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Abstract

Multivariate time series may contain outliers of different types. In presence

of such outliers, applying standard multivariate time series techniques be-

comes unreliable. A robust version of multivariate exponential smoothing

is proposed. The method is affine equivariant, and involves the selection

of a smoothing parameter matrix by minimizing a robust loss function. It

is shown that the robust method results in much better forecasts than the

classic approach in presence of outliers, and performs similar when the data

contain no outliers. Moreover, the robust procedure yields an estimator of

the smoothing parameter less subject to downward bias. As a byproduct, a

cleaned version of the time series is obtained, as is illustrated by means of a

real data example.
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1. Introduction

Exponential smoothing is a popular technique used to forecast time series.

Thanks to its very simple recursive computing scheme, it is easy to imple-

ment. It has been shown to be competitive with respect to more complicated

forecasting methods. A multivariate version of exponential smoothing was

introduced by Jones (1966) and further developed by Pfefferman and Allon

(1989). For a given multivariate time series y1, . . . ,yT , the smoothed values

are given by

ŷt = Λyt + (I − Λ)ŷt−1, (1)

for t = 2, . . . , T , where Λ is the smoothing matrix. The forecast that we can

make at moment T for the next value yT+1 is then given by

ŷT+1|T = ŷT = Λ

T−1∑

k=0

(I − Λ)kyT−k. (2)

The forecast in (2) is a weighted linear combination of the passed values of the

series. Assuming the matrix sequence (I−Λ)k converges to zero, the weights

decay exponentially fast and sum to the identity matrix I. The forecast

given in (2) is optimal when the series follows a vector IMA(1,1) model, see

Reinsel (2003, page 51). The advantage of a multivariate approach is that

for forecasting one component of the multivariate series, information from all

components is used. Hence the covariance structure can be exploited to get

more accurate forecasts. In this paper, we propose a robust version of the

multivariate exponential smoothing scheme.

Classic exponential smoothing is sensitive to outliers in the data, since

they affect both the update equation (1) for obtaining the smoothed val-

ues and equation (2) for computing the forecast. To alleviate this problem,
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Gelper, Fried, and Croux (2009a) proposed a robust approach for univari-

ate exponential smoothing. In the multivariate case the robustness problem

becomes even more relevant, since an outlier in one component of the mul-

tivariate series yt will affect the smoothed values of all series. Generalizing

the approach of Gelper et al. (2009a) to the multivariate case raises several

new issues.

In the univariate case, the observation at time t is said to be outlying

if its corresponding one-step-ahead prediction error yt − ŷt|t−1 is large, say

larger than twice the robust scale estimate of the prediction errors. A large

prediction error means that the value of yt is very different from what one

expects, and hence indicates a possible outlier. In a multivariate setting the

prediction errors are vectors. We declare then an observation as outlying if

the robust Mahalanobis distance between the corresponding one-step-ahead

prediction error and zero becomes too large. Computing this Mahalanobis

distance requires a local estimate of multivariate scale.

Another issue is the selection of the smoothing matrix Λ used in equa-

tion (1). The smoothing matrix needs to be chosen such that a certain loss

function computed from the one-step-ahead prediction errors is minimized.

As loss function we propose the determinant of a robust estimator of the

multivariate scale of the prediction errors.

In Section 2 of this paper we describe the robust multivariate exponential

smoothing procedure. Its recursive scheme allows us both to detect outliers

and to “clean” the time series. It then applies classic multivariate exponential

smoothing to the cleaned series. The method is affine equivariant, making

it different from the approach of Lanius and Gather (2009). In Section 3
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we show by means of simulation experiments the improved performance of

the robust version of exponential smoothing, both for forecasting and for

selecting the optimal smoothing matrix. Section 4 elaborates on the use of the

cleaned time series, an important byproduct of applying robust multivariate

exponential smoothing. This cleaned time series can be used as an input

for more complicated time series methods. We illustrate this in a real data

example, where the parameters of a Vector Autoregressive (VAR) model are

estimated from the cleaned time series. Finally, Section 5 contains some

conclusions and ideas for further research.

2. Robust Multivariate Exponential Smoothing

At each time point t we observe a p-dimensional vector yt, for t = 1, . . . , T.

Exponential smoothing is defined in a recursive way. Assume that we already

computed the smoothed values of y1, . . . ,yt−1. To obtain a robust version of

the update equation (1), we simply replace yt in (1) by a “cleaned” version

y∗
t for any t. We now detail how this cleaned value can be computed. Denote

the one-step-ahead forecast error

rt = yt − ŷt|t−1, (3)

being a vector of length p, for t = 2, . . . , T . The multivariate cleaned series

is given by

y∗
t =

ψk

(√
r′

tΣ̂
−1

t rt

)

√
r′

tΣ̂
−1

t rt

rt + ŷt|t−1 (4)

where ψk = min(k,max(x,−k)) is the Huber ψ-function with boundary value

k, and Σ̂t is an estimated covariance matrix of the one-step-ahead forecast
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error at time t. If k tends to infinity, y∗
t = yt, implying that no data cleaning

takes place and that the procedure reduces to classic exponential smooth-

ing. Formula (4) is similar to the one proposed by (Masreliez, 1975) in the

univariate case.

Estimation of scale: Since the covariance matrix of the rt is allowed to depend

on time, it needs to be estimated locally. We propose, similar as in Cipra

(1992) and Gelper et al. (2009a) for the univariate setting, the following

recursive formula

Σ̂t = λσ

ρc,p

(√
r′

tΣ̂
−1

t−1rt

)

r′
tΣ̂

−1

t−1rt

rtr
′
t + (1 − λσ)Σ̂t−1 (5)

where 0 < λσ < 1 is an a priori chosen smoothing constant. For λσ close to

zero, the importance of the incoming observation at time t is rather small,

and the scale estimate will vary slowly over time, whereas for λσ close to

one, the importance of the new observation is too large. Our simulation

experiments indicated that λσ = 0.2 is a good compromise. Alternatively,

one could consider a finite grid of values for λσ and choose the one in the

grid that minimizes the determinant of a robust estimator of the covariance

matrix of the forecast errors.

The real valued function ρc,p is the biweight ρ-function with tuning con-

stant c

ρc,p(x) =





γc,p

(
1 −

(
1 − (x/c)2)3

)
if |x| ≤ c

γc,p otherwise,

where the constant γc,p is selected such that E[ρc,p(‖X‖)] = p, where X

is a p-variate normal distribution. An extremely large value of rt will not

affect the local scale estimate, since the ρ-function is bounded. The constant
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k in the Huber ψ-function and c in the biweight function are taken as the

square root of the 95% quantile of a chi-squared distribution with p degrees

of freedom. The choice of the biweight ρc,p function is common in robust

scale estimation, and was also taken in Gelper et al. (2009a).

Starting values: The choice of the starting values for the recursive algorithm

is crucial. For a startup period of length m > p, we fit the multivariate

regression model ŷt = α̂ + β̂t using the robust affine equivariant estimation

method of Rousseeuw et al. (2004). We prefer a linear robust fit since expo-

nential smoothing can also be applied on integrated time series, exhibiting

local trends. Then we set ŷm = α̂ + β̂m, and we take for Σ̂m a robust

estimate of the covariance matrix of the residuals of this regression fit. The

length of the startup period needs to be taken large enough to ensure that

Σ̂m will have full rank. Then we start up the recursive scheme

ŷt = Λy∗
t + (I − Λ)ŷt−1, (6)

where the cleaned values are computed as in (4), and the scale is updated

using (5), for any t > m. Given that the startup values are obtained in a

robust way, and that the ψ and ρ function are bounded, it is readily seen

that the effect of huge outliers on the smoothed series remains limited.

Affine equivariance: An important property of the proposed procedure is

affine equivariance. If we consider the time series zt = Byt, with B a non-

singular p × p matrix, then the cleaned and smoothed series are given by

z∗
t = By∗

t and ẑt = Bŷt. Applying univariate robust exponential smoothing

on each component separately will not have this affine equivariance property.

Selection of the smoothing parameter matrix: Both the robust and classic
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multivariate exponential smoothing and forecasting method depend on a

smoothing matrix Λ. We propose to select Λ using a data-driven approach,

on the basis of the observed time series during a certain training period.

After this training period, the matrix Λ remains fixed. More precisely, Λ is

selected by minimizing the determinant of the estimated covariance matrix

of the one-step-ahead forecast errors. As a further simplification, we assume

that the smoothing matrix is symmetric. While in the univariate case Λ is

simply a scalar in the closed interval [0, 1], in the multivariate case we re-

quire that Λ is a matrix with all eigenvalues in [0, 1], similar as in Pfefferman

and Allon (1989). Let R := {rm+1, . . . , rT} be the set of the one-step-ahead

forecast errors, then

Λopt := argmin
Λ∈S1(p)

det Ĉov(R), (7)

where S1(p) is the set of all p× p symmetric matrices with all eigenvalues in

the interval [0, 1].

For classic multivariate exponential smoothing, the estimator of the co-

variance matrix of the one-step-ahead forecast errors is just taken equal to

the sample covariance matrix with mean fixed at zero:

Ĉov(R) := Σ̂(R) =
1

T −m

T∑

t=m+1

rtr
′
t. (8)

The one-step-ahead forecast errors rt will contain outliers at the places where

the observed series has outliers. Therefore we use a robust estimation of

the covariance matrix called Minimum Covariance Determinant (MCD) es-

timator (Rousseeuw and Van Driessen, 1999). For any integer h such that

1 ≤ h ≤ T −m define

Lh = {A ⊂ R | #A = h} ⊂ 2R
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of all subsamples of size h of the one-step-ahead forecast errors. This set is

finite for T ∈ N, hence there exists a set Lopt ∈ Lh such that

Lopt = argmin
A∈Lh

det Σ̂(A),

where Σ̂(A) is the sample covariance matrix (with mean equal to zero) of

the subsample A ⊂ R, as in (8). We define the MCD estimator of scale as

Σ̂
(h)

MCD
(R) := Σ̂(Lopt).

A common choice in de literature is h =
⌊

T−m+p+1
2

⌋
, which yields the highest

breakdown point, but low efficiency. We take h = ⌊0.75 (T −m)⌋ which is

still resistant to outliers (25% breakdown point), but has a higher efficiency

(Croux and Haesbroeck, 1999).

3. Simulation Study

In this section we study the effect of additive outliers and correlation out-

liers on both the classic and the robust multivariate exponential smoothing

method. We compare the one-step-ahead forecast accuracy, and the selection

of the smoothing parameter matrix by both methods. Forecast accuracy is

measured by the determinant of the MCD estimator on the scatter of the

one-step-ahead forecast errors. We prefer to use a robust measure of forecast

accuracy, since we want to avoid that the forecasts made for unpredictable

outliers dominate the analysis.

We generate time series y1, . . . ,yT from a multivariate random walk plus

noise model:

yt = µt + εt,

µt = µt−1 + ηt,
(9)
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for t = 1, 2, . . ., with µ0 = 0, and where {εt} and {ηt} are two independent

serially uncorrelated zero mean bivariate normal processes with constant co-

variance matrices Σε and Ση respectively. In Harvey (1986) it is shown

that, if there exists a q ∈ R (the so-called signal-to-noise ratio) such that

Ση = qΣε, the theoretical optimal smoothing matrix for the classic method

is given by

Λopt =
−q +

√
q2 + 4q

2
Ip, (10)

where Ip is the p× p identity matrix.

3.1. Forecast accuracy

We generate M = 1000 time series from model (9) with

Σε =

(
1 0.5

0.5 1

)
and q =

1

4
.

We consider four different sampling schemes. In the first scheme, the data are

clean or uncontaminated. The second and third sampling scheme consider

additive outliers. In the second scheme, 10% contamination is added to the

first component of the multivariate time series. More specifically, we include

additive outliers with a size of K = 12 times the standard deviation of the

error term. The third scheme is similar to the second scheme, but here both

components contain 5% contamination, yielding 10% overall contamination.

The outliers are added such that they do not occur at the same time points

in both time series. In the description of the results, we refer to the second

and third simulation schemes as ‘Additive1’ and ‘Additive2’ respectively. In

the last sampling scheme, we include 10% correlation outliers by reversing

the sign of the off-diagonal elements in the correlation matrix Σε.
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To compare the performance of the classic and the robust exponential

smoothing schemes, we focus on the one-step-ahead forecast errors. Since

these are multivariate, they are summarized by the value of the determinant

of their covariance matrix, as estimated by the MCD, averaged over all M

simulation runs. Outliers are expected to affect the multivariate smoothing

procedure in two ways. There is a direct effect on the forecasted value and

an indirect effect via the selection of the smoothing matrix Λ. To be able to

distinguish between these two effects, we first study the forecast performance

using the known value of the optimal smoothing matrix Λopt as given in

equation (10). In a second experiment, Λ is chosen in a data driven manner

as explained in Section 2.

In the first experiment, where we use the optimal Λ according to equa-

tion (10), we consider time series of lengths T = 20, 40, 60 and 100. A

startup period of m = 10 is used and the one-step-ahead forecast errors rt

are evaluated over the period t = m+ 1, . . . , T . Table 1 reports the average

determinant of the MCD estimator of the forecast error covariance matrix

over 1000 simulation runs. When the difference between the classic and the

robust procedure is significant at the 5 % level, as tested for by a paired

t−test, the smallest value is reported in bold.

Table 1 shows that for uncontaminated data, the classic approach is

slightly better than the robust approach, but the difference is very small

for longer time series. When additive outliers are included, however, the

robust procedure clearly outperforms the classical one. There is no clear

difference in forecast accuracy between the second and the third simulation

setting from which we conclude that the proposed procedure can easily deal
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Table 1: Average value, over 1000 simulation runs, of the determinant of the MCD esti-

mator of the one-step-ahead forecast errors, for a test period of length n = 20, 40, 60, 100,

and for 4 different sampling scheme. If the difference between the classic non-robust (C)

and the robust (R) method is significant at 5 %, the smallest value is reported in bold.

The smoothing matrix is set at its theoretical optimal value.

Clean Additive1 Additive2 Correlation

n C R C R C R C R

20 2.58 3.08 12.02 5.64 11.46 5.62 2.84 3.32

40 2.23 2.34 10.65 4.22 11.43 4.14 2.31 2.41

60 2.13 2.20 10.58 4.00 11.34 3.91 2.28 2.34

100 2.07 2.11 10.46 3.90 11.11 3.73 2.17 2.21

Table 2: As Table 1, but now with the smoothing matrix estimated from the data.

Clean Additive1 Additive2 Correlation

n C R C R C R C R

20 3.14 3.58 17.99 6.58 17.15 6.45 3.32 3.49

40 3.22 3.41 22.00 7.40 22.88 5.82 3.58 3.33

60 3.42 3.77 25.70 8.51 27.87 6.85 3.60 3.50

100 3.66 4.27 32.05 9.62 41.61 9.29 4.30 4.49
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with additive outliers in all components of a multivariate series. Finally,

we compare the performance of both methods for uncontaminated data and

data including correlation outliers. From Table 1 it is clear that the forecast

performance of either methods is hardly affected by the correlation outliers.

The difference between the classic and the robust approach remains small.

The difference between the robust and classic approach is most visible

for additive outliers with size K = 12 standard deviations of the error term.

One might wonder how the results depend on the value of K. In Figure 1

we plot the magnitude of the forecast errors, as measured by the value of

the determinant of the MCD estimator of the one-step-ahead forecast errors

averaged over 1000 simulations, and with n = 100, for K = 0, 1, . . . , 12. We

see that up to K = 3, the performance is very similar. Hence for small

additive outliers, there is not much difference between the two methods.

However, for moderate to extreme outliers, the advantage of using the robust

method is again clear. Note that while the magnitude of the forecast errors

continues to increase with K for the classical method, this is not the case

for the robust method. The effect of placing additive outliers at K = 6 or at

K = 12 on the robust procedure is about the same.

In practice, the optimal smoothing matrix is unknown. We therefor con-

sider a second experiment where the selection of the smoothing matrix is

data-driven based on a training period of length k, as described in detail in

Section 2. We generate time series of lengths T = k+ 20, k+ 40, k+ 60 and

k+ 100 and use a training period of k = 50 observations including a startup

period of length m = 10. Similar as in the previous experiment, the forecast

accuracy is evaluated by the average determinant of the MCD estimator for
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Figure 1: Average value, over 1000 simulation runs, of the determinant of the MCD

estimator of the one-step-ahead forecast errors, for a test period of length n = 100, and

for the Additive2 simulation scheme, as a function of the size K of the outliers
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the covariance matrix of rt, where t = k + 1, . . . , T .

The results of this second, more realistic, experiment are reported in Table

2. First of all, notice that there is a loss in statistical efficiency due to fact that

the smoothing matrix needs to be selected. For uncontaminated data, both

methods perform comparably. Including additive outliers strongly affects

the forecast accuracy of the classic method, and to a far lesser extend of the

robust method. In presence of correlation outliers, the forecast accuracy of

the two methods is again comparable. A comparison of Table 1 and 2 suggests

that outliers have a severe effect on the forecasts, both directly and indirectly

via the selection of the smoothing matrix. To study the last phenomenon

in more depth, the next subsection presents a numerical experiment on the

data driven selection of the smoothing matrix.

3.2. Selection of the smoothing parameter matrix

The smoothing matrix is selected to minimize the determinant of the

sample covariance matrix (in the classic case) or the MCD-estimator (in the

robust case) of the one-step-ahead forecast errors in the training period. To

visualize the target function in both the classic and the robust case, with

and without outliers, we fix the non-diagonal elements of the smoothing

matrix to zero and generate 100 time series of length 60 from the same data

generating process as before. We apply the classic and the robust multivariate

exponential smoothing method, with smoothing matrix

Λ =

(
λ 0

0 λ

)
,

where λ takes values on a grid of the interval [0, 1], and using a startup period

of length m = 10. For each value of λ, the average of the observed values of
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the target functions is plotted in Figure 2.

The vertical dashed line indicates the optimal value of λ according to ex-

pression (10). The solid curves are the averaged values of the target function

with 95% pointwise confidence bounds (dotted). Both methods have similar

target functions. To illustrate the effect of outliers, we add one large additive

outlier to the first component of the bivariate time series at time point 35.

The resulting target functions of both methods are plotted in Figure 3. The

selection of λ in the classic case is clearly biased towards zero, due to only one

outlier, whereas the robust parameter selection remains nearly unchanged.

This can be explained using equation (10) and the condition qΣε = Ση.

When outliers are present in the data, the method considers them as extra

noise. Hence the signal-to-noise ratio q will decrease. By (10), the diago-

nal elements of the smoothing matrix will decrease as well, and thus λ will

decrease. The proposed robust method does not suffer from this problem.

4. Real Data Example

The robust multivariate exponential smoothing scheme provides a cleaned

version y∗
t of the time series. As such, an affine equivariant data cleaning

method for multivariate time series is obtained. In this example, we illustrate

how a cleaned series can be used as input for further time series analysis.

Consider the housing data from the book of Diebold (2001) and used in

Croux and Joossens (2008). It concerns a bivariate time series of monthly

data. The first component contains housing starts and the second component

contains housing completions. The data are from January 1968 until June

1996. A plot of the data can be found in Figure 4, indicated by asterisks (∗).
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Figure 2: Simulated target function for the classic (left) and the robust method (right),

with clean time series. The minimum value is indicated with a circle, the dashed line

corresponds to the optimal value of λ.
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Figure 3: Simulated target function for the classic (left) and the robust method (right),

with one large additive outlier. The minimum value is indicated with a circle, the dashed

line corresponds to the optimal value of λ.
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We immediately notice two large outliers, one near 1971 and another near

1977, both in the first component (housing starts). Moreover, the time series

contains correlation outliers, but these are hard to detect in the time series

plot. By applying robust exponential smoothing, we know that the results

will be stable in presence of such correlation outliers.

We use a startup period of m = 10 and the complete series is used as

training sample for selecting the smoothing matrix. We get

Λ =


 0.68 0.04

0.04 0.62


 .

Figure 4 shows the original series, together with the cleaned version. The

cleaning procedure clearly eliminates the large outliers from the original se-

ries. Moreover, other smaller outliers, which we could not immediately detect

from the plot, are flattened out.

A further analysis of the cleaned series leads to the specification of a

Vector Autoregressive (VAR) model for the cleaned series in differences. The

lag length selected by the Bayesian Information Criterium equals one. The

model is estimated equation by equation by non robust ordinary least squares,

since we know that the cleaned series do not contain outliers anymore. We

get

∆y∗
t =


 −3.6 · 10−4

5.8 · 10−5


 +


 −0.28 · 10−4 0.119

0.005 −0.411


 ∆y∗

t−1 + ε̂t. (11)

5. Conclusion

For univariate time series analysis, robust estimation procedures are well

developed, see Maronna et al. (2006, Chapter 8) for an overview. To avoid
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Figure 4: Top: the housing starts (∗) with the cleaned series (solid). Bottom: housing

completions (∗) with cleaned series (solid) (in thousands).
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the propagation effect of outliers, a cleaning step is advised, that goes along

with the robust estimation procedure (e.g. Muler, Peña, and Yohai (2008)).

For resistant analysis of multivariate time series much less work has been

done. Estimation of robust VAR models is proposed in Ben et al. (1999) and

Croux and Joossens (2008), and a projection-pursuit based outlier detection

method by Galeano et al. (2006).

In this paper we propose an affine equivariant robust exponential smooth-

ing approach for multivariate time series. Thanks to its recursive definition,

it is applicable for online monitoring. An important byproduct of the method

is that a cleaned version of the time series is obtained. Cleaning of time series

is of major importance in applications, and several simple cleaning methods

were proposed for univariate time series (e.g. Pearson (2005)). Our paper

contains one of the first proposals for cleaning of multivariate time series.

For any given value of the smoothing parameter matrix, the procedure is

fast to compute and affine equivariant. Finding the optimal Λ in a robust

way is computationally more demanding. In this paper a grid-search was

applied, working well for bivariate data, but not being applicable in higher

dimension. The construction of feasible algorithms for the optimal selection

of the smoothing parameter matrix, or proposals for easy-to-use rules of

thumb for suboptimal selection of Λ are topics for future research. As we

have shown in Section 3, a crucial aspect is that the selection of the smoothing

parameters needs to be done in a robust way, see (Boente and Rodriguez,

2008) for a related problem.

Other areas for further research are the robust online monitoring of mul-

tivariate scale. In the univariate setting, this problem was already studied

19



by (Nunkesser et al., 2009) and (Gelper et al., 2009b). The sequence of local

scale estimates Σ̂t, as defined in (5), could serve as a first proposal in this di-

rection. Finally, extensions of the robust exponential smoothing algorithm to

spatial or spatio-temporal processes (LeSage et al., 2009) are also of interest.
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