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Abstract - This paper presents an optimization model for the
selection of sets of clients that will receive an offer for one or more
products during a promotion campaign. The complexity of the
problem makes it very difficult to produce optimal solutions using
standard optimization methods. We propose an alternative set
covering formulation and develop a branch-and-price algorithm
to solve it. We also describe seven heuristics to approximate
an optimal solution. We perform extensive computational exper-
iments for the two formulations as well as for the seven heuristics.

Keywords - promotion campaign, integer programming,
branch-and-price algorithm, non-approximability, heuristics.

I. INTRODUCTION

Promotion campaigns are fundamental direct marketing
tools for improving the economic profit of a firm, either by
acquiring new customers or by generating additional revenue
from existing customers [8]. The former action is called
“acquisition” while the latter is “retention” [11]. In this paper
we are concerned with the latter case: campaigns that gener-
ate additional revenue by offering new products to existing
customers. This study is justified by at least two practical
facts. Reinartz et al. [11] point out that “When firms trade off
between expenditures for acquisition and those for retention,
a suboptimal allocation of retention expenditures will have a
greater impact on long-term customer profitability than will
suboptimal acquisition expenditures”. Moreover, models and
methods used for data analysis are more suited for retention [7]
since more information is available. Retention boosts the
customer lifetime value, which is defined by Kumar et al. [9]
to be “the sum of cumulated cash flows – discounted using
the weighted average cost of capital – of a customer over his
or her entire lifetime with the firm”. Customer lifetime value
usually serves as a metric for a ranking or segmentation of the
firm’s customers [12]. During the last decades, the advances
in data analysis coupled with the availability of customer
data have pushed firms to develop a more customer-oriented
strategy. Nowadays, such a strategy is globally accepted, but
its practical implementation is far from being accomplished.
This implementation delay is observed both in business-to-
business and business-to-consumer settings, and is particularly
pronounced in financial institutions, which often have a large
number of customers with full data available but may lack
sophisticated tools that efficiently take into account these
advantages in decision making [5].

In literature, promotion campaign models are also frequently
referred to as optimal product targeting models [7]. The

latter examine “Which products should be targeted to which
customers to maximize profits, under the constraints that only
a limited number can be targeted to each customer, and each
product has a minimum sales target”, which is mentioned
by [7] as an interesting issue for future research. A promotion
campaign problem is essentially characterized by two steps,
which are “data analysis” and “problem formulation and
solution”. The first step, which is mainly statistical, has re-
ceived increasing attention with the advances in data analysis.
Recently, numerous models that carry the name “response
models” have been developed and are currently being used
in practice [7], [3]. Although this step is necessary for an
application in financial institutions (as its outputs are used as
inputs for the second step), its use can be less important for
an application in other areas like advertisement, see [4].

This paper investigates the development of optimization
models for promotion campaigns based on integer program-
ming. Motivation for studying this problem comes from a case
occurring at FORTIS [6], one of the leading banks in Belgium.
We aim to maximize the profit subject to business constraints
such as the campaign’s return on investment hurdle rate that
must be met (the hurdle rate is the minimum acceptable rate
of return that management will accept for the campaign),
a limitation on the funding available for each product, a
restriction on the maximum number of possible offers to a
client, and a minimum quantity commitment (MQC) on the
number of units of a product to be offered in order for
that product to be part of the campaign. This constraint has
been briefly mentioned by Cohen [3] as a technical issue
for an application in a bank. However, he did not explicitly
incorporate it into his model. Our model takes into account
this constraint, making it an extension of the model used by
Cohen. In our formulation, we also impose a more general
version of the MQC constraint, allowing the fixed minimum
quantity to depend on the product.

In this paper, we present a basic integer programming
formulation for the optimization of promotion campaigns
and show the non-approximability of the problem. We next
present a set covering formulation and develop a branch-and-
price algorithm for solving it. The size of instances that can
be solved optimally using this algorithm allows its efficient
use for business-to-business promotion campaigns and for
sampling approaches in financial institutions [3]. We present
seven heuristics which can be used for business-to-consumer
promotion campaigns. These heuristics are either variants of
the algorithms used in practice for application in a bank
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(see [6], [7]) or developed based on the structure of the
problem.

This paper is organized as follows. Section II describes
the basic integer programming formulation for deciding on
the composition of promotion campaigns and related com-
plexity results. We present the set covering formulation in
Section III and develop a branch-and-price algorithm to solve
it. In Section IV, we describe seven heuristics to approximate
an optimal solution. The experimental results for the two
formulations (basic formulation and set covering formulation)
as well as for the seven heuristics are presented in Section V
followed by some conclusions in Section VI.

II. BASIC FORMULATION

The objective of a promotion campaign is to achieve a max-
imum profit by offering n different products to m customers
while taking into account various business constraints. We
incorporate the following restrictions: the return on investment
hurdle rate must be met for the campaign, the budget allocated
to each product is limited, an upper bound is imposed on the
number of products that can be offered to each client and
there is also an MQC constraint for each product. We define
the parameter rij as the probability that client i accepts an
offer of product j and DFVij as the return to the firm when
client i responds positively to the offer of product j. The
latter is termed the Delta Financial Value by FORTIS [6].
These two parameters are the basis for the computation of
customer lifetime value [12]. Practically, these parameters are
estimated using response models based on historical data [3],
[7], [10] and are assumed to be available within the firm. We
denote by pij the expected return to the firm (revenue) when
client i accepts the offer of product j, so pij = rijDFVij .
Further, there is a variable cost cij associated with the offer
of product j to client i, the upper bound Mi of offers that
can be made to a client i (this quantity is related to the status
of the client), the minimum quantity commitment bound Oj

associated with product j, the budget Bj allocated to the
product j, a fixed cost fj needed if product j is used for
the campaign and finally the corporate hurdle rate R. The
value of R is dependent on the firm and the riskiness of the
investment. In practice, most firms use their weighted average
cost of capital (WACC) as an estimation of R [2]. We define
the decision variables yj ∈ {0, 1}, equal to 1 if product j
is used during the campaign, 0 otherwise, and xij ∈ {0, 1},
which is equal to 1 if product j is offered to client i and 0
otherwise. A basic formulation for the promotion campaign
problem can be expressed as:

(M1) max
m∑

i=1

n∑
j=1

(pij − cij)xij −
n∑

j=1

fjyj (1)

subject to

m∑
i=1

n∑
j=1

pijxij ≥ (1 + R)

⎡
⎣

m∑
i=1

n∑
j=1

cijxij +
n∑

j=1

fjyj

⎤
⎦ (2)

m∑
i=1

cijxij ≤ Bj j = 1, . . . , n, (3)

n∑
j=1

xij ≤ Mi i = 1, . . . , m, (4)

m∑
i=1

xij ≤ myj j = 1, . . . , n, (5)

m∑
i=1

xij ≥ Ojyj j = 1, . . . , n, (6)

yj , xij ∈ {0, 1} i = 1, . . . , m, j = 1, . . . , n. (7)

The objective function (1) is the maximization of the total net
benefit received from the offer of products to clients minus the
fixed cost of using the products for the campaign. The first
constraint (2) is the corporate hurdle rate constraint, which
makes sure that the campaign’s return on investment is at
least R, and which was first suggested by Cohen [3] for an
application in a bank. The set of constraints (3) enforces that
we should not exceed the budget Bj allocated to the product
j. Here, the product dependency of the budget reflects the
situation in large firms where an individual business unit is
responsible for the production and the sale of a product. Hence,
each business unit has its own budget. The set of constraints
(4) states that we cannot propose more than a certain number
Mi of products to client i; the sets of constraints (5) and (6)
constitute the MQC constraint, which specifies that when a
product is not part of the campaign, no clients will receive an
offer, while if product j takes part in the campaign then at
least Oj > 0 clients receive an offer, and finally the last set
of constraints (7) is the integrality constraint.

The following result shows that there is little hope for
finding a polynomial time algorithm for solving (M1).

Proposition 1: The promotion campaign problem (M1) is
strongly NP-hard, even for Oj = 1 for all j.
The proof of the results enunciated in this paper can be found
in [14].

Moreover, (M1) is difficult to solve even approximately. We
prove this non-approximability result by showing that it is NP-
hard to find a non-trivial feasible solution for (M1). A non-

trivial feasible solution for the basic formulation (M1) is a
feasible solution which achieves a non-zero objective value.

Proposition 2: Finding a non-trivial feasible solution for
the basic formulation (M1) is NP-hard.

The results of Proposition 1 and Proposition 2 justify the
intensive use of heuristics in practice [3], [4], [7].

The basic formulation (M1) can be strengthened by using
the following disaggregate version of constraints (5):

xij ≤ yj i = 1, . . . , m, j = 1, . . . , n. (8)

The following result allows the relaxation of the integrality
constraint yj ∈ {0, 1} to 0 ≤ yj ≤ 1 for all j.

Proposition 3: The convex hull of the feasible solutions to
the integer program (M1) is identical to the convex hull of the
solutions that satisfy the constraints (2), (3), (4), (6), (8) and
0 ≤ yj ≤ 1, xij ∈ {0, 1} for all i, j.

Proceedings of the 2009 IEEE IEEM

 287



In the rest of this paper, the formulation obtained from (M1)
by replacing (5) by (8) and by substituting 0 ≤ yj ≤ 1 for
yj ∈ {0, 1} for all j, is denoted by (M2).

III. BRANCH-AND-PRICE

This section is devoted to the application of a branch-and-
price algorithm for solving the promotion campaigns problem.

A. A set covering formulation

For every product j, let kj be the number of distinct subsets
of clients of cardinality at least Oj which can receive the offer
of product j within the budget limit Bj . Explicitly, we define
Spj (p = 1, . . . , kj) as a set of at least Oj clients satisfying∑

i∈Spj
cij ≤ Bj . We use the binary variable zpj to indicate

whether the product j is offered to the set of clients Spj

(zpj = 1) or not (zpj = 0). A set covering formulation of
the promotion campaign problem is given by:

(M3) max
n∑

j=1

⎡
⎣

kj∑
p=1

⎛
⎝ ∑

i∈Spj

(pij − cij) − fj

⎞
⎠ zpj

⎤
⎦ (9)

subject to

n∑
j=1

⎡
⎣

kj∑
p=1

⎛
⎝ ∑

i∈Spj

Δij − (1 + R)fj

⎞
⎠ zpj

⎤
⎦ ≥ 0 (10)

n∑
j=1

∑
p:i∈Spj

zpj ≤ Mi i = 1, . . . , m, (11)

kj∑
p=1

zpj ≤ 1 j = 1, . . . , n, (12)

zpj ∈ {0, 1} j = 1, . . . , n, p ∈ {1, . . . , kj}, (13)

where Δij = pij−(1−R)cij . The first constraint (10) enforces
that the campaign’s return on investment must be at least R,
the set of constraints (11) ensures that at most Mi products
are offered to client i and the set of constraints (12) states
that at most one nonempty set of clients is selected for each
product. We prove in [14] that (M3) is obtained by applying
Dantzig-Wolfe decomposition to the LP relaxation of (M2).

Let z be any feasible solution to the LP relaxation of (M3)
and let x∗

ij =
∑

p:i∈Spj
zpj , y∗

j =
∑kj

p=1 zpj , then (x∗, y∗) is a
feasible solution to the LP relaxation of (M2) which achieves
the same objective value as z. Furthermore, we have the
following result, which is useful for the branching strategies.

Proposition 4: Given a feasible solution z to the LP relax-
ation of (M3), if, for a given product j, zpj is fractional, then
there must be an i such that x∗

ij =
∑

p:i∈Spj
zpj is fractional.

Proposition 4 implies that the bound provided by the LP
relaxation of the set covering formulation is at least as strong
as that obtained by the LP relaxation of the basic formulation.

B. The pricing problem

We consider the LP relaxation (LPM3) of (M3) obtained by
replacing constraints (13) by

zpj ≥ 0 j = 1, . . . , n, p ∈ {1, . . . , kj}. (14)

The formulation (LPM3) has an exponential number of vari-
ables; thus instead of solving (LPM3), we consider a restricted
problem that includes only a subset of columns. Additional
columns can be generated by solving for each product j the
following question called the pricing problem:

∃Sp such that
∑
i∈Sp

wi + v + f(1 − (1 + R)d) < 0 ? (15)

where wi = pi(d − 1) + ci(1 − (1 + R)d) + ui for all i.
The variable d is the dual variable corresponding to (10), ui

corresponding to the set of constraints (11), vj corresponding
to (12).

A solution to the pricing problem (15) can be obtained by
solving a variant of the k-item knapsack problem. We propose
a pseudopolynomial time dynamic programming algorithm
and a linear time 2-approximation algorithm for solving the
pricing problem. For more details, see [14].

Using the column generation procedure outlined above, we
can solve (LPM3) in reasonable time. There is no guarantee,
however, that the solution found will be integral; if this is not
the case we will proceed with a branch-and-bound algorithm.

C. Branch-and-bound

Proposition 4 allows the use of a hybrid branching pol-
icy [13], [1]. We will then fix a single variable (variable
dichotomy) [15], [13].

Fixing xij to zero leads to
∑

p:i∈Spj
zpj = 0 and fixing it to

one leads to
∑

p:i∈Spj
zpj = 1 in the set covering formulation.

Hence, at the node u of the tree, let H(u) be the subset of
products j for which there exists a non-empty set of clients Ru

j

who must receive an offer of product j. Similarly, let L(u) be
the set of products j for which there exists a non-empty set of
clients Nu

j who cannot receive an offer of product j. The LP
problem (LPu) to be solved at the node u is the combination
of (LPM3) and the following two constraints.

∑
p:Ru

j
⊆Spj

zpj = 1 j ∈ H(u), (16)

∑
p:Nu

j
∩Spj �=∅

zpj = 0 j ∈ L(u). (17)

The branching scheme resulting from the variable dichotomy
branching strategy is compatible with the pricing problem for
it does not render the pricing problem more difficult.

An upper bound at node u is provided by the optimal
solution to the master problem (LPu) or estimated by dualizing
some constraints; details on these computations are available
in [14].

IV. HEURISTICS

We present seven heuristics for the promotion campaign
problem. The first heuristic (Heuristic 1) is a variant of the
algorithm developed by FORTIS [6]. It uses the average
cost 1

m

∑m
i=1 cij and revenue 1

m

∑m
i=1 pij for each product

and ignores the selection of products. This heuristic solves a
simplified integer program and uses the obtained solution to
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offer products to clients. The second heuristic (Heuristic 2) is
an improvement of Heuristic 1 as it chooses the products to
be offered during the campaign. The third heuristic (Heuristic
3) iteratively solves a number of successive Exact k-item
knapsack problems. A each stage, it selects the product with
the highest positive profit such that the hurdle rate constraint
is not violated. Then, this product is offered to the set of
selected clients for that product, the problem is updated and
the procedure is repeated until no more product can be offered
to clients. The fourth heuristic (Heuristic 4) is inspired by
the Next-Product-To-Buy model proposed by Knott et al. [7]
for an application in a retail bank. For each product, the
clients are sorted in decreasing order of their probability to
buy that product. Then the product is offered to clients who
can still receive an offer until no more budget is left for
that product. The fifth heuristic (Heuristic 5) is a depth-first
heuristic based on the branch-and-price approach. It aims to
find a feasible and high-quality solution as quickly as possible
by performing a partial traversal of the nodes corresponding
to a particular branching decision within our branch-and-price
approach. The sixth heuristic (Heuristic 6) is a truncated call
to the MIP-solver CPLEX: the solver is used to solve (M2)
and is interrupted when a time limit of one hour is reached.
The last heuristic (Heuristic 7) is based on the LP relaxation
of (M2). It either outputs the solution of the LP if it is integer
or rounds it up to an integer. The output of these heuristics is
always a feasible solution as they output the trivial solution
when the solution they obtain is not feasible. More details
about these heuristics can be found in [14].

V. COMPUTATIONAL EXPERIMENTS

All algorithms have been coded in C using Visual Studio
C++ 2005 and run on a Dell Optiplex GX620 personal
computer with Pentium R processor with 2.8 GHz clock speed
and 1.49 GB RAM, equipped with Windows XP. CPLEX 10.2
was used for solving the linear programs.

We used random instances for the experiments. The in-
stances are generated in such a way as to reflect real-life situ-
ations. We have generated six groups, each with 54 instances.
Each instance in group S1 has 100 clients, S2: 200 clients, S3:
300 clients, M1: 1 000 clients, M2: 2 000 clients and L: 10 000
clients. For each group, we have three different numbers of
products; these are 5, 10 and 15 products. Moreover, each
client can receive either few products (s) or a large number
of products (l). All instances are available online1.

We have compared two implementations of the column
generation procedure for solving the LP relaxation of the set
covering formulation for the group S1. One implementation
adds a single column per product to the master problem and
one can add up to five different columns per product. We
come to the conclusion that the overall time of the former
implementation is smaller than that of the latter.

We have compared the LP relaxation of the basic formula-
tion and of the set covering formulation for the groups S1 and

1www.econ.kuleuven.be/public/NDBAC96/promotion−campaigns.htm

TABLE I
BASIC FORMULATION AND BRANCH-AND-PRICE ALGORITHMS

CPLEX depth first best first
n Opt Time Opt Time Opt Time

S1

5 s 9 57.39 9 7365.78 9 2031.13
� 9 3.91 9 38.75 9 72.85

10 s 9 27.90 9 1141.08 9 3035.86
� 9 6.05 9 20172.64 9 8587.53

15 s 9 22.57 8 39845.53 8 19521.5
� 9 3.22 9 31117.1 9 18014.18

S2

5 s 9 253.47 9 36725.30 7 36382.61
� 8 138.18 9 12125.45 9 15699.19

10 s 8 2246.54 9 36138.39 8 36696.35
� 9 20.40 9 12010.04 9 18334.06

15 s 7 1811.47 9 12545.51 7 36209.22
� 9 9.47 9 5742.13 9 18183.22

S2. The results obtained confirm the theoretical result obtained
in Section III-A that the set covering formulation is at least as
strong as the the basic formulation. The LP relaxation of the
set covering formulation provides solution with LP-gap usually
less that 1%, however, this quality comes with a relatively high
computation time.

We have compared three different strategies of traversing
the branching tree of the branch-and-price algorithm. These
are breadth first, depth first, and best first. We observe that the
breadth-first branch-and-price algorithm is dominated either by
the depth-first branch-and-price algorithm or by the best-first
branch-and-price algorithm.

We have compared the basic formulation (M2) solved using
CPLEX and the set covering formulation solved with the
branch-and-price algorithms (depth first and best first) in
Table I. Opt reports the number of instances solved optimally
(out of 9) and Time gives the average CPU time in seconds.
We observe that using the MIP-solver of CPLEX 10.2 for
solving (M2) (enhanced with the default cutting planes) is
much faster than the branch-and-price approaches. Although
the pricing problem is solved fast and LP-gap is smaller at the
root node, the number of nodes in the branching tree can be
excessive.

We have compared the heuristics for the groups S3, M1,
M2 and L. For S3, neither Heuristic 2 (and hence Heuristic 1)
nor Heuristic 4 can find any non-trivial solution. Heuristic 3
gives a feasible solution with strictly positive objective value
for all the test instances. Moreover, the Gap reported for each
instance is less than 10% and the computation time is at most
10s. The solutions provided by Heuristic 5 are of good quality
with Gap less than 9%. However, unlike Heuristic 3, Heuristic
5 requires much more time. Heuristic 6 provides feasible
solutions with strictly positive objective value for each instance
in S3. Although it takes more time than Heuristic 3, the gap
is the smallest compared to other heuristics able to solve all
the instances. The last heuristic (Heuristic 7) has a competitive
computation time (less than 4s) but provides very few feasible
solutions with strictly positive objective value (less than 23%).

The results of the application of the best heuristics (Heuris-
tic 3, 5, 6 and 7) to groups M1, M2 and L are reported in
Table II. Gap shows the Gap with respect to the LP relaxation,
Feas reports the percentage of non trivial solutions and Time
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TABLE II
COMPARISON OF HEURISTICS FOR MEDIUM AND LARGE SIZE INSTANCES

M1 M2 L
n 5 10 15 5 10 15 5 10 15

Heuristic 3

Gap 11.20 13.23 14.46 13.10 13.15 12.31 34.04 33.52 37.80
Time 146.60 394.54 304.32 2125.62 2231.14 1195.45 3573.92 3143.41 3353.81
Feas 100 100 100 100 100 100 100 100 100

Heuristic 5

Gap 8.72 13.04 14.43 12.40 12.84 12.01 13.60 24.54 34.26
Time 2441.74 3318.04 3274.59 1978.80 3565.28 3384.92 3730.05 3711.15 3634.33
Feas 100 100 100 100 100 100 100 100 100

Heuristic 6

Gap 4.44 2.97 23.11 2.77 17.74 23.20 14.19 13.11 −
Time 1845.20 2414.50 3018.14 2048.79 3132.60 3523.35 3667.33 3763.12 3803.61
Feas 100 100 77.78 100 83.33 77.78 61.11 5.56 0.00

Heuristic 7

Gap 0.00 0.00 0.00 0.00 0.39 0.27 0.00 2.75 51.10
Time 8.63 28.30 64.26 17.63 124.36 298.37 558.66 2974.50 3558.28
Feas 11.11 11.11 16.67 11.11 22.22 16.67 22.22 5.56 11.11

the CPU time in seconds.
Heuristic 3 behaves very well for large instances: all the

instances are solved with Gap less than 15% for group M1 and
group M2, and less than 38% for the instances with 10 000
clients. This good quality of the solutions is coupled with an
increased running time. Heuristic 5 finds non trivial feasible
solutions to all instances, with a smaller Gap than Heuristic 3.
Compared to Heuristic 3, the running time is higher, however.
The solutions proposed by Heuristic 6 are usually close to
the optimal solution (judging from the gap), but for large
instances, this heuristic is quite limited in terms of the number
of non trivial feasible solutions it can find. We observe that
for instances in the set L, Heuristic 6 provides at most 62%
of feasible solutions when the campaign involves 5 products
and at most 6% when there are 10 products. When 15 products
are involved, this heuristic fails to find any non-trivial solution.
The last heuristic, Heuristic 7, provides good solutions from
time to time, but is very limited by the number of feasible
solutions it is able to find (at most 23%).

To conclude this comparison of heuristics, although Heuris-
tic 6 and 7 provide good solutions, they are strongly limited
by the number of non trivial solutions they output for large
instances. Therefore, we advice the use of either Heuristic 3
or Heuristic 5 with a slight preference for the latter.

VI. CONCLUSIONS

This text explicitly models the promotion campaign problem
taking into account both business constraints and customer
preferences and specificities. Our work shows that the problem
is strongly NP-hard and that it is unlikely that a constant factor
approximation algorithm can be proposed for solving this
problem. We have also presented a set covering formulation
for the promotion campaign problem in which each product is
associated with a subset of clients (which can be empty) in the
optimal solution and developed a branch-and-price algorithm
for solving it. We have shown that this last formulation
is stronger than the basic formulation. Experimental results
confirm that these two formulations are limited by the size
of instances that they can efficiently solve, which makes their
application more suited for business-to-business applications.

To extend the application to a business-to-consumer envi-
ronment with considerably more customers, we have presented

seven heuristics. Some of these heuristics are currently used in
practice (Heuristic 1, 2, 4), while others are new (Heuristic 3,
5, 6, 7). Based on extensive experimental results, we provide
a comparison and comments on the efficiency and quality
of the results obtained using the different formulations and
the heuristics. These results clearly show a trade-off between
computation time and solution quality and suggest the use of
optimal algorithms for small and medium size instances, while
heuristics are preferable for large size instances (Heuristic 5)
and when time is an important factor (Heuristic 3).
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