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Abstract

This paper proposes an initialization approach for parameter estimation problems (PEPs) involving parameter-affine dynamic mod-

els. By using the state measurements, the nonconvex PEP is modified such that a convex approximation to the original PEP is

obtained. The modified problem is solved by convex optimization methods yielding an approximate solution to the original PEP.

The approximate solution can be further refined by linearizing the original problem around the obtained minimum. An assessment

of the distance between the real solution and the one provided by the linearization of the problem around the convex approximation

is presented. The optimum obtained by the convex approximation is used to subsequently initialize a Simultaneous Gauss-Newton

(SGN) approach on the original nonconvex PEP. Comparative results for the SGN with arbitrary initialization and with the proposed

approach are presented using three benchmark examples in the chemical and biological fields.

Key words: Parameter estimation, Multiple shooting, Convex optimization.

1. Introduction

Developing accurate models for dynamic processes has an

enormous impact on science and engineering. Models used to

predict and control process dynamics are basically character-

ized by their structure and the parameter values in this struc-

ture. Parameter estimation addresses the calculation of a set of

parameter values in a predefined model structure, such that the

outputs of the model fit the measurement data. Approaches to

fit the collected data to a given model generally lie in one of the

following classes: (i) the ones which minimize the errors be-

tween data and model outputs with respect to a given norm and

(ii) the ones which demand errors to be uncorrelated with the

measured data sequence (Ljung, 1999). Fitting is not the only

requirement in the parameter estimation problem (PEP), con-

straints on the estimated parameter and model states are usually

required as well, e.g., positive reaction rates, upper and lower

bounds in concentrations. Consequently, PEPs are often cast as

optimization problems, leading to convex or nonconvex formu-

lations depending on the nature of the fitting criteria, the model

and the constraints. Nonlinear models generally lead to non-

convex PEPs which are difficult to solve since they can exhibit

local solutions and the true parameter can be hard to find.

In order to tackle PEPs involving dynamic models, several

methods have been proposed. On the one hand, the meth-

ods based on calculus of variations and Pontryagin’s maxi-

mum principle (Pontryagin, 1962) are known as indirect meth-

ods and, on the other hand, the methods based on the finite

parameterization of the continuous functions involved in the

∗Corresponding author. Tel: +32 16 321466; fax: +32 16 32299.

Email address: jan.vanimpe@cit.kuleuven.be (J. Van Impe)

optimization task are called direct methods. The latter meth-

ods are preferred when the optimization problem possesses in-

equality constraints since the former methods become difficult

to solve under this condition unless information regarding the

active constraints is available (Cervantes and Biegler, 1999).

Among the direct methods, the most reliable approaches for

PEP are based on Simultaneous Optimization (Biegler et al.,

2002) combined with constrained Gauss-Newton method (No-

cedal and Wright, 2006), or constrained L1 estimation method

(Kostina, 2004). Two of the most widely used simultaneous

optimization techniques are direct multiple shooting (Bock and

Plitt, 1984) and collocation on finite elements (Biegler, 1984).

Despite of the efficiency and robustness of these methods, they

still require a starting point to initialize the optimization rou-

tines. The current work proposes an initialization method for

nonconvex PEPs involving a particular class of dynamic mod-

els, namely parameter-affine systems. The proposed approach

leads to a convex problem, where initialization is not required,

and a solution can easily be obtained by convex optimization

tools (Boyd and Vandenberghe, 2006). Hereafter, the solution

of this convex problem can be used to initialize the nonconvex

PEP combined with a simultaneous optimization technique.

Other well-known procedures leading to convex problems

have been proposed for parameter-affine systems, such as Least

Squares Prediction Error Methods LS-PEM (Ljung, 2002). Al-

though these methods are widely used, they are sensitive to

noisy data and in order to work well in practice, they need to fil-

ter the residuals. On the contrary, the approach presented here

does not involve the use of arbitrary filters over the residuals

and can be shown to be less sensitivity to noisy data, leading

to less biased results without previous knowledge of the errors’

behavior (Bonilla et al., 2008).
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Main contribution of the paper

The main contribution of this work is the proposed initial-

ization method for parameters estimation problems involving

parameter affine dynamic models. Moreover, the initialization

procedure is analyzed and an assessment of the distance be-

tween the initial guess proposed by the approach and the min-

imum of the nonconvex problem is provided. In addition, the

use of the method combined with efficient simultaneous opti-

mization techniques is illustrated through benchmark examples,

showing the advantages of using the approach against an arbi-

trary initialization.

The paper is organized as follows: Section 2 introduces

the Least Squares Parameter Estimation Problem (LS-PEP) for

nonlinear systems. Section 3 presents the proposed approach

for parameter estimation using a least squares norm and a

parameter-affine model. Section 4 introduces the principles of

simultaneous optimization in the multiple shooting framework

employing the constrained Gauss-Newton method. Numerical

examples comparing the known approaches with the proposed

method are presented in Section 5. Conclusions follow in Sec-

tion 6.

2. Parameter Estimation for Dynamic Processes

Consider the dynamics of a process during a given time inter-

val [0,T ], modeled by an Ordinary Differential Equation (ODE)

of the form:

ẋ(t) = Φ(x(t), p), t ∈ [0,T ], (1)

where the vector p ∈ R
np and x(t) ∈ R

nx denote model param-

eters and states, respectively. In order to estimate the value of

the vector p, a set of measurements y(ti) ∈ R
ny , i = 0, 1, . . . , nm

with nm + 1 ≥ np, is collected along the interval of interest. The

set of measurements y(ti) does not necessarily correspond to the

model states at the sampling points x(ti), however, here it is as-

sumed that the measurement set corresponds to measurements

of the system states, i.e., y(ti) = x̄(ti). The mismatch between

the output of the model (1) and the measurements are usually

quantified using a Least Squares (LS) norm:

J(x(ti), x̄(ti)) =
1

2

nm
∑

i=0

nx
∑

j=1

(x j(ti) − x̄ j(ti))
2. (2)

Although L1-cost minimization may be less sensitive to the

presence of outliers in the measurement set1, the L2-norm is

widely applied due to its smoothness and is considered in the

current study. Following the introduced notation, the PEP can

be cast in the form:

min
p,x(.)
J(x(ti), x̄(ti)), (3)

subject to:

ẋ(t) = Φ(x(t), p), t ∈ [0, T ], (4)

x(t) ∈ X, t ∈ [0,T ], (5)

p ∈ P. (6)

1L1 norm does not square the contribution of the errors.

Constraints on the parameters and model states can be intro-

duced by the sets P and X respectively. Consequently, param-

eter estimation tasks are considered as optimization problems

and may lead to nonconvex formulations, particularly when

Φ(x(t), p) is nonlinear in the states.

In the following, a particular structure in the general LS-PEP

(3)-(6) is considered. It is assumed that the nonlinear model

exhibits a parameter-affine form:

Φ(x(t), p) = Γ(x(t)) + Υ(x(t))p, (7)

and the set described by X × P is convex. Bound constraints

on parameters and states are the simplest case covered by the

assumption on the convexity of the set X × P.

3. The Convex Approach

The approach proposed is inspired by continuation methods

in optimization (Watson, 2000). These kind of methods attempt

to solve an optimization problem by first solving a related opti-

mization task which is hopefully connected to the original one

by a continuous path. The nonconvex PEP (3)-(6) can be re-

formulated using this approach by introducing a homotopy pa-

rameter λ ∈ (0, 1), a new variable x̃(t) and a norm on this new

variable in the cost:

P(λ) : min
x̃(.),x(.),p

1

λ
J(x(ti), x̄(ti)) +

1

1 − λ
J(x̃(ti), x(ti)), (8)

subject to

˙̃x(t) = Γ(x(t)) + Υ(x(t))p, t ∈ [0, T ], (9)

x̃(t) ∈ X, t ∈ [0, T ], (10)

p ∈ P. (11)

Although the addition of the norm J(x̃(ti), x(ti)) may look

arbitrary, x̃(ti) − x(ti) corresponds to the integral of the model-

ing errors. The parametric optimization problem (8)-(11) ex-

hibits an interesting behavior when λ ranges from zero to one.

Although the convergence of the parametric problem solution

to the global solution of the original PEP is only guaranteed

if the algorithm is able to find the global solution for each

P(λ), λ ∈ (0, 1) (Bonilla et al., 2009a), the approach proposed

here does not attempt to follow a path for different values of λ.

Consequently, the approach does not deal with methods to fol-

low such a path of minimizers neither on the existence or conti-

nuity of that path. Moreover, the condition of a global solution

is only easily satisfied for the first problem on the homotopy

path namely P(0) where a convex problem is addressed (Bonilla

et al., 2008). It can be shown that when λ goes to one, the prob-

lem recovers its original form, i.e., J(x̃(ti), x(ti)) goes to zero,

leading to (3)-(6). On the other hand, when λ goes to zero the

model states approach the measurements, i.e. x(ti) goes to x̄(ti).

The formulation (8)-(11) resembles quadratic penalty methods

for constrained optimization (Gould, 1989) and its convergence

2
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properties can be analyzed by using the same principles (No-

cedal and Wright, 2006). In the following, the problem corre-

sponding to the case λ going to zero:

P(0) : min
p,x̃(.)
J(x̃(ti), x̄(ti)), (12)

subject to

˙̃x(t) = Γ(x̄(t)) + Υ(x̄(t))p, t ∈ [0,T ], (13)

x̃(t) ∈ X, t ∈ [0,T ], (14)

p ∈ P, (15)

is used as a convex modification of the original nonconvex PEP.

Notice that only the convex extreme of the homotopy map is

considered. In fact, the homotopy map is mentioned here only

to show that there is a link between the original problem and

the convex modification. Convexity is achieved in this formula-

tion since (i) the cost is quadratic in the pseudo-states x̃(t), (ii)

the nonlinearity in the model has vanished by introducing the

measurement trajectories x̄(t), (iii) the model is affine in the pa-

rameters p and (iv) the feasible set X × P is convex. Although

the modification in the model could be seen as a linearization

around measurements, it differs from that approach since no in-

formation of a linearization point for the parameters, p̄, is pro-

vided. Figure 1 illustrates the homotopy map generated by the

parametric optimization problem (8)-(11) when applied to the

estimation of the natural frequency ωn, in a harmonic oscillator

model (Bonilla et al., 2009a). Notice that, as mentioned previ-

ously, the extreme of the map corresponding to P(0) is convex.

It is possible to refine the solution provided by the convex

approach by further linearizing the original problem around the

solution to P(0). This refinement corresponds to the first iter-

ation in a Sequential Quadratic Programming (SQP) method

when the initial guess is set to the solution provided by P(0).

In the following, it is proven that this refinement delivers a so-

lution with a distance from the real optimum of second order

in the size of problem perturbations2. This is clarified in the

following section.

3.1. Assessment of the approximation errors

In this section, an assessment of the distance between the real

solution to the PEP and the solution provided by the refined

convex problem is analyzed. In order to do so, the optimiza-

tion problems (3)-(6) and (12)-(15) are parameterized using a

suitable discretization method, leading to:

PEPNL(x̄) : min
p,x

1

2
‖ x − x̄ ‖2Q, (16)

subject to

0 = A(x) − B(x)p −Wx, (17)

x ∈ X, p ∈ P, (18)

2Here, measurement noise and modeling errors are considered.

and

PEPCVX(x̄) : min
p,x̃

1

2
‖ x̃ − x̄ ‖2Q, (19)

subject to

0 = A(x̄) − B(x̄)p −Wx̃, (20)

x̃ ∈ X, p ∈ P, (21)

where x = [x(t0)T , x(t1)T , . . . , x(tN)T ]T and x̄ =

[x̄(t0)T , x̄(t1)T , . . . , x̄(tN)T ]T correspond to the discrete time

model state dynamics and the state measurements, respectively.

A(x), B(x) and W represent the nonlinear dynamics of the

model along with the discretization method. Q is a positive

definite penalization matrix of the appropriate dimensions.

The first SQP iteration in a nonlinear programing solver lin-

earizes the original nonconvex problem around the initial guess

and solves a problem of the form

PEPCVX−REF(x̄) : min
p,x

1

2
‖ x − x̄ ‖22, (22)

subject to

0 = ALx − BL p + b, (23)

x ∈ X, p ∈ P. (24)

where (23) corresponds to the model linearized around the so-

lution of the convex problem (x∗
CVX
, p∗

CVX
). For comparison,

consider the unperturbed original PEP where a set of noise-free

state measurements ¯̄x is obtained and no modeling errors are

present. In addition, the following assumptions are introduced:

• A1: The functions A(x) and B(x) are twice continuously

differentiable.

• A2: There exist a pair ¯̄x ∈ X and ¯̄p ∈ P such that 0 =

A( ¯̄x) − B( ¯̄x) ¯̄p −W ¯̄x.

• A3: Both problems, PEPNL( ¯̄x) and PEPCVX( ¯̄x), satisfy the

strong second order sufficient conditions (SOSC), strict

complementarity and constraint regularity (Nocedal and

Wright, 2006) at their solution, ( ¯̄x, ¯̄p).

Corollary 1. Under assumptions A2 and A3, the Lagrange

multipliers associated to the inequality constraints at the so-

lution ( ¯̄x, ¯̄p) are zero, and none of the inequality constraints is

active.

In view of these assumptions, the following lemmata can be

formulated:

Lemma 1. If assumptions A2 and A3 hold, then ( ¯̄x, ¯̄p) is

a global solution to all problems PEPNL( ¯̄x), PEPCVX( ¯̄x)

PEPCVX−REF( ¯̄x).

Proof. ( ¯̄x, ¯̄p) is feasible and it yields the lowest possible objec-

tive value for all optimization problems, i.e., zero.

3
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Lemma 1 states that the convex approximation provides an

exact solution if the measured trajectory can be exactly gener-

ated by the model to fit, i.e., x̄ is noise-free and there are no

modeling errors.

Lemma 2. If A1 to A3 hold, then

‖p∗cvx(x̄) − ¯̄p‖ = O(‖x̄ − ¯̄x‖), (25)

i.e., the distance between the perturbed convex problem solu-

tion and the unperturbed one is a function of the size of the

perturbation.

The proof to Lemma 2 is provided in the appendix.

Theorem 1. If Assumptions A1 to A3 are satisfied, then

‖p∗(x̄) − p∗CVX−REF(x̄)‖ = O(‖x̄ − ¯̄x‖2) (26)

holds. Equation (26) gives an assessment of the distance be-

tween the original problem solution and the solution provided

by the refined convex approach p∗
CVX−REF

(x̄) as a function of the

size of the perturbation ‖x̄ − ¯̄x‖.

The proof of Theorem 1 is provided in the appendix. This theo-

rem is numerically corroborated by performing six experiments

over a harmonic oscillator model (Bonilla et al., 2009b). In

each one of these experiments, a state sequence, contaminated

with Gaussian noise with different variances, is collected. The

distance between the solution to the PEP (3)-(6), provided by a

nonlinear optimizer, and the solution proposed by the lineariza-

tion of the original problem around p∗
CVX

is calculated along

with the size of the perturbation with respect to the noise-free

data. Figure 2 (bottom) illustrates that the distance between

the actual solution p∗(x̄) an the one provided in the first SQP

iteration p∗
CVX−REF

(x̄) is of second order in the size of the per-

turbation. Notice that a second order polynomial accurately fits

the data corresponding to the six experiments.

In the following, the presented convex approximation is

combined with a simultaneous optimization algorithm in or-

der to provide an initialization-free estimation methodology for

parameter-affine models.

4. Simultaneous Optimization for PEP

The parameter estimation problem is solved here using di-

rect approaches. There are several techniques to deal with this

kind of problems, e.g., direct single shooting, multiple shoot-

ing and collocation. In single shooting the initial value problem

(IVP) given by the ODE model is solved such that the states tra-

jectories are eliminated from the optimization problem and the

optimization is performed only in terms of the parameters to be

estimated and the states initial condition, x(0). Single shoot-

ing has been widely used, however, other direct methods have

proved to be more efficient when dealing with highly nonlinear

and/or unstable process. In this work, the PEP is discretized us-

ing a direct multiple shooting (DMS) approach (Bock and Plitt,

1984). Nevertheless, other direct techniques such as collocation

on finite elements (Biegler, 1984) are widely applied as well. In

the following the main principles of the employed method are

described.

4.1. The Direct Multiple Shooting Parameterization

In DMS the measurement horizon T is divided in N subinter-

vals:

t0 < t1 < t2 . . . < tN = T. (27)

The process states are parameterized on each subinterval, Ni =

[ti, ti+1], i = 0, . . . ,N − 1, i.e., state trajectories are determined

by the state values at shooting nodes s = [s0, s1 . . . sN], the

model equations and local parameters p = [p0, p1 . . . pN−1].

This parameterization allows the model to be independently in-

tegrated from ti to ti+1, i = 0, . . . ,N − 1. Figure 3 illustrates the

approach followed by DMS.

Contrary to single shooting, in DMS the states are not di-

rectly eliminated from the optimization but the algorithm opti-

mizes in initial conditions at each shooting node si and parame-

ters pi in each shooting interval. Note that the parameter vector

p is a global variable, i.e., it does not change from one shooting

interval to the other, however, to make each subinterval totally

independent, local variables pi can be introduced3. In order to

guarantee continuity in the solution from t0 to tN and to avoid

time varying parameters, additional equality constraints are im-

posed on each subinterval Ni, i.e., the final states value of the

subinterval Ni must match the initial states value of the interval

Ni+1, and pi = p0 for all i = 1, 2, . . . ,N − 1.

Following the DMS parameterization, the least squares PEP

is reformulated as:

min
s,p

f (s,p) =
1

2

N
∑

i=0

r2
i (si, pi) (28)

subject to

0 = si+1 − x(ti+1), i ∈ [0, N − 1], (29)

0 = pi − p0, i ∈ [1, N − 1], (30)

0 ≤ H(si, pi), i ∈ [0, N], (31)

with

x(ti+1) =

∫ ti+1

ti

Φ(si, pi, t)dt + si.

The function H(si, pi) represents the inequality constraints

imposed to the parameters and states at each shooting node.

For parameter estimation, the cost to be minimized presents a

pointwise feature, i.e., the cost is given by the evaluation of the

residuals at the measurement instants which coincides with the

selected grid for the DMS parameterization. Consequently, the

parameterized problem has the general form:

min
w

1

2

N
∑

i=0

r2
i (wi), (32)

3This procedure yields sparse banded Jacobian matrices

4
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subject to

G(w) = 0, (33)

H(w) ≥ 0. (34)

with

w = [w0, w1, . . . ,wN]T ,

wT
i = [sT

i , p
T
i ] ∀ i = 0, 1, . . . ,N.

Notice that for notational purposes an additional variable

pN has been added since wN = sN . The presented nonlinear

constrained least squares problem is usually solved using SQP

algorithms. Moreover, due to the parameterization, the sub-

Quadratic Programming (QP) problems arising at each SQP it-

erations exhibit banded and sparse structures. This sparsity and

special structure can be efficiently exploited by the QP algo-

rithm.

4.2. The Gauss-Newton Method for PEP

Due to the least squares form of the objective function in

(32), a modified Newton’s method can be used to generate the

second-order information on the cost required by the SQP ap-

proach. Classical SQP methods require the Hessian of the La-

grangian, usually approximated from first-order information by

update formulas such as BFGS4. The point-wise cost

f (w) =
1

2

N
∑

i=0

r2
i (wi) =

1

2
‖R(w)‖22, (35)

can be formulated in terms of the residual vector

R(w) = [r0(w0), r1(w1), . . . , rN(wN)]T . (36)

By defining the Jacobian of the residual vector as:

Jr(w) =
∂R(w)

∂w
= ∇R(w)T , (37)

the gradient and Hessian of the cost can be expressed by:

∇ f (w) = Jr(w)T R(w), (38)

∇2 f (w) = Jr(w)T Jr(w) +

N
∑

i=0

ri(wi)∇
2ri(wi), (39)

respectively. Note that due to the multiple shooting parameteri-

zation, the Jacobian of the residuals is sparse and banded. Nor-

mally, the second term in the right hand side of (39) is neglected

since close to the solution either the residuals ri(wi) or ∇2ri(wi)

are small (Nocedal and Wright, 2006). Notice also that contrary

to single shooting, in DMS, the shooting nodes are initialized

with the available measurements, leading to a small residual

vector at the first SQP iteration agreeing with approximation in

the Gauss-Newton method and improving the convergence of

4In simultaneous optimization this update is performed by blocks in order

to preserve the sparsity of the Hessian.

the method. The proposed initialization approach complements

this set of available state measurements by providing an initial

guess to the parameters and avoiding an arbitrary initialization.

The approximation of the Hessian of the cost leads to the main

feature of Gauss-Newton method where at each mayor iteration,

k, of the SQP a subproblem of the form

min
∆wk

1

2
‖R(wk) + ∇R(wk)T∆wk‖

2
2, (40)

subject to

G(wk) + ∇G(wk)T∆wk = 0, (41)

H(wk) + ∇H(wk)T∆wk ≥ 0, (42)

is solved. Hence, no second-order information is required. This

iterative procedure is combined with a globalization strategy

(Nocedal and Wright, 2006) in order to achieve global conver-

gence. The first-order information required to build the Jaco-

bians of the cost and inequality constraints can be obtained by

several methods (finite differences, automatic differentiation or

symbolic calculations), however, due to the static characteristic

of the cost in least squares problems and the inequality con-

straints, these Jacobians can be easily calculated by finite dif-

ferences. On the other hand the Jacobian of the equality con-

straints, imposed by the dynamic model, is obtained, in this

study, by using an ODE solver with sensitivity generation ca-

pabilities (Hindmarsh et al., 2005). This solver provides sensi-

tivity information used to build the sparse and banded struc-

ture of Jacobian in the simultaneous Gauss-Newton method.

Figure 4 shows the sparsity patterns in the Jacobians obtained

by the multiple shooting parameterization for a PEP involving

a dynamic model with 2 states, 3 parameters, 4 measurement

points and bound constraints on the parameters. The sparse and

banded structures in the formulation can be either exploited by

sparse solvers or a condensing strategy can be applied in order

to reduce the size of the matrices. This procedure leads to a

smaller least squares problem involving dense matrices as de-

scribed in Bock and Plitt (1984).

5. Case Studies

In the following, the multiple shooting parameterization is

used to estimate the parameters in three benchmark case stud-

ies. Comparative results are illustrated for an arbitrary initial-

ization against an initialization based on the solution of the con-

vex modification (12)-(15).

5.1. Catalytic cracking of gas oil

The first case study involves the catalytic cracking of gas oil

A, to gasoline Q, and other products S (Tjoa and Biegler, 1991).

The overall reaction scheme is represented by:

A Q

S k3k1k2
(43)

5
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The dynamics of the concentration of gas oil x1(t), and gaso-

line concentration x2(t), is described by the set nonlinear dif-

ferential equations (45)-(46) and characterized by the three re-

action rates k1, k2 and k3. By defining the parameter vector as

p = [k1, k2, k3], the PEP for this case study can be formulated

as:

min
p,x(.)
J =

1

2

20
∑

i=0

2
∑

j=1

(

x j(ti) − x̄ j(ti)
)2

(44)

subject to:

ẋ1(t) = −(k1 + k3)x2
1, (45)

ẋ2(t) = k1x2
1 − k2x2, (46)

x1(t0) = 1, (47)

x2(t0) = 0, (48)

0 ≤ k1, k2, k3 ≤ 20. (49)

The optimization problem arisen from the estimation of the

reaction rates has been previously used as a benchmark to test

optimization methods in Singer and Barton (2006) and Pa-

pamichail and Adjiman (2002), among others. Figure 5 depicts

the set of noisy states measurements used for the estimation

procedure and obtained from Floudas et al. (1999).

In order to visualize the complexity of the PEP, Figure 6

shows the cost in (44) when the parameters k1 and k2 are eval-

uated over a grid of points in the box [0, 20] × [0, 20] and k3

and x0 are set to fix values5. Although the problem is linear in

parameters, the cost function is nonconvex in the optimization

variables due to the nonlinearities in the states.

The constrained PEP (44)-(49) is parameterized using the

multiple shooting approach by introducing shooting nodes at

each measurement point, i.e., 21 shooting nodes and 3 param-

eters are considered as optimization variables. The resulting

Nonlinear Programming (NLP) problem is solved using a SQP

routine with a quadratic programming (QP) solver based on an

active set method.

In the first case, nodes are initialized with measurement

points and the parameters take an arbitrary initialization. As-

suming no-knowledge of a better initial guess for the pa-

rameter vector, the reaction rates are set to the center of

the cube defined by the bound constraints (49), i.e., p0 =

[10, 10, 10]T . This initialization leads to the optimum value

p∗ = [12.2155, 7.9802, 2.2210]T in four SQP iterations. In the

second case, the optimization problem is convexified by using

the presented approach, leading to a linear least squares prob-

lem of the form:

min
p̃,x̃(.)
J̃ =

1

2

20
∑

i=0

2
∑

j=1

(

x̃ j(ti) − x̄ j(ti)
)2

(50)

subject to

˙̃x1(t) = −(k1 + k3)x̄2
1, (51)

5These values are given here just for visualization purpose

˙̃x2(t) = k1 x̄2
1 − k2 x̄2, (52)

x̃1(t0) = 1, (53)

x̃2(t0) = 0, (54)

0 ≤ k1, k2, k3 ≤ 20. (55)

Since (50)-(55) is convex, initialization is not an issue and the

problem is solved using a linear least squares solver based on

the Gauss-Newton method. Hereafter, the obtained parameter

solution, p∗
CVX
= [8.0982, 6.3512, 3.4722]T , is used to initial-

ize the original nonconvex optimization problem parameterized

with the multiple shooting approach. The convex initialization

leads to the same optimum p∗ previously presented. Conse-

quently, the initial guess of the parameter vector p0 is auto-

matically calculated by the proposed method. Table 1 presents

some relevant optimization parameters along with the results

obtained from solution of the PEP (50)-(55). The algorithm

parameters TOLSQP, ATOLODE, RTOLODE and KKTTOL corre-

spond to the stopping value for the KKT tolerance, the absolute

and relative tolerance of the ODE solver, and the KKT tolerance

at the last iteration. Notice that NIter, corresponding to the to-

tal number of SQP iterations, does not include the first iteration

needed for the convex initialization in the proposed approach.

Figure 7 illustrates the convergence results for the problem

with an arbitrary initialization and the ones obtained with the

proposed methodology. It can be noticed that, in this particular

case, the arbitrary initialization already provides a guess close

to the optimum and the difference on convergence rates is not

significant. However, the advantage of the proposed approach

lies in the fact that no guess has to be proposed a priori.

5.2. Lotka-Volterra equations

Consider the Lotka-volterra model independently introduced

by Alfred J. Lotka in 1925 and Vito Volterra in 1926. The non-

linear differential equations (57)-(58) describe the time evolu-

tion of the population density for two species in a biological

system, a predator x2(t) and its prey x1(t). The dynamic behav-

ior of this interaction is characterized by the following parame-

ters:

α: intrinsic rate of prey population increase,

β: predation rate coefficient,

γ: reproduction rate of predators per 1 prey eaten,

δ: predator mortality rate,

leading to a parameter vector p = [α, β, γ, δ]T . Equations

(57)-(58) exhibit two fixed points [0, 0] and [α/β, γ/δ]. The

first one corresponds to a saddle point while the second one to

a center-stable, generating periodic solutions with an amplitude

dependent on initial values. The oscillatory behavior of this pair

of nonlinear equations is illustrated in Figure 8, where a set of

noisy states measurements is obtained by simulating the model

with nominal parameters p = [0.6, 0.5, 0.7, 0.4]T , x(t0) =

[1, 0.5]T and adding Gaussian noise with a variance σ2 = 0.05.

This benchmark problem can be found in Floudas et al. (1999)

where only two of the four parameters are estimated.

6
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Although the system (57)-(58) is parameter-affine, the esti-

mation of the parameter vector p is not a simple task. The PEP

can be formulated as:

min
p,x(.)
J =

1

2

20
∑

i=0

2
∑

j=1

(

x j(ti) − x̄ j(ti)
)2

(56)

subject to

ẋ1(t) = αx1 − βx1x2, (57)

ẋ2(t) = −γx2 + δx1x2, (58)

0 ≤ α, β, γ, δ ≤ 2, (59)

where x̄(ti) represents the noisy state measurements in Figure 8.

The contaminated data sequence is used to evaluate the cost

(56) when the pair [α γ] changes while the parameters β and

δ remain constant and equal to their original values. Figure 9

presents the obtained nonconvex cost as a function of the var-

ied parameters for a fixed initial condition [x1(t0), x2(t0)]T =

[1, 0.5]T . Notice that in this case a local minimum can be easily

attained by the unappropriated initialization of the problem.

The PEP is parameterized using the DMS approach using

the same procedure as in the first study case. In this ex-

ample 21 shooting nodes are optimized along with the four

model parameters α, β, γ and δ. Initialization of the param-

eter vector p is arbitrarily performed first by setting the ini-

tial guess to the center of the hyperbox defined by the bounds

constraints (59), i.e, p0 = [1, 1, 1, 1]T . This initialization leads

to an optimal value p∗ = [0.6700, 0.5455, 0.6288, 0.3501]T .

In a second test, the initialization is performed with the value

p∗
CVX

= [0.6343, 0.483, 0.5617, 0.288]T , corresponding to the

solution of the convex optimization problem described by

min
p,x̃(.)
J̃ =

1

2

20
∑

i=0

2
∑

j=1

(

x̃ j(ti) − x̄ j(ti)
)2

(60)

subject to

˙̃x1(t) = αx̄1 − βx̄1 x̄2, (61)

˙̃x2(t) = −γx̄2 + δx̄1 x̄2, (62)

0 ≤ α, β, γ, δ ≤ 2, (63)

and leads to the same optimum obtained with the arbitrary ini-

tialization. Table 2 summarizes algorithm parameters along

with the results obtained with both approaches. Addition-

ally, Figure 10 illustrates the performance of both approaches,

where it is possible to appreciate faster convergence of the SGN

method with the convex initialization. Notice that in the second

iteration, continuity conditions are almost totally satisfied.

5.3. Complex Batch Reaction

The batch reaction of formaldehyde, A, and sodium p-phenol

sulfonate, B, exhibits a complex dynamic scheme with four in-

termediates, C,D, F and G, and a final product, E. All the reac-

tions follow second-order kinetics and are modeled as proposed

in Ingham et al. (2000). Table 3 illustrates the reactions, their

rates and nominal values. In order to simplify the notation, the

concentration of the reactants, products and intermediates, A

to G are represented by x1(t) to x7(t) respectively, and the pa-

rameter vector is defined as p = [k1, . . . , k8]. The parameter

estimation problem can be cast as

min
p,x(.)
J =

1

2

10
∑

i=0

7
∑

j=1

(

x j(ti) − x̄ j(ti)
)2

(64)

subject to

ẋ1(t) = −k1x1x2 − k2x1x3 − k7x1x7 − k8x1x6, (65)

ẋ2(t) = −k1x1x2 − k4x2x4 − k6x3x2, (66)

ẋ3(t) = k1x1x2 − k2x1x3 − k3x3x4 − 2k5x2
3

−k6x3x2, (67)

ẋ4(t) = k2x1x3 − k3x3x4 − k4x2x4, (68)

ẋ5(t) = k3x3x4 + k8x1x6, (69)

ẋ6(t) = k4x2x4 + k5x2
3 + k7x1x7 − k8x1x6, (70)

ẋ7(t) = k6x3x2 − k7x1x7, (71)

0 ≤ k1, k2, . . . , k8 ≤ 1, (72)

0 ≤ x1, . . . , x7. (73)

Figure 11 shows the noisy state measurements x̄(ti), obtained

when (65) to (71) are solved with the initial condition x(t0) =

[0.15, 0.1, 0, 0, 0, 0, 0]T . This data set has been contaminated

with Gaussian noise with standard deviation σ = 1 × 10−3 for

x1, x2, x3 and x5 and σ = 2.23 × 10−4 for x4, x6 and x7
6.

Figure 12 illustrates the nonconvex cost (64) when 6 param-

eters are fixed and the initial condition is set to the one intro-

duced previously. It is not difficult to see that despite the linear-

ity in the parameters, the optimization problem becomes non-

convex due to the nonlinearity in the states.

The PEP (64)-(72) is parameterized using the DMS

approach and solved with initialization of the shoot-

ing nodes at the measurement points and arbitrar-

ily setting p0 = [1, 1, 1, 1, 1, 1, 1, 1]T . In this

case, it takes eight iterations to reach the optimum

p∗ = [162.03, 41.13, 142.57, 32.87, 44.71, 57.46, 50.33,

54.91]T × 10−3. In order to improve convergence rate and avoid

arbitrary initialization, the proposed approach is applied and

the convex problem

min
p,x̃(.)
J̃ =

1

2

10
∑

i=0

7
∑

j=1

(

x̃ j(ti) − x̄ j(ti)
)2

(74)

subject to:

˙̃x1(t) = −k1 x̄1 x̄2 − k2 x̄1 x̄3 − k7 x̄1 x̄7 − k8 x̄1 x̄6, (75)

˙̃x2(t) = −k1 x̄1 x̄2 − k4 x̄2 x̄4 − k6 x̄3 x̄2, (76)

˙̃x3(t) = k1 x̄1 x̄2 − k2 x̄1 x̄3 − k3 x̄3 x̄4 − 2k5 x̄2
3

−k6 x̄3 x̄2, (77)

˙̃x4(t) = k2 x̄1 x̄3 − k3 x̄3 x̄4 − k4 x̄2 x̄4, (78)

6Different levels of noise are used due to different amplitudes in the states

trajectories

7
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˙̃x5(t) = k3 x̄3 x̄4 + k8 x̄1 x̄6, (79)

˙̃x6(t) = k4 x̄2 x̄4 + k5 x̄2
3 + k7 x̄1 x̄7 − k8 x̄1 x̄6, (80)

˙̃x7(t) = k6 x̄3 x̄2 − k7 x̄1 x̄7, (81)

0 ≤ k1, k2, . . . , k8 ≤ 1, (82)

0 ≤ x̃1, . . . , x̃7, (83)

is solved first. The obtained solution p∗
CVX

=

[112.6, 30.4, 125.6, 0, 42.4, 33.7, 30.5, 49.9]T × 10−3 is

used to initialize the SGN algorithm, leading to the same

optimal value previously presented. Table 4 summarizes

some of the algorithm parameters along with the parameter

optimization results for this case study.

Figure 13 illustrates the evolution of the iterations for the

methods with arbitrary initialization and the proposed ap-

proach. The state evolution of the intermediate compounds is

not presented for clarity in the visualization. Note also that

while convergence is achieved after the fourth iteration when

the problem is arbitrarily initialized, the SGN with the proposed

convex initialization method already attains convergence after

the first iteration. Consequently, the advantage of the presented

methodology lies not only in improving the convergence speed

but in the fact that no arbitrary initialization is performed and

the initial value is calculated by solving a related convex prob-

lem.

5.4. Discussion of the results and limitations

The initialization method provides an automatic procedure to

generate the initial guess for the parameter to be estimated. In

most of the case studies, a clear improvement on the number of

iterations required to find the local minimum is achieved when

compared with an arbitrary initialization. On the other hand,

one of the limitation of the method is the applicability to a re-

duced set of dynamic models such as (7) or models which can

be reformulated in that form, e.g.,

ẋ(t) = Γ(x) + Υ(x)M(p), (84)

where M(p) is a diffeomorphism. An extension of the method

in its current form to a more general class of systems, where

the dynamic is not affine in the parameters, is not viable. No-

tice that in that case, although states measurements might be

available for performing the approximation in (12)-(15), the re-

sulting equality constraint imposed by the model is still non-

linear. Hence, the same initialization requirements as in the

original NLP problem would be necessary in order to solve the

resulting PEP.

6. Conclusion

An initialization method for the solution of parameter esti-

mation problems in nonlinear parameter-affine dynamic mod-

els has been presented. An assessment of the solution errors

is presented showing that the they are of second order in the

size of the perturbations. Three benchmark examples have been

studied, illustrating that the heuristic of the method reduces the

number of iteration required to converge to a solution. The ad-

vantages of the method not only lie in improving convergence

properties but also in the fact that no previous knowledge of an

initial guess for the parameter vector is required, allowing an

automatic initialization by using the power of the convex opti-

mization.
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A. Proof of Lemma 2

Notice that in view of Lemma 1, ¯̄p is the solution of the con-

vex unperturbed problem. Consequently, it is enough to prove

that the distance between the unperturbed solution of the con-

vex problem and its perturbed one obeys (25). In order to do

so, consider the PEP

min
p,x

1

2
‖x − x̂‖2Q s.t. A(x̂) − B(x̂)p −Wx = 0, (85)

which corresponds to the convex problem for unperturbed (x̂ =
¯̄x) and perturbed (x̂ = x̄) measurements. Notice that the in-

equality constraints can be neglected for x̂ = ¯̄x due to Corol-

lary 1. Additionally, for sufficiently small perturbations, the

inequality constraints remain inactive, this allows to neglect the

inequality constraints when x̂ = x̄. Consequently, the convex

formulation is reduced to (85) for the unperturbed measurement

set and in a small neighborhood of it ‖ ¯̄x − x̄‖ ≤ ǫ, ǫ > 0.

The Karush-Kuhn-Tucker (KKT) optimality conditions for

(85) yield:

F(x∗, p∗, λ∗, x̂) =
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
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which provides the solution (x∗(x̂), p∗(x̂), λ∗(x̂)) for the per-

turbed problem x̂ = x̄ and the unperturbed one x̂ = ¯̄x. Under the

small perturbation condition, the change in the solutions given

a change in the measurement data is given by
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Due to assumptions A1 to A3, the Jacobian of F(x∗, p∗, λ∗, x̂)

is invertible at ( ¯̄x, ¯̄p, ¯̄λ). Moreover, the perturbed Jacobian re-

mains invertible for small changes in the measurement data

‖x̄ − ¯̄x‖. Consequently, the change in the optimal values also

depends on the size of the perturbation as can be inferred from

the smoothness of the involved functions in (87).

B. Proof of Theorem 1

In order to simplify the notation, the following definitions are

introduced:

w = [xT , pT ]T , Qw =

[

Q 0

0 0

]

. (88)

Consider the original PEP with the set of perturbed mea-

surements x̄. Following Corollary 1, the original PEP can be

formulated as:

PEPNL(w̄) : min
w

1

2
‖w − w̄‖2Qw

(89)

subject to

g(w) = 0. (90)

Notice that Corollary 1 implies that the inequality constraints

can be neglected for ‖ ¯̄x − x̄‖ small enough. Now, the KKT

conditions for the quadratic programming problem:

PEPLIN(w̄, ŵ) : min
w

1

2
‖w − w̄‖2Qw

(91)

subject to

g(ŵ) + ∇g(ŵ)T (w − ŵ) = 0, (92)

at the linearization point w̃ are considered, i.e.,

F(w, λ, w̄, w̃) =

[

Qw(w − w̄) + ∇g(ŵ)λ

g(ŵ) + ∇g(ŵ)T (w − ŵ)

]

= 0, (93)

where λ represents the Lagrange multipliers for the equality

constrained problem. This set of equations provides a solution

w∗
LIN

(w̄, ŵ) as a function of the linearization point and the set

of measurements.

9
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For sufficiently small perturbations ‖x̄ − ¯̄x‖ and considering

assumptions A1 to A3 it is possible to establish the following

relations

A : ‖w∗(w̄) − w∗LIN(w̄, ¯̄w)‖ = O(‖w̄ − ¯̄w‖2) (94)

and

‖w∗LIN(w̄, ¯̄w) − ¯̄w‖ = O(‖w̄ − ¯̄w‖) (95)

Equation (94) states that the solution provided by the first-

order predictor w∗
LIN

(w̄, ¯̄w) differs from the real solution w∗(w̄)

by O(‖w̄ − ¯̄w‖2) as presented in (Diehl, 2001, Theorem 3.6 and

section 3.4.1). Equation (95) is a result of perturbation analysis

of optimization problems (Robinson, 1982) under assumption

A1 to A3 and can be easily proved by linearizing the original

problem around the unperturbed solution.

Considering (94) and (95), Theorem 1

C : ‖w∗(w̄) − w∗LIN(w̄,w∗cvx)‖ = O(‖x̄ − ¯̄x‖2) (96)

is proven by showing that the distance between the first-order

predictor solution w∗
LIN

(w̄, ¯̄w) and the solution provided by

w∗
LIN

(w̄,w∗cvx) is of second-order in ‖w̄ − ¯̄w‖, i.e.,

B : ‖w∗LIN(w̄, ¯̄w) − w∗LIN(w̄,w∗cvx)‖ = O(‖w̄ − ¯̄w‖2). (97)

Notice that in this proof what is basically used is a inequality

triangle, i.e., A&B⇒ C. Consequently C is proved by proving

B. In order to do so, consider the series expansion of the linear

predictor solution around the minimizer provided by the convex

problem using the perturbed set of measurements7,

w∗LIN(w̄,w∗cvx) = w∗LIN(w̄, ¯̄w)

+
∂w∗

LIN
(w̄, ŵ)

∂ŵ
|ŵ= ¯̄w (w∗cvx − ¯̄w)

+O(‖w∗cvx − ¯̄w‖2). (98)

The term

∂w∗
LIN

(w̄, ŵ)

∂ŵ
|ŵ= ¯̄w (w∗cvx − ¯̄w) (99)

is investigated in detail. By evaluating (93) at the solution

(w∗
LIN
, λ∗

LIN
),

F(w∗LIN, λ
∗

LIN, w̄, ŵ) = 0, (100)

and applying the implicit function theorem to it, it is possible to

obtain an expression for the first factor in (99),

∂w∗
LIN

(w̄, ŵ)

∂ŵ
= −[I 0]J(ŵ)−1 ∂F

∂ŵ
, (101)

with

J(ŵ) =
∂F(w∗

LIN
, λ∗

LIN
, w̄, ŵ)

∂(w∗
LIN
, λ∗

LIN
)

=

[

Qw ∇g(ŵ)

∇g(ŵ)T 0

]

,

7This linear predictor is the model used in the first SQP iteration.

and

∂F

∂ŵ
=

[

∇2g(ŵ)λ∗
LIN

∇2g(ŵ)(w∗
LIN
− ŵ)

]

. (102)

Equation (101) is obtained by considering that ∂w̄
∂ŵ
= 0, i.e.,

the measurement data does not depend on the linearization

point. Assuming A3, and the invertibility of J( ¯̄w), at the lin-

earization point ,ŵ = ¯̄w, J( ¯̄w)−1 and ∇2g( ¯̄w) become constants

yielding

∂w∗
LIN

(w̄, ŵ)

∂ŵ
|ŵ= ¯̄w = O

(
∥

∥

∥

∥

∥

∥

λ∗
LIN

(w̄, ¯̄w)

w∗
LIN

(w̄, ¯̄w) − ¯̄w

∥

∥

∥

∥

∥

∥

)

. (103)

Note that w∗
LIN

(w̄, ¯̄w)− ¯̄w corresponds to the distance between

the unperturbed solution ¯̄w and the perturbed one provided by

the use of a linear predictor in the constraints. This distance is

given by (95) and leads to

∂w∗
LIN

(w̄, ŵ)

∂ŵ
|ŵ= ¯̄w = O(‖w̄ − ¯̄w‖). (104)

Hence, combining (104) and Lemma 2 yields

∂w∗
LIN

(w̄, ŵ)

∂ŵ
|ŵ= ¯̄w (w∗cvx − ¯̄w) = O(‖w̄ − ¯̄w‖2) (105)

Consequently, (98) is rewritten by using (105) leading to

w∗LIN(w̄,w∗cvx) = w∗LIN(w̄, ¯̄w) + O(‖w∗cvx − ¯̄w‖2), (106)

i.e., the solutions w∗
LIN

(w̄,wcvx), and w∗
LIN

(w̄, ¯̄w) are identically

apart from second order perturbations.

10
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Figure 1: Homotopy map for the parameter estimation problem of a parameter-affine model. The
original PEP is nonconvex (λ → 1) but if the measured state sequence is used as the real state, it is
possible to achieve convexity in one of the extremes of the map (λ → 0). Notice that the presented
approach only uses the convex extreme of the map and does not require continuity on the zero path.
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is measured (Top). NL corresponds to the original problem formulation while CVX to the convex
approach. The plot in the bottom illustrates that the errors in the solution provided by the proposed
approach are of second order in the size of the perturbation.
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Figure 3: Multiple shooting approach. Parameters are represented by the local variables pi on each
shooting interval and constrained to be equal to each other, i.e., pi = p0 for all i = 1, 2, . . . , N − 1.
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Figure 4: Sparsity patterns for the Jacobians in a multiple shooting parameterization. In this exam-
ple, the non-zero entries of the cost residuals Jacobian, and the equality and inequality constraints
Jacobians are illustrated. The PEP involves four measurement points, x̄(ti), i = 0, 1, 2, 3, two
states, x1, x2, three parameters, p1, p2, p3 and bound constraints on the parameters to estimate,
pmax and pmin.
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Figure 5: Time evolution of the catalytic cracking of gas oil to gasoline. The noisy state measure-
ments are taken from the benchmark problem for PE presented in Floudas et al. (1999).

0
5

10
15

20

0

5

10

15

20
0

1

2

3

4

k1k2

J

Figure 6: Sum of Square Errors (SSE) for the parameter estimation problem of the catalytic cracking
of gas oil. The state initial condition and parameter k3 are fixed to [1, 0]T and 2, respectively.
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(a) Arbitrary initialization
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(b) Convex approach

Figure 7: Convergence results for the PEP of reaction rates in the catalytic cracking of gas oil. The
PEP is parameterized using DMS and initialized arbitrarily and using the convex approach.
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Figure 8: Set of noisy measurements used for the parameter estimation problem of the Lotka-
Volterra model. Data has been generated by simulating the model with nominal parameters p =
[0.6, 0.5, 0.7, 0.4]T , x(0) = [1, 0.5] and adding Gaussian noise with a variance σ2 = 0.05.
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Figure 9: SSE as a function of the variation of parameters α and γ for the PEP in the Lotka-Volterra
model. The parameters β, δ and the initial condition are constant and equal to their original values,
i.e., β = 0.5, δ = 0.4, [x1(t0), x2(t0)]

T = [1, 0.5]T .



Postprint version of paper published in Computers and Chemical Engineering 2010, vol. 34, pages 953–964. 
The content is identical to the published paper, but without the final typesetting by the publisher. 

Journal homepage: http://www.sciencedirect.com/science/journal/00981354/    
Original file available at: http://dx.doi.org/10.1016/j.compchemeng.2009.10.020 

 

0 5 10 15 20
0

1

2

3

4

 

 

0 5 10 15 20
0

1

2

3

4

 

 

0 1 2 3 4 5 6 7 8 9 10 11
0

0.5

1

 

 

Initialization

Iteration

2nd iteration

P
o
p
u
la
ti
o
n
D
e
n
si
ty

P
a
ra

m
e
te
rs

α

β

γ

δ

xx

yy

(a) Arbitrary initialization

0 5 10 15 20
0

1

2

3

4

 

 

0 5 10 15 20
0

1

2

3

4

 

 

0 1 2 3 4 5 6

0.3

0.4

0.5

0.6

0.7

 

 

Initialization

Iteration

2nd iteration

P
o
p
u
la
ti
o
n
D
e
n
si
ty

P
a
ra

m
e
te
rs

α

β

γ

δ

xx

yy

(b) Convex approach

Figure 10: Convergence results for the simultaneous Gauss-Newton method applied to the PEP in
the Lotka-Volterra model. The optimization is performed using and arbitrary initialization and the
proposed convex approach.
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Figure 11: Noisy states trajectories for the formaldehyde - sodium p-phenol sulfonate reaction. The
dynamics is contaminated with Gaussian noise with standard deviation σ = 1× 10−3 for x1, x2, x3

and x5 and σ = 2.23× 10−4 for x4, x6 and x7.
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Figure 12: SSE as a function of the variation of parameters k1 and k3 for the PEP of the formalde-
hyde and sodium p-phenol sulfonate. The remaining 6 parameters and the initial condition are
fixed to their nominal values.
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(b) Convex approach

Figure 13: Convergence results using the simultaneous Gauss-Newton algorithm for the PEP of
the reaction rates in the reaction of formaldehyde with sodium p-phenol sulfonate. The figure
illustrates the time evolution for the state trajectory using an arbitrary initialization (a) and the
convex approach (b) along with the parameters convergence.
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Table 1: Optimization parameters for the catalytic cracking of gas oil PEP using arbitrary and
convex initialization approaches.

Parameter Arbitrary Convex

TOLSQP 1× 10−10 1× 10−10

ATOLODE 1× 10−6 1× 10−6

RTOLODE [1, 1]×10−4 [1, 1]×10−4

KKTTOL(p
∗) 4.253× 10−12 8.403× 10−11

J (p∗) 1.32766× 10−3 1.32766× 10−3

NIter 4 3

Table 2: Algorithm parameters for the Lotka-Volterra PEP using arbitrary and convex initialization
approaches.

Parameter Arbitrary Convex

TOLSQP 1× 10−10 1× 10−10

ATOLODE 1× 10−6 1× 10−6

RTOLODE [1, 1]×10−4 [1,1 ]×10−3

KKTTOL(p
∗) 5.8486× 10−11 3.7386× 10−11

J (p∗) 0.80318 0.80318

NIter 11 6

Table 3: Reaction rates for the batch reaction of formaldehyde with sodium p-phenol sulfonate.

Reaction
Rate

coefficient

Nominal value
(m3/kmol s)

A+B→C k1 0.16

A+C→D k2 0.05

C+D→E k3 0.15

B+D→F k4 0.14

C+C→F k5 0.03

C+B→G k6 0.058

A+G→F k7 0.05

A+F→E k8 0.05

Table 4: Algorithm parameters for the complex batch reaction PEP using arbitrary and convex
initialization approaches.

Parameter Arbitrary Convex

TOLSQP 1× 10−10 1× 10−10

ATOLODE 1× 10−6 1×10−6

RTOLODE [1, 1]×10−4 [1,1 ]×10−4

KKTTOL(p
∗) 9.8354× 10−11 1.556× 10−11

J (p∗) 1.6996× 10−5 1.6996× 10−5

NIter 8 4


