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Abstract 
When testing powder type self-compacting concrete (SCC) in a wide-gap concentric 

cylinder rheometer, sometimes a plug state arises, introducing an error in the obtained 
rheological flow parameters. In this paper, the classification of plug state inside a wide-gap 
concentric cylinder rheometer is illustrated for a nonlinear (Herschel-Bulkley) flow 
behaviour, which is not seldom observed in the case of powder type SCC. For a linear 
(Bingham) flow behaviour, the classification of plug inside a concentric cylinder rheometer is 
already well described in literature. The applied methodology is adapted to the nonlinear case. 

With a plug state, a solid state arises inside the sheared test material, so that it is rotating as 
a rigid body. When applying a stepwise decreasing rotational velocity sequence, plug will 
begin at the outer, rotating cylinder and propagates towards the inner, stationary cylinder as 
the velocity of the outer cylinder will further decrease. This means that, with a plug state and 
assuming no slippage in the transition zone from the viscoplastic to the solid state, the outer 
boundary condition of the integration equations of the Couette inverse problem solution must 
be corrected to the rigid body velocity at the boundary between the viscoplastic and the solid 
state (i.e. the plug radius Rp). 

For each rotational velocity of the outer cylinder Np, the corresponding plug radius Rp can 
be calculated. However, these calculations are based on the assumption that the calculated 
rheological parameters are correct to begin with. Nevertheless, it was found that even if plug 
was occurring in some of the measurements when testing powder type SCC, it did not 
introduce a large error to the rheological parameters. In fact, the error generated by plug flow 
on the rheological flow parameters always remained within their 95% confidence intervals in 
case of the shear thickening powder type SCC mixes tested. 
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1. INTRODUCTION 

Powder type self-compacting concrete (SCC) is often found to exhibit a shear thickening 
flow behaviour [1-6]. During the experimental part of a Belgian research project concerning 
the influence of mineral additions and chemical admixtures in SCC on microcracking and 
durability [7], the rheological properties of about 30 powder type SCC mixes were determined 
by means of the ‘CONTEC VISCOMETER 5’. A detailed description of all the test results can be 
found in [5]. Besides, the influence of mineral additions on the rheological parameters of SCC 
is studied more into detail in the framework of a current K.U.Leuven MSc dissertation [8]. 
For some of those mixes, a plug was formed during the rheological measurements, especially 
at the lower rotational velocities. In this paper, the classification of plug and the error 
generated by plug flow will be looked at in detail for the Herschel-Bulkley flow model. 

2. CONCRETE RHEOLOGY 

The ‘CONTEC VISCOMETER 5’ used for the experiments in this work can be seen as an 
example of a wide-gap concentric cylinder rheometer. It is one of the most recent updates of 
the ‘CONTEC BML VISCOMETER 3’ [9], well designed for testing both (self-compacting) 
concrete and mortar (Figure 1). The measuring system consists of an outer cylinder (Ro = 145 
mm) rotating at an angular velocity Ωo = 2πN and an inner cylinder (Ri = 100 mm) being 
stationary and registering the applied torque T from the test material. To avoid slippage 
between the test material, both inner and outer cylinder are provided with protruding vanes. 
More details about the CONTEC VISCOMETER 5 can be found in [3,9,10,11]. 

 
Figure 1: The CONTEC VISCOMETER 5 [3]: (1) top ring in order to ensure a constant 
height of the sheared test material; (2) outer cylinder, mounted on a rotating disk; (3) 
sheared test material taken into consideration during measurement/calculation; (4) inner 
cylinder - upper unit, free to rotate against a load cell, registering the applied torque T 
from the test material; (5) inner cylinder - bottom unit, fixed at the mounting point of 
the inner cylinder, virtually eliminating the effect of 3D shearing at the bottom. 
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‘Absolute’ rheometry involves the rheological measurements in ‘absolute units of physics’: 
it involves the determination of the flow behaviour in terms of shear stress τ (Pa) and shear 
rate γ�  (s-1) instead of torque T (N⋅m) and rotational velocity N (rps). In case of a concentric 
cylinder rheometer, the derivation of the flow curve ( )τ γ�  from the torque measurements T(N) 
is often called the ‘Couette inverse problem’. A detailed description can be found in [3,5]. 

The viscoplastic flow behaviour, i.e. after exceeding the yield stress, of a Herschel-Bulkley 
fluid is generally described by: 

0,HB
nKτ τ γ= + �  (1) 

with: τ0,HB the Herschel-Bulkley yield stress (Pa), K the consistency coefficient (Pa⋅sn) and n 
the flow index (-). For a flow index n = 1, K is called the ‘plastic viscosity’ (denoted as µ, 
Pa⋅s) and the Bingham viscoplastic flow behaviour is found. 

3. GENERAL CONSIDERATIONS ABOUT PLUG FLOW 

With a plug, a solid state arises, so the shear rate becomes zero: 0γ ≡�  (i.e. a so-called rigid 
body rotation). When applying a stepwise decreasing rotational velocity sequence (as it is the 
case with the CONTEC VISCOMETER 5), the condition 0γ =� , and so plug, will begin at the 
outer cylinder and propagates towards the inner cylinder as the angular velocity Ωo (rad/s) of 
the outer cylinder is further decreased [10]. The location of the boundary between the 
viscoplastic and the solid state is defined by the plug radius Rp, which can be calculated from: 

2
p

02
TR
hπ τ

=  (2) 

with τ0 the yield stress, according to the viscoplastic model concerned (since 0γ =�  implies 
that the shear stress is only defined by the ‘yield’ stress, and so independent of the visco-
plastic model used for 0γ >� ). 

Note that Eq. (2) is directly related to the equivalence between the applied torque and shear 
stress on a cylindrical shell, expressed by: 

2
( )

2
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r h

τ
π

=  (3) 

with h the height of the cylindrical shell (m). 

For Rp ≥ Ro, no plug state inside the test material is present. By putting Rp = Ro in Eq. (2) 
and by using Eq. (4) as the expression of the torque measurements T(N) for a Herschel-
Bulkley fluid [3], Eq. (2) can be solved for the minimum rotational velocity in avoiding plug. 
The latter rotational velocity will be designated as p

*N  further on in this paper, i.e. the plug 
rotational velocity beneath which a plug is formed inside the test material. 
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Care should be taken when eliminating a plug state by simply increasing the rotational 
velocity (so that N ≥ p

*N ), since such action also increases the difference in shear rate γ�∇  
within the test material, resulting in a larger likelihood of particle migration [10]. 

For Rp < Ro, the outer boundary condition of the integration equations of the Couette 
inverse problem solutions must be changed from “r = Ro ⇒ ω = Ωo ≡ 2πN” to “r = Rp ⇒ ω = 
2πNp”, with Np the rotational velocity resulting in a plug radius at r = Rp < Ro. However, it 
should be kept in mind that this altered boundary condition may be incorrect due to possible 
slippage in the transition zone from viscoplastic to solid state: when slippage occurs, the 
rheometer measures a smaller torque than expected. 

4. CLASSIFICATION OF PLUG FOR A BINGHAM FLUID 

The classification of plug for a Bingham fluid is well described in [10]. The same 
methodology will hereafter be used in order to classify plug for a Herschel-Bulkley fluid. In 
this way, the obtained derivations in this paper can also be directly related to a Bingham fluid 
when the flow index equals unity: n = 1. 

5. CLASSIFICATION OF PLUG FOR A HERSCHEL-BULKLEY FLUID 

The classification of plug for a Herschel-Bulkley fluid can be treated similar to the 
classification of plug for a Bingham fluid. 

Assuming no slippage in the transition zone from viscoplastic to solid state and keeping in 
mind the above mentioned outer boundary condition alteration, Eq. (4) can be recalculated as: 
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 (5) 

In this way, the plug rotational velocity Np ≤ p
*N  for a Herschel-Bulkley fluid can be 

calculated by combining Eqs. (2) and (5) into: 
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And thus: 
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and, by putting Rp ≡ Ro: 
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So, by creating a vector representing the potential plug radii p i o[ ]R , ,R=R …  and by 
putting it into Eq. (7.a), a corresponding vector of rotational velocities where a plug state is 
active, is found: p p p i p o( ) [ ( ) ( )]N R , ,N R=N R … . Note that the last element in the vector Np(Rp), 
i.e. Np(Ro), represents the rotational velocity when a plug starts to form at the outer cylinder r 
= Ro: p o p( ) *N R N≡ . 

Putting the two vectors Rp and Np(Rp) in Eq. (5), produces the corresponding torque vector 
T(Rp,Np). Plotting T(Rp,Np) as a function of Np(Rp) produces the torque profile when the plug 
state is extending from the outer cylinder Ro towards the inner cylinder Ri. An example of 
such torque profile is shown in Figure 2 for one of the powder type SCC mixes actually tested 
(for all test results: see [5]). In order to illustrated the magnitude of error generated by plug 
flow (see further), mix SCC274 [5], having the highest p

*N  value, is chosen as the most 
representative mix for this paper. 

From the vector Np(Rp), it is clear that each element in the vectors Rp and Np corresponds 
to each other. The corresponding plug radius Rp for a given rotational velocity Np is calculated 
by applying the Newton-Raphson iteration algorithm on Eq. (7.a), or more precisely on Eq. 
(8), shown below: 
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 (8) 

Basically, this algorithm consist of iterating Eq. (9) until 1
p p
k kR R+ −  is less than some 

specific value (here, a value of 5⋅10-5 mm is used), with k the iteration index. The first guess 
usually consists of either the inner 0

p iR R=  or the outer 0
p oR R=  radius. 
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It should be mentioned explicitly that the above given calculations of Rp and Np are based 
on the assumption that the calculated Herschel-Bulkley parameters τ0,HB, K and n were correct 
to begin with. In general, the error generated by plug flow on these parameters is depending 
on: 
− the number of rotational velocity steps actually tested beneath the plug rotational velocity 

p
*N , and 

− the degree of deviation between the torque profiles with or without plug (see Figure 2, 
respectively the black and the grey line). 
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Figure 2: Plot of T(Rp,Np) as a function of Np(Rp) for SCC274 (black line). The grey 
line is an extrapolation from the torque, according to Eq. (4), when no plug is occurring, 
which is readily seen with the incorporated figure. The geometry consist of (Ri, Ro, h) = 
(0.100, 0.145, 0.125) m. The rheological parameters are τ0,HB = 27.27 Pa, K = 2.84 
Pa⋅s1.67 and n = 1.67 and thus, according to Eq (7.b), p

*N  = 0.147 rps. The corresponding 
torque T( p

*N ) is represented by the cross marker (t). 
The circle markers on the solid line (○) represent the average torque points, as should be 
measured when the plugged zone is extending towards the inner cylinder and if the 
rheological parameters τ0,HB, K and n were correct to begin with. The diamond markers 
(◊) in the incorporated figure represent the rotational velocities actually tested. From 
this, it is clear that a plug state is active for the two lowest rotational velocity steps: at N 
= 0.06 rps and N = 0.12 rps. 

In case of SCC274, the error generated by plug is (very) small: for the two rotational 
velocity steps actually tested beneath the plug rotational velocity p

*N , the differences between 
the black and the grey line (Figure 2) are very small, resulting in a small error (Table 1). The 
term “Error” shown in this table represents the percentage difference between (a) the values 
for the Herschel-Bulkley parameters obtained from the T(N) measurement (grey line in Figure 
2) and (b) the values for the Herschel-Bulkley parameters after “recalculation” (i.e. after a 
new nonlinear regression analysis, based on the average torque values on the black line in 
Figure 2), relative to the values obtained from the T(N) measurement. This order of magnitude 
of error on the converted model parameters (< 1%) was found for all powder type SCC mixes 
tested in this work [5,8], when described by a nonlinear flow behaviour. 
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Table 1: Calculation of the error generated by plug flow on the Herschel-Bulkley flow 
parameters for SCC274 (see [3,5] for the determination of GHB, HHB, J and τ0,HB, K and n). 

  Measurement Recalculation Error (%) 
Plug rotational velocity p

*N  (rps) 0.147 0.147 - 
Average torque at Np = 0.06 rps (N⋅m) 0.336 0.332 - 
Average torque at Np = 0.12 rps (N⋅m) 0.412 0.418 - 
Flow resistance GHB (N⋅m) 0.304 0.304 - 
Viscosity factor HHB (N⋅m⋅s) 3.615 3.611 - 
Flow index factor J (-) 1.673 1.672 - 
Herschel-Bulkley yield stress τ0,HB (Pa) 27.27 ± 1.43 (*) 27.31 0.13 
Consistency coefficient K (Pa⋅s) 2.84 ± 0.33 (*) 2.83 -0.09 
Flow index n (-) 1.67 ± 0.05 (*) 1.67 -0.06 
(*)  For the converted model parameters based on the T(N) measurements, the 95% confidence 

interval half-widths are also mentioned. 

6. CONCLUSIONS 

It can be concluded that, even if plug was occurring in some of the measurements done in 
this work, plug flow did not introduce a very large error to the Herschel-Bulkley flow 
parameters τ0,HB, K and n of powder type SCC mixes. This finding is in agreement with [10], 
where it was stated that “it is not to be expected that the plug flow will generate any error of 
dramatic magnitude” if the ratio yield stress/plastic viscosity is sufficient low (≤ 100 s-1), as it 
is the case for most (powder type) SCC mixes. 

In fact, it can be stated that the error generated by plug flow on the converted Herschel-
Bulkley model parameters remained within their corresponding 95% confidence interval half-
widths for all the measurements done in this work (see [5,8] for a list of all test results). 
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