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A. Bultheel 1,5,6 P. González-Vera 2,5 E. Hendriksen 3 O. Nj̊astad 4

Abstract

We consider rational moment problems on the real line with their associated orthogonal rational
functions. There exists a Nevanlinna type parameterization relating to the problem, with associated
Nevanlinna matrices of functions having singularities in the closure of the set of poles of the rational
functions belonging to the problem. We prove results related to the growth at the singularities of the
functions in a Nevanlinna matrix, and in particular provide bounds on the growth analogous to the
corresponding result in the classical polynomial case, when the number of singularities is finite.
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1 Introduction

We use the following notations. C denotes the complex plane, Ĉ the one point compactification
of C (the extended complex plane), R the real line, R̂ the closure of R in Ĉ, U the open upper
half-plane, Û the closure of U in C.
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A function f is called a Pick function if it is holomorphic in U and maps U into Û. A Pick
function is either a constant in R̂ or maps U into U.

Let µ be a finite positive measure on R. The Stieltjes transform Sµ of µ is defined as

Sµ(z) =
∫

R

C(t, z) dµ(t), C(t, z) =
1

t− z
.

The Herglotz-Riesz-Nevanlinna transform Ωµ of µ is defined as

Ωµ(z) =
∫

R

D(t, z) dµ(t), D(t, z) =
1 + tz

t− z
.

Both of these functions are Pick functions. Furthermore

Ωµ(z) = (1 + z2)Sµ(z) +
∫

R

dµ(t).

Thus for fixed z there is a one-to-one correspondence between Ωµ and Sµ as functions of µ.

Let M be a Hermitian, positive definite linear functional on the space P of polynomials, and
define its moments cn by cn = M [zn], n = 0, 1, 2, . . .. A solution of the Hamburger moment prob-
lem for {cn} (or M) is a measure µ on R which satisfies

∫

R
tn dµ(t) = cn for all n. (Such measures

exist.) A moment problem is called determinate if it has exactly one solution, indeterminate if
it has more than one solutions.

There is a one-to-one correspondence between all Pick functions f and all solutions µ of an
indeterminate problem given by

Sµ(z) = −
A(z)f(z) − C(z)

B(z)f(z) −D(z)

(Nevanlinna parameterization of the solutions). Here A,B,C,D are entire transcendent func-
tions where the growth is restricted as follows: Let F be any of the functions A,B,C,D. Then
for every positive ε, there exists a constant M(ε) such that

|F (z)| ≤M(ε) exp{ε|z|}.

(Thus the function is of at most minimal type of order 1.)

For detailed treatments of important aspects of the Hamburger moment problem, see e.g. [1,3–
5,11–13,16,22–26].
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The strong Hamburger moment problem is analogous to the classical problem, with the space
of polynomials replaced by the space of Laurent polynomials (linear combinations of zk, k =
0,±1,±2, . . ..) A similar parameterization of the set of solutions of an indeterminate problem
holds, with the appropriate functions A,B,C,D holomorphic in C \ {0}. When F is any of the
functions A,B,C,D, there exist for every positive ε, constants M∞(ε) and M0(ε) such that

|F (z)| ≤M∞(ε) exp(ε|z|) and |F (z)| ≤M0(ε) exp(ε/|z|).

For detailed treatments on the theory of strong Hamburger moment problems, see e.g., [14,17–
21].

In this paper, we treat a rational moment problem, where polynomials are replaced by ratio-
nal functions with prescribed poles in R̂. A Nevanlinna parameterization for solutions of an
indeterminate problem in terms of Ωµ and Pick functions was proved by A. Almendral in [2].

The classical Hamburger moment problem is a special case of the rational problem under
consideration. Thus in this case there is an alternative parameterization in terms of Ωµ.

Our aim in this paper is to establish growth conditions at the singularities of the functions
A,B,C,D appearing in the parameterization formula.

In Section 2 we introduce the rational spaces on which the rational moment problems are
defined, and sketch the theory of orthogonal rational functions and their use in the theory
of rational moment problems, including the Nevanlinna parameterization of the solutions of
indeterminate problems. Section 3 is devoted to establishing a Riesz type criterion for such
indeterminate problems when the number of singularities is finite. This criterion is crucial for
the further development of the growth properties. (For the classical Riesz criterion, see e.g.,
[1],[22–24].) Finally in Section 4 we prove our result on the restriction on the growth of the
functions A,B,C,D at the singularities.

The organization and presentation of the material in Sections 3 and 4 is strongly influenced
by Akhiezer’s work [1] on the classical moment problem. Other very instructive treatments of
the classical problem can be found in the treatises by M. Riesz [22–24] and by Shohat and
Tamarkin [25] and Stone [26]. This classical approach has to be modified in a number of ways,
but the final results are of basically the same structure.

Remark 1.1 A parameterization result for rational moment problems associated with poles
outside the closed unit disk and measures on the unit circle T was proved in [10]. Here Ωµ

is replaced by the Herglotz-Riesz transform
∫

T

t+z
t−z

dµ(t) and Pick functions are replaced by
Carathéodory functions (holomorphic in the open unit disk and mapping this disk to the closed
right half-plane). All the isolated singularities of the relevant functions are poles in this case.
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2 Orthogonal rational functions and rational moment problems

Let {αk}
∞
k=1 be a sequence of arbitrary points (interpolation points or singularities) in R̂ \ {0},

α0 = ∞. We denote by G the set of points α in R̂ \ {0} for which there is at least one k such
that αk = α. For α ∈ G we denote by Γα the subsequence of {αk}

∞
k=1 consisting of those αk for

which αk = α.

Set

π0 = 1, πn(z) =
n
∏

k=1

(

1 −
z

αk

)

, n = 1, 2, . . . , bn(z) =
zn

πn(z)
, n = 0, 1, 2, . . . .

The set {b0, b1, . . . , bn} is a basis for the space

Ln =

{

p(z)

πn(z)
: p ∈ Pn

}

where Pn denotes the space of polynomials of degree at most n. We set L∞ = ∪∞
n=0Ln. We shall

also consider the space R∞ = L∞ ·L∞ consisting of products of two functions in L∞. Note that
if Γα is infinite for all α ∈ G, then R∞ = L∞.

Remark 2.1 The space of Laurent polynomials is not formally included in this setting. The
exclusion of the origin as interpolation point is for technical reasons. A discussion of basic
properties in the general case when also the origin is included among the possible interpolation
points can be found in [9].

Let M be a Hermitian, positive definite linear functional on R∞. Thus M [f ] = M [f ] for
f ∈ R∞ and M [g · g] > 0 for g ∈ L∞, g 6= 0. For convenience we assume M normalized such
that M [1] = 1. The moments µm,n of M are defined as

µm,n = M [bm · bn].

(Note that bn = bn.) A measure µ on R is said to solve the rational moment problem on L∞ if
bm is integrable with respect to µ and

∫

R

bm(t) dµ(t) = µm,0 for m = 0, 1, 2, . . . .

Equivalently

∫

R

g(t) dµ(t) = M [g] for g ∈ L∞.
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A measure µ on R is said to solve the rational moment problem on R∞ if bm · bn is integrable
with respect to µ and

∫

R

bm(t)bn(t) dµ(t) = µm,n for m,n = 0, 1, 2, . . . .

Equivalently

∫

R

f(t) dµ(t) = M [f ] for f ∈ R∞.

A solvable rational moment problem is said to be determinate if it has exactly one solution,
indeterminate if it has more than one solution. We denote by M(L∞) the set of solutions of
the problem on L∞, and by M(R∞) the set of solutions of the problem on R∞.

Let {ϕn}
∞
n=0 be the sequence of functions obtained by orthonormalization (with respect to M)

of the sequence {bn}
∞
n=0. We fix them uniquely by multiplying with a unimodular constant, so

that the coefficient of bn in the expansion of ϕn with respect to the basis {bn} is positive.

The function ϕn has the form ϕn(z) = pn(z)
πn(z)

, pn ∈ Pn. Note that by our normilization, the

coefficients are real, hence ϕn(x) is real for x ∈ R. The functions ψn of the second kind are
defined by

ψ0(z) = −z, ψn(z) = Mt [D(t, z){ϕn(t) − ϕn(z)}] , n = 1, 2, . . . .

We shall also consider the rational functions σn given by (Mt refers to M applied to t-variable)

σn(z) = Mt [C(t, z){ϕn(t) − ϕn(z)}] , n = 0, 1, 2, . . . .

We observe that both ψn and ϕn belong to Ln, and that both functions are real for real z.
Furthermore we find that

σn(z) =
1

1 + z2
[zϕn(z) + ψn(z)], n = 0, 1, 2, . . . . (2.1)

The sequences {ϕn}, {ψn}, and {σn} satisfy a three-term recurrence relation of the form















σn(z)

ψn(z)

ϕn(z)















=

{

En
z

1 − z/αn

+Bn
1 − z/αn−2

1 − z/αn

}















σn−1(z)

ψn−1(z)

ϕn−1(z)















+ Cn
1 − z/αn−2

1 − z/αn















σn−2(z)

ψn−2(z)

ϕn−2(z)
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with initial conditions















σ0(z)

ψ0(z)

ϕ0(z)















=















0

−z

1















.

Here Bn, Cn, En are real numbers satisfying En = −CnEn−1 for n = 2, 3, . . .. See [8, Sections
11.1, 11.2, 11.9].

Note that σ1 has the form σ1(z) = κ/(1 − z/α1), where κ is a constant. We define

χn(z) = κ−1(1 − z/α1)σn+1(z), n = 0, 1, 2, . . . . (2.2)

Note that χn(x) is real for real x.

The sequence {χn} satisfies the recurrence relation

χn(z) =

{

En+1
z

1 − z/αn+1

+Bn+1
1 − z/αn−1

1 − z/αn+1

}

χn−1(z) + Cn
1 − z/αn−1

1 − z/αn+1

χn−2(z)

for n = 2, 3, . . ., with χ0 = 1.

Set

π̃0 = 1, π̃n(z) =
n+1
∏

k=2

(

1 −
z

αk

)

, n = 1, 2, . . . and, b̃n(z) =
zn

π̃n(z)
, for n = 0, 1, 2, . . ..

Let L̃n denote the space spanned by {b̃0, b̃1, . . . , b̃n}, and set L̃∞ = ∪∞
n=0L̃n, R̃∞ = L̃∞ · L̃∞.

We then have χn ∈ L̃n.

According to the Favard type theorem for orthogonal rational functions (see [8, Section 11.9]), it
follows that there is a positive functional M̃ on R̃∞ such that the sequence {χn} is orthonormal
with respect to M̃ . We can then consider moment problems on L̃∞ and R̃∞ for the functional
M̃ . We shall call these moment problems associated moment problems. Since M̃ is positive, the
moment problem on L̃∞ is always solvable.

We shall use the notation

ωn(z) = 1 +
n−1
∑

k=1

|ϕk(z)|
2, Ωn(z) = 1 +

n−1
∑

k=1

|ψk(z)|
2, ω̃n(z) = 1 +

n−1
∑

k=1

|χk(z)|
2.
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We also set

ωα,n(z) =
n−1
∑

k=1

αk∈Γα

|ϕk(z)|
2.

Note that ωn(z) = 1 +
∑

α∈G ωα,n(z).

Let x0 be a point in R\ [Ĝ∪{0}], where Ĝ denotes the closure in Ĉ of the set G of interpolation
points. For technical reasons, x0 is chosen such that ψn(x0) 6= 0 and qn(αk, x0) 6= 0 for k =
1, 2, . . . , n, for all n, where qn(z, τ) is the numerator polynomial of the rational function ϕn(z)+

τ 1−z/αn−1

1−z/αn
ϕn−1(z). Such choice is always possible, see [8, Lemma 11.5.4]. In the following x0

shall be kept fixed, and will not be included in the notation for An, Bn, Cn, Dn below. We set
H(z, x0) = x0−z

x0z
and define

An(z) =H(z, x0)

[

1 +
n−1
∑

k=1

ψk(x0)ψk(z)

]

Bn(z) =H(z, x0)

[

D(z, x0) −
n−1
∑

k=1

ψk(x0)ϕk(z)

]

Cn(z) =H(z, x0)

[

D(z, x0) +
n−1
∑

k=1

ϕk(x0)ψk(z)

]

Dn(z) =H(z, x0)

[

1 +
n−1
∑

k=1

ϕk(x0)ϕk(z)

]

(Note that the definitions differ from those used in [2] by a real constant factor En.)

We set CG = Ĉ \
[

Ĝ ∪ {−i, i}
]

. For z ∈ CG and t ∈ R̂ we define

Tn(z, t) = −
An(z)t− Cn(z)

Bn(z)t−Dn(z)

(which means −An(z)/Bn(z) when t = ∞). The functions An, Bn, Cn, Dn can also be expressed
in the following way:

An(z) =
1

Enx0z
[fn(x0, z)ψn(x0)ψn−1(z) − fn(z, x0)ψn−1(x0)ψn(z)]

Bn(z) =
1

Enx0z
[fn(x0, z)ψn(x0)ϕn−1(z) − fn(z, x0)ψn−1(x0)ϕn(z)]

Cn(z) =
1

Enx0z
[fn(x0, z)ϕn(x0)ψn−1(z) − fn(z, x0)ϕn−1(x0)ψn(z)]

Dn(z) =
1

Enx0z
[fn(x0, z)ϕn(x0)ϕn−1(z) − fn(z, x0)ϕn−1(x0)ϕn(z)]
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where fn(z, w) =
(

1 − z
αn−1

) (

1 − w
αn

)

.

It follows by a simple argument from [8, Corollary 11.5.6] that the functions Bn(z)t −Dn(z),
t ∈ R̂, have all their zeros on R. According to [8, Lemma 11.10.6], the function z → Tn(z, t) for
t ∈ R̂ is a Pick function, hence all the zeros of An(z)t− Cn(z) are also real.

The index n (or the function ϕn) is said to be regular if pn(αn−1) 6= 0 (pn(∞) 6= 0 means that
pn has degree exactly like n).

For z fixed, the linear fractional transformation t → Tn(z, t) maps for a regular index n the
closed lower half-plane onto a proper closed disk ∆n(z) in the open right half-plane. When
m > n, we have ∆m(z) ⊂ ∆n(z). Let Λ denote the sequence of regular indices, and set

∆∞(z) =
⋂

n∈Λ

∆n(z).

The ∆∞(z) is a proper, closed disk or a single point, independent of z in CG. Furthermore
∆∞(z) is a proper disk if and only if the series

∑∞
k=0 |ϕk(z)|

2 converges locally uniformly in the
domain CG. This is the case if and only if the series

∑∞
k=1 |ψk(z)|

2 converges.

We shall in the following assume that the set Λ is infinite. For simplicity of notation we let
without loss of generality Λ consist of the natural numbers. We shall use the notation

ω(z) = 1 +
∞
∑

k=1

|ϕk(z)|
2, Ω(z) = 1 +

∞
∑

k=1

|ψk(z)|
2, ω̃(z) = 1 +

∞
∑

k=1

|χk(z)|
2.

The following inclusions hold:

{Ωµ(z) : µ ∈ M(R∞)} ⊂ ∆∞(z) ⊂ {Ωµ(z) : µ ∈ M(L∞)}.

It follows that if the moment problem on R∞ is indeterminate, then the series
∑∞

k=1 |ϕk(z)|
2

and
∑∞

k=1 |ψk(z)|
2 converge. Furthermore, if the series

∑∞
k=1 |ϕk(z)|

2 converges, then the mo-
ment problem on L∞ is indeterminate. Now assume that the moment problem for M on R∞

is indeterminate. Then
∑∞

k=1 |ψk(z)|
2 converges, hence also

∑∞
k=1 |χk(z)|

2 converges. Thus the
associated moment problem for M̃ on L̃∞ is indeterminate. Because of the closely related recur-
sion formulas, it is reasonable to expect that the moment problem for M̃ on R̃∞ is indeterminate
when the problem for M on R∞ is indeterminate. We have no proof of this, but we shall make
this assumption in the proof of (3.9) and Proposition 4.2 for F equal to A or C. However, when
all the sets Γα are infinite, then R∞ = L∞ and the moment problem on L∞ and R∞ coincide.
In this case R̃∞ = L̃∞ = L∞ and thus the assumption above is automatically satisfied. Note
also Remark 4.5, where the assumption is not needed. Thus our main result Theorem 4.4 does
not depend on this assumption.

The theory of orthogonal rational functions with poles on the extended real line is equivalent
to a theory of orthogonal rational functions with poles on the unit circle. See especially [8] and
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[6].

For more details on the properties of orthogonal rational functions and rational moment prob-
lems that we have discussed so far, we refer to [2],[6],[7], [8, Chap 11], [9].

The convergence results and the parameterization results below were obtained by A. Almendral
in [2].

Assume that ∆∞(z) is a proper disk (the limit circle case in contrast to the limit point case).
Then the functions An, Bn, Cn, Dn converge locally uniformly in CG to holomorphic functions
A,B,C,D. We may then write

A(z) =H(z, x0)

[

1 +
∞
∑

k=1

ψk(x0)ψk(z)

]

B(z) =H(z, x0)

[

D(z, x0) −
∞
∑

k=1

ψk(x0)ϕk(z)

]

C(z) =H(z, x0)

[

D(z, x0) +
∞
∑

k=1

ϕk(x0)ψk(z)

]

D(z) =H(z, x0)

[

1 +
∞
∑

k=1

ϕk(x0)ϕk(z)

]

.

The collection {A,B,C,D} is called a Nevanlinna matrix for the problem.

The functions A,B,C,D appear in the following Nevanlinna type parameterization for an
indeterminate rational moment problem.

Theorem 2.2 Assume that the moment problem on R∞ is indeterminate, and consider the
formula

Ωµ(z) = −
A(z)f(z) − C(z)

B(z)f(z) −D(z)
. (2.3)

Then

(i) For every Pick function f , there exists a µ ∈ M(L∞) such that (2.3) is satisfied.
(ii) For every µ ∈ M(R∞), there exists a Pick function f such that (2.3) is satisfied.

Remark 2.3 The correspondence between µ and Ωµ is one-to-one. When Γα is infinite for all
α ∈ G, we have

{Ωµ(z) : µ ∈ M(L∞)} = ∆∞(z).

Hence in this situation (2.3) establishes a one-to-one correspondence between Pick functions
and solutions of the moment problem (on L∞ or R∞).
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3 A Riesz type criterion

Let µ1 and µ2 be two distinct solutions of the moment problem on R∞. The function Ωµ1
(z)−

Ωµ2
(z) is holomorphic in C \ [R ∪ {−i, i}], hence the zeros are isolated. It follows that there

exist positive γ, γ 6= 1 such that Ωµ1
(β + iγ) 6= Ωµ2

(β + iγ) for all β ∈ R. Note that we then
also have Sµ1

(β + iγ) 6= Sµ2
(β + iγ) for all β ∈ R. We choose a fixed γ with this property, and

use the notation ζβ = β + iγ.

Let us start by stating a general Poisson formula first.

Lemma 3.1 Suppose ξ is in the lower half plane and ζβ = β+γi, β 6= 0, γ > 0, and α ∈ R\{0},
then

γ

π

∞
∫

−∞

ln
∣

∣

∣1 − t
ξ

∣

∣

∣

|t− ζβ|2
dt = ln

∣

∣

∣

∣

∣

1 −
ζβ
ξ

∣

∣

∣

∣

∣

, (3.1)

and

γ

π

∞
∫

−∞

ln
∣

∣

∣1 − t
α

∣

∣

∣

|t− ζβ|2
dt = ln

∣

∣

∣

∣

∣

1 −
ζβ
α

∣

∣

∣

∣

∣

. (3.2)

PROOF. This can be proved by standard complex analysis arguments. �

Remark 3.2 Note that (3.1) also follows from [1, p.53] where in a footnote it is remarked that

1

π

∞
∫

−∞

ln |1 − s
c
|

s2 + 1
ds = ln

∣

∣

∣

∣

1 −
i

c

∣

∣

∣

∣

, (Im(c) < 0).

Change of variables s = (t− β)/γ and c = (ξ − β)/γ also yields (3.1).

In the following positive function shall always mean strictly positive function.

Proposition 3.3 Let R be a function in R∞ which is positive on R. Then there exists a
function L ∈ L∞ such that

∣

∣

∣

∣

∣

1

x− ζβ
− L(x)

∣

∣

∣

∣

∣

=

√

R(x)

|x− ζβ|
exp







−
γ

2π

∞
∫

−∞

lnR(t)

|t− ζβ|2
dt







for all x in R.
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PROOF. By dividing out possible common factors in the numerator and denominator of R
we may write

R(z) =
P (z)

(

1 − z
αk1

)2

· · ·
(

1 − z
αkp

)2

where P is a polynomial of degree n, P (x) positive for x ∈ R. The polynomial P then has the
form

P (z) = |A|2
(

1 −
z

ξ1

)

· · ·

(

1 −
z

ξn

)(

1 −
z

ξ1

)

· · ·

(

1 −
z

ξn

)

for a suitable constant A and ξ1, . . . , ξn in the lower half-plane.

We define

Q(z) =
A
(

1 − z
ξ1

)

· · ·
(

1 − z
ξn

)

(

1 − z
αk1

)

· · ·
(

1 − z
αkp

) .

Then

|Q(z)|2 = |A|2

(

1 − z
ξ1

)

· · ·
(

1 − z
ξn

)

(

1 − z
ξ1

)

· · ·
(

1 − z
ξn

)

∣

∣

∣

∣

1 − z
αk1

∣

∣

∣

∣

2

· · ·
∣

∣

∣

∣

1 − z
αkp

∣

∣

∣

∣

2

and for x ∈ R:

|Q(x)|2 =
|A|2

(

1 − x
ξ1

)

· · ·
(

1 − x
ξn

)

(

1 − x
ξ1

)

· · ·
(

1 − x
ξn

)

∣

∣

∣

∣

1 − x
αk1

∣

∣

∣

∣

2

· · ·

∣

∣

∣

∣

1 − x
αkp

∣

∣

∣

∣

2 = R(x).

We further define

L(z) =
1 − Q(z)

Q(ζβ)

z − ζβ
.

Note that L ∈ L∞. We have

1

z − ζβ
− L(z) =

Q(z)

(z − ζβ)Q(ζβ)
,
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hence for x ∈ R:

∣

∣

∣

∣

∣

1

z − ζβ
− L(x)

∣

∣

∣

∣

∣

=
|Q(x)|

|x− ζβ||Q(ζβ)|
=

√

R(x)

|x− ζβ||Q(ζβ)|
. (3.3)

Using the identity

∞
∫

−∞

dt

|t− ζ|2
dt =

π

γ
,

and Lemma 3.1 we get

ln |Q(ζβ)|= ln |A| +
n
∑

j=1

ln

∣

∣

∣

∣

∣

1 −
ζβ
ξj

∣

∣

∣

∣

∣

−
p
∑

j=1

ln

∣

∣

∣

∣

∣

1 −
ζβ
αkj

∣

∣

∣

∣

∣

= ln |A|
γ

π

∞
∫

−∞

dt

|t− ζβ|2
+

n
∑

j=1

ln

∣

∣

∣

∣

∣

1 −
ζβ
ξj

∣

∣

∣

∣

∣

−
p
∑

j=1

ln

∣

∣

∣

∣

∣

1 −
ζβ
αkj

∣

∣

∣

∣

∣

=
γ

π

∞
∫

−∞







ln |A| +
n
∑

j=1

ln

∣

∣

∣

∣

∣

1 −
ζβ
ξj

∣

∣

∣

∣

∣

−
p
∑

j=1

ln

∣

∣

∣

∣

∣

1 −
ζβ
αkj

∣

∣

∣

∣

∣







dt

|t− ζβ|2

and hence

ln |Q(ζβ)| =
γ

π

∞
∫

−∞

ln |Q(t)|

|t− ζβ|2
dt =

γ

2π

∞
∫

−∞

lnR(t)

|t− ζβ|2
dt. (3.4)

It follows from (3.3) and (3.4) that

∣

∣

∣

∣

∣

1

x− ζβ
− L(x)

∣

∣

∣

∣

∣

=

√

R(x)

|x− ζβ|
exp







−
γ

2π

∞
∫

−∞

lnR(t) dt

|t− ζβ|2







.

which concludes the proof. �

Corollary 3.4 For each non-negative integer n and each α ∈ G there exists an Ln ∈ L∞ such
that for x ∈ R:

∣

∣

∣

∣

∣

1

x− ζβ
− Ln(x)

∣

∣

∣

∣

∣

=

√

1 + ωα,n(x)

|x− ζβ|
exp







−
γ

2π

∞
∫

−∞

ln[1 + ωα,n(t)] dt

|t− ζβ|2







.

PROOF. The function 1+ωα,n(x) is the restriction to R of the function 1+
∑n−1

k=1;αk∈Γα
ϕk(z)

2,
which belongs to R∞ and is positive on R. Consequently the result follows from Proposi-
tion 3.3. �
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Proposition 3.5 There exists a finite constant K1 such that for every R in R∞ which is
positive on R we have

exp







γ

2π

∞
∫

−∞

lnR(t) dt

|t− ζβ|2







≤ K1 sup
µ∈M(R∞)







∫

R

√

R(x) dµ(x)

|x− ζβ|







,

where K1 is independent of R.

PROOF. Recall that Sµ1
(ζβ) 6= Sµ2

(ζβ), where µ1, µ2 are two different measures in M(R∞),
cf. the introduction to this section. Set K0 = Sµ1

(ζ) − Sµ2
(ζ) 6= 0. Since

∫

R
L(x) dµ1(x) =

∫

R
L(x) dµ2(x) for all L ∈ L∞ we may write

K0 =
∫

R

(

1

x− ζβ
− L(x)

)

dµ1(x) −
∫

R

(

1

x− ζβ
− L(x)

)

dµ2(x)

hence

|K0| ≤
∫

R

∣

∣

∣

∣

∣

1

x− ζβ
− L(x)

∣

∣

∣

∣

∣

dµ1(x) +
∫

R

∣

∣

∣

∣

∣

1

x− ζβ
− L(x)

∣

∣

∣

∣

∣

dµ2(x),

and consequently

|K0| ≤ 2 sup







∫

R

∣

∣

∣

∣

∣

1

x− ζβ
− L(x)

∣

∣

∣

∣

∣

dµ(x)







,

where the supremum is taken over all µ ∈ M(R∞).

Let R be an arbitrary function in R∞ which is strictly positive on R. Then we conclude from
Proposition 3.3 that

|K0| ≤ 2 exp







−
γ

2π

∞
∫

−∞

lnR(t) dt

|t− ζβ|2







· sup







∫

R

√

R(x)

|x− ζβ|
dµ(x)







,

hence

exp







γ

2π

∞
∫

−∞

lnR(t) dt

|t− ζβ|2







≤ K1 · sup







∫

R

√

R(t)

|x− ζβ|
dµ(x)







where K1 = 2/|K0|. �
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Corollary 3.6 There exists a constant K1 independent of the index n such that for every
α ∈ G,

exp







γ

2π

∞
∫

−∞

ln[1 + ωα,n(t)] dt

|t− ζβ|2







≤ K1 · sup







∫

R

√

1 + ωα,n(t)

|x− ζβ|
dµ(x)







where the supremum is taken over all µ ∈ M(R∞).

PROOF. The function 1+ωα,n(x) is the restriction to R of the function 1+
∑n−1

k=1;αk∈Γα
ϕk(z)

2,
which belongs to R∞ and is positive on R. Thus the conditions of Proposition 3.5 are satisfied,
and so the result follows from this proposition. �

Lemma 3.7 Let α ∈ G, α 6= ∞, β ∈ R. Then the following inequality holds for αk = α,
µ ∈ M(R∞):

∣

∣

∣

∣

∣

∣

∫

R

(x− α)(x− β)ϕk(x)
2

|x− ζβ|2
dµ(x)

∣

∣

∣

∣

∣

∣

≤
|α− ζβ|

|1 − γ2|

[

|ϕk(ζβ)ψk(ζβ)| + |Ωµ(ζβ)ϕk(ζβ)2|
]

. (3.5)

PROOF. For any β ∈ R we may write

(1 − x
α
)ϕk(x)

2

x− ζβ
= (1 −

x

α
)
ϕk(x) − ϕk(ζβ)

x− ζβ
ϕk(x) −

ζβ + 1
α

1 + ζ2
β

ϕk(ζβ)ϕk(x) +

+
1 −

ζβ

α

1 + ζ2
β

[

D(x, ζβ){ϕk(x) − ϕk(ζβ)}ϕk(ζβ) +D(x, ζβ)ϕk(ζβ)2
]

.

We observe that (1 − x
α
)

ϕk(x)−ϕk(ζβ)

x−ζβ
belongs to Lk−1. Thus the integral of the first term to the

right vanishes by orthogonality. Also the integral of the second term vanishes by orthogonality.
We then get

∫

R

(1 − x
α
)ϕk(x)

2

x− ζβ
dµ(x) =

1 −
ζβ

α

1 + ζ2
β

[

ϕk(ζβ)ψk(ζβ) + ϕk(ζβ)2Ωµ(ζβ)
]

.

Hence by taking the real part of the equation we get

∣

∣

∣

∣

∣

∣

∫

R

(x− α)(x− β)ϕk(x)
2

|x− ζβ|2
dµ(x)

∣

∣

∣

∣

∣

∣

≤
|α− ζβ|

|1 + ζ2
β|

[

|ϕk(ζβ)ψk(ζβ)| + |ϕk(ζβ)|2|Ωµ(ζβ)|
]

.

We find that |1 + ζ2
β|

2 = (1 + β2 − γ2)2 + 4β2γ2 ≥ (1 − γ2)2, from which (3.5) now follows. �
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Lemma 3.8 Let µ be a positive measure in R and let f be a non-negative function on R. Let
[a, b] be a bounded interval and let β ∈ R. Then there exist positive numbers m(β) and M(β)
such that

m(β)
∫

R

f(x) dµ(x)

|x− ζβ|2
≤
∫

R

f(x) dµ(x)

|x− ζα|2
≤M(β)

∫

R

f(x) dµ(x)

|x− ζβ|2

for all α ∈ [a, b].

PROOF. The function φ(x) = |x− ζβ|
2/|x− ζα|

2 has a positive minimum m(α, β) and a finite
maximum M(α, β) since φ(x) → 1 as x→ ±∞. The values m(α, β) and M(α, β) are continuous
functions of α, hence there exist a positive m(β) and a finite M(β) such that m(β) ≤ m(α, β),
M(α, β) ≤M(β) for all α ∈ [a, b]. We may write

∫

R

f(x) dµ(x)

|x− ζα|2
=
∫

R

f(x)

|x− ζβ|2
·
|x− ζβ|

2

|x− ζα|2
dµ(x),

hence

m(β)
∫

R

f(x) dµ(x)

|x− ζβ|2
≤
∫

R

f(x) dµ(x)

|x− ζα|2
≤M(β)

∫

R

f(x) dµ(x)

|x− ζβ|2

for all α ∈ [a, b]. �

Proposition 3.9 Assume that G is bounded, α ∈ G, β ∈ R. Then there exists a constant
K2(α, β) independent of the index n and the measure µ ∈ M(R∞) such that

∫

R

√

1 + ωα,n(x)

|x− ζβ|
dµ(x) ≤ K2(α, β). (3.6)

PROOF. We know that the series
∑∞

k=1 |ϕk(ζβ)|2 and
∑∞

k=1 |ψk(ζβ)|2 converge, and by Schwarz’
inequality then also the series

∑∞
k=1 |ϕk(ζβ)ψk(ζβ)| converges. Furthermore, Ωµ(ζβ) ∈ ∆(ζβ),

which implies that Ωµ(ζβ) is bounded independently of µ ∈ M(R∞).

It follows from Lemma 3.7 that

∫

R

(x− α)2ωα,n(x)

|x− ζα|2
dµ(x) ≤

γ

|1 − γ2|

n−1
∑

k=1
αk∈Γα

{

|ϕk(ζα)ψk(ζα)| + |Ωµ(ζα)ϕk(ζα)2|
}

.

Taking into account Lemma 3.8 we then get
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∫

R

(x− α)2ωα,n(x)

|x− ζβ|2
dµ(x) ≤

γ

m(β)|1 − γ2|

n−1
∑

k=1
αk∈Γα

{

|ϕk(ζα)ψk(ζα)| + |Ωµ(ζα)ϕk(ζα)2|
}

.

Thus there exists a constant K3(α, β) independent of n and µ ∈ M(R∞) such that

∫

R

(x− α)2[1 + ωα,n(x)]

|x− ζβ|2
dµ(x) ≤ K3(α, β). (3.7)

We may write

√

1 + ωα,n(x)

|x− ζβ|
=

|x− α|
√

1 + ωα,n(x)

|x− ζβ|
·

1

|x− α|
.

Hence by Schwarz’ inequality we get

∫

R

√

1 + ωα,n(x)

|x− ζβ|
dµ(x) ≤





∫

R

(x− α)2[1 + ωα,n(x)]

|x− ζβ|2
dµ(x)





1/2

·





∫

R

dµ(x)

(x− α)2





1/2

. (3.8)

The factor 1/(x−α)2 belongs to R∞, hence
∫

R

dµ(x)
(x−α)2

equals a finite constant K4 (independent

of µ). Setting K2 =
√

K3(α, β)K4, we obtain (3.6) from (3.7) and (3.8). �

Theorem 3.10 (Riesz type criterion) Assume that the moment problem on R∞ is indeter-
minate. Assume that G is finite and let β ∈ R. Then

∞
∫

−∞

lnω(t) dt

|t− ζβ|2
<∞ and

∞
∫

−∞

ln Ω(t) dt

|t− ζβ|2
<∞. (3.9)

PROOF. According to Proposition 3.9 we have

sup
µ∈M(R∞)

∫

R

√

1 + ωα,n(x)

|x− ζβ|
dµ(x) ≤ K2(α, β)

where K2(α, β) is independent of n. Consequently there is a constant K2(β) such that

∑

α∈G

sup
µ∈M(R∞)

∫

R

√

1 + ωα,n(x)

|x− ζβ|
dµ(x) ≤ K2(β).
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It then follows from Corollary 3.6 that there is a constant K(β) such that

∞
∫

−∞

∑

α∈G

ln[1 + ωα,n(t)]

|t− ζβ|2
dt ≤ K(β) for all n.

For any non-negative numbers t1, t2, . . . , tN we have

ln

(

1 +
N
∑

k=1

tk

)

≤
N
∑

k=1

ln(1 + tk).

Consequently we may conclude from the fact that ωn(t) = 1 +
∑

α∈G ωα,n(t):

∞
∫

−∞

lnωn(t)

|t− ζβ|2
dt ≤

∞
∫

−∞

1

|t− ζβ|2

{

∑

α∈G

ln[1 + ωα,n(t)]

}

dt ≤ K(β)

for all n, from which the first inequality in (3.9) follows.

Similarly, since {χn} are the orthonormal functions associated with the indeterminate moment
problem on R̃∞, we find

∞
∫

−∞

ln ω̃n(t)

|t− ζβ|2
dt ≤ ∞

Then from (2.1) and (2.2) we infer that also the second inequality in (3.9) is satisfied. �

Remark 3.11 By considering the imaginary part in (3.7) whenG = {∞}, we get
∣

∣

∣

∫

R

ωn(x) dµ(x)
|x−ζβ |2

∣

∣

∣ ≤
K3

γ
and hence by Schwartz’ inequality

∫

R

√

ωn(x) dµ(x)

|x− ζβ|
≤





∫

R

ωn(x) dµ(x)

|x− ζβ|2





1/2

≤

√

K3

γ
.

It follows from Corollary 3.6 that in this case
∫∞
−∞

ln ω(t) dt
|t−ζβ |2

<∞.

4 Growth estimates in the finite case

We continue to assume that the moment problem on R∞ is indeterminate. Let α be a fixed
point in G. For the sake of simplicity we formulate the results and carry out the arguments only
for the case α 6= ∞. By adapting the arguments given in this section, estimates in appropriate
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form can be proved also in the case α = ∞. In the following β shall denote an arbitrary point
in G.

We set m(z) = max {1, D(z, x0)}, p(z) = max{1, H(z, x0)},

q = max
{

[
∑∞

k=1 ϕk(x0)
2]1/2, [

∑∞
k=1 ψk(x0)

2]1/2
}

, and define

Φ(t) = ln
[

p(t)
{

m(t) + q
√

ω(t)
}]

, Ψ(t) = ln
[

p(t)
{

m(t) + q
√

Ω(t)
}]

.

It follows from Theorem 3.10 (the Riesz type criterion) that

∞
∫

−∞

Φ(t) dt

|t− ζβ|2
<∞ and

∞
∫

−∞

Ψ(t) dt

|t− ζβ|2
<∞ for any β ∈ R. (4.1)

Note that Φ(t) ≥ 0 and Ψ(t) ≥ 0 for all t ∈ R.

Let η ∈ (0, π/2). We introduce the notation

∆(α, η) = {z ∈ C : η ≤ |arg(z − α)| ≤ π − η}.

As usual we set z = x+ yi.

Lemma 4.1 Assume that f is a non-negative function on R satisfying
∫∞
−∞

f(t) dt
|t−ζα|2

< ∞ for
some α ∈ R. Then for every ε > 0 there exists a disk Uα with center at α such that

|y|

π

∞
∫

−∞

f(t) dt

|t− z|2
<

ε

|z − α|
(4.2)

for z ∈ Uα ∩ ∆(α, ε).

PROOF. We have y2f(t)
|t−z|2

≤ f(t) a.e., and
∫

|t−α|≤γ f(t) dt < ∞ since |t − z|2 is bounded for

|t− α| ≤ γ. Hence it follows by Lebesgue’s dominated convergence theorem, that

y2

π

∫

|t−α|≤γ

f(t) dt

|t− z|2
−→
y→0

0, hence
y2

π

∫

|t−α|≤γ

f(t) dt

|t− z|2
<
ε

2
sin η (4.3)

for |y| sufficiently small.

For z ∈ ∆(α, η) we have |t − z|2 ≥ |t − α|2 sin2 η. For |t − x| ≥ γ this implies |t − x|2 ≥
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1
2
|t− z|2 sin2 η. Hence

y2

π

∫

|t−α|≥γ

f(t) dt

|t− z|2
≤

2y2

π sin2 η

∫

|t−α|≥γ

f(t) dt

|t− z|2
.

Since
∫

|t−α|≥γ
f(t) dt
|t−z|2

<∞ we find that

y2

π

∫

|t−α|≥γ

f(t) dt

|t− z|2
−→
y→0

0, hence
y2

π

∫

|t−α|≤γ

f(t) dt

|t− z|2
<
ε

2
sin η (4.4)

for |y| sufficiently small.

We have |z − α| sin η < |y| when z ∈ ∆(α, η), and so (4.2) follows from (4.3) and (4.4). �

Proposition 4.2 Assume that G is finite, and let α ∈ G. Let Vα be a disk with center at α
and let F denote any of the functions A,B,C, D. Then there exists for every ε > 0 a constant
M1(ε, η) such that

|F (z)| ≤M1(ε, η) exp

{

ε

|z − α|

}

(4.5)

for z ∈ Vα ∩ ∆(α, η).

PROOF. Let Hn denote any of the functions Bn, Dn. It follows by Schwartz’ inequality that

|Hn(t)| ≤ p(t)[m(t) + q
√

ω(t)], hence ln |Hn(t)| ≤ Φ(t) for t ∈ R.

Recall that all the zeros and poles of Hn are real.

From Poisson’s formula and Lemma 3.1, applied to the rational function Hn(t) with all poles
on R, we find

ln |Hn(z)| =
|y|

π

∞
∫

−∞

ln |Hn(t)| dt

|t− z|2
, for z 6∈ R

and hence

ln |Hn(z)| ≤
|y|

π

∞
∫

−∞

Φ(t) dt

|t− z|2
.
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It now follows from Lemma 4.1 that ln |Hn(z)| ≤ ε
|z−α|

for z ∈ Uα ∩ ∆(α, η), where Uα is

sufficiently small. In (Vα \ Uα) ∩ ∆(α, η) we have ln |Hn(z)| ≤ M∗
1 (ε, η) where the constant

M∗
1 (ε, η) is independent of n, since Hn is uniformly convergent in (Vα \ Uα) ∩ ∆(α, η). Thus

ln |Hn(z)| ≤M∗
1 (ε, η) +

ε

|z − α|

in Vα ∩ ∆(ε, η) for all n.

Simiarly let Gn denote any of the functions An, Cn. Then ln |Gn(t)| ≤ Ψ(t) for all t ∈ R, and
all the zeros and poles of Gn are real. It follows from (4.1) by the same kind of reasoning as
above that there exists a constant M∗∗

1 (ε, η) such that

ln |Gn(z)| ≤M∗∗
1 (ε, η) +

ε

|z − α|
for z ∈ Vα ∩ ∆(α, η).

Setting M1(ε, η) = max{exp[M∗
1 (ε, η)], exp[M∗∗

1 (ε, η)]}, we obtain (4.5). �

η η
t

V

α

α

ρ
α

S (α,η)

∆(α,η)

∆(α,η)

Fig. 1. Elements appearing in the proof of Proposition 4.3

Proposition 4.3 Assume that G is finite, ∞ 6∈ G. Let α ∈ G and let Vα be a disk with center
at α containing no other point in G. Then for every ε > 0 there exists a constant M2(ε, η) such
that

|F (z)| ≤M2(ε, η) exp

{

ε

|z − α|

}

for z ∈ Vα ∩ [C \ ∆(α, η)] where F is any of the functions A,B,C,D.

PROOF. Let ρα denote the radius of Vα and let S(α, η) denote the sector of Vα ∩ [C\∆(α, η)]
lying to the right of α. According to Proposition 4.2 there is for every ε > 0 a constant
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M1(ε cos η, η) such that |F (z)| ≤M1(ε cos η, η) exp
{

ε cos η
|z−α|

}

for z ∈ Vα∩∆(α, η), hence a constant

M∗
2 (ε cos η, η) such that

|Fn(z)| ≤M∗
2 (ε cos η, η) exp

{

ε cos η

|z − α|

}

(4.6)

for z ∈ Vα ∩ ∆(α, η), where Fn is any of the functions An, Bn, Cn, Dn.

We now consider z in the closure S(α, η) of the sector S(α, η). The function

Qn(z) = Fn(z) exp
{

−
ε

z − α

}

is holomorphic in S(α, η) \ {α}. We have

|Qn(z)| = |Fn(z)| exp
{

−ε Re
1

z − α

}

, (4.7)

hence by (4.6)

|Qn(z)| ≤M∗
2 (ε cos η, η) exp

{

ε cos η

|z − α|

}

· exp

{

−ε
x− α

|z − α|2

}

. (4.8)

Let z be a point on one of the line segments of the boundary ∂S(α, η). Then x−α = |z−α| cos η,
hence

|Qn(z)| ≤M∗
2 (ε cos η, η). (4.9)

Next let z be a point on the circular arc of ∂S(α, η). Then we have

|Qn(z)| ≤M∗
2 (ε cos η, η) exp

{

ε cos η

ρα

}

exp

{

−
ε(x− α)

ρ2
α

}

=M∗
2 (ε cos η, η) exp

{

ε

ρ2
α

[ρα cos η − (x− α)]

}

,

hence

|Qn(z)| ≤M∗
2 (ε cos η, η) exp

{

ε cos η

ρα

}

.

Thus there is a constant M∗
3 (ε cos η, η) such that

|Qn(z)| ≤M∗
3 (ε cos η, η) for z ∈ ∂S(α, η) \ {α}.
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Recall that Fn is a rational function. Therefore there exists for every ε > 0 a constant kn(ε) such

that |Fn(z)| ≤ kn(ε) exp
{

ε cos η
|z−α|

}

for z ∈ Vα. For z ∈ S(α, η)\{α} we have |x−α| ≥ |z−α| cos η.
Hence

|Qn(z)| ≤ kn(ε) exp

{

ε cos η

|z − α|

}

exp

{

−ε
x− α

|z − α|2

}

≤ kn(ε)

for z ∈ S(α, η) \ {α}. It follows that

lim sup
z→α

z∈S(α,η)\{α}

|Qn(z)| ≤ kn(ε) <∞.

Then, according to a version of the maximum principle (see for example [15, Part II, p.208])
we have

|Qn(z)| ≤M∗
3 (ε cos η, η) for z ∈ S(α, η),

and hence, according to (4.7)

|Fn(z)| ≤M∗
3 (ε cos η, η) exp

{

ε

|z − α|

}

, for z ∈ S(α, η). (4.10)

In the same way we find an estimate

|Fn(z)| ≤M∗∗
3 (ε cos η, η) exp

{

ε

|z − α|

}

, (4.11)

for z in the sector of Vα ∩ [C \ ∆(α, η)] to the left of α.

Letting n tend to infinity in (4.10)-(4.11) and combining the resulting inequalities, the proof is
completed. �

Theorem 4.4 Assume that G is finite, ∞ 6∈ G. Let α ∈ G and let Vα be a disk with center at
α containing no other point of G. Then for every ε > 0 there exists a constant M(ε) such that

|F (z)| ≤M(ε) exp

{

ε

|z − α|

}

for all z ∈ Vα, where F is any of the functions A,B,C,D.

PROOF. Choose a fixed η = η0, and define M(ε) = max{M1(ε, η0),M2(ε, η0)}. The result
then follows from Proposition 4.3. �
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Remark 4.5 For fixed t ∈ R̂, the rational function

Tn(z, t) = −
An(z)t− Cn(z)

Bn(z)t−Dn(z)

has a partial fraction decomposition of the form

Tn(z, t) =
n
∑

k=1

λn,k(t)
1 + ξn,k(t)z

ξn,k(t) − z
,

with ξn,k ∈ R and λn,k > 0 for k = 1, . . . , n, and
∑n

k=1 λn,k(t) = 1. (See [2, Sections 10-11],
[8, Sction 11.10].) Since |ξn,k(t) − z| ≥ |y| ≥ |z − α| sin η for z ∈ ∆(α, η), we find |Tn(z, t)| ≤
1+|z|2

|z−α|
+ |z|. In particular

∣

∣

∣

∣

∣

An(z)

Bn(z)

∣

∣

∣

∣

∣

≤
1 + |z|2

|z − α|
+ |z|,

∣

∣

∣

∣

∣

Cn(z)

Dn(z)

∣

∣

∣

∣

∣

≤
1 + |z|2

|z − α|
+ |z|,

for z ∈ ∆(α, η). Since 1
|z−α|

≤ m exp{ ε′

|z−α|
} for arbitrary ε′ > 0 and suitable m, we conclude

that if B and D satisfy an estimate of the form |F (z)| ≤M exp{ ε
|z−α|

} for z ∈ ∆(α, η) for some
M , then also A and C do. Hence the result of Proposition 4.2 can be obtained without making
use of the Riesz type criterion

∫∞
−∞

ln Ω(t)
|t−ζβ |2

dt < ∞ (see (3.9)). The result in Theorem 4.4 can

thus be established without use of this criterion.

Remark 4.6 When G consists of the only point ∞ (i.e. when αk = ∞ for all k), the functions
Fn are polynomials with all zeros in R. Hence |Fn(z)| is an increasing function of y, and an
estimate of the form |Fn(z)| ≤M(ε, η) exp{ε|z|} in {z ∈ C : η ≤ | arg z| ≤ π− η} can easily be
extended to an estimate of the same kind in the whole plane. See e.g. [1, Chap. 2]. An argument
of this kind is not possible in the general case.

Remark 4.7 If α is an isolated point in G and there is only a finite number m of elements αk

in some Γα, then F has a pole of order m at α. Thus in a neighborhood Vα we have in this case
the stronger estimate |F (z)| ≤ M̃(ε)|z − α|−m.
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