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Abstract 
The applicability of the acoustic emission (AE) technique to detect unstable damage 
accumulation in masonry, subjected to the creep failure mode, is investigated during 
short-term and long-term creep tests on masonry specimens. The damage 
accumulation is quantified using the results of the monitored AE event rates, which 
evolve as a bathtub shaped curve during the last phase of the creep tests. The bathtub 
curves are described using the Weibull function and a relation is found between the 
detected AE event rate and the time to failure of the specimens. 
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1. Introduction 
 
Within civil engineering practice, the Acoustic Emission (AE) technique is a widely 
applied non-destructive technique for the detection of damage onset and growth in 
concrete structures [1, 2]. The AE technique is used to monitor the high frequency 
energy waves, which are emitted by the material when damage occurs. Consequently, 
different phases of the cracking process and different failure modes can be detected. 
As the arrival times of the AE waves at different sensors are linked to the propagation 
speed inside the material, algorithms can be used to locate the emitting source. 
Other applications of the acoustic emission technique include damage detection in 
metals, composites, rocks and to a small extent wood [1, 3].  
 
The work presented here focuses on the applicability of the AE technique in order to 
assess damage accumulation in masonry, subjected to the creep failure mode. The use 
of AE monitoring in masonry structures is highly complicated, as attenuation and 
sound propagation are dependent on the heterogeneity of the material (including the 
interface between bricks and mortar, but also cracks and cavities in existing 



structures). This makes source location in masonry structures rather difficult. 
Attempts were made by Carpinteri [5], involving the location of cracks during an on-
site monitoring campaign. Although a large amount of AE events were detected, only 
a small percentage of them could be located. Damage location in masonry arch 
bridges was performed by Tomor [6], by simply applying a large set of AE sensors 
and identifying the sensors at which most damage was detected. 
The consequences of the heterogeneity of masonry are not only restricted to the 
location of the AE sources. The presence of voids, cracks and cavities does also 
influence the AE detection itself. The AE waves, generated at the other side of a large 
crack to which the sensors are placed, will generally not be detected by the AE 
sensors. This, for example, would be the case between the disconnected layers of a 
multiple-leaf wall, which is often encountered in historical masonry structures. 
Therefore, the location of the sensors has to be chosen carefully and the quality of the 
surrounding masonry has to be taken into account.  
 
The aim of the presented research is to check the applicability of the AE technique to 
detect unstable damage accumulation in masonry. The research is performed at the 
Reyntjens laboratory of the KULeuven under controlled conditions. Possibilities are 
investigated to efficiently obtain data during long-term and periodical monitoring.  
 
The background of this research is the collapse of several historical masonry 
structures over the past decades due to time-dependent deformations caused by high, 
sustained loading [7, 8]. One of these structures is the Maagden tower, which partially 
collapsed on 1st of June, 2006 (see Fig. 1). No sudden disturbance of the acting 
forces, such as an earthquake, could be pointed out as having caused the collapse. The 
tower was composed of three-leaf masonry in sandstone, which appeared to be in a 
bad condition. A high dead load acted on the base of the tower, especially in the area 
where the cross-section of the wall was reduced by a staircase opening. It is at this 
point that the wall collapse was triggered [9]. 
These events have urged the research for non-destructive techniques which are able to 
detect unstable damage accumulation in masonry structures. 



 

Fig. 1. Maagden tower at Zichem, Belgium, before and after collapse (June 2006) 
 
The AE technique has already proven to be a valuable technique to obtain qualitative 
data regarding the damage processes in a range of building materials, especially in 
concrete research. The question is often how to quantify this damage accumulation 
and translate it into levels of deterioration, each with their appropriate conclusion on 
the action which has to be undertaken to guard the structures’ safety. Quantification of 
damage by means of AE data has been addressed for example by Eberhardt [3] for 
brittle fracture in rock. Ohtsu [2] reviewed different qualitative and quantitative 
methods for processing of AE monitoring results, mostly in concrete, and Carpinteri 
[4] related the AE output during compressive testing with time-dependent damage 
processes in masonry towers.  
 
 
2. Experimental set-up 
 
The discussion in the presented work combines the results of two test programs. Both 
test programs include deformation and acoustic emission monitoring of masonry 
specimens during creep tests. One series of experiments focuses on long-term creep 
testing, while the second experimental program concerns different short-term creep 
tests, also called accelerated creep tests. 
 
2.1. Materials and specimens 
 
For all masonry specimens, the same relatively low-strength bricks were chosen, type 
Spanish red, with dimensions 188*88*48 mm (module M50). For the first test series, 
the long-term creep tests, these bricks were combined with a range of different mortar 
types: cement mortar, air-hardening lime mortar, hydraulic lime mortar and a blended 
cement-lime mortar. The specimens were small masonry columns, with dimensions 



19*29*85 cm (l*b*h), composed of 14 brick layers, with three bricks per layer and a 
mortar thickness of 1 cm. The height of the masonry wallets is at least two times 
larger than the thickness to assure a uniaxial stress distribution in the middle of the 
specimens. 
 
For the short-term creep tests, masonry specimens with dimensions 19*19*60 cm 
(l*b*h) were constructed. The columns were composed of 10 brick layers, with two 
bricks per layer and an air-hardening lime mortar. Half of the number of specimens 
was subjected to accelerated carbonation (B-type specimens). The other half of the 
specimens were allowed to carbonate naturally and, consequently, were not fully 
carbonated at the time of testing (A-type specimens). The smaller size of the 
specimens was chosen due to technical restrictions of the test equipment. 
 
2.2. Test set-up 
 
Both types of creep tests, short-term as well as long-term, follow the same basic 
principles considering their test set-up. A stepwise increasing, axial load is applied on 
the specimens and the damage evolution in time is detected by monitoring the 
deformations and acoustic emissions as a function of time and stress level. A typical 
loading path, followed during an accelerated creep test (ACT) is indicated in Fig 2. 
The time interval between two stress increase steps is three hours. During the long-
term creep tests, at least a two months interval was chosen. The stress levels are 
calculated as a certain percentage of the average compressive strength (fc). The 
compressive strength is obtained as the average value of the result of at least three 
monotonic compressive tests for each mortar composition respectively.  
 
 

 
 

Fig. 2. Typical stress path followed during short-term creep test 
 

 
The duration of the creep test imposes certain restrictions on the testing and 
monitoring equipment used. For the accelerated creep tests, a test device, type 
Schenck Trebel RM 100, was used to apply the load. Additionally, one horizontal and 
one vertical Linear Voltage Displacement Transducers (LVDT) was installed on each 
side of the specimen (see Fig. 3a) to continuously monitor the strain evolution. The 
overall deformations were calculated as an average of all sides. Due to the extended 
duration of the long-term creep tests, separate steel frames were constructed for each 
test specimen and hydraulic jacks were used to apply the load (Fig. 3b). Removable 
mechanical strain gauges were used to measure the deformations periodically. On 



each side of the masonry test specimens, four horizontal and six vertical measuring 
bases were installed. 
 
 

 

Fig. 3. Typical short-term (a) and long-term (b) creep test set-up 
 
 
 
2.3. Acoustic emission monitoring 
 
The monitoring of acoustic emissions during the creep tests enables to quantify the 
damage events from which they are originated. AE signals are high frequency energy 
waves, which are emitted by the material when damage, such as crack initiation and 
propagation, occurs. Also friction phenomena in existing cracks can be sources of AE 
events. In the considered axial compressive tests, tensile forces are introduced in the 
bricks due to the higher deformability of the mortar joints, which have a larger lateral 
expansion than the bricks. These tensile forces introduce vertical cracks in the bricks, 
which typically produce a large amount of AE signals.  
 
During all creep tests, the acoustic emissions were monitored by placing two sensors 
on each specimen, one sensor in the middle of opposite sides. The AE monitoring was 
performed with a Vallen AMS-3 and AMSY-5 system. The first system is a two 
channel set-up, whereas the AMSY-5 system has four channels. This enables the 
simultaneous monitoring of two specimens, which is an advantage especially for the 
long-term tests. The AE sensors are attached to the masonry by means of a thin metal 
plate which is carefully glued on the surface. This does not have significant effects on 
the AE event detection, and has the advantage of providing a fixed place to reattach 
the sensors during periodic monitoring. A vacuum grease is used as a couplant in 
between the sensor and the metal plate.  The sensors had a frequency range of 250-
700 kHz, with a resonance at 375 kHz. In order to filter out the continuous low-
amplitude background noise, a threshold is defined and only waves passing this 
amplitude-threshold are detected as an AE event. The typical features of an AE signal 
are indicated in Fig. 4a. The preamplifier gain is set to 34 dB and a threshold level of 
34.5 dB is applied. A low value could be chosen for the threshold level, due to the 
limited amount of background noise in the laboratory. 
The amplitude in dB is calculated according to: 
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The average wave velocity inside the accelerated creep test specimens ranges from 
800 m/s (120 m/s standard deviation) for the not fully carbonated masonry to 1057 
m/s (180 m/s standard deviation) for the fully carbonated masonry. The wave velocity 
is calculated using the distance between the source and the sensors and the travel time 
of the wave between the two sensors. So it also depends strongly on the threshold 
level, as the arrival time of a wave at a specific sensor is marked by the moment the 
threshold is exceeded. This dependency of the wave speed on the threshold was 
checked on two specimens and is indicated in Fig. 4b. The break of a pencil lead can 
be detected up to 30 cm from the sensor; again this distance depends on the lay-out of 
the bricks, the quality of the mortar-brick connection and the coherence of the 
masonry in general. 
 
These preliminary verifications indicate that the majority of the damage sources in the 
specimen can be monitored by placing two sensors in the middle (as the height of the 
specimens is 60 cm). For all creep tests, a threshold level of 34.5 dB is used. The 
complexity of the material lay-out and wave propagation makes source location 
impracticable. 

Fig. 4a. Main features of an AE signal 
(burst type) 
 

Fig. 4b. Dependency of wave propagation 
speed on threshold level for uncarbonated (A-
type) and fully carbonated (B-type) specimens 
 

 
3. Monitoring results 
 
Masonry specimens, when subjected to high sustained loading, exhibit a typical, 
three-phase creep behaviour: a primary creep phase with decreasing damage rate, a 
second phase with constant rate (also called steady-state creep) and a tertiary phase 
with increasing damage rate, during which unstable damage accumulation leads to 
failure of the specimen. As this work deals with the monitoring and prediction of 
failure of masonry subjected to high, sustained stresses, the main focus will be on the 
last step of the creep tests, during which all phases of the typical creep behaviour are 
experienced. More over, only the specimens which exhibited a tertiary creep phase, 
and therefore did not fail during or immediately after stress increase, will be of use for 
the discussion. This obviously limits the number of useful test results.  



 
3.1. AE detection before failure 
 
The result of a final stage of a long-term creep test is presented in Fig. 5a. A full 
description of the results of these tests was published before in [10]. The graph 
indicates the event rate (in events/minute) as a function of time. The peak value at the 
beginning of the curve indicates the moment at which the stress was increased to 75% 
of the compressive strength of the specimen. It has to be noticed that this compressive 
strength is the average strength obtained from compressive tests on three masonry 
specimens with the same composition. The stated 75% should therefore be seen as an 
estimated value. The stress path is indicated in Fig. 5 with a dotted line.  
After the stress increase step, the event rate decreases to a low, almost constant value 
(indicated in Fig. 5 with a horizontal arrow), while the stress level is kept at a constant 
value. After five days, the event rate increases again and keeps rising until the 
specimen finally fails about one week after the stress increase. The moment of failure 
is indicated by the second peak value in the graph. As the event rate started increasing 
again about 50 hours before failure of the specimen, the unstable damage increase, 
which was a warning of the failure, could be detected more than two days before the 
actual collapse occurred. 
 
 
 

Fig. 5. AE event rate during final phase of long-term (a) and short-term (b) creep test 
 
 
For comparison, the result of a final stage of a short-term creep test is presented in 
Fig. 5b. In order to compare the results of this short-term creep test with the long-term 
test in Fig. 5a, the event rate is indicated on the same scale, in events/min. Again, the 
stress path is indicated with a dotted line and the stress is increased from 83% to 86% 
of the average compressive strength, obtained from compressive tests on similar 
specimens. The appearance of the curve is clearly related to the results of the long-
term creep test. However, the secondary stage, with a low constant value, appears to 
be much shorter and shows a higher event rate. The acquisition of these results is 
rather complex, as many specimens do not show a significant tertiary creep phase 
during the short-term creep test, but fail during the stress increase itself. Other 
specimens fail shortly after the stress increase. They do demonstrate a resulting graph 
comparable with the ones shown here, but the secondary stage decreases and often, 



only a small drop in event rate is visible in between the two peak values. The duration 
of the secondary stage and the minimum value for the event rate obtained appear to be 
correlated with the time to failure. 
 
3.2. Bathtub curve 
 
The graph presenting the event rate as a function of time (Fig. 5a and 5b) can be 
described as a bathtub curve [12], as presented in Fig. 6. In reliability analysis, 
bathtub curves are often used to present the hazard rate in function of time. The curve 
has a first stage with a decreasing failure rate, known as the infantile or early-life 
failures, where the system is adopting to the new situation. The second stage shows a 
constant hazard and the third phase, also called the wear-out phase, an increasing 
failure rate. The bathtub curve has a broad field of application and can be described 
by the Weibull function: 
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With 
β = shape parameter 
η = scale parameter 
γ = location parameter 

The shape parameter, β, also called the Weibull slope parameter determines the slope 
of the Weibull probability density function (pdf) and enables the three stages of the 
bathtub curve to be described (see Fig. 6): 
 

 β < 1: describe a decreasing failure rate 
 β = 1: describe a constant failure rate, the Weibull pdf reduces to an exponential 

distribution 
 β > 1: describe an increasing failure rate 

 
 

 
 

Fig. 6. Bathtub curve 
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The hazard function is given by: 
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For the second stage of the bathtub curve (β = 1), the hazard rate reduces to the 

inverse of the scale parameter (

1

), which corresponds to the frequency of the 

exponential distribution. 
 
In our case, this frequency or failure rate can be translated into the AE event rate. 
Instead of considering the failure of a certain product, component or structural 
element, the failure can be seen as a local phenomenon. Local damage occurs inside 
the material when an AE event is detected. The increase of these local damage points 
will eventually lead to failure of the material. 
 
The duration and the hazard rate of the second stage of the bathtub curve depend on 
the stress level. The higher the stress level, the higher the frequency of local failures 

(

1

) and the shorter the duration of this stage will be. This can be clearly observed 

from the typical diagram in Fig. 7. When higher sustained stresses are imposed on the 
masonry, shorter and steeper creep curves are obtained. This is translated into a 
shorter second stage of the bathtub curve as the latter can be seen as the derivative of 
the creep curve. The Y-axis in Fig. 7 indicates strain, as well as cumulative AE events 
or damage accumulation. As was indicated before in [10], there is a straightforward 
relation between these observable parameters. To quantify the dependence between 
time and hazard rate for the presented creep tests, the relation between the AE event 
rate during the second phase and the time to failure of the specimens was investigated.  
 

 
Fig. 7. Derivation of bathtub shaped curve from creep curves 

 
 
3.3. Failure prediction 
 
During the creep tests, 9 specimens showed a tertiary creep phase and failed during 
the constant stress interval instead of during the stress increase step. Of this amount, 7 
specimens were part of the short-term creep test program and 2 specimens were part 



of a long-term creep test program. The minimum event rate during the secondary 
phase of these tests was plotted in relation to the failure time (Tf) of the specimens. 
The results are shown in Fig. 8. 
 

 
Fig. 8. Relation between time to failure (Tf) and minimum AE event rate 

 
A power law relation is found between the minimum event rate during the second 
stage of the bathtub curve and the time to failure of the specimen after the last stress 
increase step. The largest time to failure obtained during the laboratory tests was 
approximately one week. The relationship found here could be extrapolated to longer 
failure times or, in other words, to masonry subjected to lower stress levels. 
Unfortunately, two questions rise when this extrapolation would be done in order to 
assess the failure time while monitoring a structure.  
 
The first question is whether this extrapolation is permitted, as well in time (lower 
stress levels) as in space (larger structures). The latter issue could be addressed by 
checking the maximum distance between source and sensors and the use of guarding 
sensors to obtain a comparable monitoring area as during the laboratory tests. 
Knowledge on the former issue should be obtained with more long-term creep data (a 
new long-term creep test program has been set up) and experience from on-site 
monitoring. 
 
The second question is rather a remark considering the power law relation: if a failure 
time of 6 months or more is expected, the power law relation predicts an event rate of 
less than 50 events per day. It is difficult to obtain this accuracy during an on-site 
monitoring, due to background noise and external excitations of the structure, as the 
structure can not be isolated and kept under constant environmental conditions as a 
specimen tested in laboratory conditions. And the event rate will even decrease further 
when failure times of several years are expected. This can be explained using the 
scheme in Fig. 7. When the event rate, or in other words the slope of the creep curve 
decreases, the value of the bathtub curve during the second stage approaches zero. 
When on the other hand the tertiary creep phase is reached, it can be anticipated that 
an increase in damage accumulation can always be detected by monitoring the AE 
event rate. 



 
 
4. Conclusions 
 
To assess ongoing damage accumulation in masonry, acoustic emissions were 
monitored during short- and long-term creep experiments. The creep tests have shown 
that the AE technique is a very valuable tool to monitor progressing damage in 
masonry and could even be used as a warning system for masonry structures, 
subjected to the creep failure mode.  
 
A method for quantification of the failure time, based on the monitored event rate was 
presented. Although, it was noticed that this quantification, based on the bathtub curve 
theory and the power law relation between event rate and failure time, still includes 
some drawbacks. An extension of the power law behaviour towards longer failure 
times results in low acoustic emission levels to be monitored, which will complicate 
the analysis. It has also to be kept in mind that the reported event rates are average 
values, measured over a longer period of time. Too short periodical in-situ monitoring 
could therefore result in inaccurate average values, as no acoustic emissions will be 
detected when there is no damage occurring during the monitoring period. As the 
execution of creep tests requires rather complicated experiments of long duration, 
limited data sets are available, which makes it difficult to determine a confidence 
interval for the presented model. Further research will focus on obtaining a more 
extensive data set of masonry specimens, failing after exhibiting a tertiary creep 
phase.   
 
As stated in the introduction, the link between damage detection and quantifying the 
deterioration rate is a complex issue, which will remain one of the main points of 
focus during present and future research, as well for creep damage in masonry as for 
other AE applications. 
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