest.

Measuring scarcity by the spot price:

In this case, φ(x, S, ...) and ψ(x, S, ...) simplify to a + bSt−1. It may look unfair to use this

simple affine model while inventories enter via a much more flexible spline, but our finding is

that powers of prices are not significant; and even with the simple specification, the spot price

already beats a spline of x.

One potentially useful feature of prices, if they are set in efficient markets, is that they

should see through any shortcomings in published inventory data. Thus, the dummies that

we inserted into the inventory model to remedy lags in reporting the true availabilities should

now be redundant. Therefore, we test for this by also adding dummies, beside the spot price,
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to get:

(s×t model:) Yt = C +

[
12∑

m=1

δm 1M(t)=m + βSt−1

]
· (T − t)

+

[
12∑

m=1

ρm 1M(t)=m + ζSt−1

]
·max(T − Th, 0). (19)

Measuring scarcity by both inventory and the spot price:

The multiplicative model for combined proxy is:

(s+i×t model:) Yt = C +

[
12∑

m=1

δm 1M(t)=m + βSt−1 + φ(xt)

]
· (T − t)

+

[
12∑

m=1

ρm 1M(t)=m + ζSt−1 + ψ(xt)

]
·max(T − Th, 0). (20)

One problem with the cash prices is that it can differ dramatically even 28 miles away. It

is easily verified that, in the proposed model, the difference between two futures prices has the

same format as the spot-futures premium. This is convenient because, if we use the nearest

futures instead of the cash price, both prices are based on the same location and so avoid

location issued in our analysis.7

We now proceed to the empirical work.

2 Data and main results

2.1 Data and estimation procedures

Data

We use weekly data for corn, wheat and soybeans from 1/1986 to 7/2007 for the March, May,

July, September and December contracts (corn and wheat) and for the January, March, May,

July, August, September and November contracts (soybeans). Data for inventory and storage

cost are from cbot (provided by the University of Illinois). Because deliverable inventories

are for delivery only, this number is a big understatement of actual inventories since they do

not reflect stocks available for delivery that can easily be shipped to official warehouses. Thus,

7We also used cash prices in Illinois region 1 in which Chicago belongs to. However, the cash price models
does worse than the nearest futures prices models. We can provide the results upon request.
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we use the total inventories in selected warehouses8 in Chicago instead of only the deliverable

inventory in our test.9 Since the end of the 1970’s, Toledo was added as a main delivery

market for grain. Therefore, one could argue that Toledo inventories should be added to

Chicago inventories when considering the scarcity in Chicago. We also test our models with

such data and in fact, the total Chicago and Toledo number does worse than the Chicago

number for the period from 1986 to 2001 for corn and soybeans (we only have Toledo data in

this period for corn and soybeans) and from 1986 to 2007 for wheat. The futures price is the

daily settlement price reported at The Chicago Board of Trade (cbot). For the interest rate,

we use the 3-month libor rates.

Model selection and data preprocessing

We compare the multiplicative version with the traditional model for the three different scarcity

proxies in terms of the adjusted-R2, the Akaike information criterion (aic) and the Schwarz

or Bayesian information criterion (bic) to test whether the multiplicative model is better than

the traditional model and to see which variable is the best proxy for scarcity.10 In addition,

we also apply the P-test proposed by Davidson and Mackinnon (1981) (henceforth referred to

as dm test) for simultaneously testing the truth of a model (the base model) against several

non-nested models. dm’s P-test is a standard likelihood-ratio test. When the base model is

tested against the other models, the P statistic is asymptotically Chi-squared distributed with

degrees of freedom equal to the number of alternative non-nested models if the base model is

true. Thus, the lower the P statistic, the more plausible it becomes that the base model is the

true one.

The inventory data and the prices used in the regressions need some pre-processing: quan-

tities are normalized, and prices are deflated. Normalized inventory equals inventory divided

by its Hodrick-Prescott trend. On the basis of eyeball tests we settled for a smoothness pa-

rameter of 8 E+8. To interpret this, one can refer to the standard values for the smoothness

parameter λq in quarterly series: 1,600 for quarterly series with peak-to-peak cycles of short

8These warehouses are selected by the cbot.

9In fact, as a robustness test, we also applied deliverable data, but the result confirms our argument that
the total inventories turns out in a better result than the deliverable one. We can provide the results of this
test upon request.

10Based on our test results, the i+t model as defined in Equation (5) always outperforms the simpler i model.
Thus, we always use the i+t model as our traditional inventory model to compare with the others, instead of
the i model itself.
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duration (roughly 10 years), and 160,000 for cycles of about 30 years or longer. Gorton et

al. (2007), for instance, use 160,000. Correcting for the effect of frequency (we have weekly

instead of quarterly data), our λ is in-between these standards.11

We now turn to the second main regressor, prices. Familiarly, these are potentially unit-

root variables, which of course would create statistical problems. For commodities, the priors

in favor of unit-root characteristics are not as strong as for financial assets. In fact, for the

period from 1/1986 to 7/2007, the Phillips-Perron test statistic rejects the null of unit-root

properties for corn and soybeans (with ps of 2 and at 4%, respectively) but not for wheat (p

= 59.3%). The Augmented Dickey-Fuller (adf) test produces nearly the same results as the

Phillips-Perron test. In the older data though, unit roots are a problem not just for wheat

but for all series. Fortunately, it turns out that simple deflation by the cpi takes care of the

unit root for wheat in this period, and also in all other periods consider here. The Phillips-

Perron test comfortably rejects a unit root: the probabilities for the deflated price series are

1.18% for corn, 6.77% for soybeans and 8.63% for wheat. Deflation makes sense on economic

grounds too: deflating prices implicitly also deflates the convenience yields; so a dollar paid

for convenience is corrected for the near-doubling of the cpi over the entire 1986-2007 period.

As described below, we also do tests over subperiods. In these subperiods, unit roots

are occasionally a problem even with deflated data. When testing whether price peaks are

responsible for some of our results, we discovered that omitting the peak episodes also solved

the nonstationarity problem. As results hardly differ depending on whether the peaks are

included, we show results for the pared-down samples. Details about the starting and ending

dates of the subperiods, the omitted data, and the Phillips-Perron p-values in each period for

each commodity are given in Table 1.

The next issue to be settled is how to use the multiple close prices, one per traded contract,

that are available on any given date. A common approach is to splice together the data into

one long time series, but this means that at any given date just one price is used, even though

there may be five (for corn and wheat) or seven (for soybeans) prices available. We can do

better. Note that, in our multiplicative model, all commodity futures prices, regardless of their

11To translate λq into an equivalent for weekly data, Ravn and Uhlig (2002) recommend multiplication by the
fourth power of the relative frequency. Taking 4 weeks in a month, we would get λw = λq × 124 = λq × 20, 736,
implying an equivalent quarterly smoothness of λq = 38, 500—in-between the 1600 and 160,000 standards.

Eviews’ default option is to multiply by the square of the relative frequency instead of the fourth power. This
provides a much lower smoothness, and led to a trend that totally overfits the series.
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Table 1: Details about periods using for the tests

Periods ‘86-07’ ‘89-07’ ‘89-99’ ‘00-07’
Panel A: Corn

Starting date 1/01/86 1/01/89 1/01/89 1/12/99
Ending date 29/07/07 29/07/07 28/02/99 6/10/06
Deleting period 19/4/96− 1/06/96
No. Observations 1126 969 523 358
Phillips-Perron p-value 0.012 0.021 0.049 0.074

Panel B: Soybeans
Starting date 1/01/86 1/01/89 1/01/89 1/12/99
Ending date 29/07/07 29/07/07 28/02/99 29/07/07
Deleting period 3/12/03− 2/7/04
No. Observations 1126 969 530 369
Phillips-Perron p-value 0.067 0.011 0.022 0.038

Panel C: Wheat
Starting date 1/01/86 1/01/89 1/01/89 7/01/00
Ending date 29/07/07 29/07/07 31/12/99 30/06/06
Deleting period 19, 26/4/96
No. Observations 1126 969 572 339
Phillips-Perron p-value 0.086 0.055 0 0.076

delivery date, are driven by the same term structure of expected one-period convenience yields.

If our assumption holds that this term structure is either sloping upward or downward with,

possibly, a jump at harvest time, then the same function φ() · (T − t) + ψ() · max(T − Th, 0)

should fit all contracts. This implies a clue as to how optimally use the data. Instead of using

a single spliced-together series, we splice together all contracts with the same delivery date

into parallel time series. This gives us five time series for corn and wheat (March, May, June,

September, December) and seven time series for soybeans (January, March, May, June, August,

September, November). Each of these, at any given date, has its own ttm, T − t, and time

beyond harvest, T−Th, but all should still be driven by the same short-term convenience Yt+1,t.

Thus, we apply pooled estimation for the new models with the restriction that the current-

scarcity coefficients in φ() and ψ() are the same for all contracts. For the traditional models,

in contrast, we let the impact of spot prices and time to maturity (ttm) vary across contracts

(cross section specific coefficients). Note also that we do not include the maturity month of

the contract in the analysis because the delivery date is not fixed precisely,12 and because the

12As long as the model is linear in ttm, errors in T − t equally affect all observations, whether ttm is large
or small. But in the non-linear models that follow, errors in T − t disproportionably affect observations near
the end of the contract’s life. For the sake of comparability, we omit the final month everywhere.
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liquidity of a futures contract is very low in its delivery month. All models are estimated using

Pooled Least Squares with fixed effects and correcting for period Heteroscedasticity and Serial

Correlation (Period sur), which corrects for serial correlation and heteroscedasticity in the

residuals of a given cross-section.

2.2 Main results

Table 3 summarizes the R2, aic, bic and P statistic for traditional models (Spot, i+t and

s+i+t) and our multiplicative models (s×t, i×t and s+i×t) for four different periods: (i)

1986-2007 (‘86-07’), (ii) 1989-1999 (‘89-99’), (iii) 2000-2007 (‘00-07’) and (iv) 1989-2007 (‘89-

07’) for corn, soybeans and wheat. The conclusions for each of the criteria are quite similar,

so in the discussion we often just cite R2 figures.

Comparing the results of the periods before and after the year 2000, we find that they

are totally different for corn and soybeans but not for wheat. What exactly changed is not

obvious. It seems safe to separately report our results for the two periods, i.e. prior to and

after 2000, but we return to possible explanations toward the end of this section.

First we compare each multiplicative model to its additive counterpart. The finding is

that in terms of increased R2 and improved aic, bic and P statistics our multiplicative model

outperforms the traditional model for each of the three scarcity proxies and for all commodities

in both periods. Thus, given both the theoretical foundation and the empirical confirmation,

we conclude the multiplicative model makes more sense than the traditional additive one.

Accordingly, most of our diagnoses and comments below focus on the multiplicative versions.

The next issue is the relative performance of the three competing versions of the current-

scarcity measures, i.e. the various ways of specifying φ() and ψ(). Unsurprisingly, the combined

model, with both quantity and price data, does best even after correction for degrees of freedom;

but price always comes in second, and very often as a very close second. Inventory is third,

and usually a distant third. Interestingly (to us), the conclusion regarding the performance of

inventory would have been rather different if we had relied on the traditional, additive models:

then of the six second prizes—two periods, three goods—two would have gone to inventory

rather than zero; and the distance between the runner-up and the leader, the combined model,

would have seemed much more pronounced. Thus, the choice for a multiplicative model matters

not just in terms of performance but also for qualitative conclusions: prices do contain almost

all relevant information, quantities add very little. Theoretically this might be a puzzle, as

price and quantity are closely related endogenous variables (Brennan, 1958), but perhaps the
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Figure 2: Estimated monthly dummies from i×t model

.04

.08

.12

.16

.20

.24

.28

.32

.36

.40

.44

.00

.02

.04

.06

.08

.10

.12

.14

.16

.18

.20

JA
N

FE
B

MA
R

AP
R

MA
Y

JU
N

JU
L

AU
G

SE
P

OC
T

NO
V

DE
C

W heat Corn Soybeans

(a) 1989-1999

.00

.05

.10

.15

.20

.25

.30

.35

.016

.020

.024

.028

.032

.036

.040

.044

JA
N

FE
B

MA
R

AP
R

MA
Y

JU
N

JU
L

AU
G

SE
P

OC
T

NO
V

DE
C

W heat Corn Soybeans

(b) 2000-2007

Note: In these graph, we plot the dummy coefficients that interact with ttm in i×t model (Equation 18). The scales on the left vertical axis
refer to wheat and soybeans, and the numbers on the right refer to corn.

answer is that, in reality, price is measured with less error than is inventory.

With respect to the quality of stock data, we indeed find clear evidence of problems in the

pattern of the dummies: the Chicago inventories are actually lagging behind reality right after

the harvest. After accounting for information from reported inventories, a residual unexplained

seasonality in the convenience yield is clearly observed from the coefficients of the monthly

dummies of our multiplicative model for inventory (i×t) in both periods. From Figure 2, it

is clear that the dummies are systematically correcting the convenience yield downward right

after the harvest time, and upward later in the year. Unexpectedly, however, we observe the

same pattern for coefficients of the monthly dummies in the multiplicative price model (s×t).

This result, together with the fact that the seasonal dummies tend to be significant, remains

a bit of a puzzle, as spot prices ought to have seen through any shortcomings in the inventory

data. Still, remember that prices achieve a lot more than quantities. Thus, from a practical

point of view, the excellent performance of price as a measure of scarcity is convenient: it

allows one to model or predict the convenience yield without needing any inventory data,

where various candidates are available, all with different degrees of shortcomings.

Other factors than sluggish adjustments in the Chicago stock levels might have played a

role too. We explored two more avenues: Chicago data may be too narrow; and the way we

filter or normalize inventory, ie our choice of the Hodrick-Presscott lambda, may have been

too arbitrary. These explanations are not supported. Specifically, the same results hold when

we use the combined inventory of Chicago and Toledo or even the entire Great Lakes data,
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as already mentioned above; and using raw (un-filtered) data gives us the same outcomes,

implying that more modest changes in the Hodrick-Presscott lambda would matter even less.

Subperiod results and the role of delivery options

It is well known that one confounding factor in commodity futures, relative to, say, currency

contracts, is the existence of delivery options. If asked for delivery by the buyer, the seller

can choose his preferred moment during an entire month. There is also a location option:

traditionally, the goods could be provided in either Chicago (on Lake Michigan) or Toledo (on

Lake Erie). Recently, the location option has been substantially widened.

Until the 1999 December contract, corn and soybeans were delivered via a warehouse

receipt or warehouse certificate, whereas as of the 2000 March contract, delivery is via a

shipping certificate. For wheat, a similar change took place as of the September 2008 contract.

With a shipping certificate, deliverable grain is no longer stored at the shipping points; so

this certificate is like a call on cargo that is somewhere being barged down the Illinois and

Mississippi rivers.

The change in the delivery systems could affect the informativeness of both inventory and

price data. First, Chicago warehouse stocks are possibly less relevant since the introduction

of shipping certificates. Second, with the product becoming increasingly fuzzy, even the inter-

pretation of futures prices becomes more difficult. Thus, we expect all models to do worse in

explaining the observed yield.

To test for this, we split the ‘89-07’ period into two sub periods, pre- and post-2000. As of

1/3/1999 the new delivery system has been in vogue, starting with the March 2000 contract;

thus, the ‘1989-1999’ period starts from 1/1989 and ends on 28/2/1999.13 The ‘2000-2007’

period runs from 12/1999 until 7/2007 because from 12/1999 all quoted futures contracts were

2000 contracts for which the new delivery system was effective. Recall the change in delivery

only applies to corn and soy; for wheat it occurred outside the sample period. We nevertheless

apply the same subperiod test to wheat too, by way of control.

The picture that emerges from comparing the two middle panels in Table 3 is unclear,

We do see that the explanatory power of the multiplicative inventory model (using warehouse

13We test for the delivery system effect from 1989 instead from 1986 because we also want to be free from the
government loan program’s effect in this analysis (see below, robustness checks).
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stocks) does go down for corn, from 50 to 40 percent; but we see the same for wheat (from

46 to 39) even though there the delivery system did not change, and we see no drop in R2

for soybeans, where the change was similar to that for corn. For all three goods we also see a

drop in the performance of price-based models and combined versions. For corn and soy this

is consistent with confounding effects from the new delivery system, but the fact that we also

see this for wheat tells us that there must have been other factors at work too.

We can sum up our findings, thus far, as follows: (i) the multiplicative model does much

better than the additive contender; (ii) prices do much better than inventory data—almost

as good, in fact, as the combined models; and (iii) the post-2000 period seems to be harder

to model. To close the discussion of the results from this sample, we discuss some additional

checks.

2.3 Validity and robustness checks

The first diagnostic question is whether inventory models still exhibit the Working-curve shape,

the convex negative relation that Working predicted when plotting convenience against inven-

tory. We then end with a discussion of some additional validity and robustness checks.

Is there still a Working curve?

The fact that the price seems to be more informative than the storage data does not mean that

pure inventory-based data have no merit. In fact, their performance is still quite respectable

in terms of R2 etc. Yet, at this stage we have just considered measures of fit and significance,

not the shape of the yield/inventory relation. A good fit does not automatically mean that the

resulting curve has the Working shape, nor does a relatively poor fit mean that the Working

pattern is absent.

To calculate fitted values for the curve, we keep just the terms in the spline that were

significant. Results from the pared-down estimations are shown in column ‘i×t, pruned’ of

Tables 4. We calculate two different fitted values for the convenience yield of each commodity.

The first fitted function is φ(xt) · (T − t), and is applicable when the contract mature before

the harvest time, while the second fitted function, φ(xt) · (T − t) + ψ(xt) · max(T − Th, 0),

applies when the contract matures after the harvest. The significance of the φ(xt) · (T − t) and

ψ(xt) · (T −Th) terms indicates that the Working curve depends on time to maturity and also,

when relevant, on time to harvest. We show plots of fitted values for the December contract
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Figure 3: Convenience yield-inventory curve for wheat, corn and soybeans 2000 - 2007
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Note: The graphs show the fitted value of the convenience yields based on Equation (18) with the pooled estimation results. The graphs
are split by commodity (corn, wheat or soybeans) for the 2000-2007 period. In one graph, there are two curves: (i) for contracts mature
before the harvest time (without harvest); (ii) for after the harvest time (with harvest).

for corn, November contract for soybeans and September contract for wheat with ttm = 260

days, using the 2000-2007 estimates.14 Because in this period the corn December contract has

T − Th equal 165, the set time to maturity gives 95 days for the period beyond the harvest for

corn. These numbers are 170 for soybeans and 125 for wheat.

Figures 315 show plots of the fitted values against the normalized inventories. The top

curve refers to a situation with a harvest intervening during the contract’s life, the bottom one

has no harvest in-between. Clearly, a “Working curve” can be observed for each commodity in

each of the graph. In addition, the shape of the curve changes for different time to maturities

and when the contract goes through the harvest.

We close with two remarks. First, for very low inventory levels the slope of the curve

anomalously changes slope. Our guess is that these data points reflect under-reported inven-

tories. That is, Chicago stocks may occasionally be quite low relative to availabilities nearby,

so that the yield looks low relative to the reported inventory. Stated differently, if we had

more representative inventory figures, these data points would have been more to the right

and would have fitted in with the regular Working curve. Our second remark is that the plots

are obtained from the pure inventory model. Yet, comparing the coefficients for the inventory

terms in the regressions with and without price data in Tables 4, we recognize that the curves

14Working curves for other contracts and for the period ‘89-99’ are available upon request.

15In these figures, we delete some outliers where the reported normalized inventories are less than 0.05. Prices
in such low inventory conditions are likely to be driven more by underreporting or stock-out effects than by
inventory levels.
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change drastically between the two models, especially for the period ‘1989-1999’ when the spot

price is more informative. Exactly what the residual role of inventories is, once the spot price

has captured its part of the yields, is not clear.

Additional validity and robustness checks

We close with a discussion of issues related to (i) a potentially disturbing outside factor, the

government loan program; (ii) the price spikes in the 1990s; and (iii) the regression specification.

During the mid-1980’s, a government loan provided strong incentives to farmers to store, so

it led to huge stocks in this period. While these stocks were not available to the market, they

were still known to exist. As a result, this event may create a contamination of the convenience

yield. After the 1988 drought, the government sold off all stocks and changed it stockholding

program. Thus, in order to see whether the government loan program has any affect on our

analysis, we also do our test for the period after this program (from 1/1989 to 7/2007). The

results are shown alongside the main results, in the lower panel of Table 3, and do not reveal

any remarkable impact from omitting the potentially confounding years.

Having ditched the idea that the deliver system upset the old relations (see subperiod

results, above), we explored the idea that the power of the spot-price model may very well

depend on its variability in the sample. Notably, there were extreme peaks of the spot price

in the ‘89-99’ period. Logically, during such episodes the futures prices would rise less, as

they reflect future expected prices, so extreme spot prices would tend to go hand in hand with

high backwardation. But we get essentially the same results, with the same good R2s for the

price-based model, whether we include the peak periods into the sample or not.

In terms of regression specification the first question we raise is whether the improved

performance of the m-models is really due to the interaction of time to maturity and scarcity,

or whether it is, instead, mostly ascribable to the seasonal dummies, which are absent from the

standard models? We test for this by estimating the following two incomplete versions of the

m-models, one with just the interactive term and no dummies, and one without the interactive

term but with dummies. For the spot-price model, this would read as:

(Model 1:) Yt = C + βSt−1 · (T − t) + ζSt−1 ·max(T − Th, 0)

(Model 2:) Yt = C +
∑12

m=1 δm 1M(t)=m + βSt−1

(21)

We find that for all commodities and periods, Model 1 always beats Model 2 in terms of R2,
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aic, bic and P statistics.16 This result indicates that the interaction terms are more important

than the seasonal effects.

The second issue relates to the internal validity of our model. The question is whether the

interaction between scarcity and time to maturity succeeds in capturing all time-related effects

in the convenience yield. Specifically, by construction the average residual is zero for each

regression and sample, but zero averages should also be observed in subsets of observations,

regardless of how the subsets are composed. Thus, we sort all observations into buckets defined

by commodity and time to maturity. Specifically, for corn and wheat we have ten buckets per

sample, corresponding to 9, 13, 17, 22, 26, 30, 31, 35, 39, 43 weeks to maturity, and for

soybean we have 13 buckets (4, 8, 9, 13, 17, 22, 26, 30, 35, 39, 43, 44, 48 weeks to maturity).

We retrieve the residuals from the regressions, and compute average residuals for each bucket.

The null is that all these means are equal to each other and to zero. In Table 2, we report the

p-values from the Anova F-test and Welch F-test for the equality of the mean of these error

term series for each commodity from the s+i×t model. The Anova F-test assumes that the

series also have equal variance while the Welch test relaxes this assumption. Table 2 shows that

even the best-performing multiplicative model still misses part of the time-to-maturity effects:

of the six17 standard Anova tests, two reject the hypothesis, and the Welch test identifies an

additional suspect case. Thus, even though the results are not disastrous, there is still room for

improvement. The prime area of potential improvement is probably the theoretical assumption

that the term structure of expected future week-by-week convenience yields is approximately

exponential and that its present value is not very sensitive to the ever-changing discount rate

and slope of that term structure. This is an area that deserves future scrutiny.

We continue the discussion of the 1986-2007 results with a digression on the assumedly

additive effect of the seasonal and some additional checks.

Under the additive specification adopted above, the assumed effect of the seasonal on the

yield is always the same, regardless of the level of inventories or the level of fitted values. We

considered two alternatives. In the first, the unmodelled seasonal factors pertain not directly to

the yield but to the short-term convenience over the current week. That is, the true marginal

convenience consists of a term φ() related to current inventory and/or price plus unidentified

seasonal factors. Depending on whether we also allow for information from the spot price, the

16We can provide this estimation result on request.

17three goods, two subperiods
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Table 2: P-values (%) from the F-test for the equality of the mean error across
time-to-maturity classes

Corn Wheat Soybeans
‘89-99’ ‘00-07’ ‘89-99’ ‘00-07’ ‘89-99’ ‘00-07’

Anova F-test 12.45 18.90 0.38 96.38 2.07 73.62
Welch F-test 33.68 1.25 1.39 34.15 0.00 8.47

Key Residuals are retrieved and put into buckets defined by time to maturity. For corn and wheat we
have ten buckets per sample, corresponding to 9, 13, 17, 22, 26, 30, 31, 35, 39, 43 weeks to maturity,
and for soybean we have 13 buckets (4, 8, 9, 13, 17, 22, 26, 30, 35, 39, 43, 44, 48 weeks to maturity).
The Anova F-test assumes that the series also have equal variance while the Welch test relaxes this
assumption.

extended models become:

(i×t-ext:) Yt = C + [
12∑

m=1

δ1,m 1M(t)=m +
12∑

m=1

δ2,m 1M(t)=m · φ(xt)] · (T − t)

+[
12∑

m=1

ρ1m1M(t)=m +
12∑

m=1

ρ2m1M(t)=m · ψ(xt)] ·max(T − Th, 0). (22)

and

(s+i×t-ext:) Yt = C +

[
12∑

m=1

δ1,m 1M(t)=m + βSt−1 +
12∑

m=1

δ2,m 1M(t)=m · φ(xt)

]
· (T − t) (23)

+

[
12∑

m=1

ρ1m1M(t)=m + ζSt−1 +
12∑

m=1

ρ2m1M(t)=m · ψ(xt)

]
·max(T − Th, 0).

In this model, the slope and level of the Working curve varies across months, but the monthly

curves are still restricted to be affine transforms of each other. To test whether the coefficients

associated with the months are statistically different we apply a Wald test for H0: δ1,m = δ1, ∀m

and δ2,m = δ2, ∀m. The Wald test for the coefficients from these two models confirm that

the curves are significantly different across months. However, the explanatory power of the

extended-seasonal model for the combined proxy is hardly better than that of our proposed

model: the adjusted R2 of the extended-seasonal model is about 2% to 4% higher for most

of cases. Also, this specification seems to be more prone to overfitting, picking up nonsense

effects: plots of Working curves are not as well-behaved as the ‘representative’ curves we obtain

when the seasonal is additive.

A second variant we tried again related to the seasonal dummies. Inspired by the evidence

that the seasonals seem to pick up the effects of systematic sluggishness in Chicago storage

data, we tie the seasonal effect directly to the level of the inventory rather than to the current

short-term convenience yield φ() or to the total convenience yield. That is, we conjecture that
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the current short-term yield φ depends on true storage levels x, which are equal to reported

storage x̂ data corrected for systematic seasonal errors that are multiplicative:

xt = x̂t

12∏
m=1

(1 + δm 1M(t)=m), (24)

and substitute this function into the spline. While intellectually appealing, this model seems

to be too non-linear and complicated to estimate. We get nonsense results and, occasionally,

failure to converge.

We close with two more robustness checks, or tests with slightly different specifications.

First, in Equation (16), all convenience assumedly disappears when the contract expires; that

is, spot-futures convergence is perfect. In reality, however, even at day T the cash position

earns a premium over a futures contract because the seller of the futures contract can postpone

delivery for up to a month, and choose a location and a quality that suits him best. Thus, an

encompassing model, including the expected convenience at expiry denoted by χ(xt), would

be:

Yt,T = C + φ(xt) · (T − t) + ψ(xt) ·max(T − Th, 0) + χ(xt), (25)

possibly enriched with seasonal dummies. The results are not encouraging. The extra four

coefficients are not jointly significant. Relatedly, the nice Working curves φ(xt) we get from the

basic (i×t) model often degenerate into nonsense patterns, presumably because three splines

in the same variable x create too much collinearity. We dropped the idea in later applications.

Lastly we added flow variables, notably changes of inventories. They were not significant.

3 Conclusion

Empirical work on the relation between convenience yield and scarcity has mostly adopted

regressions of the form Y = f(x, S, ...) or Y = f(x, S, ...)+ b (T −1) and has focused on how to

specify f(x, S, ...), not on the impact of time to maturity and time to harvest on scarcity. Our

analytical contribution is that the overall scarcity effect f(x, S....) should be modeled as an

interaction with time to maturity and that, whenever relevant, a similar term should be added

for the part of time to maturity beyond harvest time: Y = φ(x, S, ...) · (T − t) + ψ(x, S, ...) ·

max(T − Th, 0).

In our empirical work we compare the multiplicative version with the traditional model for

three types of scarcity measures: inventory, spot price and both of them. We choose these
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three approaches based on the three competing views from the literature on the determinants

of backwardation. All three agree that backwardation reflects a convenience yield that rises

when scarcity is higher, as proposed by Kaldor (1939) and Working (1948); but the competing

propositions disagree as to how scarcity is best measured. The first view holds that the

convenience yield only depends on time-t inventory. At the other extreme, others propose that

the spot price is sufficient in representing all scarcity indicators, which would then leave no role

for inventory. The more middle-of-the-road proposition predicts that the convenience yield is

driven by a number of proxies for scarcity including the inventory level and time to maturity,

and sometimes the spot price. We also examine whether there is one proposition that always

outperforms the others, or whether each proposition has its merits for a specific condition or

for a special period of the commodity markets. For this purpose, we use nearly 22 years of

weekly data from 1/1986 to 7/2007, for corn, wheat and soybeans.

Our analysis shows that, for all commodities and all periods, the multiplicative specifica-

tion does a better job than the traditional model, whether scarcity is measured by the spot

price, inventory, or both. We also find that, in the quantity-based variants in our model the

traditional “Working curve” is still very present, even though these curves do change depend-

ing on time to maturity and time beyond the harvest, if any. Our results also show that the

government loan program in the middle 1980’s has little impact on the model for convenience

yield. Nor has the changing in the delivery system for corn and soybeans since 2000 had any

clear impact on the explanatory power of Chicago storage data. A new finding that emerges

from the better modeling of the yields is that prices in fact do a better job capturing the yield

than do the storage data, even though the latter get a four-parameter spline to play with while

the price term is just a simple, linear item. In fact, prices do almost as well as the combined

model. This result is useful for hedgers, farmers and practitioners, as it is not obvious what

kind of inventory data one should look for and available stock data seems to have some flaws.
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Appendices

Derivation of the multi-period convenience yield (Equation (12)): Starting from

Equation (8) for time t, t+ 1, we can use Equation (7) to obtain:

Eq
t (S̃t+1) = ft,t+1

= (St + C)(1 + rt,t+1)− Yt,t+1. (26)

This will hold also for the period starting at t + 1, and so on. Take expectations of the time

(t+ 1) until T version, conditional on time-t information, and substitute Equation (9) into it:

Eq
t (S̃t+2) = Eq

t (S̃t+1 + C)(1 + rt+1,t+2)− Eq
t (Ỹt+1,t+2),

= St (1 + rt,t+1)(1 + rt+1,t+2) + C [(1 + rt,t+1)(1 + rt+1,t+2) + (1 + rt+1,t+2)]

−[Yt,t+1(1 + rt+1,t+2) + Eq
t (Ỹt+1,t+2)]. (27)

Repeated application yields

Eq
t (S̃T ) = St ΠT−t

l=1 (1 + rt+l−1,t+l) + C
(
ΠT−t

l=1 (1 + rt+l−1,t+l) + ΠT−t
l=2 (1 + rt+l−1,t+l) + ...+ (1 + rT−1,T )

)
−Eq

t

(
Yt,t+1ΠT−t

l=2 (1 + rt+l−1,t+l) + Ỹt+1,t+2ΠT−t
l=3 (1 + rt+l−1,t+l) + ...+ ỸT−1,T

)
.
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Next we apply Equation (8) on the left-hand side while on the right-hand side we use obvious

results for risk-free term structures, to obtain

ft,T = [St + PV(C, r, t, T )] (1 + rt,T )

−Eq
t

(
Yt,t+1ΠT−t

l=2 (1 + rt+l−1,t+l) + Ỹt+1,t+2ΠT−t
l=3 (1 + rt+l−1,t+l) + ...+ ỸT−1,T

)
.

Comparing to Equation (7) we see that the multiperiod price of convenience is the capitalized

future value of a stream of period-by-period prices of convenience:

Yt,T = EQ
t

(
Yt,t+1ΠT−t

l=2 (1 + rt+l−1,t+l) + Ỹt+1,t+2ΠT−t
l=3 (1 + rt+l−1,t+l) + ...+ ỸT−1,T

)
.

Derivation of Equation (14):

To show this, consider the future value computed from the yield forecasts and the interest

rates. Once that value is known we can always compute the IRR of the operation. Let us

denote the IRR (on a per-period basis) by R. Below, we first write the defining property of

R, we rearrange by factoring out (1 + gt,T )T−t, and use some familiar properties for fixed-rate

operations; lastly, we simplify:

Yt,T = Yt,t+1

[
(1 +Rt,T )T−t + (1 + gt,T )(1 +Rt,T )T−t−1...+ (1 + gt,T )T−t−1(1 +Rt,T ) + (1 + gt,T )T−t

]
= Yt,t+1(1 + gt,T )T−t

[(
1 +Rt,T

1 + gt,T

)T−t

+
(

1 +Rt,T

1 + gt,T

)T−t−1

...+
(

1 +Rt,T

1 + gt,T

)
+ 1

]

= Yt,t+1(1 + gt,T )T−t
(1 +R′

t,T )T−t − 1
R′

t,T

where 1 +R′
t,T := (1 +Rt,T )/(1 + gt,T ),

≈ Yt,t+1(1 + gt,T )T−t
1 + (T − t)R′

t,T − 1
R′

t,T

,

= Yt,t+1(1 + gt,T )T−t · (T − t)

= φ(xt) · (T − t).

where under the strong form of the hypothesis φ(xt) := Yt,t+1(1 + gt,T )T−t = Et(YT−1,T ) is

assumed to be a function of just current scarcity.



Remodeling the Working-Kaldor Curve 29
T
ab

le
3:

C
om

pa
ri

so
ns

of
pr

op
os

ed
m

od
el

s
to

tr
ad

it
io

na
l
m

od
el

s
fo

r
co

rn
,
so

yb
ea

ns
an

d
w

he
at

fo
r

th
e

re
ce

nt
sa

m
pl

e
19

86
-2

00
7

P
a
n
e
l
A

:
C

o
rn

P
a
n
e
l
B

:
S
o
y
b
e
a
n
s

P
a
n
e
l
C

:
W

h
e
a
t

T
ra

d
it

io
n
a
l
m

o
d
el

s
P

ro
p
o
se

d
m

o
d
el

s
T
ra

d
it

io
n
a
l
m

o
d
el

s
P

ro
p
o
se

d
m

o
d
el

s
T
ra

d
it
io

n
a
l
m

o
d
el

s
P

ro
p
o
se

d
m

o
d
el

s

S
p
o
t

i+
t

s+
i+

t
s×

t
i×

t
s+

i×
t

S
p
o
t

i+
t

s+
i+

t
s×

t
i×

t
s+

i×
t

S
p
o
t

i+
t

s+
i+

t
s×

t
i×

t
s+

i×
t

F
u
ll

sa
m

p
le

,
1
9
8
6
-2

0
0
7

R
2
(%

)
5
2
.3

8
3
2
.5

9
7
3
.6

5
7
8
.2

1
3
2
.9

1
7
8
.3

1
3
0
.6

5
3
0
.9

5
5
8
.2

1
5
8
.2

8
2
8
.1

2
6
0
.4

0
4
8
.7

4
2
9
.4

4
7
0
.5

5
7
5
.7

9
3
0
.5

8
7
6
.0

2
A

I
C

7
.4

8
8

7
.8

3
8

6
.8

9
8

6
.7

1
0

7
.8

3
7

6
.7

0
7

8
.9

0
2

8
.8

9
6

8
.3

9
5

8
.3

9
7

8
.9

3
4

8
.3

4
3

8
.1

3
8

8
.4

6
1

7
.5

8
6

7
.3

9
1

8
.4

4
9

7
.3

8
4

B
I
C

7
.5

0
2

7
.8

5
8

6
.9

2
5

6
.7

4
9

7
.8

8
4

6
.7

5
7

8
.9

1
6

8
.9

1
4

8
.4

2
0

8
.4

2
9

8
.9

7
7

8
.3

8
4

8
.1

5
2

8
.4

8
1

7
.6

1
3

7
.4

3
0

8
.4

9
6

7
.4

3
4

P
-s

ta
t

6
6
4
4

1
0
4
9
6

1
7
0
6

3
6
2

1
0
2
9
9

3
3
1

6
8
3
0

6
9
4
4

1
8
6
2

1
4
6
3

7
4
0
0

1
0
6
5

6
6
2
4

1
0
2
8
4

1
9
2
5

4
8
5

9
5
9
9

4
3
6

D
e
li
v
e
ry

sy
st

e
m

1
(w

a
re

h
o
u
se

re
c
e
ip

ts
):

1
9
8
9
-1

9
9
9

R
2
(%

)
5
2
.1

2
4
9
.8

1
8
5
.4

1
8
7
.2

3
5
0
.0

7
8
8
.5

0
4
5
.6

9
3
5
.0

5
7
1
.5

1
7
1
.4

7
3
8
.7

5
7
5
.2

6
4
8
.7

2
4
1
.6

6
7
7
.0

5
8
3
.6

6
4
5
.8

1
8
4
.2

0
A

I
C

7
.4

9
6

7
.5

4
5

6
.3

1
2

6
.1

8
3

7
.5

4
9

6
.0

8
2

8
.5

8
7

8
.7

6
1

7
.9

4
0

7
.9

4
8

8
.7

0
9

7
.8

0
3

8
.1

5
5

8
.2

8
6

7
.3

5
6

7
.0

1
9

8
.2

2
1

6
.9

8
9

B
I
C

7
.5

2
4

7
.5

8
4

6
.3

6
4

6
.2

5
7

7
.6

4
0

6
.1

7
8

8
.6

1
3

8
.7

9
6

7
.9

8
8

8
.0

0
9

8
.7

8
2

7
.8

8
0

8
.1

8
0

8
.3

2
2

7
.4

0
3

7
.0

8
6

8
.3

0
4

7
.0

7
7

P
-s

ta
t

9
7
9
7

9
4
0
4

1
6
3
4

8
7
1

9
2
4
0

5
7
2

5
0
2
4

6
4
7
5

1
2
0
9

1
1
5
5

6
1
1
4

6
0
4

7
5
3
4

8
8
9
8

2
2
0
4

5
8
9

7
0
4
0

4
8
6

D
e
li
v
e
ry

sy
st

e
m

2
(s

h
ip

p
in

g
c
e
rt

ifi
c
a
te

):
2
0
0
0
-2

0
0
7

R
2
(%

)
2
9
.9

6
3
8
.2

1
6
5
.2

7
7
1
.6

1
4
0
.5

9
7
2
.5

9
1
9
.3

0
3
6
.5

6
5
5
.9

5
5
2
.2

4
3
8
.2

7
6
4
.2

0
4
8
.2

7
3
8
.4

5
7
0
.3

8
7
5
.1

8
3
8
.5

0
7
6
.8

0
A

I
C

5
.9

9
5

5
.8

7
3

5
.3

0
0

5
.1

0
4

5
.8

4
6

5
.0

7
4

8
.1

6
6

7
.9

2
7

7
.5

6
6

7
.6

5
0

7
.9

0
9

7
.3

6
5

6
.8

2
0

6
.9

9
7

6
.2

6
9

6
.0

9
8

7
.0

0
9

6
.0

3
6

B
I
C

6
.0

3
2

5
.9

2
4

5
.3

7
0

5
.2

0
3

5
.9

6
8

5
.2

0
3

8
.2

0
2

7
.9

7
4

7
.6

3
0

7
.7

3
2

8
.0

0
7

7
.4

6
8

6
.8

5
8

7
.0

5
1

6
.3

4
2

6
.2

0
2

7
.1

3
2

6
.1

6
6

P
-s

ta
t

2
3
8
7

1
8
7
1

4
6
5

7
9

1
6
7
7

2
1

3
3
4
8

2
4
3
3

1
0
4
1

1
2
5
3

2
3
2
3

4
3
3

2
6
0
5

2
8
6
3

8
3
9

3
2
1

2
7
2
7

2
0
5

S
a
m

p
le

w
it

h
o
u
t

lo
a
n
-p

ro
g
ra

m
y
e
a
rs

:
1
9
8
9
-2

0
0
7

R
2
(%

)
5
9
.2

2
3
2
.0

1
7
8
.0

0
8
2
.0

7
3
3
.5

9
8
2
.3

1
3
7
.2

3
3
0
.5

9
6
1
.3

1
5
8
.5

7
2
6
.1

3
6
0
.7

6
5
4
.0

3
3
1
.4

9
7
5
.1

4
8
1
.5

1
3
2
.5

9
8
2
.2

7
A

I
C

7
.3

0
2

7
.8

1
4

6
.6

8
7

6
.4

8
4

7
.7

9
5

6
.4

7
3

8
.8

0
2

8
.9

0
0

8
.3

1
7

8
.3

8
9

8
.9

6
6

8
.3

3
3

7
.8

8
3

8
.2

8
3

7
.2

7
1

6
.9

7
7

8
.2

7
2

6
.9

3
7

B
I
C

7
.3

1
8

7
.8

3
7

6
.6

9
8

6
.5

2
8

7
.8

4
9

6
.5

3
0

8
.8

1
8

8
.9

2
0

8
.3

4
5

8
.4

2
6

9
.0

0
9

8
.3

7
9

7
.8

9
9

8
.3

0
6

7
.3

0
2

7
.0

2
0

8
.3

2
5

6
.9

9
3

P
-s

ta
t

6
7
7
9

1
2
5
4
2

1
8
9
4

4
8
4

1
2
0
4
6

4
1
8

5
4
2
9

6
7
8
0

1
4
3
7

1
7
0
8

7
5
9
7

1
3
3
2

9
1
2
0

1
5
3
4
6

3
3
1
5

9
1
2

1
3
2
5
2

7
0
5

N
o
te

:
1
.

T
h
e

ta
b
le

su
m

m
a
ri

z
e
s

re
su

lt
s

o
n

c
o
n
v
e
n
ie

n
c
e

y
ie

ld
s

fr
o
m

si
x

m
o
d
e
ls

:
th

e
tr

a
d
it

io
n
a
l
m

o
d
e
ls

fo
r

sp
o
t

p
ri

c
e

(S
p
o
t)

,
fo

r
in

v
e
n
to

ry
/
ti

m
e
-t

o
-m

a
tu

ri
ty

a
d
d
it

iv
e

(i
+

t
),

fo
r

sp
o
t

p
ri

c
e

a
n
d

in
v
e
n
to

ry
(s

+
i+

t
)

a
n
d

th
e

m
u
lt

ip
li
c
a
ti

v
e

m
o
d
e
ls

fo
r

sp
o
t

p
ri

c
e

(s
×

t
),

fo
r

in
v
e
n
to

ry
/
ti

m
e
-t

o
-m

a
tu

ri
ty

a
d
d
it

iv
e

(i
×

t
),

fo
r

sp
o
t

p
ri

c
e

a
n
d

in
v
e
n
to

ry
(s

+
i×

t
).

(S
p
o
t)

:
Y

t
,T

=
α

+
β

S
t
−

1
,

(i
+

t
)

:
Y

t
,T

=
α

+
θ
1
x

t
+

θ
2
x
2 t

+
θ
3
x
3 t

+
θ
4
1

x
t
>

k
(x

t
−

k
)3

+
γ

(T
−

t)
,

w
it

h
x

=
n
o
rm

in
v
;

(s
+

i+
t
)

:
Y

t
,T

=
α

+
β

S
t
−

1
+

θ
1
x

t
+

θ
2
x
2 t

+
θ
3
x
3 t

+
θ
4
1

x
t
>

k
(x

t
−

k
)3

+
γ

(T
−

t)
,

w
it

h
x

=
n
o
rm

in
v
;

(s
×

t
)

:
Y

t
,T

=
α

+
(∑ m

δ
m

1
M

(t
)=

m
+

β
S

t
−

1
)
·(

T
−

t)
+

(∑ m

ρ
m

1
M

(t
)=

m
+

ζ
S

t
−

1
)
·m

a
x
(T

−
T

h
,
0
),

(i
×

t
)

:
Y

t
,T

=
α

+
(∑ m

δ
m

1
M

(t
)=

m
+

f
(x

t
))
·(

T
−

t)
+

(∑ m

ρ
m

1
M

(t
)=

m
+

g
(x

t
))
·m

a
x
(T

−
T

h
,
0
),

w
it

h
x

=
1
/
n
o
rm

in
v
,

(s
+

i×
t
)

:
Y

t
,T

=
α

+
(∑ m

δ
m

1
M

(t
)=

m
+

β
S

t
−

1
+

f
(x

t
))
·(

T
−

t)
+

(∑ m

ρ
m

1
M

(t
)=

m
+

ζ
S

t
−

1
+

g
(x

t
))
·m

a
x
(T

−
T

h
,
0
),

w
it

h
x

=
1
/
n
o
rm

in
v
.

n
o
r
m

in
v

is
n
o
rm

a
li
z
e
d

in
v
e
n
to

ry
w

it
h

lo
n
g
-t

e
rm

tr
e
n
d

o
f

m
o
re

th
a
n

2
0

y
e
a
rs

(s
m

o
o
th

n
e
ss

p
a
ra

m
e
te

r
o
f

0
.8

b
).

1
x

>
k
1

=
1

if
n

o
r
m

in
v

>
k
1
,

o
th

e
rw

is
e

1
x

>
k
1

=
0

fo
r

i+
t

a
n
d

s+
i+

t
.

1
x

>
k
2

=
1

if

1
/
n
o
rm

in
v

>
k
2
,
o
th

e
rw

is
e

1
x

>
k
2

=
0

fo
r

s×
t
,

i×
t
,
a
n
d

s+
i×

t
.

2
.

In
th

is
ta

b
le

,
k
1

=
2
,
1
.9

a
n
d

k
2

=
1
0
,
1
2

fo
r

c
o
rn

a
n
d

so
y
b
e
a
n
s

c
o
n
se

c
u
ti

v
e
ly

fo
r

b
o
th

p
e
ri

o
d
s.

F
o
r

w
h
e
a
t,

k
1

=
2
.2

,
k
2

=
6
0

fo
r

th
e

‘8
9
-9

9
’
p
e
ri

o
d
;
a
n
d

1
.9

,
4
5

fo
r

th
e

‘0
0
-0

7
’
p
e
ri

o
d
.

3
.

F
o
r

c
o
rn

,
th

e
h
a
rv

e
st

ti
m

e
in

th
is

p
e
ri

o
d

st
a
rt

s
fr

o
m

1
5

J
u
ly

,
th

u
s

T
−

T
h

=
2
5
5

fo
r

th
e

M
a
rc

h
,
3
1
5

fo
r

th
e

M
a
y
,
3
7
5

fo
r

th
e

J
u
ly

,
7
5

fo
r

th
e

S
e
p
te

m
b
e
r

a
n
d

1
6
5

fo
r

th
e

D
e
c
e
m

b
e
r

c
o
n
tr

a
c
t.

F
o
r

so
y
b
e
a
n
s,

th
e

h
a
rv

e
st

ti
m

e
in

th
is

p
e
ri

o
d

st
a
rt

s
fr

o
m

1
S
e
p
te

m
b
e
r,

th
u
s

T
−

T
h

=
1
5
0

fo
r

th
e

J
a
n
u
a
ry

,
2
1
0

fo
r

th
e

M
a
rc

h
,
2
7
0

fo
r

th
e

M
a
y
,
3
3
0

fo
r

th
e

J
u
ly

,
3
6
0

fo
r

th
e

A
u
g
u
st

,
3
0

fo
r

th
e

S
e
p
te

m
b
e
r

a
n
d

9
0

fo
r

th
e

N
o
v
e
m

b
e
r

c
o
n
tr

a
c
t.

F
o
r

w
h
e
a
t,

th
e

h
a
rv

e
st

ti
m

e
in

th
is

p
e
ri

o
d

st
a
rt

s
fr

o
m

1
5

M
a
y
,

th
u
s

T
−

T
h

=
3
1
5

fo
r

th
e

M
a
rc

h
,

3
7
5

fo
r

th
e

M
a
y
,

7
5

fo
r

th
e

J
u
ly

,
1
3
5

fo
r

th
e

S
e
p
te

m
b
e
r

a
n
d

2
2
5

fo
r

th
e

D
e
c
e
m

b
e
r

c
o
n
tr

a
c
t.

4
.

P
-s

ta
t

is
th

e
P

te
st

st
a
ti

st
ic

b
a
se

d
o
n

th
e

d
m

te
st

to
si

m
u
lt

a
n
e
o
u
sl

y
c
o
m

p
a
re

o
n
e

m
o
d
e
l
w

it
h

o
th

e
r

n
o
n
-n

e
st

e
d

m
o
d
e
ls

.
∗∗
∗
,
∗∗

a
n
d
∗ i
n
d
ic

a
te

th
e

si
g
n
ifi

c
a
n
t

c
o
e
ffi

c
ie

n
ts

a
t

1
%

,
5
%

a
n
d

1
0
%

c
o
n
se

c
u
ti

v
e
ly

.



Remodeling the Working-Kaldor Curve 30
T
ab

le
4:

E
st

im
at

io
n

re
su

lt
s

fo
r

co
rn

,
w

he
at

an
d

so
yb

ea
ns

fo
r

th
e

pe
ri

od
s

‘8
9-

99
’
an

d
‘0

0-
07

’

P
a
n
e
l
A

:
C

o
rn

P
a
n
e
l
B

:
S
o
y
b
e
a
n
s

P
a
n
e
l
C

:
W

h
e
a
t

‘8
9
-9

9
’

‘0
0
-0

7
’

‘8
9
-9

9
’

‘0
0
-0

7
’

‘8
9
-9

9
’

‘0
0
-0

7
’

s+
i×

t
i×

t
,
p
ru

n
e
d

s+
i×

t
i×

t
,
p
ru

n
e
d

s+
i×

t
i×

t
,
p
ru

n
e
d

s+
i×

t
i×

t
,
p
ru

n
e
d

s+
i×

t
i×

t
,
p
ru

n
e
d

s+
i×

t
i×

t
,
p
ru

n
e
d

A
lp

h
a
−

j
a

n
2
.2

7
1
.9

0
−

0
.0

8
0
.1

0
A

lp
h

a
−

m
a

r
−

1
.1

4
−

1
.1

9
−

0
.3

4
−

0
.3

3
−

1
.6

9
−

2
.1

4
−

1
.8

5
−

1
.6

3
−

5
.7

2
−

5
.7

4
−

4
.2

6
−

4
.2

8
A

lp
h

a
−

m
a

y
−

2
.2

2
−

2
.1

0
−

0
.0

3
−

0
.0

3
−

3
.4

9
−

3
.7

5
−

1
.5

0
−

1
.3

8
−

1
.2

0
−

1
.2

8
−

1
.1

0
−

1
.2

4
A

lp
h

a
−

j
u

l
−

1
.4

8
−

1
.5

4
0
.6

3
0
.6

2
−

4
.7

3
−

4
.5

4
−

1
.9

4
−

2
.0

5
7
.4

2
7
.4

4
5
.4

3
5
.4

7
A

lp
h

a
−

a
u

g
−

3
.2

0
−

2
.7

1
−

0
.0

6
−

0
.3

1
A

lp
h

a
−

s
e
p

2
.0

0
2
.0

1
−

0
.0

4
−

0
.0

4
3
.5

2
3
.9

4
2
.3

2
2
.1

3
2
.9

1
2
.9

6
2
.1

9
2
.2

6
A

lp
h

a
−

n
o
v

7
.2

9
7
.1

7
2
.9

1
2
.9

8
A

lp
h

a
−

d
e
c

2
.8

4
2
.8

2
−

0
.2

8
−

0
.2

8
−

4
.4

1
−

4
.3

7
−

2
.9

2
−

2
.8

6
(T

−
t)
∗

s
p
o
t

0
.0

0
2
∗∗
∗

0
.0

0
1
∗∗
∗

0
.0

0
1
∗∗
∗

0
.0

0
1
∗∗
∗

0
.0

0
1
∗∗
∗

0
.0

0
1
∗∗
∗

(T
−

T
h
)
∗

s
p
o
t

0
.0

0
1
∗∗
∗

3
.1

e
−

4
∗∗

0
.0

0
1
∗∗
∗

−
6
.3

e
−

4
∗∗

0
.0

0
1
∗∗

0
.0

0
1
∗∗

(T
−

t)
∗

x
1

0
.0

1
5
∗∗
∗

0
.0

2
9
∗∗
∗

−
0
.0

0
1

0
.0

1
4
∗∗
∗

0
.0

0
8
∗∗
∗

0
.0

0
9
∗∗
∗

0
.0

0
3
∗∗
∗

6
.1

e
−

4
∗∗
∗

0
.0

1
3
∗∗
∗

0
.0

0
1
∗∗
∗

0
.0

0
5
∗∗
∗

(T
−

t)
∗

x
2

−
0
.0

0
2
∗∗
∗

−
0
.0

0
3
∗∗
∗

6
.9

e
−

4
4
.5

e
−

4
∗∗
∗

−
0
.0

0
1
∗∗
∗
−

4
.0

e
−

4
∗∗
∗

−
0
.0

0
1
∗∗
∗

−
1
.7

e
−

5
−

4
.5

e
−

4
∗∗
∗

−
2
.0

e
−

5
∗∗
∗
−

8
.7

e
−

5
∗∗
∗

(T
−

t)
∗

x
3

6
.0

e
−

5
∗∗
∗

1
.2

e
−

4
∗∗
∗

−
4
.1

e
−

5
−

2
.6

e
−

5
∗∗
∗

4
.2

e
−

5
∗∗
∗

4
.2

e
−

6
∗∗
∗

2
.2

e
−

5
∗∗
∗
−

2
.6

e
−

6
∗∗
∗

1
.1

e
−

7
3
.8

e
−

6
∗∗
∗

1
.1

e
−

7
∗∗
∗

4
.8

e
−

7
∗∗
∗

(T
−

t)
∗

x
4

−
6
.0

e
−

5
∗∗
∗
−

1
.2

e
−

4
∗∗
∗

1
.0

e
−

4
−

4
.3

e
−

5
∗∗
∗

−
2
.2

e
−

5
∗∗
∗

3
.4

e
−

6
∗∗
∗

−
5
.4

e
−

8
−

9
.6

e
−

6
∗∗
∗

−
1
.1

e
−

7
∗∗
∗
−

4
.8

e
−

7
∗∗
∗

(T
−

T
h
)
∗

x
1

−
0
.0

0
9
∗∗
∗

−
0
.0

3
8
∗∗
∗

0
.0

4
9
∗∗
∗

0
.0

2
9
∗∗
∗

0
.0

5
4
∗∗
∗

0
.0

6
0
∗∗
∗

0
.0

6
3
∗∗
∗

0
.0

1
4
∗∗
∗

0
.0

2
3
∗∗
∗

0
.0

0
8
∗∗
∗

0
.0

1
3
∗∗
∗

(T
−

T
h
)
∗

x
2

0
.0

0
1
∗

−
1
.5

e
−

5
∗∗
∗

0
.0

1
2
∗∗
∗

−
0
.0

0
8
∗∗
∗

−
0
.0

0
3
∗∗

−
0
.0

0
6
∗∗
∗

−
0
.0

0
7
∗∗
∗

−
0
.0

0
8
∗∗
∗

−
0
.0

0
1
∗∗
∗

−
0
.0

0
2
∗∗
∗

−
1
.9

e
−

4
∗∗
∗
−

3
.3

e
−

4
∗∗
∗

(T
−

T
h
)
∗

x
3

−
3
.4

e
−

5
∗

−
7
.4

e
−

4
∗∗
∗

3
.9

e
−

4
∗∗
∗

7
.1

e
−

5
∗∗

1
.9

e
−

4
∗∗
∗

2
.2

e
−

4
∗∗
∗

2
.6

e
−

4
∗∗
∗

9
.4

e
−

6
∗∗
∗

2
.6

e
−

5
∗∗
∗

1
.1

e
−

6
∗∗
∗

1
.9

e
−

6
∗∗
∗

(T
−

T
h
)
∗

x
4

3
.5

e
−

5
∗

0
.0

0
3
∗∗
∗
−

9
.9

e
−

4
∗

−
7
.1

e
−

5
∗∗

−
2
.0

e
−

4
∗∗
∗

−
2
.3

e
−

4
∗∗
∗
−

2
.8

e
−

4
∗∗
∗

−
2
.5

e
−

5
∗∗
∗
−

6
.3

e
−

5
∗∗
∗

−
1
.1

e
−

6
∗∗
∗
−

1
.9

e
−

6
∗∗
∗

(T
−

t)
∗

J
a

n
−

0
.1

9
9
∗∗
∗

0
.0

4
4
∗∗
∗

−
0
.0

9
4
∗∗
∗

0
.0

2
8
∗∗
∗

−
0
.2

3
6
∗∗
∗

0
.1

1
2
∗∗
∗

−
0
.3

3
8
∗∗
∗

0
.0

6
4
∗∗
∗

0
.0

3
3

0
.2

8
8
∗∗
∗

−
0
.0

0
8

0
.2

3
1
∗∗
∗

(T
−

t)
∗

F
e
b

−
0
.2

0
3
∗∗
∗

0
.0

4
0
∗∗
∗

−
0
.0

9
8
∗∗
∗

0
.0

2
4
∗∗
∗

−
0
.2

4
1
∗∗
∗

0
.1

0
2
∗∗
∗

−
0
.3

4
8
∗∗
∗

0
.0

5
4
∗∗
∗

−
0
.0

3
1

0
.2

1
5
∗∗
∗

−
0
.0

5
6

0
.1

7
6
∗∗
∗

(T
−

t)
∗

M
a

r
−

0
.1

8
8
∗∗
∗

0
.0

7
2
∗∗
∗

−
0
.1

0
7
∗∗
∗

0
.0

1
9
∗∗
∗

−
0
.2

2
3
∗∗
∗

0
.1

3
2
∗∗
∗

−
0
.3

5
5
∗∗
∗

0
.0

6
3
∗∗
∗

−
0
.1

3
1
∗∗
∗

0
.0

9
6
∗∗
∗

−
0
.1

3
3
∗∗
∗

0
.0

8
8
∗∗
∗

(T
−

t)
∗

A
p
r

−
0
.2

0
1
∗∗
∗

0
.0

5
1
∗∗
∗

−
0
.1

0
9
∗∗
∗

0
.0

1
7
∗∗
∗

−
0
.2

1
6
∗∗
∗

0
.1

4
0
∗∗
∗

−
0
.3

4
8
∗∗
∗

0
.0

6
8
∗∗
∗

−
0
.1

3
5
∗∗
∗

0
.0

7
3
∗∗
∗

−
0
.1

3
8
∗∗
∗

0
.0

6
8
∗∗
∗

(T
−

t)
∗

M
a

y
−

0
.1

7
0
∗∗
∗

0
.0

7
0
∗∗
∗

−
0
.0

8
2
∗∗
∗

0
.0

4
3
∗∗
∗

0
.0

3
0

0
.3

6
1
∗∗
∗

−
0
.2

8
2
∗∗
∗

0
.1

5
7
∗∗
∗

−
0
.1

6
1
∗∗
∗

0
.0

5
8
∗∗
∗

−
0
.1

5
1
∗∗
∗

0
.0

6
0
∗∗
∗

(T
−

t)
∗

J
u

n
−

0
.1

6
3
∗∗
∗

0
.0

9
1
∗∗
∗

−
0
.0

8
9
∗∗
∗

0
.0

3
3
∗∗
∗

0
.0

9
2

0
.4

1
9
∗∗
∗

−
0
.3

2
1
∗∗
∗

0
.1

2
7
∗∗
∗

−
0
.1

5
4
∗∗
∗

0
.0

5
2
∗∗
∗

−
0
.1

5
2
∗∗
∗

0
.0

5
5
∗∗
∗

(T
−

t)
∗

J
u

l
−

0
.1

8
9
∗∗
∗

0
.0

4
7
∗∗
∗

−
0
.0

8
7
∗∗
∗

0
.0

3
1
∗∗
∗

0
.0

2
7

0
.3

3
0
∗∗
∗

−
0
.2

1
2
∗∗

0
.2

6
5
∗∗
∗

−
0
.1

3
8
∗∗
∗

0
.0

6
6
∗∗
∗

−
0
.1

3
7
∗∗
∗

0
.0

7
4
∗∗
∗

(T
−

t)
∗

A
u

g
−

0
.1

9
0
∗∗
∗

0
.0

3
4
∗∗
∗

−
0
.0

9
3
∗∗

0
.0

2
5
∗∗
∗

−
0
.2

4
1
∗∗
∗

0
.1

0
5
∗∗
∗

−
0
.3

4
5
∗∗
∗

0
.0

6
2
∗∗
∗

−
0
.1

4
4
∗∗
∗

0
.0

8
7
∗∗
∗

−
0
.1

3
7
∗∗
∗

0
.0

8
0
∗∗
∗

(T
−

t)
∗

S
e
p

−
0
.2

0
9
∗∗
∗

0
.0

1
0

−
0
.0

9
2
∗∗
∗

0
.0

2
5
∗∗
∗

−
0
.2

6
5
∗∗
∗

0
.0

7
9
∗∗
∗

−
0
.3

4
9
∗∗
∗

0
.0

5
3
∗∗
∗

−
0
.1

0
3
∗∗

0
.1

4
2
∗∗
∗

−
0
.1

0
1
∗∗
∗

0
.1

2
6
∗∗
∗

(T
−

t)
∗

O
c
t

−
0
.2

0
1
∗∗
∗

0
.0

2
0
∗∗

−
0
.0

9
1
∗∗
∗

0
.0

2
5
∗∗
∗

−
0
.2

6
3
∗∗
∗

0
.0

7
0
∗∗
∗

−
0
.3

3
0
∗∗
∗

0
.0

7
8
∗∗
∗

−
0
.1

0
3
∗∗

0
.1

4
0
∗∗
∗

−
0
.0

9
8
∗∗
∗

0
.1

3
2
∗∗
∗

(T
−

t)
∗

N
o
v

−
0
.1

9
2
∗∗
∗

0
.0

3
5
∗∗
∗

−
0
.0

8
4
∗∗
∗

0
.0

3
3
∗∗
∗

−
0
.2

3
5
∗∗
∗

0
.1

0
3
∗∗
∗

−
0
.3

1
8
∗∗
∗

0
.0

9
8
∗∗
∗

−
0
.0

9
2
∗

0
.1

5
0
∗∗
∗

−
0
.0

9
3
∗∗

0
.1

3
7
∗∗
∗

(T
−

t)
∗

D
e
c

−
0
.1

9
0
∗∗
∗

0
.0

4
8
∗∗
∗

−
0
.0

8
7
∗∗

0
.0

3
1
∗∗
∗

−
0
.2

4
3
∗∗
∗

0
.0

9
9
∗∗
∗

−
0
.3

2
7
∗∗
∗

0
.0

7
0
∗∗
∗

0
.0

4
7

0
.2

9
3
∗∗
∗

0
.0

2
0

0
.2

5
3
∗∗
∗

(T
−

T
h
)
∗

J
a

n
−

0
.1

6
7
∗∗

0
.0

4
2
∗∗
∗

0
.0

1
5

−
0
.0

1
1
∗∗

−
0
.5

9
9
∗∗
∗

−
0
.0

3
8

0
.1

1
9
∗∗

−
0
.0

5
7
∗∗
∗

−
0
.4

7
0
∗∗
∗

−
0
.1

8
8
∗∗
∗

−
0
.3

7
8
∗∗
∗

−
0
.1

5
9
∗∗
∗

(T
−

T
h
)
∗

F
e
b

−
0
.1

6
6
∗∗

0
.0

4
4
∗∗
∗

0
.0

1
6

−
0
.0

0
7

−
0
.5

9
2
∗∗
∗

−
0
.0

3
2

0
.1

0
6
∗∗

−
0
.0

6
7
∗∗
∗

−
0
.4

1
6
∗∗
∗

−
0
.1

3
8
∗∗
∗

−
0
.3

3
5
∗∗
∗

−
0
.1

2
3
∗∗
∗

(T
−

T
h
)
∗

M
a

r
−

0
.1

9
3
∗∗

0
.0

3
0
∗

0
.0

1
5

−
0
.0

0
7

−
0
.6

3
3
∗∗
∗

−
0
.0

4
5

0
.1

2
4
∗∗
∗

−
0
.0

6
1
∗∗

(T
−

T
h
)
∗

A
p
r

−
0
.1

7
8
∗∗

0
.0

3
8
∗∗

0
.0

1
5

−
0
.0

0
7

−
0
.6

3
8
∗∗
∗

−
0
.0

6
1
∗∗

0
.1

3
9
∗∗
∗

−
0
.0

4
7
∗∗

(T
−

T
h
)
∗

M
a

y
−

0
.8

9
7
∗∗
∗

−
0
.2

8
2
∗∗
∗

0
.0

8
6

−
0
.1

1
3
∗∗
∗

(T
−

T
h
)
∗

J
u

n
−

0
.9

5
3
∗∗
∗

−
0
.3

4
7
∗∗
∗

0
.1

0
7
∗∗

−
0
.1

0
2
∗∗

(T
−

T
h
)
∗

J
u

l
−

0
.8

3
8
∗∗
∗

−
0
.2

3
1
∗∗

−
0
.0

1
6

−
0
.2

3
3
∗∗
∗

−
0
.2

9
1
∗∗
∗

0
.0

1
5

−
0
.2

5
0
∗∗
∗

−
0
.0

4
4
∗

(T
−

T
h
)
∗

A
u

g
−

0
.2

6
9
∗∗
∗

−
0
.0

2
6

−
0
.2

2
1
∗∗

−
0
.0

1
7

(T
−

T
h
)
∗

S
e
p

−
0
.1

3
2
∗

0
.0

6
3
∗∗
∗

0
.0

3
6
∗

−
0
.0

0
8

−
0
.3

7
1
∗∗

0
.1

6
3
∗

0
.0

5
6

−
0
.1

0
6

−
0
.2

9
9
∗∗
∗

−
0
.0

4
4

−
0
.2

5
5
∗∗
∗

−
0
.0

4
3
∗∗

(T
−

T
h
)
∗

O
c
t

−
0
.1

4
4
∗∗

0
.0

4
8
∗∗
∗

0
.0

3
3
∗

−
0
.0

1
2
∗

−
0
.4

7
9
∗∗
∗

0
.0

2
4

0
.1

7
9
∗∗

−
0
.0

0
1

−
0
.3

1
6
∗∗
∗

−
0
.0

6
0
∗

−
0
.2

6
0
∗∗
∗

−
0
.0

4
4
∗∗

(T
−

T
h
)
∗

N
o
v

−
0
.1

5
4
∗∗

0
.0

4
5
∗∗
∗

0
.0

1
9

−
0
.0

1
1
∗

−
0
.5

5
5
∗∗
∗

−
0
.0

2
9
∗

0
.2

0
8
∗∗
∗

0
.0

1
8

−
0
.3

1
8
∗∗
∗

−
0
.0

6
3
∗∗

−
0
.2

6
0
∗∗
∗

−
0
.0

4
5
∗∗
∗

(T
−

T
h
)
∗

D
e
c

−
0
.1

6
2
∗∗

0
.0

4
5
∗∗
∗

0
.0

1
3

−
0
.0

1
7
∗∗
∗

−
0
.5

8
0
∗∗
∗

−
0
.0

4
5
∗∗

0
.1

0
4
∗∗

−
0
.0

7
6
∗∗
∗

−
0
.4

5
2
∗∗
∗

−
0
.1

9
2
∗∗
∗

−
0
.3

8
2
∗∗
∗

−
0
.1

6
8
∗∗
∗

N
o
te

:
1
.

T
h
e

ta
b
le

p
ro

v
id

e
s

th
e

d
e
ta

il
e
st

im
a
ti

o
n

re
su

lt
s

fr
o
m

th
e

p
ro

p
o
se

d
m

o
d
e
l
fo

r
sp

o
t

p
ri

c
e

a
n
d

in
v
e
n
to

ry
(s

+
i×

t
)

a
n
d

th
e

‘i
×

t
,
p
ru

n
e
d
’
w

h
ic

h
is

b
a
se

d
o
n

th
e

i×
t

m
o
d
e
l
b
u
t

o
n
ly

th
e

si
g
n
ifi

c
a
n
t

te
rm

s
fo

r
in

v
e
n
to

ry
a
re

k
e
p
t.

T
w

o
p
e
ri

o
d
s

a
re

re
p
o
rt

e
d

in
th

is
ta

b
le

:
fr

o
m

1
9
8
9

to
1
9
9
9

a
n
d

fr
o
m

2
0
0
0

to
2
0
0
7
.

(i
×

t
)

:
Y

t
,T

=
α

+
(∑ m

δ
m

1
M

(t
)=

m
+

f
(x

t
))
·(

T
−

t)
+

(∑ m

ρ
m

1
M

(t
)=

m
+

g
(x

t
))
·m

a
x
(T

−
T

h
,
0
),

w
it

h
x

=
1
/
n
o
rm

in
v
,

(s
+

i×
t
)

:
Y

t
,T

=
α

+
(∑ m

δ
m

1
M

(t
)=

m
+

β
S

t
−

1
+

f
(x

t
))
·(

T
−

t)
+

(∑ m

ρ
m

1
M

(t
)=

m
+

ζ
S

t
−

1
+

g
(x

t
))
·m

a
x
(T

−
T

h
,
0
),

w
it

h
x

=
1
/
n
o
rm

in
v
.

n
o
r
m

in
v

is
n
o
rm

a
li
z
e
d

in
v
e
n
to

ry
w

it
h

lo
n
g
-t

e
rm

tr
e
n
d

o
f
m

o
re

th
a
n

2
0

y
e
a
rs

(s
m

o
o
th

n
e
ss

p
a
ra

m
e
te

r
o
f
0
.8

b
).

1
x

>
k
2

=
1

if
1
/
n
o
rm

in
v

>
k
2
,
o
th

e
rw

is
e

1
x

>
k
2

=
0
.

2
.

In
th

is
ta

b
le

,
k
2

=
1
0
,
1
2

fo
r

c
o
rn

a
n
d

so
y
b
e
a
n
s

c
o
n
se

c
u
ti

v
e
ly

fo
r

b
o
th

p
e
ri

o
d
s.

F
o
r

w
h
e
a
t,

k
2

=
6
0

fo
r

th
e

‘8
9
-9

9
’
p
e
ri

o
d
;
a
n
d

4
5

fo
r

th
e

‘0
0
-0

7
’
p
e
ri

o
d
.

3
.

F
o
r

c
o
rn

,
th

e
h
a
rv

e
st

ti
m

e
in

th
is

p
e
ri

o
d

st
a
rt

s
fr

o
m

1
5

J
u
ly

,
th

u
s

T
−

T
h

=
2
5
5

fo
r

th
e

M
a
rc

h
,
3
1
5

fo
r

th
e

M
a
y
,
3
7
5

fo
r

th
e

J
u
ly

,
7
5

fo
r

th
e

S
e
p
te

m
b
e
r

a
n
d

1
6
5

fo
r

th
e

D
e
c
e
m

b
e
r

c
o
n
tr

a
c
t.

F
o
r

so
y
b
e
a
n
s,

th
e

h
a
rv

e
st

ti
m

e
in

th
is

p
e
ri

o
d

st
a
rt

s
fr

o
m

1
S
e
p
te

m
b
e
r,

th
u
s

T
−

T
h

=
1
5
0

fo
r

th
e

J
a
n
u
a
ry

,
2
1
0

fo
r

th
e

M
a
rc

h
,
2
7
0

fo
r

th
e

M
a
y
,
3
3
0

fo
r

th
e

J
u
ly

,
3
6
0

fo
r

th
e

A
u
g
u
st

,
3
0

fo
r

th
e

S
e
p
te

m
b
e
r

a
n
d

9
0

fo
r

th
e

N
o
v
e
m

b
e
r

c
o
n
tr

a
c
t.

F
o
r

w
h
e
a
t,

th
e

h
a
rv

e
st

ti
m

e
in

th
is

p
e
ri

o
d

st
a
rt

s
fr

o
m

1
5

M
a
y
,

th
u
s

T
−

T
h

=
3
1
5

fo
r

th
e

M
a
rc

h
,

3
7
5

fo
r

th
e

M
a
y
,

7
5

fo
r

th
e

J
u
ly

,
1
3
5

fo
r

th
e

S
e
p
te

m
b
e
r

a
n
d

2
2
5

fo
r

th
e

D
e
c
e
m

b
e
r

c
o
n
tr

a
c
t.

4
.

P
-s

ta
t

is
th

e
P

te
st

st
a
ti

st
ic

b
a
se

d
o
n

th
e

d
m

te
st

to
si

m
u
lt

a
n
e
o
u
sl

y
c
o
m

p
a
re

o
n
e

m
o
d
e
l
w

it
h

o
th

e
r

n
o
n
-n

e
st

e
d

m
o
d
e
ls

.
∗∗
∗
,
∗∗

a
n
d
∗ i
n
d
ic

a
te

th
e

si
g
n
ifi

c
a
n
t

c
o
e
ffi

c
ie

n
ts

a
t

1
%

,
5
%

a
n
d

1
0
%

c
o
n
se

c
u
ti

v
e
ly

.


	Binder1.pdf
	AFI_1040.pdf
	Remodeling the Working Curve

	Remodeling the Working Curve

