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Abstract. In this paper we describe a high performance, area-efficient
implementation of Hyperelliptic Curve Cryptosystems over GF(2m). A
compact Arithmetic Logic Unit (ALU) is proposed to perform multipli-
cation and inversion. With this ALU, we show that divisor multiplica-
tion using affine coordinates can be efficiently supported. Besides, the
required throughput of memory or Register File (RF) is reduced so that
area of memory/RF is reduced. We choose hyperelliptic curves using the
parameters h(x) = x and f(x) = x5 + f3x

3 + x2 + f0. The performance
of this coprocessor is substantially better than all previously reported
FPGA-based implementations. The coprocessor for HECC over GF(283)
uses 2316 slices and 2016 bits of Block RAM on Xilinx Virtex-II FPGA,
and finishes one scalar multiplication in 311 µs.

Keywords: Hyperelliptic Curve Cryptosystems, Modular multiplication, Mod-
ular inversion, FPGA

1 Introduction

Public-Key Cryptography (PKC) [10], introduced in the mid 70’s by Diffie and
Hellman, ensures a secure communication over an insecure network without prior
key agreement. PKC is widely used for digital signatures, key agreement and data
encryption. The best-known and most commonly used public-key cryptosystems
are RSA [26] and Elliptic Curve Cryptography (ECC) [23, 19], but recently Hy-
perElliptic Curve Cryptography (HECC) [20] is catching up. The main benefit
for curve-based cryptography e.g. ECC and HECC is that they offer equiva-
lent security as RSA for much smaller parameter sizes. The advantages result in
smaller data-paths, less memory and lower power consumption.

Implementing HECC on a resource-constrained platform has been a chal-
lenge in both area and performance. Over the past few years, HECC have been
implemented in both software [25, 27] and hardware [4, 7, 15, 11]. However, the
implementations so far failed in reaching the performance of ECC implemen-
tations with comparable hardware cost. Table 1 compares the computational
complexity of point/divisor operations in ECC and HECC as in [2]. Here I, M



and S denote modular inversion, multiplication and squaring, respectively. Note
that Table 1 is not exhaustive, and a comprehensive description of different
coordinates as well as their computational complexity can be found in [2]. In
addition, state of the art regarding various types of coordinates for all types of
curve-based cryptosystem can be found in [9]. For example, ECC over GF(2163)
and HECC over GF(283) are supposed to offer equivalent security as 1024-bit
RSA [2]. Using projective coordinates, one EC Point Addition (PA) requires 15
multiplications and 3 squarings in GF(2163), while one HEC Divisor Addition
(DA) requires 49 multiplications and 4 squarings in GF(283), which is much
more complex even with parameters of half bit-lengths. In order to speed up
HECC implementations, parallel multipliers [4, 7] or inverters [15] were used. As
a result, an ALU becomes large in the area. In order to efficiently feed data to
parallel multipliers and inverters, a high-throughput Register File (RF) with an
additional control logic i.e. a MUX array connected to ALU is required. This
adds even more area to implementations.

Table 1. Modular Operations Required by Point/Divisor Operations in GF(2m) [2]

PA/DA PD/DD Coordinates Conversion

ECC Affine I+2M+S I+2M+S -
Projective 15M+3S 7M+4S I+2M

HECC Affine I+22M+3S I+20M+6S -
Projective 49M+4S 38M+7S I+4M

In this paper, we describe a compact HECC coprocessor on an FPGA plat-
form. The coprocessor utilizes a unified multiplier/inverter, which supports both
multiplication and inversion. This architecture brings three main advantages.
First, the fast inverter makes affine coordinates very efficient. Second, as the
multiplier and inverter share partial data-path, it is much smaller in area com-
pared to previous implementations. Third, using only one multiplier/inverter,
the required throughput of Memory or RF is comparably low. Therefore we can
reduce the area of the memory. Note that the architecture proposed here for
FPGA design can also lead to an area-efficient design in ASICs. The coproces-
sor was synthesized with Xilinx ISE8.1i. On Virtex-II FPGA (XC2V4000), this
coprocessor finishes one scalar multiplication of HECC over GF(283) in 311 µs
using 2316 slices and 2016 bits memory. To the best of our knowledge, this imple-
mentation is faster than all proposed FPGA-based implementations of HECC,
while the area is much smaller than that of the fastest reported implementa-
tion [15].

The rest of the paper is organized as follows. Section 2 gives a brief introduc-
tion on the previous work. Section 3 describes the mathematical background of
HECC and field arithmetic. Section 4 describes the architecture of the proposed
HECC coprocessor. In Sect. 5 we show the implementation results. We conclude
the paper and give some future work in Sect. 6.



2 Previous Work

In 2001, Wollinger described the first hardware architecture for HECC implemen-
tations using Cantor’s algorithm [6] in his thesis [32]. However, the architecture
was only outlined. The first complete hardware implementation of HECC was
presented in [4]. It is also based on Cantor’s algorithm, but with improvement on
the calculation of Greatest Common Divisor (GCD). This implementation, using
16600 slices on Xilinx Virtex II FPGA, supports a genus-2 HEC over GF(2113).
One scalar multiplication takes 20.2 ms on this coprocessor running at 45MHz.
This work was further improved in [7].

In 2002, Lange generalized the explicit formulae for HECC over finite fields
with arbitrary characteristic [21]. This was first implemented on 32-bit embedded
processors (ARM7TDMI and PowerPC) in [25]. The inversion in this algorithm
was performed with Extended Euclidean Algorithm (EEA). The first hardware
implementation of HECC using explicit formulae was described in [12]. Further
improvement by using mixed coordinates and simplified curves were proposed
in [11]. In [11] the coprocessor, running at 45.3MHz, deploys 25272 slices on
Xilinx Virtex II FPGA. With this implementation 2.03 ms is required to per-
form one scalar multiplication of HECC over GF(2113). There are some ASIC
implementations of HECC using projective coordinates. For example, Sakiyama
proposed a HECC coprocessor [28] using 0.13-µm CMOS technology. The co-
processor runs at 500 MHz, and can perform one scalar multiplication of HECC
over GF(283) in 63 µs.

The first hardware implementations of HECC using affine version of explicit
formulae were described in [31], which described so far the fastest FPGA-based
HECC coprocessor. This coprocessor uses three modular multipliers and two
modular inverters. It uses 7785 slices on Xilinx Virtex II FPGA(XC2V4000),
and can reach a clock frequency of 56.7MHz. One scalar multiplication of HECC
over GF(281) takes 415 µs.

3 Mathematical Background

3.1 Hyperelliptic curve cryptography

Hyperelliptic curves are a special class of algebraic curves; they can be viewed
as generalization of elliptic curves. Namely, a hyperelliptic curve of genus g = 1
is an elliptic curve, while in general, hyperelliptic curves can be of any genus
g ≥ 1.

Let GF(2m) be an algebraic closure of the field GF(2m). Here we consider
a hyperelliptic curve C of genus g = 2 over GF(2m), which is given with an
equation of the form:

C : y2 + h(x)y = f(x) in GF(2m)[x, y], (1)

where h(x) ∈ GF(2m)[x] is a polynomial of degree at most g (deg(h) ≤ g) and
f(x) is a monic polynomial of degree 2g + 1 (deg(f) = 2g + 1). Also, there



are no solutions (x, y) ∈ GF (2m) × GF (2m) which simultaneously satisfy the
equation (1) and the equations: 2v + h(u) = 0, h′(u)v − f ′(u) = 0. These points
are called singular points. For the genus 2, in the general case the following
equation is used y2 + (h2x

2 + h1x + h0)y = x5 + f4x
4 + f3x

3 + f2x
2 + f1x + f0.

A divisor D is a formal sum of points on the hyperelliptic curve C i.e.

D =
∑

mP P and its degree is degD =
∑

mP . Let Div denotes the group of all
divisors on C and Div0 the subgroup of Div of all divisors with degree zero. The
Jacobian J of the curve C is defined as quotient group J = Div0/P . Here P is the
set of all principal divisors, where a divisor D is called principal if D = div(f),
for some element f of the function field of C (div(f) =

∑
P∈C ordP (f)P ). The

discrete logarithm problem in the Jacobian is the basis of security for HECC. In
practice, the Mumford representation according to which each divisor is repre-
sented as a pair of polynomials [u, v] is usually used. Here, u is monic of degree 2,
degv < degu and u|f−hv−v2 (so-called reduced divisors). For implementations
of HECC, we need to implement the multiplication of elements of the Jacobian
i.e. divisors with some scalar.

The main operation in any hyperelliptic curve based primitive is scalar mul-
tiplication, i.e. mD where m is an integer and D is a reduced divisor in the
Jacobian of some hyperelliptic curve C. The first algorithm for arithmetic in the
Jacobian is due to Cantor [6]. However, until “explicit formulae” were invented,
the HECC was not considered a suitable alternative to EC based cryptosys-
tems. For geni 2 and 3, there was some substantial work on the formulae and
algorithms for computing the group law on the Jacobian have been optimized.
Algorithms for the group operation for the case of genus 2 hyperelliptic curves,
which we used are due to Lange [22].

The main operation in any curve-based primitive (ECC or HECC) is the
scalar multiplication. Looking at the arithmetic for both ECC/HECC the only
difference between ECC and HECC is in the group operations. On this level
both ciphers consist of different sequences of operations. Those for HECC are
more complex when compared with the ECC point operation, but they use
shorter operands. The divisor scalar multiplication is achieved by repeated di-
visor addition and doubling. Many techniques that help to speed up ECC scalar
multiplication are also applicable to HECC. For example, using Non-Adjacent
Form (NAF) for scalar representation or window method can also improve HECC
performance.

3.2 Field Arithmetic

An element α in GF(2m) can be represented as a polynomial A(x)=
∑m−1

i=0 aix
i,

here ai ∈ GF(2). Addition of two elements in GF(2m) is performed as polynomial
addition in GF(2)

m−1∑

i=0

aix
i +

m−1∑

i=0

bix
i =

m−1∑

i=0

(ai ⊕ bi)x
i,

where ⊕ is XOR operation.



Multiplication In the literature there are various algorithms and architec-
tures [3, 30] proposed for modular multiplication in GF(2m). The bit-serial al-
gorithms can be classified into two categories, the Most Significant Bit (MSB)
first algorithms and the Least Significant Bit (LSB) first algorithms. It is impor-
tant to point out that LSB-first bit-serial multiplier has shorter critical path than
MSB-first bit-serial multipliers [3]. In this paper, we use the LSB-first algorithm.

Algorithm 1 LSB-first bit-serial modular multiplication in GF(2m) [3]

Input: A(x) =
P

m−1

i=0
aix

i, B(x) =
P

m−1

i=0
bix

i, irreducible binary polynomial P (x)
with deg(P (x)) = m.
Output: A(x)B(x) mod P (x).

1: C(x)← 0, A′(x)← A(x);
2: for i = 0 to m− 1 do

3: C(x)← C(x) + biA
′(x);

4: A′(x)← xA′(x) mod P (x);
5: end for

Return: C(x).

Inversion A multiplicative inverse of A(x) is a polynomial A−1(x) in GF(2) such
that A−1(x)A(x) ≡ 1 mod P (x). Compared with the other modular operations,
modular inversion is considered as a computationally expensive operation. The
most commonly used methods to perform the modular inversion are based on
Fermat’s little theorem [1], Extended Euclidean Algorithm [18] and Gaussian
elimination [16]. EEA is widely used to perform inversion in practice.

The schoolbook EEA-based inversion algorithm in GF(2m) is commonly con-
sidered inefficient due to the long polynomial division in each iteration. This
problem was partially solved by replacing degree comparison with a counter [5].

In [34], Yan et al. proposed a modified inversion algorithm based on the
EEA. Algorithm 2 shows this inversion algorithm. Here we use Si(x) to denote
the value of S(x) after ith iteration, and di−1

0 the LSB of di−1. The complement
of C1 is represented as C̄1. Unlike many other EEA variants [14, 5, 18], this
algorithm has no modular operations, thus a short critical path delay can be
easily achieved. Besides, with a fixed number of iterations, it is more secure
against side-channel analysis.

4 HECC coprocessor architecture

In this section we describe a compact coprocessor architecture for HECC over
GF(2m). Two main approaches are used to reduce the area: using compact ALU
and reducing memory area. First, we propose a unified digit-serial modular multi-
plier/inverter, which enables a small ALU. Second, we investigate the character-



Algorithm 2 EEA-Based Inversion Algorithm [34]

Input: irreducible binary polynomial P (x) with deg(P (x)) = m, polynomial A(x) with
deg(A(x)) < m.
Output: A−1(x) mod P (x).

1: R0(x)← P (x), S0(x)← xA(x), H0(x)← 0, J0(x)← xm, d0 ← 2, sign0 ← 1;
2: for i = 1 to 2m− 1 do

3: C1 ← si

m, C2 ← C1 ∧ signi−1;

signi ←



C̄1 if signi−1 = 1;
di−1

0
if signi−1 = 0;

Si(x)←



x(Ri−1(x) + Si−1(x)) if C1 = 1;
xSi−1(x) if C1 = 0;

J i(x)←



Hi−1(x) + J i−1(x) if C1 = 1;
J i−1(x) if C1 = 0;

Ri(x)←



Si−1(x) if C2 = 1;
Ri−1(x) if C2 = 0;

Hi(x)←



J i−1(x)/x if C2 = 1;
Hi−1(x)/x if C2 = 0;

di ←



2di−1 if signi = 1;
di−1/2 if signi = 0;

4: end for

Return: H2m−1(x).

istics of the ALU, and reduce area of memory block as well as its interconnecting
network.

4.1 Modular Multiplier

As shown in Algorithm 1, the main operation in LSB-first multiplication is
(bA(x)+C(x)), which can be performed by a row of AND gates and XOR gates
shown in Figure 1(a). Figure 1(b) shows the architecture of a LSB-first bit-serial
multiplier. Two (m + 1)-bit registers are used to hold the parameter P (x), A(x)
and two m-bit registers to hold B(x) and the partial product C(x). Note that
B(x) is shifted to right by one bit in each clock cycle. Here (amP (x) + A(x))
and (b0A(x) + C(x)) is performed on the left and right side, respectively. If low
Hamming weight irreducible polynomials are used, the AND-XOR cell on the
left side can be simplified. For example, using P (x) = x83 + x7 + x4 + x2 + 1,
only 4 AND gates and 4 XOR gates are required to perform (amP (x) + A(x)).

It is clear that the critical path delay is TAND + TXOR, where TAND and
TXOR denote the delay of a 2-input AND and XOR gate, respectively. One
multiplication in GF(2m) takes m clock cycles on this bit-serial multiplier.



(a) AND-XOR Cell
(b)Bit-serial modular multiplier.

Fig. 1. Bit-serial modular multiplier.

4.2 Unified Modular Inverter and Multiplier

We propose a unified architecture which can perform both multiplication and
inversion. In [8], Daly et al. have proposed a unified ALU for GF(p). It can
perform addition, subtraction, multiplication and inversion. Compared with this
ALU, our unified inverter/multiplier in GF(2m) has a shorter critical path delay,
and can be implemented in a digit-serial manner to achieve a higher throughput.
Figure 2 shows the data-path of our proposed bit-serial inverter and multiplier.
It realizes both Algorithm 1 and Algorithm 2. The multiplier and the inverter
share one AND-XOR cell and three registers. The critical path delay is 2TMUX.
Here TMUX denotes the delay of a 2-input multiplexer. This multiplier/inverter
finishes one inversion operation in GF(2m) in (2m− 1) clock cycles.

Fig. 2. Bit-serial modular multiplication/inversion unit.

This data-path supports the following operations:



1. Modular Multiplication.

– Initialization (i = 0), R(x) ← P (x), S(x) ← xA(x), H(x) ← B(x),
C(x)← 0, d← 0, sign← 0;

– During the whole loop (0 < i < m + 1), di = 0, signi = 0, thus, Ri(x) =
Ri−1(x) = P (x), Hi(x) ← Hi−1(x)/x, Ai(x) ← x(Ai−1(x) + amP (x)),
and Ci(x)← h0A

i−1(x)/x + Ci−1(x);
– Return Cm(x).

2. Modular Inversion.
– Initialization (i = 0), R(x) ← P (x), S(x) ← xA(x), H(x) ← 0, J(x) ←

xm, d← 2, sign← 1;
– During the whole loop (0 < i < 2m), Si(x)← x(Si−1(x) + smRi−1(x)),

J i(x)← J i−1(x) + smHi−1(x),
• If C2 = 1, then Ri(x)← Si−1(x), Hi(x)← J i−1(x)/x;
• If C2 = 0, then Ri(x)← Ri−1(x), Hi(x)← Hi−1(x)/x;

– Return H2m−1(x).

4.3 Compact digit-serial Inverter/Multiplier for HECC

In order to achieve higher throughput, a digit-serial inverter/multiplier can be
implemented with multiple bit-serial multiplication and inversion units. We pro-
pose a flexible architecture which allows us to explore the trade-off between
performance and hardware cost. Figure 3 shows the architecture where 3 unified
inversion multiplication units (w1 = 3) and 4 bit-serial multipliers (w2 = 7)
are used. Here w1 and w2 denote the equivalent digit-size of this digit-serial in-
verter and multiplier, respectively. When choosing m = 83, one inversion takes
⌈ 2m−1

w1

⌉ = 55 clock cycles, while one multiplication takes ⌈ m
w2

⌉ = 14 clock cycles.

Given a constant w2, increasing w1 will reduce the number of clock cycles
required by one inversion. However, it will increase the area as well as the critical
path delay. As a result, the multiplication will be slowed down slightly. Therefore,
w1/w2 can be chosen for different design targets such as high performance, low
hardware cost or smallest area-time product. Theoretical exploration for optimal
(w1, w2) for a specific design target is out of the scope of this paper. Table 2 shows
the performance and area of the proposed ALU with different configurations.
Here Xilinx Virtex II (XC2V4000) FPGA is used. In this HECC implementation
we choose w1 = 3 and w2 = 14 as the best performance/area trade-off for this
architecture. With this configuration, one multiplication and one inversion in
GF(283) take 47.9 and 439 ns, respectively.

4.4 Memory/RF analysis

Besides ALU, memory/RF is another main component that decides the overall
area and performance of a coprocessor. The size, throughput and delay of mem-
ory/RF must be chosen according to the requirement of the ALU. We analyze
different design strategies of HECC coprocessor here.



Fig. 3. Digit-serial modular multiplication inversion unit (w1 = 3, w2 = 7).

Both memory and RF have their own advantages and disadvantages. While
registers are larger than memory of the same capacity, memory usually has one
clock delay in read operation. This delay may cause performance degradation
when multiple data-path work in a pipelining mode, see [31]. Thus, HECC copro-
cessors using multiple data-path [7, 33, 31] require an efficient register file to feed
data to parallel multipliers and inverters. The register file and its interconnecting
network make a big part of the whole area.

The area of memory/RF is dependent on the size and throughput [24, 29].
Higher throughput results in a more complex decoder and a larger intercon-
necting network, which cause the area increase. Thus, reducing the memory/RF
throughput reduces the area. Table 3 shows the required memory/RF through-
put of different ALUs. Note that here we use GF(283) for all the ALUs, D
denotes the delay of multiplication. For example, when using three multipliers,
the ALU reads 6 operands from memory/RF and writes 3 data back. In [33,
31], 3 clock cycles are required for one multiplication. If each operand is 84-bit,
then the ALU needs to read 168 bits in each clock cycle. The proposed multi-
plier/inverter shown in Figure 3 requires 56-bit read and 14-bit write in each
clock cycles. The required memory throughput is much smaller than that in [33]
and [31].

4.5 Coprocessor architecture

The HECC Coprocessor is shown in Figure 4. It contains an Instruction ROM, a
main controller and a unified modular multiplier/inverter. The Instruction ROM



Table 2. Performance comparison of multiplication and inversion unit in GF(2m).

Ref. Configuration Area Freq. Finite Mul. Perf. Inv. Perf.
Design [Slices] [MHz] Field [ns]/[#cycle] [ns]/[#cycle]

w1 = 1, w2 = 14 977 127 GF(283) 47.1 / 6 1296 / 165
w1 = 2, w2 = 14 1117 126 GF(283) 47.3 / 6 654 / 83

Fig. 3 w1 = 3, w2 = 14 1500 125 GF(283) 47.9 / 6 439 / 55
w1 = 4, w2 = 14 1718 113 GF(283) 52.7 / 6 372 / 42
w1 = 5, w2 = 14 1987 104 GF(283) 57.4 / 6 315 / 33

w = 8 342 108.7 GF(281) 101 / 11 -
Mult. [31] w = 16 554 87.5 GF(281) 69 / 6 -

w = 27 882 71.0 GF(281) 42 / 3 -

Inv. [31] MAIA 663 87.8 GF(281) - 1014 / 89

Table 3. Comparison of memory throughput required by different ALUs.

Ref. Configuration Read Write Total
Design [Bits] [Bits] [Bits]

[33] 3 Mult. (D = 3) 168 84 252

[31] 2 Mult. (D = 3) 112 56 168

Fig.4 Unified M/I. (D = 6) 56 14 80

contains the field operation sequences of divisor addition and doubling. As only
a single data-path is used, the coprocessor does not require high-throughput
register files. Instead, a data RAM is used to keep the curve parameters, base
divisor and intermediate data. On FPGAs, Block RAMs are used.

The coprocessor supports four instructions, namely,

Add Ra,Rb,Rc // Ra=Rb+Rc

Mul Ra,Rb,Rc // Ra=Rb*Rc

Mac Ra,Rb,Rc,Rd,Re // Ra=Rb*Rc+Rd+Re

Inv Ra,Rb // Ra=Rb^{-1}

Here one Add instruction takes two cycles. As w1 = 3, one Inv instruction takes
55 clock cycles. One Mul instruction takes 6 clock cycles. One Mac instruction
consists of one Mul and two Add instructions. However, it takes also 6 clock
cycles. This is because fetching and adding data Rd and Re are performed during
the multiplication. Two Add and one Mul instructions cause 6 operand fetches
and 3 result stores, while one Mac instruction requires only 4 operand fetches
and one result store. Therefore, the use of Mac instruction reduces the number
of memory access and speeds up the scalar multiplication.

In this implementation, we choose hyperelliptic curves with the following
parameters: h(x) = x and f(x) = x5 + f3x

3 + x2 + f0. One DA operation
consists of 36 instructions, which include 11 Add, 24 Mac and 1 Inv instructions.
One DD operation consists of 14 instructions, which includes 2 Add, 11 Mac and
1 Inv instructions.



Fig. 4. Block diagram of the proposed HECC coprocessor.

Note that the architecture of the coprocessor can be slightly modified so that
it can be integrated into a SoC where memory is shared. The required throughput
of memory needs to be further reduced. In the InsRom Mac instruction needs
to be replaced by a Mul and two Add instructions, thus only two instead of
four operands need to be loaded for each instruction. In this case, the required
throughput of memory is 2∗84

6 = 28 bits, the amount that a 32-bit dual-port
SRAM is able to offer. However, the add instruction requires 6 instead of 2 clock
cycles, which slightly degrades the performance of the coprocessor.

5 Implementation Results

In order to check the area and performance of the proposed coprocessor, we
implemented the architecture from Figure 4 on a Xilinx Virtex-II (XC2V4000)
FPGA. The coprocessor is described with Gezel [13] language and synthesized
with Xilinx ISE8.1. It uses 2316 slices and 6 Block RAMs. A clock frequency
of 125 MHz can be reached. Table 4 compares the area and performance with
previous FPGA-based implementations of HECC in GF(2m).

The proposed HECC coprocessor in [7] uses Cantor’s method to perform
divisor addition and doubling. It has two modular multipliers, one inverter, one
GCD module and several other logics. Register file is connected to the datapath
with MUX arrays. When supporting HECC in GF (283), it uses 22000 slices on
Xilinx Virtex-II FPGA and can finish one scalar multiplication in 10 ms.

The proposed HECC coprocessor in [11] uses the mixed coordinates of explicit
formulae proposed in [21]. The ALU contains three modules, namely divisor
addition module, divisor doubling module and coordinates conversion module.



Each of them has four field multipliers, while only the coordinates conversion
module has a inverter. It supports Right-to-Left binary expansion method, which
scans the key from LSB to MSB, and can perform divisor addition and doubling
in parallel. It also supports NAF method. Here we list the performance of scalar
multiplication using NAF method as it is slightly faster than the binary method.

The HECC coprocessor proposed in [17] uses projective coordinates, and
a superscalar architecture is used to support parallel field operations. Several
digit-serial (w = 12) multipliers are used. Our coprocessor, using one unified
multiplier/inverter, is faster than the coprocessor in [17] that uses three multi-
pliers.

Table 4. Performance comparison of FPGA-based HECC implementations in GF(2m).

Ref. FPGA Freq. Area RAM Finite Irreducible Perf. Comments
Design [MHz] [Slices] [bits] Field Polynomial [µs]

Two mult.
Clancy [7] Xilinx N/A 23000 0 GF(283) Arbitrary 10000 One inv.

Virtex-II Using NAF
Xilinx 12 mult.

Elias et al. Virtex-II 45.3 25271 0 GF(2113) Fixed 2030 One inv.
[11] (XC2V8000) Using NAF

6586 8064 GF(283) Arbitrary 420 Three mult.
Using NAF

Sakiyama Xilinx 100 4749 5376 GF(283) Arbitrary 549 Two mult.
et al. [17] Virtex-II Pro Using NAF

(XC2VP30) 2446 2688 GF(283) Arbitrary 989 One mult.
Using NAF

56.7 7785 0 GF(281) Fixed 415 Three mult.
Two inv.

Wollinger Xilinx 47.0 5604 0 GF(281) Fixed 724 Two mult.
[31] Virtex-II One inv.

(XC2V4000) 54.0 3955 1536 GF(281) Fixed 831 Two mult.
One inv.

Xilinx
This Virtex-II 125 2316 2016 GF(283) Fixed 311 Unified mult./inv.
work (XC2V4000) Using NAF

The architectures proposed in [31], however, uses affine coordinates of the
explicit formulae. Three different architectures ranging from high speed to low
hardware cost are proposed. For the high speed version, with three multipliers
and two inverters, only 415 µs is required to finish one scalar multiplication. The
area of the coprocessor is also much smaller than that of [7, 11]. The area can be
further reduced to 3955 slices but, in that case it requires 831 µs for one scalar
multiplication.

Compared with all the previous FPGA-based implementations our imple-
mentation has the best performance, to the best of our knowledge. The area
reduction is attributed to the use of compact ALU and the reduction of the
memory throughput. The ALU in [31] contains two multipliers and one inverter,
which in total use 2427 slices. The ALU used in this paper requires only 1500
slices. The performance gain is mainly due to the efficient inverter. When running



at 56.7 MHz, the inverter in [31] requires 1570 ns in average for one inversion in
GF(281), while the proposed ALU finishes one inversion in GF(283) in 439 ns.
Though we use only one multiplier, which is also slower than the one in [31], the
overall performance of divisor addition/doubling is better.

6 Conclusions

We describe a compact architecture for HECC over binary extension field. This
architecture uses a unified modular multiplier/inverter, and reduces the through-
put of the memory. Thus, the area of the coprocessor is largely reduced. On a
Xilinx Virtex II (XC2V4000) FPGA, the proposed coprocessor takes 311 µs to
finish one scalar multiplication in HECC over GF(283).

The proposed implementation can be further speeded up by exploring in-
struction level parallelism. Besides, if more space is available in the data memory,
precomputation can be used to drastically improve the performance.
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