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Preface 

 
 
The purpose of this ICME-11 Topic Study Group 10 (TSG-10), Research and Development in 
the Teaching and Learning of Number Systems and Arithmetic, is to gather congress partici-
pants who are interested in research and development in the teaching and learning of number 
systems and arithmetic, including operations in the number systems, ratio and proportion, and 
rational numbers. The focus of the group is broad and includes issues such as the development 
of number sense in students, the role of contexts and models in teaching and learning about 
numbers and arithmetic, and the development of teaching/learning units that connect basic 
arithmetic skills with higher order thinking skills. From an international perspective, we will 
study and discuss advances in research and practice, new trends, and the state-of-the-art. We 
also hope that putting together this Proceeding will make it possible to make the congress 
participants’ experience available to people not able to attend ICME-11 or this specific TSG. 

We are very proud to have been able to collect ten high quality papers around various issues 
related the teaching and learning of number systems and arithmetic. These papers come from 
participants from all over the world and are centred on issues within addition, multiplication, 
division, fractions, and integers etc. The papers have gone a review process by the Organiza-
tional Team of this TSG. Some papers were accepted immediately, some were asked to do 
some revisions, others, six, were rejected. We regret having to reject those six papers, but 
within the allocated time for the TGS’s we did not have room for more papers. But we would 
like to thank all who took the time and effort to submit papers for this TSG. Besides the ten 
accepted papers from congress participants, we also have two invited keynote presentations as 
well as smaller discussion papers from each of the four members of the Organizational Team 
of TSG-10.  

Our Organizational Team originally consisted of five members. Due to illness, Martha 
Villalba (Mexico) unfortunately had to leave the group. We are very sorry that we did not get 
to know her but we hope that we will be able to meet her one day in the future. 

The Proceedings of TSG-10 consists of four main parts corresponding to the four sessions that 
were allocated to the TSG’s at ICME-11.  

For the first session, we invited two internationally leading scholars in the field to give “state 
of the art” presentations related to the main issues of this TSG. Here prof. Zalman Usiskin 
presents The arithmetic curriculum and the real world and prof. Darcy Hallett presents Effects 
of fraction situations and individual differences: A review of recent research regarding chil-
dren’s understanding of fractions.  

In the second and third sessions, papers around two themes are grouped. The first, Multiplica-
tion, division, fraction consists of six papers, while the second, Addition and integers, consists 
of four papers. The ten papers could have been shuffled differently, but the team decided that 
this grouping would give the best possible internal cohesion at each of the sessions. 

At the fourth and final session, the chairs and members of the Organizational Team present 
some personal opinions and reflection on Research and Development in the Teaching and 
Learning of Number Systems and Arithmetic and on the different papers that were presented at 
the first three sessions. 



The chairs and members of the Organizational Team thank all contributors to this Topic Study 
Group. We also want to thank prof. Marcela Santillán, chair of the IPC for ICME-11, and her 
team for giving us the opportunity to organise this ICME-11 Topic Study Group and for their 
assistance to make this enterprise a successful one.  

 

 
Dirk De Bock (Belgium), chair 

 Bettina Dahl Søndergaard (Denmark), chair 
Bernardo Gómez Alfonso (Spain) 

 Chun Chor Litwin Cheng (China, Hong Kong SAR) 
 

Monterrey, July 2008 
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The Arithmetic Curriculum and the Real World 
 

Zalman Usiskin 
The University of Chicago 

Chicago, Illinois, USA 
Email: z-usiskin@uchicago.edu 

 
The relationships between abstract arithmetic and the real world are dealt with 
inconsistently in most curricula. Each of the common arithmetic operations is a 
mathematical model for counting and measure situations found in the real world. 
These models parallel the theoretical properties of the operations and provide the 
basis for more sophisticated models found in algebra, geometry, analysis, and sta-
tistics. The absence of explicit instruction in these models may explain why many 
children have difficulty applying arithmetic. 
 
Keywords: arithmetic, modelling, curriculum, applications, mathematics 

 
 
1  Introduction 
I was asked by the organizers to help start the conversation about research in the teaching and 
learning of number systems and arithmetic by presenting some remarks based on a paper I 
wrote for the ICMI volume on mathematical modelling and applications and to give an as-
sessment of the state-of-the-art on this issue. I am honoured to have been so asked. The first 
part of this task – to present the remarks based on a previously-published paper – is easy for 
me. The second part of this task – the present the state-of-the-art – is difficult. One of the rea-
sons we come to ICME meetings is to learn what is going on. So I hope that if you are doing 
work related to the subject of my talk or you know of some related work, you will let every-
one here know. It might be possible to mention that work in the final version of this paper for 
the report of TSG 10.   

 

2  Motivation for the research 
I began my work with the teaching of applications and modelling thirty years ago with spe-
cific attention to school algebra, which in the U.S. is taught in the 9th grade (Usiskin 1979). 
At that time, contrived problems involving age (Mary is half as old as her father was…), dig-
its, and slightly more realistic but still contrived problems involving distance-rate-time and 
mixtures were the only things students saw in algebra that in any way connected with applica-
tions. I first replaced the contrived problems with problems involving population growth, fi-
nances, sports, basic geometry, and other contexts that were quite understandable to my stu-
dents. But, even with familiar contexts, my students had great difficulty knowing what to do 
when faced with a new problem. For instance, if a segment of length x cm was placed next to 
a segment of known length 3 cm, they would guess that the total length was x+3 or 3x or x3 
(not x3), not having any idea or any way to check whether their answer was correct. I found it 
baffling that they needed to memorize the formula for the perimeter of a triangle.  
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If they were faced with a problem involving distance, rate, and time, they would memorize d 
= rt (distance = rate X time) but not have any idea why this formula works. Except for the 
formula C = np (cost = number of items purchased times the price of a single item), they were 
unlikely to understand any formula and were forced to memorize it. The formula C = np they 
understood because it generalized the view they had of multiplication as repeated addition. 

They would try to latch onto key words – after all, if a problem is in words, what else is there 
to latch on to? – but if the words were not familiar, they had nothing else to fall back on. And, 
fundamentally, my probing found out that they could not apply algebra because they could 
not apply much of the arithmetic on which the algebra was based. For instance, they might be 
able to use counting to find the distance between -2 and 4 on a number line, but they would 
not connect this with the amount of increase in a temperature from -2° to 4°, and they would 
not have any idea that they could have used subtraction to determine the distance. When a 
situation involved anything other than small whole numbers, they were likely to be helpless. 
As a consequence, the translation into algebra was to them a matter of memorization rather 
than generalization from something they understood. 

Other than simple situations involving whole numbers, many students are helpless when it 
comes to relating mathematics and the real world. The meanings of operations most students 
are taught do not extend beyond whole numbers and sometimes not beyond small whole 
numbers. 

 

3  Number Systems, Arithmetic, and Models 
The title of this TSG, with the language “number systems and arithmetic” was clearly chosen 
to allow research into almost aspect of the teaching and learning of number ideas. When we 
think of number systems, we think mathematically of integral domains and fields, with prop-
erties such as commutativity and associativity and the distributive laws. We think of numera-
tion with decimals and base 10 and perhaps other bases. When we think of arithmetic, we 
think of the basic facts and algorithms associated with addition, subtraction, multiplication 
and division of whole numbers, fractions, decimals, and percents, and later with some irra-
tional numbers and the real numbers.  

Thus we do not usually associate either number systems or arithmetic with knowledge of the 
uses of arithmetic. Nor do we typically associate number systems and arithmetic with mathe-
matical modelling, the connection of real-world problem situations with their mathematical 
counterparts. Conversely, most discussions of mathematical modelling in the curriculum oc-
cur with discussions of functions and other mathematical concepts studied at the secondary 
and tertiary levels, far away from discussions of the learning of arithmetic. 

The word “model” is used in many ways in discussions of early mathematics learning. In the 
context of this paper, a mathematical model of a real situation is a bit of mathematics whose 
structure is isomorphic or nearly isomorphic to the structure of the situation, so that the 
mathematics can be employed to answer questions about the situation. For example, if we 
stack paper cups one on top of the other and we want to know how high the stack will be, an 
appropriate mathematical model is of the form of the linear equation h = b + an, where h is the 
height of the stack, b is the height of one cup, n is the number n of cups in the stack and a is 
the additional height caused by adding one more cup. An inappropriate mathematical model 
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would be h = bn, that is to obtain the height by multiplying the height of one cup by the num-
ber of cups. 

The modelling process is often described as starting with a situation in the real world that one 
wants to resolve, perhaps simplifying it in order to be studied, translating the situation into a 
mathematics model of it, working within the model to resolve the situation, translating back 
into the real world, checking the feasibility of the solution, and if feasible, one is done. I think 
one reason that mathematical modelling language is not used in discussing the learning of 
arithmetic is that the real-world situation is so often a counting situation and the mathematical 
model is not just a rough approximation but precisely isomorphic to the real situation. Thus 
the emphasis tends to be on precise translation of words rather than on the conceptual struc-
ture of a real situation. Thus mathematical models underlie the learning of the uses of arith-
metic, but the concepts and language of modelling are often absent, distracted by thinking of 
every use as a “word problem” or by relating uses to algorithms or numeration. Perhaps this is 
why many students have difficulty connecting the mathematics they learn with the real world 
around them, despite the ubiquity of mathematics in that world. 

 
4  Models involving addition 
If you have 3 cookies and I have 5 cookies, then together we have 8 cookies. This type of 
situation is so common that we give it or its generalization to x cookies and y cookies little 
thought. Throughout the world, students are first introduced to this application of addition by 
the end of first grade. The model is used to teach students the basic addition facts. Later, be-
cause of the number and universality of counting situations like this one, students are asked 
to memorize answers when x and y are small whole numbers, and to learn algorithms for 
obtaining answers when x and y are large whole numbers. 

In the discussion document for the ICMI 14 study, a useful distinction was made between an 
application and modelling. In an application of mathematics, we know the mathematics and 
apply it to the real world. In modelling, we begin with the real world situation and look for 
some mathematics that we might apply to the situation. In the cookie-counting situation, both 
directions occur. With very young learners, we use counting to define addition (modelling) 
as much as we use addition to obtain the total count (application). But the language and the 
essence of the model is seldom described to young students. It is a fundamental property of 
addition: If A and B are finite sets with N(A) = a and N(B) = b, then N(A ∪ B) = a + b. It is a 
property as fundamental as the commutative property or any other property of the operation. 

After students apply the mathematical model of addition to answer certain counting problems 
involving small whole numbers, they are asked to apply the same model to situations such as 
populations in which the numbers are larger (and the answer cannot be found quickly by 
counting), to financial situations where the numbers are often written as decimals, and to 
recipes or probabilities where the numbers are written as fractions.  

Students become so accustomed to the model that they apply it where it does not apply, to 
situations like the following: 

 
(1) Carl has 5 friends and Georges has 6 friends. Carl and Georges decide to give a 

party together. They invite all their friends. All friends are present. How many friends are 
there at the party? (Verschaffel et al., 2000, p. 19). 

(2) The price of a chair is reduced 20% on sale, and then its sale price is reduced by 
10%. What is the total reduction? 
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(3) A cup of milk is added to a cup of popcorn. How many cups of the mixture will re-
sult? (Davis and Hersh, 1981, p. 71) 

(4) What will be the temperature of water in a container if you pour 1 jug of water at 
80˚ and 1 jug of water at 40˚F into it? (Nesher, 1980, p. 46)  

 
The resolution of the incorrect application is different in each of these situations but is simi-
lar to the resolution of more advanced models. To resolve (1), we refine the model to encom-
pass situations in which there is overlap: N(A ∪ B) = N(A) + N(B) – N(A ∩ B). For (2), 
though we could use a generalization of this refined model (the reduction is 10% + 20% – 
10% X 20%), the situation is more simply described by changing to a multiplication model. 
Think of a reduction of 20% as a size change or scale factor of 80%. Then the situation calls 
for the application of scale factors of 80% and 90%, for a total reduction of 80% X 90%, or 
72%, a reduction of 28%. The resolutions of (3) and (4) are more complex and must take into 
account the chemistry and physics, respectively of the situations. 

In geometry, the model is generalized to determine the total length of segments placed end to 
end, as in calculating perimeter. It is applied to determine the angle measure of some angles 
formed by the outer rays of two adjacent angles, the area of the union of disjoint planar re-
gions, and the volume of the union of disjoint 3-dimensional solids. In these situations, the 
property may be called Angle Addition or an Additive Property of Area or an Additive Prop-
erty of Volume. And then, in the study of combinatorics or probability, the model is typically 
identified as a Fundamental Counting Principle. Mathematics educators identify this model 
as the Putting-Together Model for Addition.  

Thus through all of schooling in mathematics, this single model appears, but its appearance is 
found in various forms and quite different settings. For this reason, to most students, these 
applications do not share a commonality. The student misses an extraordinarily important 
point: Addition is taught, and knowledge of addition is required of all students, because of 
the ubiquity of important applications of the Putting-Together Model for Addition. 

The Putting-Together Model for Addition does not encompass all of the applications in 
which addition of numbers is involved. Suppose a temperature of -4°C were to increase by 
15°. We find the answer by the addition -4 + 15 = 11. This addition can be interpreted as a 
putting-together situation only if one stretches the idea of putting together. It is easier to 
think of this as the same mathematical model applied to a different set of situations, those 
involving slides or shifts. In fact, in most textbooks, the geometric idea of slides is used to 
reinforce or to determine the rules for addition of positive and negative numbers. Students 
see the geometry as a device or rule to obtain sums and do not realize that, through this proc-
ess, addition is again a model for a set of real situations. We call it the Slide (or Shift) Model 
of Addition: If a slide x is followed by a slide y, the result is a slide x+y. This model ac-
counts for applications of complex number and vector addition but its study begins in late 
primary or early secondary school.  

 

5  Models involving subtraction 
Two models for subtraction have long been in the literature: take-away and comparison.    

 Take-Away Model: If a quantity y is taken away from an original quantity x, the 
quantity left is x–y. 

 Comparison Model: The quantity x–y tells how much y is less than the quantity x. 
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In English, the two most common names for the answer (“remainder” for a take-away situa-
tion, “difference” for a comparison) reflect the different feels that these models have to the 
user.  

These models are first encountered in small whole-number situations but later extended to 
any positive numbers (and for comparison, to any real numbers) and to the geometry of 
length, area, and volume. Comparison has its own special cases: change and directed error, 
and (with the help of absolute value) undirected error and distance on the number line. Thus, 
as with the addition models, these models appear in different forms and settings, so that the 
learner does not usually realize the common features. 

Some books treat the Putting-Together Model for Addition and the Take-Away Model for 
Subtraction as a single model: Part-Part-Whole. In the same way, the Slide Model for Addi-
tion can be joined with the Comparison Model for Subtraction as a single model: Start-Shift-
Finish. This joining of models is analogous to the usual relationship between addition and 
subtraction in mathematical theory (a – b = c if and only if a = c + b), where subtraction is 
defined in terms of addition and is not treated by itself. The other way of defining subtraction 
in terms of addition (a – b = a + -b), which students encounter when subtracting positive and 
negative numbers, also is interpretable by models for the operations. A situation in which a 
temperature of 10° goes down 7° can be viewed as Addition Shift 10 + -7 or as a Subtraction 
Shift (a new model) 10 – 7. Thus there is a structure to the common models of addition and 
subtraction that complements the mathematical theory of these operations. 

Some researchers distinguish variants of a problem that I would view as employing the same 
mathematical model. For instance, Fuson (2003) identifies 22 types of addition and subtrac-
tion problems without going beyond whole numbers. In contrast, some textbooks try to force 
every application situation of each operation into one model. Some textbook series in the 
United States have begun to take a middle road, identifying these models of addition, if not 
on student pages, in the commentary given to teachers.  

 

6  Models involving multiplication 
Unlike addition, where the counting of real objects (even if the objects are fingers!) is almost 
universally present in the learning of addition facts, multiplication tends to be defined theo-
retically as repeated addition. As a consequence, multiplication “facts” are often memorized 
by students with little if any real world situation to check them. This is unfortunate, because 
multiplication models rich and important situations. The lack of connection with real-world 
situations also results in children missing out on the development of multiplicative reasoning 
patterns (see, e.g., Harel and Confrey (1994)). 

One way of categorizing the models of multiplication is by the units of the quantities being 
multiplied. Multiplication by a scalar covers a class of applications grouped as the Size 
Change Model of Multiplication: When a quantity x is multiplied by a scalar k, k ≠ 0, then 
the product kx is k times the size of the original. Scalar multiplication includes among its 
applications the “part of” situations resulting from wanting fraction or a percent of a quan-
tity, the “times as many” situations resulting from wanting to enlarge a quantity by a certain 
factor, and the size change transformations in geometry that result in similar figures. Dis-
counts, taxes, simple interest, scale models, expansions, and contractions all fall under this 
framework. Repeatedly multiplying by different scalars underlies the multiple discount prob-
lem mentioned earlier as an application of putting-together addition. Repeatedly multiplying 
by the same scalar leads to discrete models of exponentiation as are used in the calculation of 
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compound interest. By viewing multiplication by -1 as changing directions 180°, the geome-
try can be extended to explain multiplication by negative numbers. This further extends to 
the view of multiplication by the complex number z as combining a size change of |z| with a 
rotation of Arg(z). 

Multiplication by a quantity with a unit also covers a broad class of applications. One type in 
this class is the Area Model of Multiplication: The area of a rectangle with length x units and 
width y units is xy square units. The discrete version is sometimes used to check a multipli-
cation fact: The number of elements in a rectangular array with x rows and y columns is xy. 
(As with area, in this discrete case the unit of the product is still the product of the units of 
the factors. For instance, the number of outfits possible with 3 blouses and 4 skirts, then we 
can view the word “outfit” as an abbreviation for “blouse-skirt”. Some books make this point 
by asking for blouse-skirt combinations.) The volume of a rectangular solid extends this 
model to three dimensions.  

In calculating the area of a rectangle, we may think of its length as acting across its width. By 
summing many rectangles and taking a limit, the area model generalizes to give the area in-
terpretation of direct integrals in calculus. When one factor is a rate (as in the formula dis-
tance = rate X time, or total cost = number of items X unit cost, then the rate acts across the 
other quantity. This describes the Acting-Across or Rate-Factor Model of Multiplication: 
When a rate x of unit 1 per unit 2 acts across a quantity y of unit 2, the total is xy unit 1. 

Let me restress the point. We often teach students that they can picture multiplication by an 
array or by area, or think of multiplication of fractions by stretching and shrinking. That sug-
gests that we learn applications in order to learn multiplication. Yet multiplication is taught, 
and knowledge of multiplication is required of all students, because of the ubiquity of impor-
tant applications of various models of multiplication. The many applications for multiplica-
tion supply the reason that we ask students to learn multiplication facts and algorithms. 

A student equipped with these multiplicative models is far more likely to understand why 
when y = kx, y varies directly as x, or why the total number of students in a school can be 
found by multiplying the average number of students per grade by the number of grade. Un-
fortunately, in the United States, students often know multiplication only as repeated addi-
tion, and they consequently find it difficult to find any real world explanation or use of mul-
tiplication of fractions, decimals, or positive and negative numbers.   

 

7  Models involving division 
The mathematics education literature has long identified two models for division: partitive 
(or partition) and quotitive (or measurement). Sixty years ago, Sutherland (1947) divided 
these into six different categories. Two of these, rate and ratio, are the categories found in an 
analysis of operations by Usiskin and Bell (1983) and, with the other models mentioned here, 
applied in materials for upper elementary and early secondary school students (University of 
Chicago School Mathematics Project (various years).  

 
Ratio (Partition) Model of Division: When x and y are quantities with the same units, 

then x/y tells how many y's are in x (or what part of y that x is). 
 
Rate (Measurement) Model of Division: If x and y are quantities with different units, 

then x/y is the amount of quantity x per quantity y. 
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In this conception, ratios are scalars, while rates are unitized quantities. In the measurement 
model, the divisor is most often a rate, as when there are 18 cookies and 2 cookies per child 
are to be served, and we wish to know how many children can be served, or when one has 
$18 to spend on items that are $2 each and one wants to know how many items can be 
bought. But most people mentally change the rate to a simple quantity; 2 cookies per child 
becomes 2 cookies, and $2 each becomes $2, and then the problem is reduced to a ratio divi-
sion. 

Multiplication and division are theoretically related as addition and subtraction are, so their 
models can be grouped together. The Rate Model of Division and the Rate Factor Model for 
Multiplication are related by the definition of division a ÷ b = c if and only if a = c X b, as are 
the Ratio Model of Division and the Size Change Model of Multiplication. 

 

8  Arithmetic as the basis for later mathematical modelling 
When no language of modelling and models to describe the applications of arithmetic is pre-
sent, it becomes more difficult for children to apply arithmetic than it ought to be. Given a 
word problem with certain given numbers, operations are performed on those numbers with-
out a solid base underlying the selection of the operation. If a child does have a generalized 
conception of a type of a model of an operation, then the child has no guard against linguistic 
miscues or misuses of the operations (see Verschaffel et al. (2000) and De Bock et al. 
(2005)). 

Models of the operations give a basis for applying mathematics; they are the postulates that 
connect mathematics to the world of real and fanciful problems. The (applied) models of the 
operations should be treated as we do the (theoretical) properties of the operations. Carpenter 
et al. (1996) found that teachers who knew models produced students who performed better 
on application tasks. Why not teach the students directly?  

If models for arithmetic operations are the postulates, then what are the theorems? As in any 
mathematics, these are statements deducible from the models. A very large number of exam-
ples of theorems of this sort exist. The paper-cup example at the beginning of this paper 
shows how to move from the models for addition and multiplication to explain why situa-
tions might lead to linear models of the form y = mx + b. The Rate Model for Division and 
the Comparison Model for Subtraction explain why the formula for slope involves two sub-
tractions and a division. With models for exponentiation in arithmetic, we can derive growth 
models of exponential functions. And, just as importantly, we can examine why models in 
some circumstances are descriptive and not necessarily causal, as is often the case when lin-
ear regression is used to obtain equations of lines to fit data. And on and on.  

It seems worthy of a study of application and modelling in mathematics education to con-
sider the contributions that a discussion of models of arithmetic operations and other primary 
school content does, could, and should play in the development of the skills and concepts 
necessary to be a competent user of mathematics. While there may be pitfalls in taking the 
modeling perspective seriously in early schooling (Verschaffel, 2002), the implications of 
strong attention to mathematical modelling and applications in primary and early secondary 
school could be profound.  
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1  Introduction 
The goal of this paper is to provide a review of the recent and promising research regarding 
children’s ability to work with fractions. I have chosen to focus on fractions because many 
researchers have claimed that children have especial difficulty in learning them (Hecht, 1998; 
Hecht, Close, & Santisi, 2003; Hecht, Vagi, & Torgesen, 2007; Hope & Owens, 1987; Smith, 
1995). Streefland (1991) has even stated that fractions are “without doubt the most problem-
atic area in mathematics education” (p. 6). 

To illustrate this difficulty, consider this fractions problem. Which of the following numbers 
is closest to the sum of 7/8 + 12/13: a) 1; b) 2; c) 19; or, d) 21? To answer this questions, a 
child who understands something about fractions would probably realize that both fractions in 
the sum to be a little less than one. They would therefore reason that almost one plus almost 
one would be almost two. But when this question was administered as part of the third Na-
tional Assessment of Educational Progress (NAEP), only 24% of 13-year-olds correctly an-
swered this question (Bezuck & Cramer, 1989). Perhaps even more surprisingly, 55% of these 
students chose either 19 or 21. The sum, being equal to a little less than 2, is nowhere near 19 
or 21, but it seems that these options were chosen because the numbers in the fractions could 
be manipulated to produce them (i.e., adding the numerators results in 19, adding the denomi-
nators results in 21). Later rounds of the NAEP demonstrate other problems that children have 
with fractions. Two examples are: 1) only 65% of eighth-graders in 1996, and 73% in 2005, 
could correctly shade in 1/3 of a rectangle; and, 2) in 2003, only 55% of eighth-graders could 
correctly solve a word problem that asked how many pieces, each 1/8 of a yard long, could be 
made from a piece of string 3/4 of a yard long (see Hecht et al., 2007). 

There are perhaps many reasons why fractions are more difficult for students, but I propose 
that there are three particular difficulties that account for the problems that children experi-
ence with fractions. First, the quantity of a fraction (i.e., the amount it signifies) is not repre-
sented by a single number, but instead by the relationship between two whole numbers (in its 
simplest form), or the additive combination of the relationship between two whole numbers 
and a third whole number (at its most complex). Second, the procedures used to compute and 
manipulate fractions (e.g., the Lowest Common Denominator method to add or subtract frac-
tions) are much more complicated that those used with whole numbers, mostly because of the 
complexity of how fractions represent quantity. Third, the nature of the relationship between 
the numerator and denominator can vary across different contexts – sometimes representing a 
ratio, sometimes a proportion, sometimes a continuous quantity, and sometimes a discrete 
quantity. 
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These three complexities of fractions parallel the three topics I will review in this paper: 1) 
Conceptual knowledge of fractions (represented in part by students’ understanding of frac-
tional representation of quantity); 2) Procedural knowledge; and 3) Different fraction situa-
tions or contexts. Proceeding in somewhat of a reverse order, I will first consider the last item: 
the influence fraction situation on fractions learning, reviewing in part some recent research 
by Mamede (2007) that has yet to be published. I will then consider the first two topics, con-
ceptual knowledge and procedural knowledge of fractions, together, but in two parts. First, I 
make the argument that both conceptual knowledge and procedural knowledge are needed for 
children to perform well on fractions problems. Second, I will describe some recent research, 
by myself and my colleagues, that has investigated individual differences in how children 
combine conceptual and procedural knowledge when they solve fractions problems.  

 

2  Fractions Situations 
Although children do perform differently across problems that vary in problem presentation 
(e.g., computation versus word problem, see Mack, 1990). fractions situations, as it is defined 
in this paper, do not refer to differences of this type. Instead, these situations refer to the dif-
ferent meanings of the numerators, denominators and the relationship between them, which 
means that these situations are unique to rational numbers. Many researchers have developed 
different ways to classify fractions situation like these (Behr, Lesh, Post, and Silver, 1983; 
Kieren, 1988; Mack, 2001; Ohlsson, 1988), but I will focus on the recent paradigm of Nunes, 
Bryant, and their colleagues (Nunes, Bryant, Pretlik, Bell, Evans, & Wade, 2007). These re-
searchers have distinguished between four different fractions situations, which I will now de-
scribe in turn. 

The first is called part-whole situations, where the whole is always seen as one concrete thing 
that is divided into pieces. For example, the fraction 3/4 would be understood as something 
like a cake that is divided into 4 equal pieces with 3 of those pieces constituting 3/4 of the 
cake. In these situations, the whole can be changeable, but the fraction always refers to parts 
of that whole. 

The second context is called a quotient situation, where fractions are meant to represent ways 
of sharing continuous quantities. In this instance, the fraction 3/4 would represent, for exam-
ple, 3 chocolate bars shared amongst 4 children. The numerator represents the number of 
wholes to be shared, while the denominator represents the number of people that are sharing. 
Fractions in this situation, then, are more explicitly a division operation where the numerator 
is divided by the denominator. 

Operator situations, on the other hand, refer to cases when the target to be divided is a dis-
crete quantity like, for example, 24 marbles. If we wanted to know what 3/4 of 24 marbles 
were, we would need to take the fraction (3/4) and operate on the discrete quantity (24 mar-
bles) using a multiplication and division to generate the result of 18 marbles. In a part-whole 
situation, we would not be able to generate an answer without first defining what 1/4 of 24 
marbles are (which is itself an operation). Likewise, in order to solve this problem using a 
quotient approach, the 24 marbles would first have to be shared among 4 people, and then the 
share of 3 of those people would have to be tallied. 

All of the preceding fraction situations, while different, can be collectively referred to as ex-
tensive quantities, because the quantities involved all depend on the size of the whole (e.g. 3/4 
of 36 marbles is more than 3/4 of 24 marbles, and 3/4 of a large cake is more than 3/4 of a 
small cake). Fractional measures of intensive quantity, on the other hand, refer to a quality of 
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something (e.g. density of an object, concentration of an acidic solution) whose value does 
not change as the total size of the whole changes. The fraction quantifies the relation between 
the numerator and denominator regardless of overall amount. The density of gold, for exam-
ple, remains the same (19.3 kg per litre) regardless of whether we are talking about a 1 millili-
tre gold necklace or a 1 litre bar of gold. Likewise, the concentration of orange juice will be 
same whether it is in a glass or in a jug. 

Although it is interesting in itself that fractions can represent different kinds of situations, 
those of us in mathematics education are more interested in whether or not these fraction 
situations are related to children’s learning. Will problems framed as one situation be easier to 
learn than problems framed in another situation? Nunes and her colleagues (2007) investi-
gated this question regarding part-whole and quotient situations. A total of 130 Year 4 and 
Year 5 British school children were given fraction questions that were either framed as part-
whole or quotient situations. Although all the previous instruction experienced by these chil-
dren had been framed as part-whole problems, children from both years performed signifi-
cantly better on the quotient problems that the part-whole problems. These results suggest that 
quotient situations may be easier for children to understand compared to part-whole situa-
tions.  

A recent series of studies by Mamede (2007) has further examined this question by comparing 
young children’s ability on problems from part-whole, quotient, and operator situations. By 
studying 6- and 7-year-olds, the intent of these studies were to explore children’s intuitive 
ways of understanding fractions before they received any formal instruction on fractions. 
Mamede’s results demonstrated a consistent performance advantage for those children who 
were given fractions in quotient situations compared to those in the other two situations. The 
children who were given quotient problems performed better than children given other types 
of problems, children who were given all types of problems performed better on the quotient 
problems, and those students who were trained on quotient problems demonstrated better 
transfer of understanding to the other situations than those children trained in part-whole and 
operator situations. These data suggest teaching fractions from a quotient perspective may 
have some advantages.  

While no research to date has compared all four fractions situations, research regarding inten-
sive quantities has demonstrated that, in general, children have more difficulty understanding 
intensive quantity situations than non-intensive quantity situations (Nunes, Desli, & Bell, 
2003). 

 

3  The relative contribution of conceptual and procedural knowl-
edge to fractions understanding 
When faced with a fractions problem, what do children do? Do they think about the problem 
conceptually, using their understanding of fractions to reason through an answer? Or, do they 
instead execute a procedure – a procedure they have learned will generate the “right answer”? 
Research in mathematics cognition has a long history of attempting to separate children’s 
conceptual understanding of mathematics from their procedural knowledge used to answer 
mathematics questions (see Rittle-Johnson & Siegler, 1998; Skemp, 1976). In this literature, 
conceptual knowledge has been defined as knowledge that is interconnected with other 
knowledge (Byrnes, 1992; Hiebert & Lefevre, 1986; Kieran, 1993), or knowledge that is rich 
in relationships with other knowledge. On this account, conceptual knowledge is not knowl-
edge that stands alone but stands in relation to other knowledge. Procedural knowledge, on 
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the other hand, is defined as the use of algorithms, meant to achieve a desired end, that require 
nothing except the original inputs to execute properly (Byrnes, 1992; Hiebert & Lefevre, 
1986). As such, procedural knowledge is knowledge that can be completely separated from 
meaning and still be successfully executed.  

Research has not only examined the influence of conceptual and procedural knowledge in 
many different domains of mathematical cognition (see Rittle-Johnson & Siegler, 1998 for a 
review), but also specifically in regards to fractions (Byrnes, 1992; Byrnes & Wasik, 1991; 
Kerslake, 1986, Peck & Jenks, 1981; Rittle-Johnson, Siegler, & Alibali, 2001). Much of this 
literature involves a debate on whether type of knowledge is learned first (i.e., do children 
learn concepts first, or do they learn procedures first). Hecht (1998), however, has generated 
some interesting research findings that suggest that, regardless of which is learned first, both 
types of knowledge seem to be important for general fractions learning. 

With seventh- and eighth-graders, Hecht (1998) investigated how conceptual and procedural 
knowledge, as well as the ability to accurately and quickly retrieve answers to simple compu-
tations (“math facts”), predict performance on three kinds of fraction problems: 1) computa-
tion problems; 2) word problem formulation (i.e., deriving the right formula to solve a word 
problem); and, 3) fraction size estimation (i.e., estimate the addition of two fractions). Con-
ceptual knowledge was measured with items that probed children’s understanding of equiva-
lence (e.g., that fractions with different numbers, like 2/8 and 1/4, are actually equal) and or-
dering (e.g., being able to tell which fraction, 2/3 or 3/4, is larger). Procedural knowledge was 
measured using multiple-choice questions that asked students to choose the legal procedure to 
solve a given problem. Results indicated that, controlling for vocabulary knowledge, both 
conceptual knowledge and procedural knowledge independently predicted success on the 
computational problems and the word-problem formulations. Only conceptual knowledge, 
however, independently predicted success on the fraction-size estimation measure while the 
math facts was not independently related to any of the problem types. 

Interestingly, Hecht (1998) has argued that, because only conceptual knowledge independ-
ently predicted success across all three problem types, conceptual knowledge is of primary 
importance when solving fraction problems (see also Hecht et al., 2007). While Hecht’s ar-
gument regarding the primacy of conceptual knowledge does seem intuitive, it is important to 
note that procedural knowledge was also independently predictive of both computation prob-
lems and word-problem formulations. In the computation problems, procedural knowledge 
actually accounted for twice the variance compared to conceptual knowledge. The independ-
ent relation with word-problem formulations is even more suggestive, because these problems 
involved only generated the correct formula to solve, not the actual execution of solving the 
formula. If procedural knowledge is still predictive of these sorts of problems after conceptual 
knowledge and vocabulary is statistically controlled, that suggests that procedural knowledge 
is also instrumental to fractions understanding. As such, I propose that both conceptual and 
procedural knowledge are important in solving fractions problems – a message that is in line 
with the recent report of the National Mathematics Advisory Panel in the U.S. (U.S. Depart-
ment of Education, 2008). At present, the research specific to conceptual and procedural un-
derstanding of fractions is contradictory (see the next section) and little research has ap-
proached this question in the same manner as Hecht (1998). Further research is needed to ex-
plore the unique contributions of conceptual and procedural knowledge of fractions under-
standing.  
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4  Individual differences in using conceptual and procedural 
knowledge to solve fractions problems 
The last topic in this paper concerns recent research that myself and my colleagues have con-
ducted regarding individual differences in conceptual and procedural knowledge (Hallett, 
Nunes, & Bryant, under review). As mentioned above, previous research, both in regards to 
fractions and other kinds of mathematics, has generated conflicting and contradictory results 
about the exact roles of conceptual and procedural knowledge in mathematical learning. 
Byrnes and Wasik (1991), for example, found that many of the conceptual aspects of fractions 
are prerequisites for the procedural ability to perform computations. In contrast, other re-
searchers focused on instances where children seem to approach fraction problems proce-
durally with little reference to conceptual knowledge (e.g., Kerslake, 1986; Peck & Jencks, 
1981). For example, Peck and Jencks (1981) reported that 35% of their sample of sixth-
graders were able to correctly carry out procedures to solve fraction problems without pos-
sessing a comparable conceptual understanding of fractions. Similarly, Kerslake (1986) ob-
served that many students were unable to explain why they carried out certain procedures, 
even when they did it correctly. Rittle-Johnson and her colleagues, on the other hand, have 
argued that conceptual and procedural knowledge continually and incrementally stimulate 
each other, with neither necessarily preceding the other (Rittle-Johnson & Alibali, 1999; Rit-
tle-Johnson, Siegler & Alibali, 2001). Children may first learn a relevant concept, which 
would then translate into helping to learn a procedure. Or children may instead first learn a 
procedure, which would then inspire them to understand the conceptual reasons for why the 
procedure works. Although Rittle-Johnson and her colleagues (2001) have data from an inter-
vention study to support this hypothesis (i.e., an effect for conceptual training on procedural 
knowledge and an effect of procedural training on conceptual knowledge), their data do not 
explain why some students (like those reported in Kerslake, 1986) appear to be able to have 
one type of knowledge without the other. 

My colleagues and I have proposed that these contradictory findings in the literature could be 
explained by individual differences in the ways in which children use conceptual and proce-
dural knowledge (Hallett, Nunes & Bryant, under review). In other words, some students 
might rely more on their conceptual knowledge, some students might rely more on their pro-
cedural knowledge, and some students might rely equally on both. To test this hypothesis, 
Year 4 and Year 5 children from the U.K. completed a fractions measure containing concep-
tual and procedural items. From these measures, conceptual and procedural subscale scores 
were generated for each child, and these scores were then subjected to a cluster analysis. Al-
though we had hypothesized the existence of three clusters (those who relied more on concep-
tual knowledge, those who relied more on procedural knowledge, and those who relied on 
both), results indicated five clusters of children that differed in the patterns of conceptual and 
procedural knowledge. Furthermore, these clusters differed on their performance of the over-
all fractions measure. Two of the clusters performed poorly (Clusters 1 and 2, see Figure 1), 
but did so in two different ways: one group demonstrated a lack of conceptual knowledge 
(without a compensating level of procedural knowledge) and the other demonstrated a lack of 
procedural knowledge (without a compensating level of conceptual knowledge). Cluster 3 
relied more heavily on their procedural knowledge and performed better, but not as well as 
Cluster 4 that relied more on their conceptual knowledge. Cluster 5, which performed best, 
relied equally on their conceptual and procedural knowledge. These findings suggest not only 
that there are individual differences in the ways that children combine conceptual and proce-
dural knowledge, but also that these differences are associated with differences in overall 
fractions performance. 
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Cluster Analysis of Year 4 & 5 data
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My colleagues and I have extended this research on individual differences to older children 
(Year 6 and Year 8 students) who presumably had more experience with fractions. To get a 
better sense of children’s procedural and conceptual understanding, each student was indi-
vidually interviewed in addition to completing written measures. The children were also as-
sessed on their general conceptual and procedural learning (in contrast to that specifically 
related to fractions) as well as on their dispositional thinking styles (Hallett, Nunes, & Bryant, 
in prep). Preliminary analyses both reinforce and expand on the findings of the first study. 
First, conceptual and procedural knowledge specific to fractions understanding are independ-
ently predictive of fraction performance even when general conceptual and procedural knowl-
edge are statistically controlled (Hallett, Nunes, & Bryant, in prep). This not only suggests – 
in line with other studies – that both conceptual and procedural knowledge independently 
contribute to mathematical performance, but also that students might have strengths and 
weaknesses specific to fractions learning that is not explained by their general conceptual and 
procedural learning ability. Second, Year 6 students demonstrate the same cluster pattern, and 
the same pattern of performance, as that found in the first study (see Figure 2). For Year 8 
students, however, the two low-performing clusters are no longer evident and instead only 
three clusters remain: 1) those who rely more on procedural knowledge; 2) those who rely 
more on conceptual knowledge; and 3) those who seem to rely on conceptual and procedural 
knowledge equally (see Figure 3). Performance differences between the Year 8 clusters, how-
ever, were very small. It is possible that the patterns of individual differences found in 
younger children may not persist as children grow older, but further investigation is required. 
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5  Conclusion 
There is still much that we do not know in regards to children’s understanding of fractions. 
The goal of this paper was not to summarize everything we do know, but instead to highlight 
some key findings about fractions understanding. By reviewing this literature, I was aiming to 
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make three points. First, the situations in which fractions are framed can facilitate understand-
ing, with quotient situations seeming to provide the largest advantage. It may be worthwhile 
to consider designing curricula to capitalize on this finding. Second, while previous research 
seems to have focused on the relative primacy of conceptual knowledge versus procedural 
knowledge, it seems worthwhile to consider that both skills may be necessary to gain compe-
tence in utilizing and understanding fractions. Third, recent evidence suggests that different 
children combine conceptual and procedural knowledge differently when they are learning 
fractions. If these different profiles can be identified, then teaching methods can be developed 
to target the child’s particular needs. There is still the need for more research, but these re-
search findings have the potential to provide some useful ideas to help design better curricula. 
In the end, the goal is find a way to better teach children the troublesome knowledge and 
skills that surround fractions competence. 
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Different theoretical approaches offer different ways of explaining students’ well-
documented difficulties with arithmetical operations like multiplication of frac-
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1  Different theoretical approaches  and an integrating multi-level 
model for discontinuities with fractions 
Many empirical studies have documented enormous difficulties in students’ competencies and 
conceptions in the domain of fractions (and decimals). Whereas algorithmic competencies are 
usually fairly developed, understanding is often weaker, as well as the competencies to solve 
word problems or realistic problems including fractions (e.g. Hasemann, 1981; Barash & 
Klein, 1996; Aksu, 1997).  

Different theoretical approaches exist for explaining these difficulties. One common aspect of 
several approaches is the emphasis on discontinuities between natural and fractional num-
bers, for example the fact that multiplication always makes bigger for natural numbers (apart 
from 0 and 1), but no more for fractions (e.g. Streefland, 1984; Hartnett & Gelman, 1998). 
Among different theoretical approaches to explain students’ difficulties with these disconti-
nuities, the conceptual change approach (Posner et al., 1982) has gained a growing influence 
in mathematics education research (e.g. Lehtinen, Merenluoto, & Kasanen, 1997; Stafylidou 
& Vosniadou, 2004; Lehtinen, 2006). On the basis of a constructivist theory of learning and 
inspired by Piaget’s notion of accommodation, the conceptual change approach has empha-
sized that learning is rarely cumulative in the sense that new knowledge is only added to the 
prior (as a process of enrichment). Instead, learning often necessitates the discontinuous re-
construction of prior knowledge when confronted with new experiences and challenges. Prob-
lems of conceptual change can appear, when learners’ prior knowledge is incompatible with 
new necessary conceptualisations. The key point in the conceptual change approach adopted 
here is that discrepancies between intended mathematical conceptions and real individual 
conceptions are not seen as individual deficits but as necessary stages of transition in the 
process of reconstructing knowledge - in the sense of epistemological obstacles, in Brous-
seau’s terms (1997).  

Up to 2006, this discussion on conceptual change was held nearly separately from a second 
influential theoretical approach that emphasized the importance of underlying mental models 
(Fischbein et al., 1985, Greer, 1994) or ‘Grundvorstellungen’ (GVs, see vom Hofe et al., 
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2006) for explaining students’ 
difficulties. The notion mental 
model is used here as nearly 
synonymous to Grundvorstellung. 
It starts from Fischbein’s use of 
model as a “meaningful interpre-
tation of a phenomenon or con-
cept” (Fischbein, 1989, p. 129) 
which is more specific than the 
often cited construct mental model 
as used by cognitive scientists like 
Johnson-Laird (1983). Within the 
theoretical approaches to which 
this article refers (Fischbein, 
1989, vom Hofe et al., 2006), the 
formation of mental models is 
considered to be especially impor-
tant for mathematical concept 
acquisition. Mental models consti-
tute the meanings of mathematical concepts based on familiar contexts and experiences. They 
create mental representations of the concept and they are crucial for the ability to apply a con-
cept to reality by recognizing the respective structure in real life contexts or by modelling a 
real life situation with the aid of mathematical structures (cf. vom Hofe et al., 2006, p. 2).  

In Prediger (2008), these two so far competing theoretical approaches of conceptual change 
and mental models were integrated into a multi-level model for knowledge of operations (see 
Fig. 1). Its main purpose was to provide a conceptual tool for describing the precise locations 
of students’ difficulties with discontinuities, i.e. the epistemological quality of the obstacles 
hindering students to master the necessary changes in the process of conceptual change.  

Following Fischbein et al. (1985), the model differentiates between algorithmic, intuitive and 
formal understanding. The formal level includes the definitions of concepts and of operations, 
structures, and theorems relevant to a specific content domain. This type of knowledge is 
formally represented by axioms, definitions, theorems and their proofs. The algorithmic level 
of knowledge is basically procedural in nature and involves students’ capability to explain the 
successive steps included in various, standard procedural operations. Although solving word 
problems also has procedural aspects, it is assigned to the intuitive level since it necessitates 
interpretations of mathematical concepts.  

Intuitive understanding is characterized as the type of mostly implicit knowledge that we tend 
to accept directly and confidently as being obvious. On the intuitive level, it is worth to distin-
guish between conceptions about concrete mathematical laws or properties, here called intui-
tive rules (like “multiplication makes bigger”) from those about the meanings of concepts 
(like the interpretation “multiplication means repeated addition”). Nearly all studies dealing 
with conceptual change in the field of fractions have treated intuitive knowledge, but they 
have mainly focused on the level of intuitive rules. In contrast, they have neglected the level 
of meanings which consists of mental models. (Remark that the term is used her for domain-
specific intuitions, not in a general sense like by Tirosh & Stavy, 1999.) 
 

    Figure 1: Obstacles can lie deeper –  
Different levels of students’ difficulties  

Algorithmic Level

Intuitive  LevelProcedural Skills

Competence of translating word problems 
into terms

Intuitive  rules, e.g. order property

Individual models for operations 

Individual models for fractions 

meanings 

laws and   attributes

Formal  Level

application

Explicit Knowledge on Definitions and Theorems 
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   Natural numbers  Fractions 

repeated addition (3x5 means 5+5+5,  
i.e. 3 wands of 5m length in a row) 

 ??? 

area of a rectangle (3x5 is the area of a 3cmx5cm 
rectangle)  

 area of a rectangle (2/3 x5/4 is the area 
of a 2/3 cm x 5/4 cm rectangle) 

????  part-of-interpretation  
(2/3 x 5/2 means 2/3 of 5/2) 

multiplicative comparison  
(twice as much) 

 multiplicative comparison  
(half as much) 

scaling up (3x5 means 5cm is  
stretched three times as much) 

 scaling up and down (2/3 x 5/2 means 
5/2 cm compressed on 2/3 of it) 

combinatorial interpretation (3x5 as number of 
combining 3 shirts +  5 trousers) 

 ???? 

Figure 2: (Dis-)Continuities of mental models for multiplication  
in the transition from natural to fractional numbers 

 
The level model allows to re-locate the exact place of the epistemological obstacles in the 
process of conceptual change from natural to fractional numbers. Most researchers in concep-
tual change research locate the problem on the level of laws and rules, conceptualizing the 
transfer of rules from natural numbers to fractions simply as a problem of hasty generaliza-
tion. In contrast, some researchers (like Fischbein et al., 1985; Prediger, 2008; Greer, 1994) 
showed the importance of the underlying level of meaning as the more important level to lo-
cate discontinuities. Already in 1985, Fischbein et al. showed how many students adhered to 
the ‘repeated addition’ as the dominant model for the multiplication of natural numbers. In 
Prediger (2008), the author pleaded for widening the considerations to all mental models for 
multiplication.  

A mathematical (not yet empirical) analysis of mental models as summarized in Figure 2 
makes clear that not all mental models for multiplication have to be changed in the transition 
from natural to fractional numbers. The interpretation as an area of a rectangle or as scaling 
up can be continued for fractions as well as the multiplicative comparison. In contrast, the 
basic model ‘repeated addition’ is not sustainable for fractions, neither the combinatorial in-
terpretation. Vice versa, the basic model of the multiplication of fractions, the part-of-
interpretation, has no direct correspondence for the natural numbers (see Fig. 2 and 3 for ex-
amples explaining the models).  

This mathematical analysis sensitizes for possible locations of obstacles in the process of con-
ceptual change: Not the intuitive rules pose the most urgent problem, but the necessary 
changes of mental models. Metaphorically speaking, the discontinuities that possibly generate 
epistemological obstacles in the transition process can be located in the flashes of Figure 2.  

 

2  Research questions, test items and research design 
2.1  Research questions and test items 
So far, the analysis of discontinuities of mental models was only conducted theoretically as a 
mathematical analysis of meaning. The study presented here tries to show its empirical rele-
vance by treating the following research questions: 

1. What mental models do students in Grade 7 and 9 activate?  
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2. What kind of situations can they describe by a multiplicative term?  
3. Is there empirical evidence that those models that have to be changed are more difficult 

than those which might be continuously transferred from natural numbers to fractions?  
4.  For which of the models can we find a connection to the intuitive rule “multiplication 

makes bigger”? 

In order to answer these questions, twelve test items were constructed. This paper is focused 
on those eight items which referred to the intuitive level (see Figure 3, all items were of 
course given without headline). Item 2 operated on the level of intuitive rules, asking in a mul-
tiple choice format for the order property of multiplication. Items 5 and 6 operated explora-
tively on the level of meaning. It was given in an open item format in order not to impose a 
presupposed mental model but to exploratively gain a great variety of really existing individ-
ual mental models. Item 7 to 11 referred to the competence of finding multiplicative terms to 
given word problems. They differed in the necessary mental model that had to be activated.  

   
Selected test items with reference to the intuitive level 

Item 2: Order property of multiplication 
Which statement is correct (mark with one or more 
crosses): When I multiply two fractions  
○  the solution is always bigger than the two fractions 
○  the solution is always smaller than the two fractions. 
○  the solution is sometimes bigger, sometimes smaller 

than the two fractions. 

Item 5: Find word problem for an additive equation   
When solving word problems, you are supposed to find 
calculations for given everyday situations.  
Here, you are asked to do it vice versa.  
Find a word problem that can be solved by means of the 
equation 52 1

3 6 6+ = .  

Item 6: Find word problem for a multiplicative equation
Find also a word problem that can be solved by means of 
the following equation: 2 1 2

3 4 12⋅ = .  

Item 7: Mathematize a situation with multiplicative 
comparison  

a.)  One kilogram tangerine costs € 1.50. Kate wants to 
buy 3

4 kg. How can she calculate her price to pay? 
(Mark with one or more crosses)     
�  1,5 - 3

4    �  1,5 : 3
4     �  3

4 ⋅ 1,5 
� none of these, but this:  

b.)  Justify your answer given in a) 

Item 8: Mathematize a situation with repeated addi-
tion (natural times fraction) 

a.)  Every child eats on average 2
10 kg of mashed pota-

toes.  How can we calculate what 15 children would 
eat? (Mark with one or more crosses)       
 

 
�  2

1015+     �  15 : 2
10     � ⋅2

10 15   � ⋅ 21015    
� none of these, but this: 

b.)  Justify your answer given in a) 

Item 9: Mathematize a situation with part-of-whole 
number (given verbally) 

a.)  How can we calculate 23  of 36? (Mark with one or 

more crosses):  �  2
336−   �  36 : 23   �   2

3 36⋅   
                         � none of these, but this: 

  b.) Justify your answer given in a.) 

Item 10: Specify part of a fraction and mathematize   
a.)  Colourize 3

4 of the rectangle.  

b.)  Colourize now 2
5 of these 3

4  
with another colour. 

c.)  Give the fraction that describes the part of the rectan-
gle that is double coloured now. 

d.)  With what calculation could you come to this fraction? 

Item 11: Mathematize a situation of scaling down 
a.)  An African elephant has a body 

height of 3.60 m.  
 Anna has a model of the elephant 

which is scaled down to 3
40 of the 

original body height.  
Give the height of the model elephant.  
Explain your way how you found it.  

b.)  Can you solve the task in a.) also with one single 
operation? (if not already done) Which one? 

    
    
    
    
    

Figure 3: Selected test items   
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2.2  Design – sample and data analysis 
The study was designed as a 60 minutes paper and pencil test, written by 269 students in five 
Grade 7 classes (age about 12 years) and five Grade 9 classes (age about 14 years) in German 
grammar schools which comprise the higher achieving 40% of students in Germany.  
The students’ answers were evaluated quantitatively in a points rationing scheme. Further-
more, the answers to Item 5 and 6 and reasons given in Item 7 to 9 were analysed qualita-
tively by categorizing the manifested individual conceptions about operations on fractions. In 
a pre-test, the developed coding scheme achieved an interrater agreement of Cohen’s kappa of 
0.81 to 0.94. 

 

3  Most important results 
3.1  More difficulties for interpreting multiplication than for addition 
The comparison of Item 5 and 6 offers well 
expected results: much more students could 
find an adequate word problem for a given 
additive equation than for a multiplicative 
equation (see Figure 4). 

Whereas 210 of 269 students (78%) were 
able to find an adequate model for the addi-
tion, only 30 out of 269 (11%) found one for 
the multiplication, like a word problem con-
cerning “2/3 of 1/4 l milk”. In contrast, 15 
students gave no answer and 11 referred 
only to the calculation itself for addition (in 
sum 10%), but 61% did one of both for mul-
tiplication.  

In Item 6, a middle group of 14 students 
gave interpretations which showed partly 
adequate multiplicative models, but in an 
incomplete way. A middle group of 20 stu-
dents gave traces of adequate models for the 
addition, all of them trying to join parts of 
different wholes, like in this example:  

Lisa completed 2/3 of her English homework 
and 1/6 of her math homework. Which part 
has she completed in sum?  

Among the 62 wrong answers (23%) with 
inadequate models for the multiplication, 
there were 38 answers with a word problem 
that referred to an additive situation, e.g. 

Mr. Miller sells 2/3 of his bread s on one day 
and ¼ and the next day. He wants to know 
how much he sold together.  

Figure 4: Comparison of occurrences of interpretations  
for additive and multiplicative equations in Item 5 and 6  

no answer 
only reference to calculation 
inadequate models 
partly adequate models 
adequate models 

Item 5 
Find word problem  

for addition 

Item 6 
Find word problem  
for multiplication 

Figure 5:  Comparison of chosen terms  
for different items 

Item 8a 
repeated 
addition 

Item 7a 
k x € 

Item 9a 
part  
of 36 

Item 11b 
scaling 
down 

Item 10d 
part of 
fraction 
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3.2  Not all models for multiplication equally difficult 
The difficulties of connecting multiplications with situations became equally visible by the 
five items with the inverse question, in which students should choose terms for mathematizing 
different given situations.  

Figure 5 gives an overview on the decreasing frequency of reached scores for those five 
items. The far best results were reached for Item 8a, in which 91% of the students could acti-
vate the well-known model of repeated addition and chose the multiplicative term 2

10 15⋅ or 
2

1015 ⋅ . (More precisely, 38% chose one, 53% chose both.)  

In contrast, in all other items, no more than 93 of 269 students (i.e. 35%) chose the multiplica-
tive term. Only 17 of 269 students (6%) could mathematize the verbally and graphically given 
2
5 of 3

4 in Item 10d by the multiplication 2
5 ⋅

3
4 .  

 

3.3  Only a singular connection between mental models and intuitive rule 
on order property  
Due to the low rates of correct answers, it is difficult 
to determine correlations between different items. 
Only for Item 9, we find a clear connection to Item 2:  

109 students expressed the intuitive rule “When I mul-
tiply two fractions, the solution is always bigger than 
the two fractions.” in Item 2, 88% of these 109 (i.e. 
96) chose a wrong term for calculating 2

3 of 36, most 
preferably (64 answers) the division 36 : 2

3 .  

In contrast, among those 116 students who expressed 
the correct rule “sometimes bigger, sometimes 
smaller”, only 61 chose a wrong term, i.e. only 53%.  

Vice versa for those who chose the multiplication 
2
3 ⋅36 correctly: It was chosen by 40 out of 116 stu-
dents (i.e. 35% of those) with correct order property, 
and only by 7 of 109, i.e. by 6% of those with false 
order property (even better was the ratio for the “over-
generalizers” who believe that for fractions, every multiplication makes smaller: 22 of 44, i.e. 
50%).  

For the determination of a relative part (two third of 36), it seems hence to be helpful to know 
that multiplication can (sometimes) make smaller. 

As the following answer to Item 7b shows, some (singular) answers in other items also ref-
ered to the order property: 

She would have to calculate 1,5 : ¾ because she wants to buy less than 1kg tangerines. 

But this connection could not be found for a statistically significant number of students in 
Item 7, 8, 10 and 11. 

Figure 6: Connection between order property 
(Item 2) and choice of f operation 
for part of 36 (Item 9a) 

> < <>
Item 2 

Item 9a 
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4  Discussion 
Why do students have difficulties with the application of multiplication for word problems? 
Although a quantitative study based on a paper and pencil test can only specify coincidences 
but no reasons, the results of the study give distinct tendencies which are interesting to dis-
cuss.  

The first finding ”more difficulties for interpreting multiplication than addition” fits perfectly 
to the explanations given in the here presented integrated conceptual change approach: The 
empirical phenomenon that much more students can formulate a word problem for an additive 
equation than for a multiplicative equation can be explained by the mathematical fact that 
there is no epistemological obstacle for addition, that means no conceptual change is neces-
sary in the transition from natural to fractional numbers. In contrast, the large number of stu-
dents who were not able to find any adequate interpretation for the multiplication in Item 6 
can be explained by the epistemological obstacle given by the discontinuity of interpretations 
for multiplication in the transition from natural to fractional numbers. Fischbein et al. (1985) 
emphasized already in 1985 that one difficulty lies in the mathematical fact that the most 
dominant mental model, the repeated addition, cannot be continued for 2 1 2

3 4 12⋅ = . This interpre-
tation of the empirical result can be supported by the comparison of difficulties in finding 
correct terms for differently structured multiplicative situations (second finding “Not all mod-
els for multiplication equally difficult” in Figure 5). The word problem asking for repeated 
addition (natural times fraction) was mathematized significantly better than all other multipli-
cative situations in which the repeated addition could not be activated. Due to too similar re-
sults in Items 7,9,10, and 11, we do not go further in the ranking of different discontinuous 
models for the multiplication of fractions (see Figure 2). Additionally, we cannot exclude the 
interpretation that the lowest rates in Item 11 and 10 might also be explained by the fact that 
there were no pre-given answers as in the multiple choice Items 7 to 9. Even the slight change 
from decimals to fractions might have contributed to the results. 

However, the discontinuity of mental models seem to be more crucial in these cases than the 
pertinence of the intuitive rule “multiplication makes bigger”, since we could only find a sta-
tistical connection between Item 2 and Item 9a, but not for Item 7a, 8a, 10d and 11b. Addi-
tionally, the low rates of correct answers in the whole test sample might have contributed to 
the absences of correlations.  

As it is not in line with well-known research results, e.g. by Bell et al. (1981), this phenome-
non will need further research with a more differentiated look on different mental models, 
their discontinuities and their connection to intuitive rules on the order property. 

 

5  Outlook: Beyond the example of multiplication of fractions 
Although this paper reports on a concrete empirical study on one special operation for a spe-
cial number set (namely the multiplication of fractions) the author cannot conclude without 
emphasizing that it should be taken as an example for a wider learning problem and also a 
wider research program. Although we know relatively much on students’ conceptions con-
cerning the numbers, the interpretations of operations in different situations is still not 
enough in view, neither in the view of researchers nor in the view of teachers and text book 
writers.  
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Appendix: Scores of items 
Average of reached scores 

Item Content (in order of difficulty) Frequency of  
complete solutions       absolutely      in %  

5 Find word problem for an equation with addition 57% 1,40 of  2 70% 

8 Mathematize situation with repeated addition (natural x fraction) 31% 1,35 of  2 67% 

2 Order property (does multiplication make bigger?) 43% 1,04 of  2 52% 

11 Mathematize situation of scaling down 14% 0,62 of  2 31% 

10 Specify part of a fraction and mathematize  4% 1,49 of  5 30% 

7 Mathematize situation with multiplicative comparison 9% 0,54 of  2 27% 

9 Mathematize situation with part of whole number  7% 0,46 of  2 23% 

6 Find word problem  for an equation with multiplication 11% 0,30 of  2 15% 
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1  Introduction 
For at least two decades, concerns about the depth of mathematics understanding of 
prospective elementary teachers have been discussed in the research of mathematics education 
(Conference Board of Mathematical Sciences [CBMS], 2000; Ma, 1999; Parker, 1996; Ball, 
1990; Silver, 1981). The research suggests that prospective teachers must revisit the 
mathematics that they have previously learned so that they will be able to effectively teach 
their future students. The CBMS specifically notes that strengthening rational number 
knowledge and rational number sense is absolutely essential in the preparation of middle 
grade mathematics teachers. It further indicates that besides being able to explain procedures, 
these future teachers need a sufficient depth of understanding to be able to write problems that 
require specific arithmetic operations. Prospective teachers who obtain this deep 
understanding of rational numbers will be more prepared to help their future students to 
develop their own understandings. 

 

2  Methodology 
During the spring semester of 2007, 40 United States (US) and Northern Ireland (NI) 
prospective elementary teachers were evaluated on their understanding of addition and 
division of fractions. The future teachers were required to demonstrate their knowledge of 
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addition and division of fractions by creating two real life problems that would be appropriate 
for elementary students. The first problem that was analyzed by the researchers required the 
prospective teachers to add two fractions whose sum is greater than one. The second problem 
required the understanding of dividing a mixed number by a fraction. The following problems 
were completed by 40 prospective teachers from both countries.    

 1. Write a story problem where students in the elementary grades would add ¾ + ½  to com-
plete the problem. 
2. Write a story problem that shows the meaning of

2
1

2
12 ÷ .    

The Northern Ireland subjects were all in the final year of a four year Bachelor of Education 
degree that prepares them for teaching in elementary (primary) schools. All participants 
specialize in mathematics and have already spent approximately one quarter of their degree 
time studying mathematics. They have also spent the equivalent of one quarter of their degree 
time teaching in elementary schools and have classroom experience in teaching mathematics. 

The US subjects are not as advanced in working toward their four year degree in elementary 
education, but are at various stages in their career. They consist of 2 freshman, 20 
sophomores, 7 juniors, 1 senior and 4 post graduates (who were returning to study elementary 
education). When the data were gathered for the study, the US students were in the final 
weeks of completing their first required mathematical content knowledge course that included 
content for Kindergarten through grade 8. A limitation of the study, therefore, is the 
difference in the background between the US participants and those in Northern Ireland. 
While the US students were given these problems as part of an 18 question 75-minute exam 
that assessed their knowledge of fractions, decimals, and percent, the NI participants were not 
in a testing situation when they responsed to the questions, but were simply given 20 minutes 
to complete four problems regarding fractions, decimals, and percentages. Thus, the time that 
the NI and US subjects had to complete the problems was approximately the same. 

After the subjects completed the problems, their respective professor categorized responses to 
the two problems as either acceptable or unacceptable. Both principal researchers asked one 
other researcher from their country to also independently categorize the questions. There was 
a 100% inter-rater agreement between the two Northern Irish researchers, and 96% inter-rater 
agreement between two US researchers. The US researchers then shared their responses with 
the NI research team. As a result of the discussions, there was a final 100% agreement on the 
acceptable and unacceptable classifications of all problems. A discussion on the emphasis on 
the referent whole emerged during the collaborations. Within the problems that the 
prospective teachers created, similar categories of acceptable and unacceptable responses 
emerged from both countries. The results follow. 

 

3  Results   
3.1  Addition of Fractions 
In this study, 70% percent (28 out of 40) of the US and Northern Ireland (NI) students 
provided acceptable responses in designing real-life fraction addition problems for the sum of 
one half and three-fourths. When the US students completed a pretest with the same problem 
prior to instruction, only 20% had written acceptable responses. Most of the problems that 
were classified as unacceptable did not refer to equivalent wholes. During US instruction, the 
concept of equivalent wholes was emphasized, and as a result, the US students exhibited a 
higher ability than the NI students to create an appropriate problem in this additive scenario. 
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The Northern Ireland students had not explicitly discussed referent wholes in class prior to 
completing this question, thus most of the unacceptable problems that they created did not 
include this reference. 

The major similarity in the responses of the prospective teachers from both countries, whether 
their responses were classified as acceptable or unacceptable, is that they wrote problems in-
volving food. Both groups of prospective elementary teachers realize that their future 
elementary students will relate to problems about food. Eighteen problems specifically 
involved recipes. 

A problem that represents a typical acceptable recipe problem follows. 

Today we are going to make cookies. We need to add ½ cup of sugar and ¾ cup of brown 
sugar. Together, how many cups do the two sugars add up to? 

Other problems regarding food did elicit several repeated unacceptable responses. A 
representative example of the salient error is below. 

Sarah eats half of a chocolate cake and three quarters of an orange cake. How much cake 
does she eat altogether? 
In similar problems that were deemed unacceptable, students made an underlying assumption 
that the two chosen objects, in this case the chocolate cake and the orange cake are equivalent 
in shape and size, and that the answer of one and one quarter cakes would be correct. If the 
cakes were not equivalent in shape and size, the fractional parts of the cakes could not be 
added to give the answer of one and one quarter cakes, as Figure 1 below indicates. 

 

                      
 
 

Figure 1:  Half of a chocolate cake and three quarters of an orange cake. 
 
An equivalent acceptable response is shown in the example below because it makes reference 
to both pizzas being equivalent wholes. 

You have 2 pizzas that are exactly the same size. You give one pizza to your friend and you 
decide to see who can eat the most. You eat one half of your pizza. Your friend eats ¾ of his 
pizza. How much pizza did you both eat all together? 

When analyzing and classifying similar problems, the researchers were consistent in requiring 
that the future teachers clearly noted that the wholes that were being referred to were equiva-
lent, otherwise they would not emphasize to their future students the importance of making 
reference to the same unit whole. 

Another type of unacceptable response in regards to the category of food was not responding 
to the direction that the problem must require students to add the fractions ½ and ¾. This type 
of response is demonstrated in the example below. 
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There are two bars of chocolate with 16 squares in each. Jane eats half of one bar and Peter 
eats three quarters. How many squares are left to share with Angela? 

Here the prospective teacher who designed the question is not requiring the problem solver to 
carry out the calculation of ½ + ¾. Instead the problem solver can find one half of 16, and 
then three-quarters of 16, add the results and take the sum from 32 to obtain the answer. It is 
also not clear in this problem if Peter is eating three quarters of the same bar as Jane or a half 
of a second bar. The underlying assumption is that it is of the second bar, but the concern 
again arises that the bars may not be of equivalent sizes thus the pieces of each bar could be 
different. 

Within the category of food the following problem was created. 

Goofy had half a cup of chocolate surup (sic) and Donald had ¾ cups of milk. Both wanted 
chocolate milk and decided to pour both the half cup of chocolate and 3/4 cups milk into a 
pitcher. How many cups were in the pitcher after the(y) added both the milk and the chocolate 
surup (sic)? 

The researchers categorized this problem as acceptable, but these amounts certainly would not 
make acceptable chocolate milk. Goofy and Donald are Disney cartoon characters, so the 
writer may have created this situation to attract the attention of the elementary students. The 
chemistry of mixing the two substances together may not, in fact give a total measurement of 
1 ½ cups of liquid, but the question was posed as how many cups were in the pitcher of both 
items. 

Another category of acceptable problems referred to measuring distances. 

While I was running, I kept track of my miles. I ran ½ mile on Monday morning and ¾ mile 
on Monday night. How far did I run on Monday? 

With these types of problems, the referent of measurement being miles is the same. These 
problems are similar to the first category of acceptable recipe problems that used the cup as 
the referent unit of measurement. When the prospective teachers referred to units of 
measurements that are the same, then the fractions could be appropriately added, but pizzas, 
cakes, candy bars or other foods are not necessarily equivalent units unless specifically noted 
by the problem writer. The researchers from both countries agree on the importance of 
emphasizing the referent whole or equivalent unit of measurement so that the two fractions 
can be appropriately added. Creating the diagrams of the cakes that are not the same size as in 
Figure 1 can aid students in realizing the need for further clarification of equivalent wholes 
when creating problems. 

The type of problem that exhibited an extreme difficulty in understanding the concept of the 
addition of two fractions whose sum is greater than one is represented by the example below. 

In Mrs. C’s class ½ of her students got A’s on the test, and ¾ of her student’s (sic) got B’s. 
How many student’s (sic) got A’s and B’s. 

There were a small number of subjects who wrote this type of problem. These students cer-
tainly need to be re-taught the basic idea that the sum of fractional parts of a whole cannot be 
greater than the whole. The subjects who referred to a second whole, but did not make refer-
ence to the equivalence of two wholes, show a greater understanding than the subjects in this 
particular category. 

The main differences in the responses of the NI and US subjects are attributed to the differ-
ences in how they were instructed. Since the US participants discussed their results of a pre-
test where they created a similar addition problem, 82% wrote acceptable responses to the 
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post-test research question. In their instruction, the NI participants did not include discussions 
of referent wholes and thus did not include reference to equivalent units in their responses. 
The US students significantly improved from the pre test to the post test as 8 students created 
acceptable responses prior to instruction (20%), and 28 students created acceptable responses 
after instruction (82%) The findings show that discussing the referent whole is important in 
teaching addition of fractions especially when the sum is greater than one. Northern Ireland 
instructors now plan to include a discussion of the referent whole when teaching addition of 
fractions. 

 

3.2  Division of Fractions 
The similarities and differences that emerged from the students from the two countries in their 
responses of writing a story problem to show the meaning of 

2
1

2
12 ÷  were also analyzed. 

As with the addition problems, both US and NI prospective teachers wrote the majority of 
their problems about food. Pizza problems were the most popular type of problem that were 
presented, although sharing apples for a Healthy Snack Break was included. Some problems 
even included drawings of cookies, butter, bagels and other foods. A typical acceptable 
problem in this category is presented below. 

If there are two and a half pizzas and each child received half a pizza, how many children 
share it? 

The following pizza problem showed an acceptable insight to the question, but also went a 
little further in terms of what they asked the pupils to do. 

Simon has two and a half pizzas. He wants to share his pizzas with his friends and he wants 
each person to get half a pizza. How many friends can he share with? 

Clearly here the problem solver must complete the prescribed calculation, but then needs to 
subtract one from the answer to find the number of Simon’s friends, to exclude Simon him-
self. 

One subject made a connection from the equivalent unit wholes required in the addition prob-
lems and transferred that knowledge to the question he wrote for division. 

You have 2 whole pizzas of the same size and exactly ½ of a 3rd pizza that was also the same 
size. How many halves do you have altogether? 

Another salient category of responses to the division problem involved measurement. During 
US instruction, an example was presented to determine how many ¾ yard bows could be 
made from 5 yards of ribbon (NCTM, 2000), where the instructor related the problem to the 
bows that are made for the mum corsages for their campus Homecoming celebrations. Six 
subjects may have recalled this example as they wrote their division problem about creating 
bows. For example: 

I am making bows. I have 2 ½ yards of material. Each bow uses a ½ yard of material. How 
many bows can I make? 

In the measurement category, four students created similar measurement problems involving 
running. 

Members of a track team ran 2 ½ miles all together. If each person on the team ran ½ of a 
mile, how many people ran the race? 
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Several prospective teachers are members of the university track team, and thus related divi-
sion of fractions to their own interests. The research suggests that making real world 
connections deepens understanding (Parker, 1996; Wolfe, 2001; Tate, 2003). The frequently 
used measurement model also uncovered several student misconceptions as noted below.  

You are making bows for a wedding. If the amount of ribbon is 2 ½ yards, how many bows 
can you make with ½ yard of ribbon? 

The writer possibly was attempting to ask how many ½ yard ribbons could be made from 2 ½ 
yards, but did not clearly articulate an accurate division problem that would produce 5 full 
bows. This writer possibly remembered the bow example discussed in class, but could not 
present the problem accurately. 

Several misconceptions of subtracting a half or dividing in half rather than counting how 
many halves are included in 2 ½ were demonstrated. The following example shows 2 ½ being 
divided in half. 

Laura was training for a track meet that she has on Saturday. She ran 2 ½ miles around her 
block, but ended up running half of that. How much did she run? 
The only division problem response that was deemed unacceptable for the NI students is pro-
vided below. 

The group bought two litre bottles of water and a 500ml bottle. When everyone had had a cup 
there was still half left over. How many mls were left? 

It is not clear here when the student states that there was still half left over if they are referring 
to half a litre or half the total amount of water. If it is the former, there is a possibility that 
they may have read the question as a subtraction problem. If it was the latter, then this shows 
a total lack of understanding of this division problem. A cultural difference is noted in this 
problem, as the US students did not use the metric measurement system for their problems 
because of the different measuring systems in these countries. 

The results of the analysis of division of fractions show that a majority of both groups of pro-
spective teachers have an understanding of division of fractions. Sixty-two percent of US pro-
spective teachers and 83% of Northern Ireland prospective teachers produced acceptable divi-
sion problems. 

 

4  Conclusions 
This study analyzed the depth of understanding that prospective elementary teachers from 
Northern Ireland and the United States exhibited on rational numbers, specifically addition 
and division of fractions. As the study was designed for them to create problems regarding the 
addition of two fractions whose sum is greater than one, the findings show that both groups 
had similar understandings as well as similar misconceptions. All NI prospective teachers 
understood that the sum of the two fractions is more than one whole and thus included a sec-
ond whole in all of their problems, while a small number of US students, even after instruc-
tion, continued to write problems where they disregarded the sum being greater than one, and 
merely posed a problem that asked for the sum of the two fractions, which was not meaning-
ful. The difficulty that arose for the NI students was not making reference to equivalent whole 
when creating their problems. Due to the results of this research study, Northern Ireland in-
structors will now include a discussion of the referent whole when teaching addition of frac-
tions. US instructors need to offer additional instruction to the prospective teachers who dis-
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regard the sum of two fractions being greater than a whole when creating a real life problem 
where they add ½ of the whole to ¾ of the same whole. 

The Northern Ireland participants overall had a higher percent of acceptable responses than 
US participants in the area of division, where the US participants had a higher percent in the 
area of addition. Discussions between the two researchers will continue to determine how the 
NI instruction of division of fractions is different from the US instruction and how the US 
instructor can implement the NI instructional strategies. Since the NI participants have had 
elementary classroom teaching experience, and the US participants have not, perhaps the ac-
tual classroom teaching experiences that the NI participants have strengthened their under-
standing of division of fractions. These types of discussions offer ways for mathematics edu-
cators to share ideas to improve their instruction. The researchers are expanding this study to 
include a group of prospective teachers from South Africa. They also welcome additional 
international researcher partners. 
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We are doing a case study with three basic education teachers who have joined a mas-
ter degree focused on a professional strengthening of their teaching experience. In the 
current research phase we explore how they plan activities for teaching fractions and 
what kind of difficulties they confront in such planning. In this document we will only 
make reference to the case of Delia, a fifth grade teacher at an elementary school who 
has decided to plan her fraction lessons relying on the meaning of measure as the plan-
ning’s didactic object. This case study has been done from two fundamental methodo-
logical instruments: the observation that took place at a master degree seminar (where 
the activities proposed by Delia for teaching fractions as a measure were presented) 
and the interviews, where the aforementioned teacher reflected about the obstacles she 
experienced through the didactic design process.  
 
Keywords: fractions, meaning of measure, planning activities, planning difficulties.  

 
 
1  Introduction 
In a master degree focused on theoretically and practically enriching the educational experi-
ence of Mathematics teachers (including instructors of kindergarten, primary and secondary 
levels), we are in charge of a seminar oriented to teaching and learning fractions. For this mat-
ter, we have created a space in which we initiated a case study with three primary and secon-
dary teachers. 

The case study will last three years, according to the length of the master degree program. 
During the first development phase, we explored which were the difficulties on teaching frac-
tions experienced by the three teachers selected. Through the case study’s second phase, we 
are gathering information about how these teachers plan their fraction lessons and which are 
the obstacles to overcome in that task. The present document corresponds to this last phase 
and exhibits the case of Delia. Afterwards, in the third phase we will describe and analyze 
how the teachers apply in the classroom the activities designed during the previous phase, 
after having joined a master degree in which they had to reflect on their educational experi-
ence.  

This research’s importance dwells in the fact that it provides information about the aspects 
that make the task of teaching fractions difficult, how these basic education teachers program 
the instruction, and how reflecting on this may improve their teaching practice.  

 

2  Theoretical Framework 
Since this essay’s bases are related to different aspects, we will now present each one of them 
in separate sections.  
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a) Resuming formal education 
Within the wide range of opportunities we can find in adult education, Bishop (2000) states 
that a very important option is the formal education that takes place at a school, university or 
higher education institute. The latter is the situation of the subjects being studied in this re-
search, and who have joined a master degree developed at a research center. This is how we 
gather the features for the profile of “adults that resume higher education studies” 
(O’Donoghue, 2000) with the purpose of improving their professional activities.  

Adult education also draws attention to the exploration of the personal needs of each subject 
involved, so as to favor subsequent formative interventions that may provide optimal results 
(Fitz Simons and Godden, 2000). The interests and needs manifested by the adults in forma-
tion process are a fundamental starting point for the research done on this phenomena, as well 
as for the didactic treatments carried out within the formal studies.  

Medina Fernández (1997) recognizes that the process of adult formation shows a “critical 
reflexibility” through which the person’s experience is subject to a meticulous analysis that 
may foster the reorganization of such experience. We take this characteristic as a support to 
facilitate the reconstruction of the teacher’s educational practice that this case study may al-
low. We base our argument on the fact that the limitations acknowledged explicitly by the 
person may be overcome in a near future.  

In addition, the adult needs to know how to assimilate new knowledge in order to be able to 
recognize its practical consequences (Cabello Martínez, 1997). Therefore we expect that, 
through the teacher’s own reflection process, we may establish how their conceptions evolve 
and how this gives place to new modalities of teaching interventions.  

b) Fractions in specialized literature  
In the master degree seminar on teaching and learning fractions, the six teachers involved 
worked on reading certain writings that will be immediately presented and that were very im-
portant for designing their didactic activities.  

Concerning the semantic diversity of fractions, we recovered from Kieren (1980, 1983, 1984, 
and 1988) and Kieren, Nelson and Smith (1985) the difference among the meanings of part-
whole relationship, intuitive quotient, measure, multiplicative operator and ratio. The 
concept of part-whole relationship is the most primitive and serves as a basis for the rest; 
Kieren (1980, p. 134) defines the part-whole relationship as “some whole is broken up into 
‘equal’ parts, fractional ideas are used to quantify the relationship between the whole and a 
designated number of parts”.  

The intuitive quotient’s construct corresponds to a number in the form a/b, in which the per-
son’s interpretation of the numerator and denominator corresponds to the conditions of divi-
sion and sharing of one or more objects between two or more people.  

The sense we give to the fraction as a measure is that of a “comparer” (Freudenthal, 1983) 
between two or more objects so as to determine their size. Kieren (1980, p. 136) states that 
“the measurements tasks means the assignment of a number to a region (taken here in the 
general sense of this word; may be 1, 2 or 3 dimensional or have other characteristics). This is 
usually done through an iteration of the process of counting the number of the whole units 
usable in ‘covering’ the region, then equally subdividing a unit to provide the appropriate fit.” 

We assign the meaning of the relation between two dimensions to the ratio (Hart, 1988, Ruiz, 
2002, Ruiz and Valdemoros, 2001, 2002 and 2006). About the ratio idea Kieren (1980, p. 
135) indicates: “The ordered pair notation takes on new significance with respect to ratio rela-
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tionship – the quantitative comparisons of two qualities. Three tenths (3/10) of a floor surface 
has a very different meaning than 3/10 which compares the number of girls and boys on a 
soccer team.”  

A very important aspect that helps understand the fraction as multiplicative operator is rec-
ognizing the number that allows going from an initial state to a final state within the problem 
solving process (Ruiz, 2002, Ruiz and Valdemoros, 2001, 2002 and 2006). Kieren (1980, p. 
136) says: “The operator sub-construct portrays rational numbers as mechanisms which maps 
a set (or region) multiplicatively onto another set. Thus a ‘2 for 3’ operator maps a domain 
element 12 to a range element 8 and a ‘2/3’ operator maps a region onto a similar region of 
reduced size.”   

In an analogue way, an aspect of great importance is Piaget, Inhelder and Szeminska’s (1970) 
contribution on part-whole and part-part relationships as expressions of the structural bases 
that support fractions; these relationships are, respectively, the pillar of addition and multipli-
cation operations. Here, we emphasis the integration sense of the part in the whole (making 
reference to the part-whole relationship), as well as the possible consideration of the part as a 
new whole susceptible to be submitted to division (making reference to the part-part relation-
ship).   

We highlight Freudenthal’s (1983) observation regarding teaching fractions because he states 
that the final richness of knowledge depends on the phenomenological diversity with which 
fractions are taught. Such knowledge will be the product of a great variety of resources used 
during the teaching process. Particularly, he establishes that teaching fractions cannot be lim-
ited to the traditional part-whole relationship, for that way would only bring about proper 
fractions, this is to say, its scope would be limited. According to Freudenthal’s approach, in 
order to encompass from “fracturers” and “comparers”, to “multiplicative operators”, we re-
quire a non-restrict use of the equivalence, allowing a non-limited fraction production. To 
achieve this, this researcher proposes not only the use of didactic models of area and length, 
but also the inclusion of manipulative materials.  

Regarding the activities of didactic design, we pay special attention to Streefland (1991), who 
has remarkably strengthen the process of teaching fractions through programming a course 
composed of new models supported on real situations and significant manipulative materials. 
In such course, this researcher recommends the use of variable elements coming from real life 
situations, for example the atmosphere created at a restaurant where the distribution of the 
companions at the tables, the way in which food is served, the number of clients, and the 
chefs’ job, altogether, allow an appropriate use of fractions.  

c) Teaching fractions in mexican schools 

In this section we will present the program and official books used in fifth grade in all mexi-
can schools. As Delia teaches this grade, she has taken into account all this didactic auxilia-
ries in order to design the appropriate activities for the fraction lessons.  

The fifth grade program (Secretaría de Educación Pública, 1993) contemplates the following: 
introduction to sevenths and ninths as new numbers; application of decimal fractions; use of 
the fraction as a measure, quotient, ratio and multiplicative operator; use of different resources 
to establish the equivalence among fractions; recognition of fractions within the number line; 
introduction of mixed fractions; and solving problems of fraction addition and subtraction 
with like and unlike denominator.  

The students have access to the Text Book (Secretaría de Educación Pública, 2002b), which 
has lessons about fractions that cover the curricular content from the fifth grade program. The 
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aforementioned lessons are presented through situations that call the attention of the students 
and, at the same time, are related to their reality.  

In order to complement and enrich the activities proposed in the child’s book, the teacher has 
an Activity Book (Secretaría de Educación Pública, 1994) that presents multiple fraction prob-
lems that can be alternated, at the teacher’s discretion, with the lessons described above.  

Finally, the Teacher’s Book (Secretaría de Educación Pública, 2002a) suggests the teacher 
how to use the Text Book and the Activity Book together and also proposes different didactic 
strategies to cover each lesson of the child’s book.  

 

3  The Case of Delia in the Didactic Design Phase 
From the study of three cases already described in the Introduction, this report will only focus 
on the case of Delia. She is a fifth grade teacher at an elementary school who, at the time of 
this research’s didactic design phase, is 36 years old and has six years of teaching practice. 

There were several reasons why we chose Delia from a group of six basic education teachers 
who joined the master degree. First, she said that teaching fractions was a very difficult prac-
tice. Moreover, Delia is a responsible and efficient teacher who is always making an effort to 
improve her teaching practice and keeps an autocritical attitude towards her performance. 
Finally, she is an outstanding student in this program.  

The previous phase of our research consists in exploring which difficulties in teaching frac-
tions Delia had experienced in her previous professional experience. In such phase we could 
establish that she had a remarkable dependence on the official teaching books (Secretaría de 
Educación Pública, 1994, 2002a, and 2002b), which reduced her educational creativity and 
autonomy. Furthermore, the difficulties she confronted remained linked to the lack of sense in 
situations involved in the teaching proposals derived of the text book, and thus she tended to 
develop teaching strategies loaded with algorithms because the predominance of the syntactic 
procedures and rules allowed her to avoid the didactic treatment of meanings and semantic 
processes related to fractions. 

 

3.1 The approached research problem 
Given that in the current phase of didactic instruments design Delia decided to focus on the 
treatment of fractions as a measure, we acknowledge that the research problem is program-
ming activities for teaching fractions in measurement situations as well as the design diffi-
culties that this fifth grade elementary teacher may specifically encounter. Regarding the lat-
ter, we assume that the difficulties experienced in the didactic design constitute a particular 
type of obstacles related to teaching fractions in general.  

From the previous statement, we formulated the following research question: 

Which are Delia’s teaching proposals to deal with the fraction as a measure and what diffi-
culties related to the design has she experienced?  

 

3.2  Methodological instruments 
In order to monitor this study, we based its second phase on observation and interviews.  
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In the seminar for learning and teaching fractions we made an observation of the case be-
cause Delia and the other participants examined literature specialized on fractions and also 
exposed progressively and critically the teaching activities programmed for the class. In order 
to validate this case study, we based our research in this observation processes, and as a result 
generated triangulations and contrasts between noteworthy details of this experiences and 
relevant moments of the interviews. In addition, the information gathered through observation 
constituted one of the main pillars in this case’s analysis.  

The two interviews were hold individually and designed in a way to allow enrichment of the 
dialogue. It also gave place to reflection on which bibliographic sources were used by Delia 
when programming the lessons of fractions as a measure, as well as which design difficulties 
she confronted while carrying out this task. This information reveals all the aspects that can-
not be reconstructed through direct observation.  

 

3.3  The results of the observation 
Through observation we could determine the nature of Delia’s didactic planning, which con-
sists on dealing with fraction as measure. We could do this through the seminar on learning 
and teaching fractions, where Delia presented in detail her design and reflected on it. Next we 
will present the basic aspects of such programming and its analysis afterwards. 

The first component of the didactic design was a diagnostic questionnaire, with which Delia 
decided to explore the student’s learning before starting the teaching plan. This questionnaire 
was composed of ten problems (she created some of them and others were taken from Secre-
taría de Educación Pública, 1994, 2002b and were adapted afterwards). 

Delia planned twelve work sessions and designed them based mainly on Freudenthal (1983), 
Streefland (1991) and Kieren’s (1983, 1984 and 1988) theoretical statements. In this manner, 
when posing the problematic situations that constitute the twelve sessions, the didactic pro-
gression followed up initiated with estimation activities of the part-whole relationship, fol-
lowed by “direct comparisons” and finally “indirect comparisons” (according to Freuden-
thal’s, 1983, statement, the fraction as a measure is a “comparer” that favors “direct com-
parisons” between two objects or “indirect comparisons” between two objects, such com-
parisons are provided by a third object or measurement instrument). Regarding indirect com-
parisons, at first, the measurement instrument was not conventional (for example, a paper 
strip, a ribbon or a lace) but soon after it became a conventional measurement unit (meter, 
kilo, liter, kilogram or time units). In all cases, the fraction came up as a result of the process 
carried out.  

As an example to illustrate the aforementioned, we present one of the first activities of Delia’s 
didactic proposal, which consists in distributing the water contained in a jar, into smaller and 
different sized containers, so as to favor an estimation of the liquid hold in each container, 
expressed as a fraction of the total amount of water in the jar. Basically, this activity allows 
the estimation of different fractions from the total amount of liquid, which can be compared 
and ordered a posteriori from a concrete situation in which students may manipulate objects 
to foster comprehension.  

Although Delia’s performance in this research’s phase was mainly focused on the teaching 
session design and her proposal will be systematically applied in the future, this did not stop 
her from trying out the teaching activities programmed with the fifth grade students. Through 
these preliminary experiences she could improve the design and redirect her course.  
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In general, if we compare these results with those of the research’s previous phase (that in 
which Delia had proved a strong dependence on official teaching books, Secretaría de Educa-
ción Pública, 1994, 2002a, 2002b, thus showing a poor and highly mechanized professional 
practice) we can recognize a clear progress in her teaching performance, through the appear-
ance of autonomy and creativity signs. Despite these advances in her professional practice, 
some difficulties still appear when she plans her fraction lessons, but we deal with this in the 
next section.  

 

3.4  The results of the interviews 
In the dialogue developed during the interviews, the most important questions we posed to 
Delia were: 1) Why did she choose the fraction as a measure as the approach of the didactic 
design required in the master degree? 2) How did she plan the activities of teaching fractions 
as a measure in the fifth grade? 3) What design-related difficulties did she confront through 
this planning process?  

In the following paragraphs we present a summary of the answers to each question and after-
wards we analyze them.  

1) As mathematical object of her teaching activities programming, Delia chose the fraction 
as a measure because after revising the child’s book (Secretaría de Educación Pública, 
2002b) and the books available for fifth grade teacher (Secretaría de Educación Pública, 1994, 
2002a) she confirmed that the meaning of measure is the most developed of all.  

Regarding the recognition of the main teaching contents, Delia remains subject to the funda-
mental strategies of the official books used in mexican schools (situation we emphasized in 
our research’s previous phase). If she had referred to the fifth grade national teaching program 
(Secretaría de Educación Pública, 1993) she would have highlighted that all meanings of frac-
tion are relevant and, from there, she would have exposed other reasons for her election.  

2) Before initiating the teaching activities design, Delia searched in literature specialized 
on fractions (specifically the readings of the seminar) in order to determine the basic notions 
the students must build on the topic of the fraction as a measure, because as she said: “I had to 
understand by myself what to design in order to bring the child near to those notions”. 

About the planning process as such, Delia commented: “my ideal of design is to begin from 
notions that are common to the students, starting by the estimation so that after, little by little, 
they can become familiar with conventional measurement units by using fractions”. Delia 
related estimation to the part-whole relationship in situations in which conventional meas-
urement units were still not used. She recently introduced the latter (units of weight, capacity, 
length and time) after promoting multiple “direct comparisons” and “indirect comparisons” 
among several objects (according to Freudenthal, 1983). 

Delia also pointed out that a very important part of the planning process was to formulate par-
ticular objectives that allowed organizing each task’s design and that, at the same time, ori-
ented the corresponding construction made by the child. On the other hand, this teacher as-
signed a function to the design, which consists in explaining the teacher’s role as conductor 
and guide of the teaching process.   

Delia emphasized that the teaching activities were designed by her, since she did not take 
them from any of the authors consulted because she would not be proposing something inno-
vative, instead, she would be limiting herself to repeat what has been proposed by others. This 
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situation is of great importance for us because thanks to this production Delia is making 
headway in her professional experience, by having more solid practices loaded with sense.  

3) One of the main difficulties Delia experienced in the didactic design was setting objec-
tives, because through them she intended to establish the notions the students had to build 
regarding the fraction as a measure. We could confirm that, after a refinement process, this 
teacher achieved an appropriate formulation of the final objectives.  

According to Delia, another relevant difficulty of planning lessons was to anticipate when and 
how the teacher should interrogate the children in order to foster reflection and dialogue 
among them. We think that in a future application of the proposal designed, during the next 
phase of the research, Delia will have clearer options for interventions in the class.  

Delia recognized that an obstacle linked to progression and sequence of activities had to do 
with finishing any of them and starting the next activity, without leaving anything unfinished 
or incomplete between them. We think that the fundamental notions this teacher included in 
her design present a reasonable continuity through the whole process.  

The last design-related difficulty Delia recognized was the originality of the planning, accord-
ing to her own point of view. Concerning this, she said that one tends to design from what 
others have already programmed, when what we really need is to create original activities and 
tasks. We interpret her current situation as a remarkable advance, because Delia decided no 
reply existing designs and proved to have done all the planning from her own ideas (a very 
difficult final result of planning process). 

In general, we can say that Delia has overcome most of the difficulties she had previously 
identified. We suppose that the remaining limitations will be overcome in the near future, 
when this fifth grade teacher makes a systematic application of her didactic proposal in her 
class, which will allow her to decide the optimal conditions to develop her design in the class-
room.   

Nevertheless, what is interesting is that Delia’s recognitions may be a remarkable contribution 
for other teachers, since she provides a critical explanation regarding the location of obstacles 
when planning fraction lessons. 

 

4  Conclusions 
Delia evolved from a period defined by a profound dependence on official educational books 
and characterized by a lack of personal teaching initiatives, to the current planning phase in 
which she procured to develop an original design for teaching fraction as a measure in the 
fifth grade of primary school. Such achievements were possible thanks to a careful revision of 
literature specialized in fractions and a continual critical reflection on her teaching practice 
(all of this, in the master degree seminar she joined). 

Delia’s didactic proposal was supported on an initial process in which the student developed 
estimations of the part-whole relationship, followed by “direct and indirect comparisons” 
among several objects that facilitated the introduction of some conventional measurement 
units (specifically capacity, length, weight and time units), associated to the use of fractions.  

Within the task of planning the lessons, Delia recognized several difficulties linked to carry-
ing out the design: achieving an appropriate setting of objectives for the tasks programmed, 
foreseeing suitable interventions by the teacher in the contemplated teaching process, appro-
priately following the different didactic activities composing the proposal, and being original 
for formulating diverse situations that constituted the design. Delia has already overcome 
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most of the difficulties described, but there are still some others remaining that will perhaps 
disappear in the next stage of application of her teaching proposal for a fifth grade class.  
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This study builds on previous research showing that primary school pupils over-rely 
on proportional methods when solving non-proportional missing-value word prob-
lems. It is hypothesized that when the numbers in word problems form integer ratios, 
this will stimulate pupils to apply proportional methods, even if this is inappropriate. 
It is furthermore expected that the effect will diminish from grade 4 to 6 (with pupils’ 
age and proportional reasoning experience). The results confirm both hypotheses.  
 
Keywords: illusion of linearity, ratio and proportion, missing-value problems, 
number structures 
 

 
1  Theoretical and empirical background 
Contemporary math education curricula consider as an important goal that pupils can model and 
solve real-world problem situations. Traditionally, mathematical modelling and applied problem 
solving are taught in primary school through word problems (Verschaffel, Greer, & De Corte, 
2000). However, during the last decade, it has been shown that pupils start to perceive word prob-
lem solving as a puzzle-like activity with little grounding in the real world. One of the problems is 
that pupils can often successfully use superficial cues to decide which operations are required to 
solve word problems in textbooks or tests. Arguably, this does not lead to a disposition to dis-
criminate between problems that can and cannot be modelled and solved by means of (a set of) 
straightforward arithmetical operations, but rather to a tendency to cope with all problems in a 
stereotyped and superficial way.  

A clear example of such a ‘corrupted’ modelling process is pupils’ tendency to over-use the pro-
portional model. Because of its wide applicability in mathematics and science, proportional rea-
soning is a major topic in primary and secondary math education. Typically, from 3rd or 4th grade 
on, pupils are increasingly confronted with missing-value proportionality problems (in which 
three numbers are given and a fourth is asked). Studies indicate that pupils associate such word 
problems with the proportionality scheme, even when it does not appropriately model the problem 
situation (De Bock, Verschaffel, & Janssens, 2002). For example, several studies (see Verschaffel 
et al., 2000) found that more than 90% of 10-12-year olds answer “170 seconds” to the following 
item: “John’s best time to run 100 metres is 17 seconds. How long will it take him to run 1 kilo-
metre?” Another well-documented case relates to 12-16-year old pupils’ tendency to give propor-
tional answers to geometry problems like “Farmer Gus needs 8 hours to fertilise a square pas-
ture with sides of 200 metres. How much time will he approximately need to fertilise a square 
pasture with sides of 600 metres?” (answering “24 hours” in this case) (De Bock et al., 2002; 
Modestou, Gagatsis, & Pitta-Pantazi, 2004). But also upper secondary and even university stu-
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dents over-use proportionality in various domains like probability (Van Dooren, De Bock, Depa-
epe, Janssens, & Verschaffel, 2003) or calculus (Esteley, Villarreal, & Alagia, 2004).  

In a recent study (Van Dooren, De Bock, Hessels, Janssens, & Verschaffel, 2005), we at-
tempted to determine when the tendency to routinely apply proportional methods originates, 
and how it develops with pupils’ increasing age and educational experience. For this purpose, 
we analysed large numbers of 3rd to 8th graders’ solutions to various proportional and non-
proportional arithmetic problems. An example of a proportional problem used in that study is: 
“In the shop, 4 packs of pencils cost 8 euro. The teacher wants to buy 24 packs. How much 
does she have to pay?” An example of a non-proportional problem is “Ellen and Kim are 
running around a track. They run equally fast, but Ellen started later. When Ellen has run 5 
rounds, Kim has run 15 rounds. When Ellen has run 30 rounds, how many has Kim run?” 
(proportional answer: 5 × 3 = 15 rounds, so 30 × 3 = 90 rounds, correct answer: 5 + 10 = 15 
rounds, so 30 + 10 = 40 rounds). We found that the number of correct answers on the propor-
tional problems considerably increased with age: from 53% correct answers in 3rd grade to 
93% in 8th grade. Most learning gains were made between 3rd and 5th grade. But we also found 
that, as expected, the tendency to over-use proportional methods initially developed in parallel 
with pupils’ emerging proportional reasoning skills. In 3rd grade, 30% of all non-proportional 
problems were answered proportionally, and this increased considerably until 51% in 5th 
grade (with a decrease thereafter to 22% in 8th grade). We concluded that pupils – at the mo-
ment when they acquire proportional reasoning skills as a result of their training in solving 
‘typical’ proportionality problems – tend to overgeneralise proportional methods and learn to 
apply them on the basis of superficial problem characteristics, like the missing-value formula-
tion of word problems.   

 

2  Proportional reasoning: how numbers affect solutions 
Despite the evidence for the over-use of proportional methods in various mathematical domains 
as documented and analysed by research worldwide, there is one – possibly important – issue that 
has been largely overlooked in that research so far: the nature of the numbers in the non-
proportional problems, and the possible impact of these numbers on pupils’ tendency to use pro-
portional methods to these problems.  

The issue can be clarified by considering the literature on proportional reasoning. A frequently 
reported error on missing-value proportionality tasks (e.g., Noelting, 1980; Hart, 1984; Karplus, 
Pulos, & Stage, 1983) is the so-called ‘constant difference’ or ‘additive’ strategy. In this strategy, 
the relationship within the ratios is computed by subtracting one term from a second, and then the 
difference is applied to the other ratio (instead of considering the multiplicative relationship). For 
example, “Mixture A has 2 oranges for 6 parts of water. Mixture B tastes the same, and it has 10 
oranges. This is 10 – 2 = 8 oranges more, so it needs 6 + 8 = 14 parts of water”. The most promi-
nent explanation for this error is that it is a kind of ‘fall-back’ strategy (especially for less skilled 
proportional reasoners) to deal with proportionality problems with non-integer ratios, like in the 
problem “One mixture has 2 oranges to 7 parts of water. Another mixture tastes the same and has 
5 oranges. How many parts of water does it have?” (See, e.g., Karplus et al., 1983, who call this 
the ‘fraction avoidance syndrome’). 

In sum, correct reasoning on proportional (missing-value) tasks sometimes is affected by the na-
ture of the numbers. Particularly less skilled proportional reasoners perform worse if ratios in pro-
portional problems are non-integer. The claim underlying the present study is that this finding also 
applies to the use of proportional methods to solve non-proportional problems. The non-
proportional problems in many of the above-mentioned studies (e.g., De Bock et al., 2002; Van 
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Dooren et al., 2003, 2005; Verschaffel et al., 
2000) contained ‘easy’ numbers: Both the 
internal and the external ratio were integer, so 
although the problems had no proportional 
structure, the given numbers somehow invited 
pupils to conduct proportional calculations. 
Linchevski, Olivier, Sasman, and Liebenberg 
(1998) found some indications that such inte-
ger ratios could ‘trigger’ unwarranted proportional reasoning (an error they call the ‘proportional 
multiplication error’), but they did not systematically test this hypothesis. They concluded that “it 
remains a question for further research to establish whether an approach with non-seductive num-
bers will prevent children from making the multiplication error” (p. 222). In other words, while 
non-integer ratios cause more errors on proportional problems, they may have an opposite impact 
in non-proportional problems, as pupils may be less inclined to over-use proportional methods 
when confronted with non-integer ratios. The goal of the present paper is to test this hypothesis, 
and in this way, to gain further insight in the determinants of pupils’ tendency to over-use propor-
tional methods. 

 

3  Method 
508 4th, 5th and 6th graders from 5 randomly chosen Flemish primary schools participated in this 
study. They received a test containing 8 missing-value word problems presented in random order. 
The problems were identical to those used by Van Dooren et al. (2005). The design of the test is 
shown in Table 1 and examples of word problems are given in the left column of Table 2. The 
test contained one type of proportional problems (for which proportional strategies provide 
the correct answer) and 3 types of non-proportional problems (for which another strategy 
must be applied to find the correct answer). The 3 types of non-proportional problems had 
different mathematical models underlying them: additive, constant and affine (i.e., a model of 
the form f(x) = ax + b). For each category, 2 items were included.  

Central to this study was that the numbers in the word problems were experimentally manipu-
lated, as clarified in Table 2. The manipulation was such that when focussing on the ratios be-
tween the numbers, one ends up either with integer (I) ratios or with non-integer (N) ratios. This 
manipulation led to 4 different versions of each item: 

- II-version: external ratio (a/b) integer and internal ratio (a/c) integer 
- NI-version: external ratio (a/b) non-integer but internal ratio (a/c) integer  

- IN-version: external ratio (a/b) integer but internal ratio (a/c) non-integer 

- NN-version: external ratio (a/b) non-integer and internal ratio (a/c) non-integer 

For example, the II-version of the additive (AD) word problem in Table 2 was: 

Ellen and Kim are running around a track. They run equally fast but Ellen started later. 
When Ellen has run 16 rounds, Kim has run 32 rounds. When Ellen has run 48 rounds, 
how many rounds has Kim run?  

 

A correct reasoning for this II-version is to focus on the (constant) difference between the num-
bers: Kim is initially running 16 rounds ahead of Ellen. This remains the same, so when Ellen has 
48 rounds, Kim has 48 + 16 = 64 rounds. When reasoning proportionally here (which is inade 

 Item I Item II 

Proportional   (PR) 1 2 
Non-proportional 
       Additive (AD) 

 
3 

 
4 

       Constant (CO) 5 6 
        Affine (AF) 7 8 

Table 1: Design of test items 
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quate, of course), one needs to focus on the ratios between the numbers: either on the external 
ratio a/b (initially, Kim has twice as many rounds as Ellen (32/16), so when Ellen has 48 rounds, 
Kim has 48 × 2 = 96 rounds), or on the internal ratio a/c (at the end, Ellen has 3 times as many 
rounds as initially (48/16), so by that time, Kim has 32× 3 = 96 rounds). For the NN-version of 
the same word problem, the correct approach is comparably easy (only the constant difference to 
work with differs). Proportional reasoning, however, is considerably more complex here, because 
both the internal and external ratio are non-integer: The multiplicative ‘jump’ from 16 to 24 is far 
less evident than that from 16 to 32, but for a skilled proportional reasoner, it is still feasible. Rea-
soning proportionally for the NN-version might be, for example: initially, Kim has 3/2 times as 
many rounds as Ellen, so when Ellen has run 36 rounds, Kim has run 36 × 3/2 = 54 rounds.  

 

The tests were manipulated so that – at a random basis – 2 of the 8 word problems were in the 
II-version, 2 in the NI-version, 2 in the IN-version and 2 in the NN-version. Pupils’ answers 
to the problems were classified as either correct (C, correct answer was given), proportional 
error (P, proportional strategy applied to a non-proportional item) or other error (O, another 
solution procedure was followed). 

 
4  Hypotheses 
Due to space restrictions, we limit ourselves to comparing the ‘extreme’ versions of the propor-
tional and non-proportional items, i.e., the II- and NN-versions with, respectively, both (internal 
and external) ratios integer and no ratios integer. 

Numbers and solutions for each version a Example of  
word problem  II NI IN NN 

PR
 In the shop, a packs of pencils cost b euro. 

The teacher wants to buy c packs. How 
much does she have to pay? 

  9    27 
 18   C: 54 

  9   24 
 18  C: 48 

  9   27 
  12  C: 36 

  9   24 
  12 C: 32 

A
D

 

Ellen and Kim are running around a track. 
They run equally fast but Ellen started later. 
When Ellen has run a rounds, Kim has run b 
rounds. 
When Ellen has run c rounds, how many has 
Kim run? 

 16   32 
 48   C: 64 
        P: 96  

  16   24 
  48  C: 56 
        P: 72 

  16   32 
  36   C: 52 
         P: 72  

  16   24 
  36   C: 44 
         P: 54  

C
O

 

A group of a musicians plays a piece of mu-
sic in b minutes.  
Another group of c musicians will play the 
same piece of music. How long will it take 
this group to play it? 

  25   75 
  50  C: 75 
       P: 150  

  25   40 
  50  C: 40 
        P: 80 

  25   75 
  35 C: 75 
       P: 105  

  25   40 
  35  C:  40 
        P: 56  

A
F 

The locomotive of a train is 12b m long.  
If there are a carriages connected to the lo-
como-tive, the train is b m long in total.  
If there would be c carriages connected to the 
locomotive, how long would the train be? 

  4    44 
  8    C: 76 
        P: 88  

  4   42 
  8   C: 74 
       P: 84  

  4   44 
  10  C: 92 
       P: 110  

  4   42 
  10 C: 90 
       P: 105  

a Numbers are schematically represented as   a   b 
                                                                        c   x (C: correct solution, P: proportional solution) 
b  For the NI and NN-version, this value was 10 
Table 2: Examples of word problems and manipulation of numbers in the II-, NI-, IN-, and NN-

versions 
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A first set of hypotheses relates to pupils’ performances on the proportional problems. Based on 
the literature on proportional reasoning mentioned above, we expect that proportional problems 
with non-integer ratios (NN-version) will cause more errors (i.e., less correct (C) answers) than 
proportional problems with integer ratios (II-version) (HYP 1A). Additionally, we anticipate that 
this effect will be stronger in younger, less experienced proportional reasoners, so we predict that 
the different performance on the II- and NN-versions will be most pronounced in 4th grade, and 
that it will gradually diminish through 5th and 6th grade (HYP 1B). 

The second set of hypotheses deals with the non-proportional word problems. As argued above, 
we expect that problems with non-integer ratios (NN-version) will elicit less unwarranted propor-
tional (P) answers than problems with integer ratios (II-version) (HYP 2A). We expect that par-
ticularly for the additive items (AD), the decrease in P-answers will result in more correct (C) 
answers – because the ‘additive’ strategy that pupils often erroneously apply to non-integer pro-
portional problems is exactly the correct strategy for AD-items –, whereas for the constant (CO) 
and affine (AF) items, the decrease in P-answers might as well result in more other errors (O-
answers) (HYP 2B). Finally, as for the proportional items, we expect that differences in the num-
ber of P-answers on the NN- and II-versions of the non-proportional items will be the strongest in 
the 4th graders, and will gradually diminish through 5th and 6th grade (HYP 2C). 

 

5  Main results 
Table 3 shows the percentage of correct an-
swers to the proportional problems. As ex-
pected (HYP 1A), the NN-versions of the 
proportional problems elicited less correct 
answers (56.8%) than the II-versions 
(82.1%). A repeated measures logistic re-
gression analysis showed that this difference 
was significant, as there was a main effect of 
‘number type’, χ²(1, N = 508) = 52.51, p < .0001. 

The analysis also reveals a ‘number type’ × ‘grade’ interaction effect, χ²(2, N = 508) = 166.59, p 
< .0001. In line with HYP 1B, the difference between the II- and NN-version was very strong in 
4th grade (65.2% correct answers to the II-version and only 23.6% on the NN-version), less strong 
but still significant in 5th grade (with 86.3% and 63.8% correct answers, respectively), and not 
significantly different in 6th grade (96.4% and 85.5% correct answers, respectively).  

In Table 4 we have split up the results for the 3 different types of non-proportional problems. 

 4th grade 5th grade 6th grade Total 

II 65.2 86.3 96.4 82.1 

NN 23.6 63.8 85.5 56.8 

Table 3: % correct answers on the proportional 
problems in the II- and NN-version 

  4th grade 5th grade 6th grade Total 
  C P O C P O C P O C P O 

II 57.3 23.6 19.1 48.8 35.0 16.2 48.1 30.1 21.7 51.6 29.3 19.0

A
D

 

NN 80.9 0.0 19.1 68.8 12.5 18.8 68.7 25.3 6.0 73.0 12.3 14.7
II 6.9 57.4 35.6 13.6 63.0 23.4 5.7 64.8 30.0 8.6 61.7 29.7

CO
 

NN 17.2 8.1 74.7 12.4 38.3 49.4 6.8 61.3 31.8 12.1 36.0 52.0
II 13.8 54.0 32.2 23.5 54.3 22.2 28.4 61.4 10.2 21.9 56.6 21.5

A
F NN 12.6 12.6 74.7 18.5 38.3 43.2 31.8 52.3 15.9 21.1 34.4 44.5

Table 4: % correct, proportional and other answers  
on the non-proportional problems in the II- and NN- version 
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It shows that the NN-versions elicited considerably less P-answers than the II-versions, and 
this was true for each type of non-proportional problem. For the additive (AD) problems, the 
II-versions elicited 29.3% P-answers, and the NN-versions only 12.3%, χ²(1, N = 508) = 23.41, 
p < .0001. For the constant (CO) items, the II-version elicited 61.7% P-answers vs. 36.0% in the 
NN-version, χ²(1, N = 508) = 34.03, p < .0001. Finally, for the affine (AF) items, percentages 
were 56.6% and 34.4%, respectively, χ²(1, N = 508) = 31.54, p < .0001. So HYP 2A was con-
firmed  
Table 4 suggests that also HYP 2B was confirmed:  

- For the AD-items, as expected, the decrease of P-answers resulted in an increased number 
of C-answers: The II-versions got only 51.6% C-answers whereas the NN-versions got 
73.0%, χ²(1, N = 508) = 24.71, p < .0001, while there was no significant difference in the 
number of O-answers (19.0% and 14.7% respectively). 

- For the CO- and AF-items, the decrease in the number of P-answers led to a significantly 
higher number of O-answers: For the CO-items, there is an increase from 29.7% to 52.0%, 
χ²(1, N = 508) = 25.99, p < .0001, and for the AF-items, the increase is from 21.5% to 44.5%, 
χ²(1, N = 508) = 33.82, p < .0001. No significant differences are found in the number of C-
answers, neither for the CO-items (8.6% and 12.1%), nor for the AF-items (21.9% and 
21.1%).  

Finally, HYP 2C was confirmed too: The differences in the number of P-answers to the NN- 
and II-versions were the largest in the 4th graders. In 5th and especially 6th grade, differences were 
considerably smaller, or even completely gone:  

- AD-items: The ‘number type’ × ‘grade’ interaction effect for P-answers, χ²(2, N = 508) = 
25.19, p = .0003, indicates that 4th graders gave significantly more P-answers to the II-variant 
(23.6%) than to the NN-variant (0.0%). The difference was still present in 5th grade (35.0% 
vs. 12.5%), but 6th graders gave almost equal numbers of P-answers to the II- and NN-variant 
(30.1% vs. 25.3%).  

- CO-items: A similar ‘number type’ × ‘grade’ interaction effect was found, χ²(2, N = 508) = 
40.60, p < .0001: In 4th grade, the II-variant elicited much more P-answers (57.4%) than the 
NN-variant (8.1%). In 5th grade the difference was smaller but still significant (63.0% vs. 
38.3%), but in 6th grade, the difference had disappeared (with 64.8% and 61.3% P-answers, 
respectively).  

- AF-items: Again, a ‘number type’ × ‘grade’ interaction effect, χ²(2, N = 508) = 32.83, p < 
.0001, showing a large difference in P-answers in 4th grade (54.0% on the II-variant vs. 
12.6% on the NN-variant), a smaller difference in 5th grade (54.3% vs. 38.3%), and a non-
significant difference in 6th grade (61.4% vs. 52.3%).    

 

6  Conclusions and discussion 
Earlier studies convincingly indicated that pupils of various ages tend to apply proportional 
methods to solve various kinds of missing-value word problems, even when this is not appro-
priate. Remarkably, the problems in these studies always comprised ‘easy’ numbers (i.e., the 
internal and external ratio were integer). Some researchers have argued that this may have 
‘triggered’ unwarranted proportional reasoning. The current study explicitly addressed this 
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claim by experimentally manipulating the integer or non-integer character of the ratios in the 
word problems.  

The results on the proportional problems replicated those reported in the proportional reasoning 
literature: Problems with non-integer ratios elicited less correct answers than variants with integer 
ratios. Moreover, as expected, this effect was particularly strong in 4th grade, while it became less 
influential in 5th and especially 6th grade.  

With respect to the non-proportional problems, our findings confirmed the hypothesis that pupils 
are less inclined to over-use proportional methods when the given numbers do not form integer 
ratios. Also in line with our expectations, the decrease of unwarranted proportional answers re-
sulted in better performances on problems with an additive structure, as the ‘additive strategy’ – 
which is often erroneously applied on non-integer proportional problems – is correct for solving 
this kind of word problems. For constant and affine word problems the decrease in proportional 
answers did not result in better performances. Instead, pupils started to commit more other errors. 
Finally, we also found the expected interaction effect: 4th graders were particularly sensitive to the 
presence of non-integer ratios in non-proportional problems, whereas 5th and especially 6th graders 
were hardly or not affected by this task characteristic.  

Although the scope of the present study was microscopic, it has some important broader theoreti-
cal, methodological and practical implications. Theoretically, it further documents the variety of 
superficial cues pupils rely on while doing word problems (Sowder, 1988): Not only problem 
formulations or key words, but also particular number combinations can be associated with cer-
tain solution methods (here, proportional methods). This association moreover interacts with pu-
pils’ mathematical knowledge: For more experienced proportional reasoners, a missing-value 
format seems a ‘sufficient condition’ to apply proportionality, whereas for less experienced pupils 
the ‘necessary condition’ is that the numbers must have an integer multiplicative structure. Meth-
odologically, our study warns against the assessment of the over-use of proportionality merely 
using problems whose numbers have an integer multiplicative structure (like, e.g., in Van Dooren 
et al., 2005). Nevertheless, this warning only seems to hold for the assessment of younger, less 
experienced proportional reasoners. Practically, our results suggest, that the classroom teaching of 
proportionality might benefit from explicitly discussing the criteria that pupils use (or do not use) 
when deciding on the appropriateness of proportional solution methods. 

 

References 
De Bock, D., Verschaffel, L., & Janssens, D. (2002). The effects of different problem presen-

tations and formulations on the illusion of linearity in secondary school students. 
Mathematical Thinking and Learning, 4, 65–89. 

Esteley, C., Villarreal, M., & Alagia, H. (2004). Extending linear models to non-linear con-
texts: An in-depth study about two university students’ mathematical productions. In 
M. J. Høines & A. B. Fuglestad (Eds.), Proceedings of the 28th PME Conference (Vol. 
2, pp. 343–350). Bergen, Norway. 

Hart, K. (1984). Ratio: Children’s strategies and errors. Windsor, UK: NFER Nelson. 

Karplus, R., Pulos, S., & Stage, E. (1983). Proportional reasoning of early adolescents. In R. 
Lesh & M. Landau (Eds.), Acquisition of mathematical concepts and processes (pp. 
45–89). New York: Academic Press. 



Van Dooren, De Bock, Evers, & Verschaffel 
 

 

64 

Linchevski, L., Olivier, A., Sasman, M., & Liebenberg, R (1998). Moments of conflict and 
moments of conviction in generalising. In A. Olivier & K. Newstead (Eds.), Proceed-
ings of the 22nd PME Conference (Vol. 3, pp. 215–222). Stellenbosch, South Africa. 

Modestou, M., Gagatsis, A., & Pitta-Pantazi, D. (2004). Students’ improper proportional rea-
soning: The case of area and volume of rectangular figures. In M. J. Høines & A. B. 
Fuglestad (Eds.), Proceedings of the 28th PME Conference (Vol. 3, pp. 345–352). Ber-
gen, Norway. 

Noelting, G. (1980). The development of proportional reasoning and the ratio concept. Part I: 
The differentiation of stages. Educational Studies in Mathematics, 11(3), 217–253. 

Sowder, L. (1988). Children’s solutions of story problems. Journal of Mathematical Behavior, 
7, 227–238. 

Van Dooren, W., De Bock, D., Depaepe, F., Janssens, D., & Verschaffel, L. (2003) The illu-
sion of linearity: Expanding the evidence towards probabilistic reasoning. Educational 
Studies in Mathematics, 53, 113–138. 

Van Dooren, W., De Bock, D., Hessels, A., Janssens, D., & Verschaffel, L. (2005). Not every-
thing is proportional: Effects of age and problem type on propensities for overgener-
alization. Cognition and Instruction, 23(1), 57–86. 

Verschaffel, L., Greer, B., & De Corte, E. (2000). Making sense of word problems. Lisse: 
Swets & Zeitlinger. 

 



 

Developing Multiplication 
 

Fátima Mendes 
Escola Superior de Educação 

Instituto Politécnico de Setúbal, Portugal 
Email: mfmendes@ese.ips.pt 

 
Elvira Ferreira 

Escola Superior de Educação de Torres Novas 
Email: ebaferreira@mail.telepac.pt 

 
The research project “Developing number sense: curricular demands and per-
spectives”1 studies the development of number sense in children from 5 to 11 
years old. The project team included classroom teachers and researchers that de-
veloped and experimented tasks and task chain that intended to foster number 
sense.  
This paper focuses on one of the project case studies. This case study analyses the 
implementation in a 2nd grade class (7-8 years old) of a task chain related with 
multiplication. We will center the discussion on the strategies used by children in 
one particular task.  
 
Keywords: number sense, primary education, constructing multiplication, multi-
plication strategies. 

 
 

1  Introduction 
The project “Developing number sense: curricular demands and perspectives (DSN) was de-
veloped from January 2005 to December 2007 and its main objective was to study number 
sense development with children from 5 to 11 years old. Curricular development and teach-
ers’ professional practice were the other themes studied in the context of the project.  

There is a great consensus that, in today’s world, all pupils must understand more than basic 
skills related with number and operations. They need to have a global understanding, labeled 
in literature as number sense that includes many aspects related with deep understanding of 
numbers and operations. 

The project team discussed the meaning that different authors give to the expression number 
sense. We adopted the one used by McIntosh, Reys & Reys (1992) which considers that num-
ber sense comprehends: 

- Knowledge and facility with numbers, witch includes multiple representations of num-
bers, recognizing the relative and absolute magnitudes of numbers, composing and de-
composing numbers and selecting and using benchmarks. 

- Knowledge and facility with operations, witch includes the understanding of the effects 
of operations on numbers, the understanding and the use of the operations properties 
and their relationships. 

                                                 
1 This Project provided funds for FCT with reference POCI/CED/59680/2004.  
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- Applying knowledge of and facility with numbers and operations to computational set-
tings, which includes the understanding to make connections between the context of a 
situation and the computation procedures, requiring knowledge of multiple computa-
tional strategies. 

The project team worked in two intertwined characteristics: curricular development and edu-
cational research. At the curricular level the team developed, experimented in several class-
rooms and reformulated task and task chains. At the educational research level, the team stud-
ied the way children develop number sense in problem solving contexts and the characteris-
tics of the curriculum that promote number sense development (whole numbers, decimals and 
fractions) (Brocardo, 2006). 

During 2007, last year of the Project, the project team analyzed data from the classrooms 
where the task chains where experimented and prepared several case-studies. With the pur-
pose of promoting a discussion of the theme with other teachers and researchers, a final semi-
nar of the project was also organized.  

This paper focus on a case study that analysed a 2nd grade classroom. A more detailed 
description of this study is in the final project report and still hasn’t been published.  

 

2  The task chain – Forming groups, The loft wall and Chewing 
gums 
This chain had 3 tasks and was designed with the objective of developing the understanding 
on multiplication and the use of different calculus strategies related with multiplication. Each 
task chain was developed as a hypothetical learning trajectory in the sense used by Simon 
(1995). 

The tasks of this chain are: Forming groups, The loft wall and Chewing gums (see Appendix 
1). The chosen contexts for these tasks are familiar to children. They try to facilitate the un-
derstanding of the multiplicative structures and the informal use of the multiplication proper-
ties. This option follows Treffers & Buys’ (2001) ideas about relevant contexts and about the 
way they see the learning trajectory of multiplication – from solutions specific to a context to 
a more generalizable solution grounded on models.  

 

2.1  The tasks 
The tasks intended to develop a set of ideas and procedures related multiplication. With the 
task Forming groups children could transform informal multiplication procedures in struc-
tured multiplication procedures, use the relations halves/doubles and informal division proce-
dures. 

The second task The loft wall, also facilitated the transformation of informal multiplication 
procedures in structured multiplication procedures and the use of the relations halves/doubles. 
In addition, children could use the multiples of doubles, decompositions of 50 and 100 and 
the distributive property. 

The third and last task of this chain, Chewing gums, intended to facilitate children to: identify 
and use benchmarks results, relate the different products of the multiplications tables and use 
the distributive property. 
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2.2  The exploration of the task chain in the classroom 
The tasks were explored in a 2nd grade class with 19 pupils, located in a small industrial city. 
The class teacher, Elvira, was a member of the project team. 

The lessons were organized in three parts. In the first one, the teacher presented the tasks and 
clarified the doubts posed by pupils. In the second one, pupils worked alone or in groups on 
the task. During this phase, the teacher encouraged children to keep track of all the strategies 
they used. In the third part, the teacher organized an all class discussion. Different strategies 
and procedures were shared and analyzed. The teacher encouraged children to explain their 
ways of thinking and understand the explanations of the colleagues.  

The teacher decisions had a crucial role in the all class discussion. She selected the order of 
the pupil’s presentations: from the informal to the formal strategies, trying to cover all differ-
ent procedures the children used. She also encouraged pupils to explain in their own words 
how they solved the tasks. 

The classes were videotaped and later on we transcribed the more relevant episodes. The se-
lection of the episodes to be analyzed was organized, task by task, and following the organi-
zation of each lesson. They also illustrated the different strategies used by the pupils and the 
interactions between children and between the teacher. We also analyzed the children’s writ-
ten work. 

In the next section we ilustrate some of the procedures that children used to solve the task 
Forming groups. 

 

3  The procedures that children used to solve the task Forming 
groups 
This task (Appendix 1) facilitated the use of strategies related of multiplication. Most of them 
were informal and not structured. Nevertheless, the different processes used by children show 
differences in the way of thinking and calculating. In the first part of task, we identified four 
different strategies: 

(i) The understanding and the use of 30 as a group, but without being able to add the 
several groups of 30, not understanding when to stop – Íris’s strategy (Figure 1) 

 

 
Figure 1 - Íris’s strategy 

 

(ii) The use of repeated addition of 30, counting the number of times that the 30 was 
repeated – Sara’s strategy (Figure 2). 
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Figure 2 - Sara’s strategy  

(iii) Counting jumps of 30 and related the counting with the results 30, 60, 90, 120. In 
this strategy we can see a multiplicative structure based on proportional reasoning 
– Hugo’s strategy (Figure 3). 

 

 
Figure 3 - Hugo’s strategy 

(iv) The use of division as inverse of multiplication thinking that with 30 sheets we can 
make 1 group, with 60, 2 groups because 2x30=60, with 90 we can make 3 groups 
(packages) because 3x30=90 and with 120 we can make 4 packages because 
4x30=120 – João Pedro’s strategy (Figure 4). 

 

 
Figure 4 - João Pedro’s strategy 

 

The discussion of the others questions was much participated. When the teacher asked And if 
we had form packages of 10 sheets? one pupil answered immediately: 

Pupil:  12, because 10x12 =120 

After organizing written registrations of the 3rd question – And if we had form packages of 20 
sheets? Gonçalo answered: 

Gonçalo: Because it is the double. 

Elvira: The double of what? Yes, there is a double relation. Carolina? 

Carolina: Because it is half. Because 6+6=12. 

Elvira:  And how does it relate with sheets of paper?  

Hugo:  Because the double of 10 is 20. 
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Elvira:  Can someone explain this better? 

Hugo:  Because 20 is the double of 10 and 12 is the half of 6. (He reflects and re-
formulates). Because 12 is the double of 6 e 10 is the double of 20. 

Alunos: 10 is the double of? (Laugh) 

Elvira: If 20 is the double of 10, what is the relation between 10 and 20? 

Alunos: It’s half. 

Elvira: Others strategies? Gonçalo? 

Gonçalo: 5x20=100 and 1x20=20 and 100+20 =120 
Theses pupils are able to use the product 12x10 to solve 6x20, using the relation half/double. 
Gonçalo uses another strategy. He calculates 6x20 using the distributive property – he calcu-
lates 5x20 and 1x20 (known facts) adding the partials products. 

 

4  Final Conclusions 
During the group discussion and by looking at the various answers on the board, we felt that 
there was a development on some of the children, who were able to verbalize a reasoning that 
was slightly more structured and associated with the multiplication procedure. The analysis of 
the different processes used by the children in the first part of the task, presents some evi-
dence of the fact that some of them seem to understand the effects of the addition and multi-
plication procedures and their relations. There were two children who even seemed to under-
stand the relation between the multiplication and division procedures, even though in a mod-
estly structured form. As is mentioned by Beishuizen (2003), an entire work based on num-
bers and their relations further helps pupils with their understanding rather than the premature 
introduction of the algorithms. 

In the second part of the task, although it was only one of the pupils who justified that 120 
sheets allow making 12 packages of 10 sheets, almost everybody else seems to have under-
stood that 10x12=12x10=120. From there, they seem to think using more organized proce-
dures, utilizing the doubles and the halves relating directly to the distributive property of the 
multiplication towards the addition. By justifying their reasoning in this way, there seems to 
be an indication of some knowledge and dexterity in what concerns the multiplication proce-
dure and its properties. There was also another student, Gonçalo, who used this property. 

At least one of the pupils used known products and the 10 factor. It was clear from the discus-
sion, apart from the pupils’ seizing of the multiplicative strategies and a growing understand-
ing of the relations between the numbers, that there was a greater relation between the proc-
esses used and their verbalization.  

Almost every pupil seemed to be aware of the existence of multiple strategies, which was 
aided by the discussion and the confrontation between the different procedures. On the other 
hand, from the strategies used by children, there was a focus on the strongest strategies in 
each situation. By analysing the entire process developed throughout this task, we can say that 
there is some development in terms of the use by some of the pupils of strategies which are 
more structured and formal. 

We seem to be able to say that, the mentioned chain, and particularly the task illustrated in 
this paper, contributed for the children’s development of their number sense, in aspects con-
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cerning the knowledge and facility with the numbers and the addition and multiplication pro-
cedures, as well as with applying that knowledge and dexterity in various calculus situations.  
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Appendix 1: The task chain – Forming groups, The loft wall and 
Chewing gums  

 

Task 1 - Forming groups 
 
The teacher has 128 sheets. She wants forming groups of 30 sheets.  

How many groups can she form? Explain your thinking.  

And if she wants forming packages of 10 sheets? 

And if she wants forming packages of 20 sheets? 

 

Task 2 – The loft wall 
 

Sara’s father wants to catch a loft wall with bookcases.  

The height of each bookcase is 42 cm. 

- Sara’s father has been able to heap up 4 bookcases, up to the roof. 
Which is the height of the wall? 

- And if the height of each bookcase is 21 cm? How many bookcases 
he needs for the same wall?  

- Sara’s father has experimented to put the bookcases with 21 cm of lenght, side by side, and 
he can put 9. Which is the length of the wall? 

 

Task 3 - Chewing gums 
 

Observe the prices of the Chewing gums  

 

Chewing gums Price 

1 20 cents 

2 40 cents 

4 80 cents 

8 160 cents 

 

If you want to buy 5 chewing gums, how much is it? 

And how much is 7 chewing gums? 

And how much is 10 chewing gums? 
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The traditional long division algorithm assumes that users can apply a guess-and-
match type mental process of searching for a maximum that is not greater than the 
dividend at the initial stage of this algorithm. This optimization process requires 
heavy cognitive load on metal calculation on applying rules and regulations that does 
not correlate to life experience of sharing objects. By introducing the special method 
of learning the concept of division, the Partition of Quotient (POQ), we find that it 
can enhance the effectiveness of learning the concept of rate in science, in particular, 
the concept and property of density of an object.   

 
Keywords: division, partition of quotient, rate, density 

 
 
1  Introduction 
How children understanding the concept of rates and ratio, and their difference? Since we 
need an end value of computational result when looking for either quantity, we inevitably 
involve in doing procedural division of two quantities. Zweng (1964) introduced the concept 
of rate to study how well children learned division in contexts that involved the measurement 
and partition interpretations of the operation. It is helpful as children understand and identify 
the two types of division. Conversely, our intention is to investigate if learning effectiveness 
can be enhanced by full understanding of division prior to the learning of the concept of rate 
and ratio in science. Instead of hard memorizing that division of two quantities with different 
units is a rate, and is a ratio for those of same units, we start with the interpretation of division 
traditionally in the following table. That is a modified version of what had been done by 
Leung et al. (2006). 

Traditional Ques-
tion 

Name of 
Approach Example Scientific Inter-

pretation 
Example 

a ÷ b is interpreted 
to mean: “From 
the a objects, how 
many groups of b 

“Measure-
ment” 
(sometimes 
referred to as 

12 divided by 3 
equals 4 because 
the 12 can be 
divided into 4 

Ratio In 400cm =4m 
If 400cm is 
divided into lots 
(m) of 100cm 
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objects can we 
form?” 

“quotition”) lots with 3 ob-
jects in each. 

each, then 4 lots 
can be formed 

a ÷ b is interpreted 
to mean: “If a 
number of objects 
are placed in b 
equal groups, how 
many will there be 
in each group” 

“Partition” 

12 divided by 3 
equals 4 because 
if 12 objects are 
dealt to 3 people 
then each would 
get 4. 

Rate: 
Amount in one 
physical quan-
tity occupied in 
correspondence 
to 1 single unit 
of the other 
quantity 

A string of 
400cm long is 
cut into 4 
shorter string of 
equal length, 
each short 
string will be of 
100cm long 

POQ is simply an alternative algorithm different from the traditional long division algorithm 
on integers. A quotient is made up of one of many additive partitions. In dividing D (divi-
dend) by d (divisor) to get Q (quotient) where all D, Q and d are integers and D = Q×d , we 
can use the modified Distributive Law of division over addition, namely,  

 

( )1 2 3

1 2 3

1 2 3

n

n

n

D d D D D D d
D d D d D d D d
q q q q
Q

÷ = + + + + ÷

= ÷ + ÷ + ÷ + + ÷
= + + + +

=

L

L

L
 

we can deliberately decompose this Q as the fundamental partition: 1,1,1…,1, so as to make 
as many as Q of such 1’s. And sum of all of such 1’s is corresponding to take away the same 
number d from D, repeatedly Q times. The intention is to create the “per unit” sense. And 
each such unit is a partitioned element that will sum up to the whole quotient. 

 

2  Method 
Analogously, in an example of physical quantities in definition of speed, this is a rate. we in-
troduce the meaning of speed by telling that a uniformly moving object travels a certain dis-
tance within a time interval. A bus travels straight for 252 m in 21 seconds. When working on 
the average speed of bus within this interval. We are asking how far the bus runs within 1 
second. Scientifically, we want to know how many m can be occupied by the moving bus in 1 
single second. Projecting this concept to division, we have to divide 252 by 21. In the concept 
of division, we are placing 252 objects into 21 equal groups (they are equal because of con-
stant time interval), and looking for the number of objects in each group. In the light of the 
POQ algorithm of division, we are looking for a partition that each of the elements in the par-
tition is identical. And in the calculation process, we can deliberately set up a one-one corre-
spondence of time (in s) interval to one part (12m) of distance interval. 

 
 
 
 
 
 
 
 
 
 

252 m

21 seconds 

252 m are put evenly into the 
21 equal intervals; an applica-
tion of the concept of partition 
in division12 m
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Generalizing this analogue, the speed will then be 12 m per s. The “per s” refers the occupied 
quantity (distance in m) within 1 single second. Using division concept, the POQ can be de-
liberately performed 12 times when “dividing 252 by 21”, each time contribute an element 1 
to a partition. Each time each of the 21 seconds shares 1 such distance (in m) from the 252m. 
And after 12 rounds of sharing, it can be all shared equally by the 21 seconds. And that is the 
rate in meters per second (m/s). And the school bus runs with a speed of 12 m/s. The diffi-
culty for students to understand lies in the fact that they experience abstract ingredient when 
comparing the two horizontal axes. The abstraction here is the one-to-one correspondence of 
the partitions of two horizontal axes: one is for distance while the other is for time. To a cer-
tain extent the abstraction is embedded in the procedure of evaluating rates as we are compar-
ing two quantities with different units. This concept echoes what Hershkowitz et al(2001) 
have defined the abstraction as “activity of vertically reorganizing previously constructed 
mathematics into a new mathematical structure”(p. 279, Hassan & Mitchelmore 2006). 

Using the same analogue to explain the concept of density to upper primary students, we gen-
eralize it into a cluster of many tiny egg-like capsules where each capsule is snap-open-and-
close that can be filled with many tiny marbles. The analogue here resembles mass of an ob-
ject by the quantity of marbles and each capsule represents a unit capacity that possesses a 
unit volume to contain a certain number of marbles which aggregated to form a sense of mass 
(weight). Each such capsule is the unit volume of that object (cluster). The single marble oc-
cupied in a capsule is an analogue of one single element of the fundamental partition. That is, 
the mass within a unit volume of that object. And by definition, it is the density of the object. 
Figures 1 and 2 show the process of two groups of students on putting marbles, arbitrary 
number of marbles at a time (each marble corresponds to a unit mass) into capsule (unit vol-
ume) under the constraints that they must be equal share eventually and share all the marbles 
without remainder but no restriction on how many times of sharing (picking). Students ex-
perienced this concept of sharing marbles is essentially a special way of division. Hypotheti-
cally, the cluster of the capsules gives a volume of an object, as a whole, which is partitioned 
by equal volume of tiny capsules. And each capsule contains an equal number of partitioned 
marbles representing the mass aggregated to form the whole mass of the object (cluster, see 
Figure 3). 

      
Figure 1 & 2. Sharing of marbles by capsules of equal volume. 

 
In the lesson, teacher showed a cluster and introduced the following dialogue. Teacher 
stressed that by putting equal number of marbles into each and every capsule [sharing by 
POQ method, they just finished the task] is a means to get the density of the cluster. He fur-
ther reinforced that density was not the total mass in the cluster; rather it was the mass per 
(shared by a) unit volume. In the current case, the unit volume is most conveniently visualized 
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as the volume of the individual capsule [the make-up of the 
cluster]. The following dialogue was transcribed: 
 

Teacher:  If the cluster is cut into 2 halves, namely 2 
smaller clusters, will its density be changed? 

Student:   No change. 
Teacher:  Can you explain? 
Student:  Density is a rate. You have mentioned that it 

represents certain amount of stuff [mass] in 
a certain range [space]. So density is a 
concept dealing with “average”, no matter 
how many pieces into which you cut the 
original big cluster, the density of each new 
cluster so produced is not changed 

Teacher:  Let me follow his explanation by putting some numbers in the situation. Sup-
pose the original cluster is made up of 1000 marbles and the number of mar-
bles shared in each capsule is 10. Now, if we disassembly the cluster into its 
make-ups, we will get 1000 marbles and 100 capsules. Make them into 2 
heaps; each heap of materials has 500 marbles and 50 capsules. By sharing the 
500 marbles equally into the capsules via the POQ algorithm, we will at the 
end get some fixed number of marbles in each capsule. And this exactly the 
same number of marbles in the original big cluster. So, the density of the 
smaller clusters is not changed even they were produced by cutting the big 
cluster into 2 halves. 

 
One of the two important properties of density of an object is invariance. The above dialogue 
session supports that a number of students give the correct, feasible solutions since they per-
ceive density as amount of matter per unit volume. That is also invariant. Similarly the 
teacher raised a cluster that is composed of 28 capsules in another class and asked the students 
if there was any change in density if the cluster was cut into 2 halves, each smaller cluster 
consists of 14 capsules. We captured the following: 
 

Teacher:  After being turned into 2 smaller clusters, will the small cluster then has the 
same density as the original big one? 

Student:   No change. 
Teacher:  Please explain. 
Student:  We can take out all the marbles from the 28 eggs [big cluster]. Then divide 

these marbles into 2 heaps. Share 1 heap of marbles equally into the 14 cap-
sules. We finally will produce a new smaller cluster, in which the make-up 
capsules [total 14] will have the same number of marbles as the number of 
marbles as the original, big cluster. Therefore, density of the smaller cluster is 
not changed. 

Teacher:  [you are right] Did you remember the secret [which we mentioned before]? So 
long as each capsule shares the same number of marbles, the density of the 
new cluster is not changed. … if a butter is cut into 2 halves, each half will 
have the same density as before. 

 
The above dialogue session supports that the student provided the correct answer since he 
perceived density adequately as amount of matter per unit volume. 

Figure 3. 
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Figure 6. 

The second property of density is buoyancy in water. To illustrate the floating characteristic 
of an object in terms of density, we demonstrate the floating power of the capsule even 
though it contains heavy marbles (they sink by themselves) in it. This activity demonstrates 
that density of the capsule does not depend on the mass of object alone. We must take the 
volume into account when we compare the density of object with that of water.  

     
Figure 4 & 5. Demonstration of the buoyancy of capsule containing marbles 
 
The students participated in this study are elementary 6 students. The total number in this co-
hort is about 230 and they fall into 7 classes. We used school continuous performances in 
both mathematics and science to determine their initial capability. We treat the average scores 
of each subject as the pre-test score. From the data, the cohort can be divided into 3 groups: 3 
classes in high achievers group; 2 classes in average achievers group and 2 classes in low 
achievers group. In addition, the cohort’s ability in mathematics and science are mirrored. In 
each group, at least one class belongs to regular (control) class and one class belongs to ex-
perimental group. We separately test the effectiveness of their understanding of the concept of 
density through learning it by POQ (experimental group) against the control group in learning 
it through traditional introduction of the concept of rate: the division of two quantities with 
different units. All lessons are a single period lasting 45 minutes in duration; the post-test was 
finished in 20 minutes and was administered at the end of the 2nd lesson. We expect that the 
POQ method will also apply to teaching students to identify the difference between rates and 
ratios. 

 

3  Results and Discussion 
We make use of the POQ method of division to point out that the meaning of density is basi-
cally a division in a way that a quantity (mass represented by marbles) is shared by each of 
the element (1 unit volume represented 
by each capsule)of such fundamental 
partition. It is an equal sharing a fixed 
quantity. The concept of sharing is 
essential ingredient in understanding 
of the concept of division (Squire & 
Bryant 2002), which helps to mentally 
manipulate the concept of equal 
partitioned distance occupied by a unit 
time (speed) or partitioned mass occupied 
by a unit volume (density).  
In a test to assess if students can 
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transfer the concept of the rates learnt from the understanding of speed (linear) and density 
(cubic) to the concept of rate in area (planar). We ask them if the property flat (apartment) 
price in $8000 per square foot a rate. Many students can tell the correct answer that flat rate is 
a rate. One of them showed us this picture (Figure 6) that each square foot is a partition of the 
whole floor area where each such small partition is worth $8000. That is typically a concept 
of rate. 

In another question we ask the students the property about speed 

Q: Student A takes Bus A to travel to school (the distance between Student A’s home 
and school is 3000 m). Student B takes Bus B to travel to school (the distance be-
tween Student B’s home and school is 2000 m). Bus A runs at a faster speed than 
Bus B. Will Student A will arrive earlier at school than Student B does? 

 
 
 
 
 
 
 
 
 
A student responded with a 
“No” by illustrating with a 
picture to show the 
partition of distance per 
unit time represented by the 
symbol “→”at where he 
wanted to tell that the two 
buses traveled two 
partitioned distance of 
1500m (by bus A) each and 
1000m (by bus B) each respectively. They arrived at the school at the same time.  
 
In a test we asked the students 
to explain why a big ship can 
float on water while a big 
metal block (density larger 
than water) will sink in con-
trast. The experimental group 
students mostly explained that 
the ship is a lot bigger (in 
size). The density will be of 
big different. 
 
 
The illustrative answer (Figure 9) given by one student shows that he knows to compare the 
density of the ship with water in order to determine if the ship can float or not. He wants to 
show that hollow trunk of the ship makes its density lesser than 1 (he made mistake too). But 

School

Bus A Bus B 

3000 m 2000 m 

Figure 7. 

Figure 8.

Figure 9. 
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unfortunately he fails to indicates that the hollow portion make its volume larger and hence 
smaller density. However he can basically grasp the concept and property of density. 

Quantitatively, we selected the 4 simple questions in the post test to see how well students 
understood interrelationship among the three quantities, namely, D(density), M(mass) and 
V(volume) in the definition of density . They were required to find the third quantity if the 
other two were given. The answer for each question was marked and normalized to compare 
with the score in the pre test (continuous assessment in school terms). The preliminary results 
in a post test show that experimental students in the median and low achievers have better 
understanding of the concept of rates and density while there is no difference between two 
groups of high achievers (Table 1). Graph 1 shows the qualitative difference between the 
paired achievers. 

 
Graph 1.  Simple qualitative comparison of students’ performance on the pretest and posttest 

  for the three pairs of achievers.    
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Table 1. Students’ performance on the pretest and posttest of high, medium and low achievers 
    Control Group Experimental Group 

   Test Items M SD M SD 
High Control  (n=33) Pre-test (100 %) 85.8 6.1 84.7 7.1 
 Exp    (n=36) Post-test (100 %) 58.8 22.6 59.5 26.5 
Medium Control  (n=34) Pre-test (100 %) 75.0 7.4 75.7 7.8 
 Exp   (n=32) Post-test (100 %) 40.0 22.4 48.8 22.3 
Low Control  (n=29) Pre-test (100 %) 67.6 11.4 67.5 7.8 
 Exp   (n=28) Post-test (100 %) 34.5 27.1 47.3 50.2 

 

4  Conclusion 
To distinguish rate from ratio by simply defining it that rate is a division of two quantities 
with different units is not sufficient. At least it does not tell that the amount of some quantity 
occupied correspondingly by a unit amount of the other quantity. The partition sense of divi-
sion, which composed of the concept of equal sharing without remainder, does not exhibit in 
the traditional way of definition. Students can hardly grasp the meaning of 2 kg of spherical 
plastic ball, for example, occupied by 0.75cubic meters. They simply mechanically divide 
these two numbers if the density of the plastic ball is required because the numeric appearance 
of the 0.75 does not tell the sense of “per cubic unit”. Though learners from both approaches 
need to compute the numerical value of density eventually, the concept of partition is essen-
tial for learners for easy transfer of knowledge and concept in identifying a similar physical 
quantity like flat price per square foot is a rate while 12.5 short-sight students per 100 sample 
group of students in a city is simply a ratio. Even though the word “per” appears in both de-
scriptions. 

We do not intend to say that we should revise the curriculum of teaching the concept of rate 
and ratio via the new long division algorithm. Rather, introducing the concept of partition of 
quotient is so helpful that it can play a complementary role in enhancing students’ learning 
effectiveness in this topic. In this piece of pilot study, we believe that the experimental set up 
can be improved for the sake of collecting valid and reliable data. We do not demonstrate the 
full statistic analysis of the results, such as inference tests. It will be done in the next step of 
the investigation. 
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The focus of this paper is to report on a study that assess students’ knowledge and 
understanding of integers before and after the intervention teaching using the ‘jar 
model’. The paper will concentrate on the kind of errors students make in learn-
ing integers and how the ‘jar model’ was supposed to enhance students’ under-
standing instead of memorising rules like ‘negative times negative gives positive’ 
etc. Analyses from interviews and performance data of the pre and post-
intervention stage revealed that most of the students can understand the jar model 
and thus improvement can be seen from the result of the post-test.  
 
Keywords: integers, integers operations, jar model, positive and negative num-
bers 

 
 
1  Introduction 
Students’ conceptions of the nature of mathematics and their approaches to studying mathe-
matics have long been matters of interest to mathematics education researchers, largely be-
cause both are believed to have an impact on the quality of students’ mathematics learning. 
As is the case in many other parts of the world, educators in Brunei Darussalam are concerned 
that too many secondary school students pass mathematics examinations without really un-
derstanding the subject. Often, students appear to believe that mathematics is a mechanical, 
rule-bound discipline (Noridah, 1999).  

Studies done by Zurina (2003), Khoo (2001), Lim (2000) and Noridah (1999) indicated that 
the secondary school students in Brunei Darussalam had been taught by methods which em-
phasize drill and practice with the focus on preparation for the test or examination. Most 
teachers felt the pressure to move through the mathematics syllabuses as quickly as possible, 
in order to have the extra time to prepare students for tests and examinations. From the teach-
ers’ perspective, this meant that little time is available to attempt to teach for conceptual un-
derstanding. For them, teaching for understanding was fine and ideal, but examinations are 
more crucial. The reason for this is because teachers are usually judged by the examination 
results and good teachers are usually those who produced good results. On this view, many 
teachers teach the students for the sake of passing examinations instead of emphasizing un-
derstanding of concepts.  
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Based on one of the researcher’s experience of teaching integers in lower secondary govern-
ment school, it was found that many students were facing difficulties in understanding the 
topic of integers. Through informal observations and conversations, many secondary mathe-
matics teachers in Brunei Darussalam have expressed their concern over students’ poor per-
formances on integers. The teachers indicated that although they recognise that many of their 
students do not like integers and struggle with integers’ questions, they do not know what to 
do to improve the situation. They tend to say that their students get confused with the signs 
and operations on integers although they had attempted to explain about it several times. The 
current number line model that is popular among the teachers is also confusing to the stu-
dents. The main problems in teaching for understanding of negative numbers and operations 
are in developing effective strategies for adding, subtracting, multiplying and dividing inte-
gers. Some students do not even know how to determine whether one integer is greater than, 
less than or equal to another integer. 

This paper will further describe other studies done to enhance better understanding of integers 
in other countries, the methodology employed in the research, the findings from the pre-test 
(the kinds of errors common among the students) and the result of teaching using the jar 
model on students’ understanding of the subject.

 

2  Literature review 
2.1 Research on Teaching and Learning of Integers 
Many articles and research papers were found to describe studies in which teachers and stu-
dents used different strategies in the teaching and learning of integers. Developing effective 
teaching strategies of integers has been ongoing in many parts of the world. In order to make 
students understand integers we have to extend their knowledge, help them make logical con-
nections with what they know and use appropriate strategies in learning. Papers have been 
written on the teaching and learning of integers by Jenny (2002), Dehaene (1997), Hayes 
(1999), Hart et al (1981), Freudenthal (1973) etc.. 

Hayes (1996) conducted research on the effectiveness of the most common strategies for 
negative number concepts and operations at three secondary schools involving students in 
years seven, eight and nine. The experimental teaching groups used reversible two centimeter 
square tiles labeled [+1], [–1] and [0]. The major difference in strategy between the experi-
mental and control groups was that the experimental groups started with the tiles. By the end 
of the topic the experimental group students had also used the number line in context of order-
ing and 2D point plotting. The outcomes of the study, in terms of student short and long term 
performance have been compared with those in classes taught by more commonly used 
strategies. The experimental approach seems to have facilitated better performances for aver-
age ability level students. For more able mathematics students, the topic does not appear to be 
difficult and such students, in both experimental and control groups indicated good levels of 
general topic mastery. Hayes (1996) found that the use of these tiles led to a significant im-
provement on a range of test items, including examples requiring the use of brackets, mixed 
operations and order of operations. It also developed a more confident and secure knowledge 
of the rules and showed fewer tendencies to confuse sign rules across operations. This study 
coincides with that of Linchenvski and Williams (1988) involves teaching negative numbers 
using teaching aids, that is, by using dice with +3, +2, +1, –3, –2 and –1 painted on them. 
They found that the students soon started to use cancellation and compensation strategies. 
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Chinese Yin/Yang is one of the examples used by Egan (1997) for teaching and learning of 
directed number which is quite common in Chinese society. A similar approach has also been 
observed in a Taiwan book for mathematics educators. Teachers are usually advised to ask 
students to produce several +1 and –1 figures, so that they can play with the figures to explore 
the principle of addition and subtraction, then multiplication and division (for the purpose of 
demonstrating division, some teachers may prefer the use of +4 and –4 instead). This design 
of teaching and learning activities for directed number is not only effective, but it has its im-
plication on the use of metaphor and students’ development of Mythic Understanding (Tang, 
2003). The Chinese “Tai ji” (or Yin-yan) symbol consists of two parts: light (yin) and shadow 
(yan). The light part represents warm and bright sides of the nature while the shadow part 
represents the cold and dark sides. Thus, the light part can be treated as ‘positive’ and the 
shadow part ‘negative’. These two parts, when grouped together, have a meaning of balance 
and harmony. If we use +1 to replace light and –1 to replace shadow (see Fig. ii), the whole 
diagram now represents the number zero. Teachers can produce several +1 and –1 figures 
using thick stiff cardboard and use them to explain the principle of addition and subtraction of 
directed numbers.  

Angela (2003) did a study on teaching negative numbers using multi-link cubes with a Year 7 
mixed ability group. In her study she found that the students had a physical representation of a 
negative number but this did not help them to understand what a negative number is. It did not 
help them when it came to understanding why subtracting a negative number would make the 
answer bigger. However, the cubes could help students calculate a correct answer but they 
had no reasoning to help them know that the answer was correct. The multi-link cubes only 
help students as a counting aid, and once the aid was removed they struggled to answer the 
questions set. She then furthered her study on a Year 8 group with the top ability group. 
Though these students had been taught the ‘rules of negative numbers’ the previous year, they 
still made common errors by exchanging two negative signs for one negative sign rather than 
a positive sign. In her study, she chose the context of hot and cold water as she felt that the 
context of temperature would be something ‘real’ to all students. Though some students were 
still confused by the context, it seemed that they were all confident with the temperature idea. 
Most of the students could answer the questions correctly. This indicated that they had a much 
more thorough understanding through the use of the temperature context. 

It is important for teachers to assess the appropriate ways to teach negative numbers and 
evaluate the student’s understandings. Apart from using mathematical resources to teach, it is 
also important to teach mathematics with a focus on number sense. These will encourage stu-
dents to become problem solvers in a wide variety of situations and view mathematics as a 
discipline in which thinking is important.  

 

2.2 The ’Jar Model’ 
The method resembling the jar model has been used by Battista (1983) and Paul Griffifth 
(2002) for teaching integers. In fact, similar models were advocated and can be found at web-
sites such as Homeschool Math (2003) and Learning Math (2002). Basically, this method is 
not very different from other methods that had been used by some of the researchers men-
tioned in the literature review (Jenny, 2002; Tang, 2003; Hayes, 1996; Egan, 1997). However, 
effort was taken to consider students’ cultural situation and social context. Please refer to Ap-
pendix 1 for the some explanation about the jar model.  
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3  The Study 
The main purpose of this study being undertaken was to investigate the knowledge and under-
standing of students in Form 1 classes in one government school in Brunei Darussalam on the 
topic of integers and to investigate if the ’jar model’ enhance students’ understanding in the 
topic of integers. 

 
3.1  The Research Questions 
The following research questions guide the study: 

1. What pre-existing knowledge do the students generally have about integers? 

2. To what extent does the strategy used in the intervention enhance the students’ per-
formances on operations with integers? 

The first research question examined students’ prior knowledge including the errors and mis-
conceptions that they hold. These include confusion of rules and instrumental understanding 
of integers itself. 

The second research question examined students’ understanding of integers after the teaching 
of integers and its operations using the ’jar model’. 

 
3.2  Methodology 
The present study is an exploratory study which used a multiple perspectives research design. 
A combination of qualitative and quantitative methods were used to gather data. The sample 
of the study consisted of Form 1 (grade 7) students in one government secondary school in 
Brunei. The results of this study presented in this paper were obtained from the analysis of the 
following data: 

1. Document analysis; 

2. Analysis of performance data from pencil-and paper pre-test; 

3. Interview data analysis – both teachers and students;  

4. Analysis of performance data from pencil-and paper post-test; 

 

3.2.1 Pencil and paper test 
The Pencil–and–paper test was used to generate pre-test and post-test performance data. The 
test was administered to all students in July 2006 and September 2006. The Integers test was 
piloted to test for validity and reliability earlier. There were thirty questions in the Integers 
Test and they involved questions on each of the four operations of integers (categorised ac-
cordingly – positive plus positive, positive minus negative ect.) including the combined op-
erations of integers. Students were categorised into three categories of achievers: high achiev-
ers, medium achievers and low achievers. 

 

3.2.2 Interview data Analysis 

Class teachers of the classes involved in the study were individually interviewed after the pre-
test. The interviews with teachers were audio-taped and analysed. During these interviews, 
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the researcher asked the teachers about the teaching strategies used in their classes, their pref-
erences on which teaching strategies they feel are effective in teaching integers and how they 
handle students who are still struggling with integers. Each teacher was asked to indicate to 
what extent most of their students understood the topic integers and on which operations their 
students had the most problems with. 

Twelve students (four high, four medium and four low achievers based on pre-test result), 
were individually interviewed in July 2006, immediately after the administration of the pre-
test. The same twelve students were interviewed again in September 2006 immediately after 
the post-test. The interviews were tape-recorded. These interviews were conducted to deter-
mine the difficulties and the types of errors made by the students. The procedures for inter-
view follows closely the suggestions given by Cohen, Manion and Morrison (2000), to 
achieve greater validity and to minimise the amount of bias as much as possible.  

 
4  Difficulties in learning integers 
The difficulties faced by the students in learning integers are due to the confusion between 
binary operations of plus and minus and the unary operators which are positive and negative. 
This confusion is due also to many texts using the same symbols for both plus and positive, 
and minus and negative. Students always ask ‘Why do they have to learn negative numbers 
and what’s the use of negative numbers in our everyday life?’ Students often have nothing to 
relate to, apart from a set of rules governing the combination of negative and positive num-
bers for the operations. They cannot make sense of the multiplication of a negative number 
with a negative number and why the product of negative numbers becomes positive. 

Teachers also find it easier to teach the rules than to teach for meaning and hope the students’ 
understanding will develop as they operate successfully with the relatively ‘simple rules’. 
Some students find it difficult to establish the rules for themselves; therefore they just rely on 
remembering them instead of understanding. This can lead to rote learning where students 
only know how to solve the problems of integers but do not understand why it happens in 
such a way. Baroody and Ginsburg (1990) described that understanding in mathematics learn-
ing involves knowing the concepts and principles related to the procedures being used and 
making meaningful connections between prior knowledge and the knowledge units being 
learnt. According to Hart et al (1981) the difficulty is that this stems from the need to work 
consistently with such rules without recourse to an external, concrete referent and it is this 
that most secondary school students seem unable to do.  

 

4.1  Some common misunderstandings of integers 
Students find integers and operations on integers difficult. The fact that –27 is less than –12 is 
contrary to the students’ experience with (positive) whole numbers. Understanding this re-
quires the students to build mental images and models that allow them to visualize these new 
comparisons and relationships.  

The operation of subtraction, especially subtracting a negative, is difficult for students to 
make sense of. The idea of subtracting a negative number which gives the same result as add-
ing the opposite of the negative number, is difficult for many students to comprehend. When 
students have little understanding of subtraction of negative numbers, they may end up just 
blindly following the rules. Study by Hart et al (1981) found that when students are faced 
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with an expression like  +8 – –6 many of them use the rule to work out the appropriate sign 
and then operate with it (in this case adding 8 and 6) ignoring the starting point. This works in 
some cases but not in others (such as –2 – –5, where students would give 7 as the answer). 
This is exactly the kind of error made by the students investigated in this study. Hayes (1999) 
found that slight misapplications of the rules, such as applying ‘two negatives make a posi-
tive’ to –4 + –2 to get +6, are common and are also common among our students. 

The pre-teaching interview data suggested that students responded to integers tasks in a to-
tally mechanical way, with little or no understanding of why they did what they did. Often, 
students did not know which algorithms they needed to use. Some of the students who did 
know the algorithms could not identify which algorithm should be associated with which type 
of problem. It seems that students had not learnt the required concepts and skills properly 
when they were in primary school and in Form 1 (February 2006). 

About 35 per cent of the students made errors when adding two negative numbers together to 
get a positive. An example would be –2 + (–6) = +8 as identified by Hayes (1999) earlier. 
About 40 per cent of the students made the error when adding a negative number with a posi-
tive number. For example,–2 + 6 = –8 was a common answer, where the students multiplied 
the negative sign of 2 and the addition operation to get negative and added the numbers. 
About 41.6 per cent of the students in the study made the error in question –6 + 2 giving the 
answer as –8 and about 47.7 per cent of the students made an error of –6 + 6 giving the an-
swer as –12. All the errors were made despite the reteaching using the jar model. 

For the subtraction of integers, the students in the study also made the same type of error, as 
the students in the study done by Hart et al (1981) with an expression like 2 – (–6). Many stu-
dents use the rule to work with the sign, that is, minus and negative become plus and then 
adding the number. Most of the students ignore the starting sign. It works in this question but 
not in other questions such as –2 – (–6), where the students would give 8 as the answer. In 
particular, about 22.1 per cent of the students in the study commited the mistake. About 40.3 
per cent of the students made an error of mixing up the rules of addition and subtraction such 
as –6 – 2 = –4, where students took the sign of 6 since it is larger than 2 and subtracted 6 and 
2. About 41.6 per cent of the students made the error when subtracting two negative integers 
together to get a negative result. An example would be –6 – (–6) = –12. Students knew that 
when there were two negatives it will become a positive, that is, –6 + 6. Since there is one 
minus sign the answer is negative. The students were confused with the rule of multiplication, 
that is positive and negative become negative and added the numbers to get –12. About 34.2 
per cent of the students made an error on question 2 – (–6) = –4. Students took only one of the 
negative signs instead of changing it to become positive.  

For the multiplication of integers, about 36.9 per cent of the students made the error to multi-
ply two negative numbers together to get a negative such as question –2 ×  –2 = –4. The stu-
dents had misunderstood some part of the rule, that is, the negative sign after multiplication 
operation was ignored, so –2 ×  2 = –4. The same error was made on the division of integers 
where about 28.8 per cent of the students made the error of dividing two negative numbers to 
become a negative such as in question –6÷–2 = –3. The students misunderstood the rule as 
the same in multiplication, that is, a negative sign after a division operation was ignored.  

About 35.6 per cent of the students made the error on question 4 – (–2) + 6, where students 
just take one of the negative signs to make 4 –2 + 6 = 8. This misconception was made by the 
students in the subtraction of integers. For question (–4 + 6) ÷  –2, about 39.6 per cent of the 
students made the error of giving the answer as 5. The students got –4 + 6 as –10, then di-
vided it by –2. The students seemed to mix up the rules of addition and multiplication. About 
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38.9 per cent of the students made the error on question 4 ×  (–2) – (–6) by giving the answer 
as 2. The students made the error of 4 ×  (–2) = 8. Then 8 – (–6) = 2 where the students only 
took one of the negative signs thinking that they were just the same. The same error was made 
by the students on the multiplication and subtraction of integers. For question –4 ×  (2 – 6)  ÷  
8, about 45.6 per cent of the students made the error by working out –4 ×  –4 ÷  8 = –2. Stu-
dents made the same error in the multiplication of integers where multiplying two negatives 
become negative. 

 
5  Results 
Performances of the Form 1 students on the pre- and post-teaching test were compared using 
quantitative procedures. The “test performance” vantage point of Form 1 indicated that the 
pre-test mean score was 16.50 (out of possible 30) on the integers test. Analyses of the post-
teaching data revealed that the mean score of Form 1 students on the integers test was higher 
than at the pre-teaching stage. The post-test mean score of 21.26 revealed that the students’ 
performances were significantly enhanced. Using the paired t-test, the researcher confirmed 
that the students’ achievements in the five classes are all significantly different. Teaching ef-
fects and history was confounded here as well. The post test was given one month after the 
pre-test. The students were possibly encouraged and motivated to study harder for the test 
which could have reflected in the improved performances. 

Table 1 also shows that all classes scored significantly higher after the intervention using the 
jar mode. 

 
Post- Test Pre-Test Class 

Mean 
 

SD Mean  
 

SD 
Number of  
Students 

t-test Sig. 

1A 24.92 4.09 20.16 4.60 25 5.170 .000 
1B 24.00 4.20 17.58 4.12 36 9.262 .000 
1C 21.00 4.44 16.26 4.21 23 4.519 .000 
1D 18.25 5.24 15.72 4.79 32 3.009 .005 
1E 18.58 4.23 13.48 3.19 33 6.901 .000 

Overall 21.26 5.21 16.50 4.67 149 12.46 .000 
*p < .05 

Table 1: Pre and Post-Test Mean Total Score, Standard Deviation, and t-test Results for Stu-
dents from each of the five classes involved in the study  

As for the qualitative data, most of the 12 students that was interviewed seemed to have a 
slightly better grasp at the post-teaching stage than at the pre-teaching stage of which rules 
needed to be used to answer questions. The interviewee also tended to make fewer skills ma-
nipulation errors than at the pre-teaching stage. However, at the post-teaching stage some in-
terviewees did not have a firm grasp of the jar model concept especially on multiplication and 
division of integers using the jar model. Post-teaching interviews revealed that the high 
achiever students managed to answer almost all the 11 questions asked during the interview 
compared with the pre-teaching interview. Some interviewees were still confused when to 
remove or add the positive/negative chips from the jar. 

Post-teaching interviews had also shown that most of the medium and low achieving students 
struggled to remember steps on the jar model that had been taught to them. They could not 
remember when to remove or add the positive and negative chips from the jar especially the 
subtraction, multiplication and division of integers using the jar model. That was probably 
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because the students may have had to try to learn too many separate skills by rote. This is 
similar to data reported in Noridah’s (1999), Lim’s (2000), Khoo’s (2001), Zurina’s (2003) 
and Sarina’s (2004) dissertations which under examination pressure, most Bruneian students 
in secondary schools could not remember which skills should be associated with which prob-
lems. 

 

6  Discussion and Conclusion 
The jar method seemed to generate a better understanding of operations on integers. However, 
this model can still be improved because students seemed to be confused with some aspects of 
the model. The model fails to explain situations when a negative number is multiplied by a 
negative number and when a positive number is divided by a negative number. In cases like 
this some other explanation need to be given other model need to be combined with the jar 
model. However, from the study carried out, we can confidently say that the jar model is less 
confusing than the number line model and created better understanding in the students com-
pared to the rules and analogies that teachers are fond of using before.  
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Appendix 1: The Jar Model 
 
The jar model is the model used to teach the students in this study when intervention was  

 

implemented. The jar model used positive and negative counters,           and        , for students to work 
with. The same idea had been used by Battista (1983) for teaching integers. Paul Griffith (2002) also 
advocated a model resembling the jar model. In fact similar models can be found mentioned at many 
websites (for example, Homeschool Math and Learning Math). 

Example:  +4 – (–2). You want to remove 2 negative chips from the jar. But there are only 4 positive 
chips in the jar. To remove 2 negative chips from the jar, we have to add 2 positive/negative pairs into 
the jar. It is illustrated below: 

 

 

 

 

 

       

 

 

 

 

 

Now you can take away 2 negative chips and you are left with +6 chips. 

 

                  ∴  +4 – (–2) = +6 

 

 

 

+ –
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We show a modern version of an old “dot algorithm” for column addition of whole 
numbers and decimals. This new “dot” algorithm is at least as efficient as the “stan-
dard” written algorithm currently taught in schools, but has 2 advantages: It is easier 
to use, especially for adding more than two numbers; and it is not “mechanical”. Users 
can develop their own strategies based on patterns of digits in 1 column, making com-
putation faster and easier. This makes the new algorithm more challenging and interest-
ing. Theoretical underpinnings of the algorithm, historical data, and comments of peo-
ple who have already learned it will be given. 
 
Keywords: algorithm, addition, whole numbers, decimals 

 
 
1  Introduction 
Children in elementary school are at some point supposed to master the “standard” algorithm 
for adding a list of whole numbers (or even decimals). According to Carpenter et al. (1998), 
99% of children start using a standard algorithm for some problems in addition by the end of 
third grade. And learning the standard algorithm is one of the focal points in NCTM’s “Cur-
ricular Focal Points” (2006) for the second grade. But even when the skill requirements are 
very low, some students never completely master the algorithm, and others soon forget the 
procedure.  

By the “standard” algorithm, we mean a right-to-left column algorithm in which each column 
is processed in top-down fashion, and the “carry” is written at the top of the next column to 
the left. 

The use of this algorithm in the schools in the USA is illustrated by the most complex addi-
tion exercise presented in a typical arithmetic textbook in different years: 

Year  Author    
1810 J. Joyce      sixteen 5-digit numbers 
1901 E. E. White     nine 6-digit numbers 
1934 L. J. Brueckner et al. nine 3-digit numbers 
1990  S. Hake & J. Saxon  seven 3-digit numbers 
    (4th edition) 

   

The fault that many children do not master written addition seems to lie in the standard algo-
rithm, which was designed six hundred years ago for merchants, bankers, and other profes-
sionals who needed an algorithm that provided not only a result but also a permanent business 
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record. The standard algorithm does not fulfil modern educational or practical needs. (See 
Van de Walle, 2005). 

In this paper we present a new algorithm, which is a modification of an old “dot” algorithm 
(See: J. Gough 1798, I. A. Clark 1846) by showing some generic examples using whole num-
bers. This new algorithm is as efficient as the standard one but is better aligned with current 
pedagogy. We compare the new algorithm to the standard algorithm using the following crite-
ria: 

1. The content of long-term memory. (This is a set of facts that need to be recalled.) 
2. Modularity. (This is a partition of an algorithm into subparts that can be executed sepa-
rately.)  
3. Properties of individual modules. (This includes the number of operations and their com-
plexity, the load on working memory, and the number of times working memory is updated.) 
4. Flexibility. (This entails choices that a person makes during the process of computation.) 
The new algorithm is better according to each of the four criteria.   

 

2  Addition algorithm 
One-digit numbers:    1  2  3  4  5  6  7  8  9 
Their complements to 10:  9  8  7  6  5  4  3  2  1 
 

When we add a column of numbers, instead of adding the next digit, we may subtract its 
complement and mark this digit to indicate that we need to carry 1 to the next column. Later 
we count the number of marks and write it at the top of the next column to the left as a carry. 

Example 1  

     2  ← carry 
     1  2 
     2  7 
     4  8• 
     6•1 
             + 7•3• 
         2  2  1          
Remark: 

An algorithm can be flexible (the technical term is “non-deterministic”). This means that the 
algorithm doesn’t specify all the steps, but provides the user with well-defined options.  

Historical remark: 

Writing dots next to a digit when the sum exceeds ten was used in the past. The only differ-
ences are that at that time the addition of a column of digits was carried out bottom-up and not 
top down, and that the number carried (here the number of dots in a column) was not written 
down but remembered. 

Here is an example from Practical Arithmetick by John Gough (1798). 

       7•4•3• 6 
       2  1  7  9• 
       5•0  8• 7• 
       6  8  5• 3 
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       2•4• 6  4• 
          +  7  2  8• 7 
          3  1  3  0  6 
 

The next example is from a business arithmetic by I. A. Clark (1846). 

       6•4• 
       7 6 
       9•8• 
       5•2 
       3 3• 
    + 2 7 
                3 5 0 
 

In this algorithm the user is allowed to add the numbers in one column in any order. But in 
order to avoid errors the user has to mark or cross out any digit that has been used.  

We look again at Example 1 above. 

Example 1 again  

       2 
       1  2 
       2  7• 
       4  8• 
       6•1 
                         + 7• 3  
                              2  2  1 
 

2.1  Modules, strategies, and macros 
The modules of an algorithm are the parts of it that can be processed independently. In this 
algorithm, processing any list of numbers in one column that add to zero is a module. 

In example 1 we had four modules.   

Processing each of the following pairs: 
  2 and 8 in the right column,     1  2 
  3 and 7 in the right column,                2  7• 
  4 and 6 in the left column, and           4  8• 
  1, 2, and 7 in the left column,     6• 1 
is a module.                    +7• 3 
                          2  2  1 
 

You may take a break after executing a module and resume your computation any time later, 
so even very long computations do not require a long attention span. 

The table below shows the frequencies of occurrence of modules. 

 Length of the sequence   Percentage (rounded to .01%) of 
 of digits 1 through 9               sequences of this length 
 (no zeroes) to be added:  which contain modules: 
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     2        11.11% 
     3        39.64% 
     4        79.52% 
     5        98.33% 
     6        99.94% 
     7        100.00% 
     8        100.00% 
     9        100.00% 
 

Every sequence of length 10 contains a module.  

(Computed by Michael Main, University of Colorado, Boulder.) 

 

Example 2 

Typical long column written as a line:   7 3 9 6 2 7 7 9 1 2 2 5 7 6 8 
   Modules:       (1)              7 3 
                (2)                                9 1 
                         (3)                                         2          8 
                (4)                    6 2             2        
                (5)                 9       7 7                7 
     Not in a module:                                            5    6 
 

2.2  Strategies 
A strategy in a flexible algorithm consists of additional rules which put restrictions on avail-
able options. Some strategies lead to good performance, and some may lead to poor perform-
ance. Using only the top-down order of addition of digits in a column is an example of an 
inefficient strategy. But different users may have different preferences, so the concept of a 
“good strategy” is subjective. In this algorithm the number of different strategies (good and 
bad) is practically unlimited. 

 

2.3  Macros 
Macro-operations (macros) are groups of operations that a user executes as one unit. Consider 
the following example: 

    1 
    1 
    1 
    1 
               + 6 
 

One person may compute it as follows: 1, 2, 3, 4, minus 4, 0. This person uses 3 additions and 
1 subtraction (cancellation). Another person may see at a glance that this group of digits 
forms a module, cross out the 1’s and mark 6. The main difference between experts and nov-
ices executing a flexible algorithm is in their use of macros. 
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Remark: 

Using macros in order to speed up addition is not new. See for example their treatment in a 
business arithmetic book (Sutton & Lennes) published in 1938. 

 

3  Comparison of the new algorithm to the standard addition al-
gorithm 
3.1  Content of long-term memory 
In order to use either algorithm (standard or new), children need to master some addition 
“facts”. They have to be able to recall these facts rather effortlessly and not to rely on external 
help such as counting on their fingers. The standard algorithm requires mastery of 81 facts 
belonging to 45 families. For example, 6 + 7 = 13 and 7 + 6 = 13 are two facts in the same 
family.  

Remark: 

A family of addition and subtraction facts is described by one equality, a + b = c, which con-
tains the following facts (described also by equalities): 

 a + b = c, b + a = c, c – a = b, and c – b = a. 

The new algorithm also requires 81 addition and subtraction facts, but they belong to only 25 
families, because they are restricted to pairs of numbers whose sum is smaller than or equal to 
ten. For example, the following four facts:  

2 + 6 = 8, 6 + 2 = 8, 8 – 2 = 6, and 8 – 6 = 2,  

belong to the same family. So users of the new algorithm need to know fewer equalities (25 
instead of 45), but they need to use them more flexibly. 

 

3.2  Modularity 
The standard algorithm requires that the computation of a whole column be done in one pass 
without interruption, because partial sums have to be remembered. So its difficulty increases 
when more numbers are added.  

The new algorithm requires only that individual modules be computed without interruption. 
The most common modules contain only two digits, and modules containing more than five 
digits are very rare, so the difficulty doesn’t increase when more numbers are added. The only 
increase in difficulty is due to counting the marks. When we add 5 numbers, we need only to 
count up to 4 marks per column. When we add 20 numbers, we may need to count almost 20 
marks. 

 

3.3  Properties of modules 
In the standard algorithm, adding digits in one column (containing n non-zero digits) requires 
n – 1 additions of one-digit numbers to one- or two-digit numbers (n – 2 of them being held in 
memory). The memory load counted in bits is the logarithm to the base two of the number of 
possible items to be remembered. When we add n numbers, the maximal memory load is 
log2(n) + log2(10). So when we add from 2, 3, …, 10 numbers, the memory load increases 
from 4.3 to 6.6 bits. When we process a module containing m digits, we make m – 2 additions 
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and subtractions of one-digit numbers and one cancellation (for example 5 – 5 is a cancella-
tion). The memory load during the processing of one module is at most log2(10) ≈ 3.3. So 
when we add n numbers, the maximum memory load is max(log2(n), log2(10)), where log2(n) 
is due to counting marks. Therefore when we add 2, 3, …,10 numbers, the memory load is at 
most 3.3 bits. We say that working memory is updated when we add to or subtract from the 
number that is held in memory and we have to remember the result. In the standard algorithm, 
the addition of n non-zero digits in a column requires n – 2 memory updates. Processing a 
module containing m numbers requires m – 3 updates. 

We illustrate these comparisons with the following example. 

     Standard algorithm:        New algorithm: 
                           Think:            Module numbers: 
          5  5      5•          3 
          7  12      7•  1 
          4  16               4           3 
          3  19      3   1 
          4  23      4       2 
          1  24      1            3 
          6  30      6•     2  
                              + 8  38           + 8  
                               3 8                 3 8 
 

Additions and subtractions: 7        1 
Cancellations:      0        3 
Memory updates:     6        0 
 

4  Flexibility 
The standard algorithm is rigid. It prescribes every step of the computation. Therefore after it 
is mastered it can be performed automatically without any thought. This was a very important 
and positive feature for accountants and other human computers, who spent hours and hours 
doing sums. But at present, computers, and not humans, should do all mindless calculations.  

The new algorithm requires planning and reflection in finding and choosing which modules to 
process. The same task can be done in many different ways, some of them better than others.  
This opens the door to comparisons and discussions. Because modules are very small units, 
and computation can be interrupted after each module, discussions can be carried out even 
during computation. 

 

5  Experimental data 
When we implement an algorithm on a computer, we can theoretically predict its perform-
ance. When we teach children or adults an algorithm, we cannot theoretically predict how 
well they will be able to use it.  

We taught this algorithm to 19 students (3 practicing teachers and 16 future teachers) taking a 
class in elementary mathematics at New Mexico State University in fall semester 2007. They 
practiced it for approximately 15 minutes per week for fourteen weeks. 
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In an anonymous questionnaire given at the end of the course, 18 students said that they liked 
the new algorithm and one said that she didn’t. The main reasons for liking it are illustrated 
by the following comments. 

“It is easy and it is challenging …” 

“So much easier and interesting.” 

“Makes adding fun and fast!” 

“I think it allows you to add easier.” 

We also observed that 15 out of the 19 students who learned this algorithm started using it in 
other tasks that required adding several whole numbers or decimals.   

We plan to continue to collect experimental data from both adults and children. 
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1  Introduction 
Teaching of the arithmetic of the integers looks easy, there are some basic rules for comput-
ing: commutative law, distributive law, sign laws (i.e.: ( ) baba .. −=− , ( ) baba .. =−− ). But to 
really teach someone to compute with this numbers in age of 12 is a bit difficult. There are 
many of researches pointed on the problem of integers (Hejny, Slavíčková…), there were 
some recommendations for new way of teaching this theme, but we can not see any results in 
the real life. Teachers still use the method who can find in the textbooks. 

 

2  Theoretical frameworks 
We choose the Theory of Constructivism as a base theory for our research. We decide to use 
software, which is based on this theory (it means that this software is not for training existing 
knowledge). In general point of view the Constructivism is a set of assumptions about the 
nature of human learning that guide constructivist learning theories and methods of educa-
tion. Constructivism values developmentally appropriate teacher-supported learning that is 
initiated and directed by the student. (Wikipedia, 2007). The main idea of the Constructivism 
is that peoples’ knowledge is not give, but it is constructed. We can construct our knowledge 
in the situation with new impulses by reflecting on our experiences. The idea of Constructiv-
ism is not new. In 300 BC, Socrates (470-399BC) engaged his learners by asking questions 
(know as the Socratic or dialectic method). He often insisted that he really knew nothing, but 
his questioning skills allowed others to learn by self-generated understanding. (Clark, 2000). 

There are many historical figures that influence the constructivism – Jean Piaget, John 
Dewey, Ernst von Glasersfeld, Lev Vygotsky, Jerome Bruner and others. There are many 
types of constructivism – social, radical, physical, evolutionary, post-modern, information-
processing constructivism. Ernest (1995) points out that there are as many varieties of con-
structivism as there are researchers. Psychologist Ernst von Glasersfeld whose thinking has 
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been profoundly influenced by the theories of Piaget, is typically associated with radical con-
structivism - radical because it breaks conventions and develops a theory of knowledge in 
which knowledge does not reflect an objective, ontological reality but exclusively an ordering 
and organization of a world constituted by our experience (von Glasersfeld, 1984) 

Recent mathematics curriculum documents, such as the NCTM Standards (2000), as well as 
researchers in mathematics education, value mathematical investigation based on the peda-
gogical belief that students learn best when they are given the opportunity to actively con-
struct personal understandings of mathematical concepts and relationships. (Mousoulides & 
Philippou, 2005) 

There is a lot of researcher all over the world (Uhlířová – Czech Republic, Andersen M. – 
Denmark, Mousoulides N., Philippou G. – Cyprus, Hegedus S. – USA, Sanne A. - Norway 
and others). The results are very similar, almost the same: better and deeper understanding. 
When the pupils were asked why they do thing so, the answers were: ‘because you can easily 
get series of graphs’, ’you do not stuck in technical details’,‘it is easy to see examples’ or 
‘you do not have to remember a lot of techniques but may concentrate on the ideas’ (Ander-
sen M., 2005). The effort is the same – find good tool – software which can be use on the 
mathematics lessons to make pupils/students knowledge more durable, deeper and to motivate 
students to explore, formulate hypotheses and verify them (for example – graph of the sinus 
function: dcbxay ++= )sin(.  what happened, if we change parameter a, and what if we 
change other parameters?) 

The situation in Slovakia is going to be good, but there are still not enough teachers who use 
computer in their lessons, there is not enough technical support for teaching with computer. 
The software for primary school is mostly in English, so preparing micro worlds and small 
programs for smaller children is (in my opinion) good way how to start use the computer on 
the primary schools and prepare pupils better for secondary school and what is more impor-
tant – prepare them for real life. 

 

3  Methodology of research 
We use a method of real experiment to verify if the teaching arithmetic of integers by using of 
the computer is (more) effective. It means that we choose 3 classes on lower secondary school 
to teach them and compare their results. The criterion for choosing the groups was that the 
classes should be at the statistical same level of knowledge in mathematics. There was not a 
significant difference between chosen classes before the experiment. 

We planned the lessons for each class according to curriculum and the school plan for 
mathematics on 6th grade. We decide that 1st group will not use computer at all, 2nd group will 
use computer only for practising and 3rd group will use computer in whole educational proc-
ess. The plan of lessons shows Table 1. 
Table 1 

No. of lesson 1st group 2nd group 3rd group 

1. In the classroom: addition and subtraction of inte-
gers - rules, examples, games 

In the computer room: 
addition and subtraction 

of integers 

2. 
Classroom - practicing 

addition and subtraction 
of the integers 

Computer room - prac-
tising of addition and 

subtraction of the inte-
gers using software 

Classroom - practicing 
addition and subtraction 

of the integers 
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3. Classroom - practicing "longer" exercises in addition and subtraction of the 
integers 

4. Classroom: multiplication of the integers - expla-
nation, rules, practicing 

Computer room: multi-
plication of the integers

5. 
Classroom: multiplica-
tion of the integers - 

practicing 

Computer room: multi-
plication of the integers, 

practicing 

Computer room: multi-
plication of the integers, 

practicing 
6. Classroom - practicing of the addition, subtraction and multiplication 

7. Classroom: division of the integers - explanation, 
rules, analogy and practicing 

Computer room: divi-
sion of the integers 

8. Classroom: practicing 
Computer room: divi-
sion of the integers - 

practicing 

Computer room: divi-
sion of the integers - 

practicing 
9. Classroom: practicing, exceptions, exercises for multiplication and division 

10. 
Classroom: practicing 

of all arithmetical opera-
tion 

Computer room: prac-
ticing all arithmetical 

operation 

Computer room: prac-
ticing all arithmetical 

operation 
11. Classroom: context tasks for using all of the operation 

12. 
Classroom: combination of all arithmetical operation  

(exercises like: ( ) ( ) =+−++− 5.6819:1825  ) 

13. Classroom: repetition 
Computer room: repeti-

tion, making context 
exercises 

Computer room: repeti-
tion, making context 

exercises 
14. Classroom: context exercises, mathematical crossword and puzzles 
15. Classroom: context exercises, mathematical crossword and puzzles 
16. Classroom: repetition 
17. The final test 

 

We used also didactical games (definition in Vankúš, 2006) on the lessons in classroom. The 
games were based on the team work of all pupils, teacher (me) was just a coordinator. The 
pupils were divided into two groups – sellers and customer. They should make ordering, bor-
rowing, selling and counting (it depends on the group) and check if they are in debt or they 
profit. After the 17th lesson we compare results in two ways:  

1. Classrooms between each other – using F-test 

2. Each classroom separately – comparison after 11 month after the experiment, to know 
durability of their knowledge. 

The software we use for experiment was developed as a part of doctoral thesis and is free of 
use. There are to main parts of this software – Teaching (the constructivist part) and Exercise 
(only practising existing knowledge) 

 

4  Descriptions of the Lesson Series 
We would like to deeply describe the lessons with computer in 3rd group. The other two ap-
proaches are common and no important for this paper. 

4.1  Lessons one, two and three 
We start with part Teaching and the Addition and Subtraction. The pupils saw the environ-
ment on the Figure 1. 
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Figure 1 

The environment is very easy to understand and it is also very easy to make some operation. 
At the beginning we gave them 5 minutes to “play with the program” and wrote some notes 
about computing of the program. After this time we asked them for their notes (without com-
mentary) and then started with coordinated activity. 

We started asked question: “Do you know how to have on the store 100 packs? Do it!” Then 
we continue: “There is delivery of 200 packs on the store. How many packs do you have 
now?”, “There are first customers and they ordered 150 packs. How many packs do you have 
now?” We continue with questions like before until we gave them question, when the number 
of packs on the storage was negative. In this moment we made a deal with them: If we don’t 
have packs, we will mark it with sign “-“. And then we start to give them the tasks which re-
sult was mostly negative number. After this activity (computer as the thing, that knows an-
swer and later as the control thing), we start to formulated rules for counting with positive and 
negative numbers. The 2nd and 3rd lessons were in class room. We use output from the previ-
ous lesson to start 2nd lesson. We also use school books to solve simple exercises (addition or 
subtraction of two numbers), on the 3rd lesson we also compute longer exercise (addition and 
subtraction 3 and more numbers). 

 

4.2  Lesson four 
On the fourth lesson we start with multiplying of integers. We use software again. In this time 
we use part Teaching and Multiply positive and negative number. The pupils saw new envi-
ronment, but it was again very easy. (Figure 2) 

 
Figure 2 
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The activity was similar as in the first lesson – pupils start to play with program, then the 
teacher start to asked them question like: “What happened if 200 bags should borrow 10 
crones?” After the activity we start to formulate the rules for multiplying numbers with differ-
ent sign. Verifying the rules was by using the program again: Teacher wrote on the black-
board some situation and the pupils start to solve it without computer and after that they “ask 
computer” for correct solution.  

 

4.3  Lesson five and six 
On this lesson we stay in computer room again. We start with multiplication of two negative 
numbers (Part Teaching, Multiply two negative numbers). The environment for the pupils is 
on the Figure 3. There is a sequence of the multiplying positive and negative number with the 
answer, the sequence has an increasing character. The role of pupil is easy – guess what the 
solution of the next multiplying is.  

 
Figure 3 

The pupils worked without coordinator. The role of teacher was only taken care of the pupils. 
After 10 minutes teacher start to ask them question, what they wrote down and why. The an-
swers were correct. So the pupil can write down to their notebooks the other rule for multiply-
ing. On the 6th lessons we were in classroom and compute exercises from school book where 
we practising addition, subtraction and multiplication. 

 

 

 

4.4  Lesson seven 
The teaching of the division of two integers were very easy, not only because of the computer, 
but also because of the pupils reaction after few minutes working with program: “It is same as 
for multiplying!”. So in this lesson we work with 3 environments: Teaching, Division positive 
and negative number, Division two negative numbers and Exercise, Division. Teacher ask 
pupil still question “why?” to make sure that the pupils really understand what are they do 
(that it is not only routine without thinking) 

 

4.5  Lesson eight and nine 
We planed here to practicing division of integers, but we could practice all arithmetical opera-
tion in the part Exercise. The pupils were very good in counting that exercises. After the fin-
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ishing counting and solving exercises in the part Exercise the pupils got reaction of the pro-
gram to their solution and recommendation for entrenching their knowledge, for example 
“Well done”, “Keep training”… So the lesson was very nice – pupils start to talk the teacher, 
that the computer say them that they are clever and it was more that if teacher or someone else 
talk this to them – computer is very clever and make no mistakes, computer is the best in 
mathematic and this “genius person” talk them, that they are good. On 9th lesson, similar as on 
6th lesson, we stayed in the classroom and used school book to practising all arithmetical op-
eration with integers. 

 

4.6  Lessons ten, eleven and twelve 
In this lesson we again practicing and repetitive all arithmetical operation. This lesson was 
combining – computer and blackboard. Pupils solve exercises first in the computer and then 
on the blackboard (other one, not the same). At the beginning: teacher stayed in front of the 
blackboard and ask pupils for the exercise for the multiplying, pupils start with the program 
and tell the teacher, then teacher on the blackboard and the pupils with computer solve that. 
Then first pupil is come to the blackboard and other pupils tell him the exercise, then other 
pupils is going to the blackboard and the other pupils tell him the exercise. The 11th lesson we 
solve context tasks from real life. Some of these tasks were from school book; some of them 
were prepared by the teacher. Most of the pupils had no problem with finding solution even 
more complicated exercises. On the 12th lesson we compute combine exercises from school 
book. Some of the exercises were too difficult for the pupils. It could be because of many 
rules for computing, which were not practising and entrench on the lessons before. 

 

4.7  Lesson thirteenth 
We think that this one was one of the most important lessons. In this lesson pupils run on part 
from the part Exercise and start to develop a context task which can be solved by the exer-
cises (Figure 4) 

 
Figure 4 

The context tasks were easy: “I borrow 2 time 5 crones. How many crowns I owe?” We do 
not find more complicated context task in the solution of the pupils. Some of them just write: 
“dept 5, person 2, how many together?” 
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4.8  Lessons fourteen, fifteen and sixteen 
On these lessons without computer we solve problems which lead to the finding of commuta-
tive law, distributive law and solving longer tasks (for example -3 + (+12) + (-29) - (-17) = 
…..). These lessons were connected to the lessons with computer. We asked pupils questions 
in the program context, it means, if in the program was Ferdo bug, in the question was Ferdo 
and has a similar problem like in the program (packs on the storage, borrowing …) 

 

4.9  Lesson seventeen 
On the last lesson we gave the pupils test from arithmetic of integers. They could spend all the 
45 minutes for solving exercises. There were 6 tasks on the test, 4 only for computing (type 
Solve!) and 2 were with context from real life. 

 

5  Results 
After research we gave the pupils a test from arithmetic of the integers and we start with 
analysis of the result. We can briefly show what we find. 

 

5.1  comparison classes between each other 
For comparing differences between classes we used the F-test, the statistical test for compar-
ing 2 and more groups. The results are in the Table 2. 
Table 2 

  

Sum of 
squares of 
deviation 

Degrees of 
freedom 

Mean 
squares 

F-test 
criteria Probability

Variability between 
classes 0,0416 2 0,0207 0,35859 67,8%
Variability within 
class 3,53682724 61 0,0579    
Total variability 2,4106 63     

 

We can say, that there is no significant difference between classes (the knowledge is equiva-
lent in the each group).  

 

5.2  comparisons inside classes 
We compare the result after the experiment and 11 month after experiment. We gave the pu-
pils very similar test like after the experiment and we compare the results from these two tests 
separately for each group and each pupil. The results are in the table 3. 
Table 3 

  Level of difference Result 
1st group 86,95% Not significant difference 
2nd group 26,29% Not significant difference 
3rd group 26,11% Not significant difference 
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We can see that there is also no significant difference between knowledge after experiment 
and after 11 month after experiment. However there is difference between the 1st group and 
the two other. Differences in the 2nd and the 3rd group are very small on the other hand differ-
ence in the 1st group is considerable. We can not say unambiguous conclusion. There is nec-
essary to make bigger experiment with more groups. Now we can say that there is possibility 
of more durable knowledge if we use the computer in the proper way. 

 

5.3  Important facts from the experiment 
During the experiment and the evaluating of the tests we find out: 

• The 3rd group (computer all the time) was the best in the solving tasks from real life 
(Figure 5, tasks 5 and 6 were context tasks from real life) 

• The 3rd group has better results from mathematics than from other themes (we can not 
say this about other two groups) – this difference is not statistical significant, but it is 
significant for the pupils – better mark from mathematics 

• The environment on the lessons with computer was more friendly than in common 
lesson – pupils was not so shy as usual they were 

• The reaction of the other teacher for this lessons was positive, they would like to teach 
this way, but unfortunately, they do not have time in the schedule to do it 
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Figure 5 

 

 

6  Conclusion 
In this paper we briefly describe experiment focused on efficacy of using computers and 
software based on the Theory of Constructivism on mathematics lessons. The results are not 
significant and positive. The reasons of this failing should be small experimental group (60 
pupils), troubles with computer room at the beginning of the experiment (software was not 
installed, pupils did not have a permission for using computers, etc) and the “foreign element” 
of teacher (researcher did not teach at that classes whole school year). To find out more sig-
nificant results it is necessary to have bigger experimental group and eliminate problems with 
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computer room and foreign element. We think that it takes a time to find the optimal way on 
how to use computer in the lower secondary school. We showed that it is possible if there is a 
time (in schedule of the computer room), enough courage and optimism. The results could be 
interesting not only for teachers but also for pupils. 

 

References 
Andersen M. (2005). Supportive use of ‘DERIVE’. Proceedings of the 4th Congress of the 

European Society for Research in Mathematics Education (CERME) Conference, 
Spain, 2005. 

Clark D. R. (2000). A Time Capsule of Training and Learning, January 2008 from 
http://www.nwlink.com/~donclark/hrd/history/history.html 

Ernest, P. (1995). The one and the many. In L. Steffe & J. Gale (Eds.). Constructivism in edu-
cation (pp.459-486). New Jersey: Lawrence Erlbaum Associates, Inc. 

Hegedus, S.(2007). Technology that Mediates and Participation in Mathematical Cognition 
(2007, February). Proceedings of the 5th Congress of the European Society for Re-
search in Mathematics Education (CERME) Conference, Larnaca, Cyprus. (with L. 
Moreno & S. Dalton). 

Hejný, M., Nôta S.(1990). Metodika záporných čísel na ZŠ, Matematické obzory, Zväzok 
35/1990, Alfa Bratislava, 1990.

Hejný, M. (2004). Záporná čísla, In: (Ed). M. Hejný, J. Novotná, N. Stehlíková: Dvacet pět 
kapitol z didaktiky matematiky 1, Univerzita Karlova v Praze - Pedagogická fakulta, 
Praha, 2004, ISBN 80-7290-189-3 (1. sv.) s. 327-342. 

Mousoulides, N., Philippou, G. (2005). Developing new representations and mathematical 
model in a computational learning environment Proceedings of the 4th Congress of the 
European Society for Research in Mathematics Education (CERME) Conference. 

National Council of Teachers of Mathematics (2000). Principles and standards for school 
mathematics, VA: NCTM, Reston. 

Sanne, A. (2007). Flexibility and cooperation: Virtual learning environments in online under-
graduate mathematics, http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-1905. 

Slavíčková, M. (2006). Konštruktivizmus ako základ tvorby pedagogického softvéru. Doctoral 
thesis. Bratislava 2006. 

Uhlířová, M. (2004). Přijali učitelé počítač?, E-pedagogium (on-line), 2004, roč. 4, č. 1, 
dostupné na http://epedagog.upol.cz/eped1.2004/index.htm , ISSN 1213- 7499. 

Vankúš, P. (2006). Efficacy of teaching mathematics with method of didactical games in a–
didactic situation. In: Quaderni di Ricerca in Didattica, No. 15, G.R.I.M, University of 
Palermo 2005, ISSN 1592-5137, s. 90–105. 

von Glasersfeld, E. (1984). An introduction to radical constructivism. In P. Watzlawick, The 
Invented Reality, (pp.17-40). New York: W.W. Norton & Company. 

Wikipedia (2007). http://www.wikipedia.sk, January 2007. 





 
A Framework for Characterizing the Develop-

ment of Arithmetical Thinking2 
 

Raisa Guberman 
Math Teaching Department 

Achva Academic College, Israel 
Email: glebov@macam.ac.il 

 
Based on a previous study and the Van Hiele Model about levels of geometrical think-
ing development, I propose a framework for characterizing the development of arith-
metical thinking. The framework is based on the profile of students’ reasoning and ex-
planations of arithmetical activities. Data were collected from 190 questionnaires. The 
quantitative analysis of the results of the questionnaires included calculations of the 
relative frequencies of levels of arithmetical thinking in the population surveyed. What 
is outlined in the present paper may provide a possible tool to be used by mathematics 
teachers. 

Keywords: development of arithmetical thinking, arithmetical concepts, mathematics 
instruction. 

 

Modern researchers have suggested theories which aim to explain and to predict the cognitive 
development of students during the course of their learning of mathematics: Piaget’s Stage-
Theory, Dubinsky’s APOS Theory, Van Hiele’s Theory of geometrical development, the 
SOLO model and so forth (Pegg & Tall, 2005). Most of the theories speak about the stages of 
cognitive development while learning mathematics referring to the students’ age. Van Hiele’s 
Theory of geometrical development, however, claims to relate to the levels of development of 
thinking not related to age. This approach allows the use of such a theory for entire body of 
students: from those in school until pre-service mathematical teachers. 

Van Hiele concludes that “the transition from one level to the next is not a natural process: it 
takes place under the influence of a teaching-learning process” (Van Hiele, 1986). We can see 
this transition by means of students’ language when working with arithmetic. Furthermore, 
we can identify the level of development of students’ arithmetical thinking by means of their 
arithmetical reasoning and explanations. 

 

1  Theoretical Considerations 
Since Wirszup (1976) introduced the Van Hiele theory to American mathematics educators, 
numerous researchers have tried to identify and to validate this theory. Some researchers have 
tried to determine whether the Van Hiele theory describes the development of geometric 
thinking (Burger & Shaughnessy, 1986; Fuys, Geddes & Tischler, 1988; Gutierrez, Jaime & 
Fortuny, 1991; Gutierrez, Jaime, Burger & Shaughnessy, 1991; Mayberry, 1983; Senk, 1989; 
Usiskin, 1982; Wilson, 1990). Other researchers have tried to determine and to analyze the 
properties of the levels of this theory (Crowley, 1990; De Villiers, 1987). Still more research-

                                                 
2 This article is based on the author’s doctoral dissertation, completed in 2007 at the Ben-Gurion University of the Negev 
(Israel) under the direction of Professor Shlomo Vinner. 
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ers have developed strategies for the implementation of this theory in order to impact class-
room instruction (Ben-Chaim, Lappan & Houang, 1988; Clements, Battista & Sarama, 2001; 
Gutierrez, 1992). Moreover, some researchers have used adaptations of this theory of the de-
velopment of geometrical thinking for other domains in mathematics. Examples of such stud-
ies are by Gutierrez (1992, 1993, 1996) who speaks about 3-dimensional geometry and by 
Isoda (1996) who discusses the development of the language students use when speaking 
about function. 

In this paper I use an adaptation of Van Hiele’s theory to describe the levels of development 
of arithmetical thinking. Van Hiele’s theory and following studies related to the development 
of mathematical thinking have enabled the formulation of this framework and to support it by 
study. 

   
2  The Method 
The process of the development of this framework contained several stages. First, five levels 
of development of arithmetical thinking were formulated a priori based on my experience in 
teaching math. Then the types of answers that conformed to the different levels were deter-
mined. Following this, I designed a questionnaire that contained 20 items. Each item con-
sisted of a multiple-choice question and a request for an explanation for the chosen answer. 
This questionnaire was validated by means of opinions from experts, a pilot study and a 
Guttman scalogram analysis. Participating in this study were students specializing in teaching 
mathematics in the elementary school and studying in four academic teacher-training col-
leges. Data were collected from 190 questionnaires. The quantitative analysis of the results of 
the questionnaires included calculations of the relative frequencies of levels of arithmetical 
thinking in the population surveyed. After this, an analysis was made of the explanations, 
which the students provided for each question in the questionnaire. Though original Van 
Hiele theory refers to five levels, the present discussion refers only to four levels, since the 
research population did not include representatives of the fifth level.  

The framework below is the result of the analysis of the students’ reasoning and explanations 
on the arithmetical activities. 

 

3  Framework for Characterizing the Development of Arithmeti-
cal Thinking 
The basic assumption of this framework is that a development from one level of arithmetical 
thinking to the subsequent level is parallel to the development of arithmetical language; it is 
therefore possible to identify by means of the arithmetical language the students’ level of 
thinking. 

 

3.1  A Key principle for the identification of the levels of mathematical 
thinking 
What defines the students’ level of thinking is not the task, but the students’ explanations for 
their solutions. Below is an example of one of the items that was presented to the students in 
this study. 
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The answer in the exercise shown below lacks the decimal point:      1762.35.5 =×  

Select the correct answer:     a. 1.76     b. 0.176     c. 17.6     d. 176     e. none of these. 

Explain your answer. 

 

We can classify students’ explanation into three main groups:  

• Students that multiplied 5.5 by 3.2 (some students used algorithm for multiplying 
decimal numbers; others used algorithm for common fractions). 

• Students that multiplied and then spoke about estimating the product. 

• Students that explained their answers only by means of estimation. 

When we observe and analyze these groups of explanations, we can see a significant differ-
ence between students’ level of abstraction; level of explanation (or proof in the advanced 
tasks); level of experience with new principles or new concepts and language the student un-
derstood and used. Searching for common properties in the students’ explanations enabled the 
formulation of the key principle for identification of levels of arithmetical thinking: 

If a student was found to be at the level j, then his/her answers to tasks have the spe-
cific characteristics jT  . Student who was found to be at level j could not give answers 
from the profile kT  ( kj ≠ ) on majority of arithmetical tasks .That means that the spe-
cific level is not determined by means of the student’s ability to solve specific problem; 
it’s determined by means of the profile of the student’s answers.  

As a result of analyzing the explanations and reasoning provided by students, four types of 
responses were identified:  
Type 1T  - An uncontrolled response to a preliminary stimulus to perform an action. 
Type T2 - A correct global concept of methods for writing numbers (the decimal system, the 
method for representing fractions etc.) while displaying difficulty or inability to provide gen-
eral explanations. 
Type T3 - An ability to distinguish between arithmetical relations and connections together 
with an ability to explain via examples. 
Type T4 - An ability to understand the logical structure of arithmetical sentences and an abil-
ity to explain and perform a logical analysis of data. 
The pilot study showed that there was no significant difference between the verbal and written 
reasoning of students. In this research I decided to focus on written reasoning. A further study 
could include personal interviews to clarify whether there is difference. 

 

3.2  The levels of development of arithmetical thinking 
As a result of an analysis of the explanations provided by the students to the questions, the 
inherent characteristics of four levels in the development of arithmetical thinking were de-
scribed. 

Level 1. Students at this level can recognize different kinds of numbers and know how to ac-
complish arithmetical operations with these numbers. These students do not recognize 
yet the properties of numbers and properties of the arithmetical operations. They are 
characterized by an inability to calculate effectively; in general, their calculation abil-
ity is low. Their explanations are poor; their mathematical language is very weak. 
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These students are characterized as students that rely on instrumental understanding of 
arithmetic. 
  

Level 2. Students at this level are learning the systems for writing different kinds of numbers 
(the decimal system, the system for writing rational numbers and so on). They can 
compare numbers from the same group and from different groups, all this – when spe-
cific numbers are given. Students on this level recognize the properties of numbers and 
the properties of the arithmetical operations, but they do not know how to connect be-
tween operations and their properties. These students are characterized by a superficial 
understanding of arithmetical operations as a result of a lack of ability to connect be-
tween the different properties of the operations. They can explain their claims (or 
given claims) by means of specific examples. In addition, they are characterized by the 
gap between ability of performance as opposed to difficulty in verbalization their 
thinking. The arithmetical terminology of these students is partial and deficient; they 
have a partial ability to arrive at generalization.  

 
Level 3. Students at this level understand the existence of reciprocity between arithmetical 

operations. They can connect the properties of numbers with properties of arithmetical 
operations, but they will do it only if asked. These students are able to reason infor-
mally using general examples, partial algebraic tools and so forth. Furthermore, stu-
dents at this level are able to follow deductive reasoning and even do a little deductive 
reasoning themselves.  

 
Level 4. The students at this level understand the logic required to establish their mathemati-

cal conclusions. They can analyze an arithmetical claim, identify what is given and for 
which domain of numbers this claim is correct. These students are able to recognize 
the logical connections between data and they can present the formal proof (sometimes 
this proof integrates part of a general example and part of a deductive proof; some-
times it is not complete). At this level, the students begin to use central concepts in the 
building of mathematical theory: claim, theorem, proof and others. However, the 
meaning of these concepts is not entirely obvious to these students.  

 

3.3  Types of students' answers as a tool to determine their level of arith-
metical thinking: some examples. 
 The following examples will hopefully illustrate the differences between the students' an-
swers to various tasks and the correlation between their reasoning and their level of arithmeti-
cal thinking.  
Example 1.  

Among the following triplets of numbers, choose one from whose numbers it is im-
possible to construct a correct arithmetical exercise:   
a. 3; 3; 9.     b. 1; 14; 15.    c. 2; 4; 12     d. 100; 10; 10    e. there is no such  triplet. 
Explain your answer. 

 

The majority of students at the first level found the correct answer and claimed that "it is im-
possible to write an exercise" with the triplet c. Their ways of reasoning were very similar to 
each other, e.g.:  
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• 1224;1242;1224;24:12;122:4;4212;412:2 ≠×≠+≠−≠≠≠−≠  
           All my attempts to use other arithmetical operations did not lead to a correct exercise.  
 

As can be seen, a student using this explanation has tried to use all the operations: addition, 
subtraction, multiplication, division. One cannot discern any attempt to analyze the situation 
or to look more deeply into the task: just simple and immediate action. The student builds a 
lot of exercises, some of which are completely useless, such as those whose result will obvi-
ously be less than one, while all the given numbers are greater than one. There is little reason-
ing and no method behind it: it is only an exercise in writing a number of operations and 
computing their results. Thus, students' mathematical behavior at the first level may be char-
acterized by immediate performance of the task without looking deeper into it. Their reason-
ing is just the report of the performance procedure. Hence, we can discern the answer pre-
sented in the example as one of T1 type, and the students’ results of arithmetical development 
test actually indicated the first level.  

The students who are at the second level also succeeded in finding the correct answer, but 
their reasoning was somewhat different. Here is an example typical of this level:  

• 1242,1242 ≠+≠⋅  , therefore, it is not possible to find an exercise. All my attempts 
with other operations also did not lead to a correct exercise.  

 
This answer indicates that this student is aware of the fact that there are essentially two basic 
arithmetical situations: that of multiplication and that of addition. This means that if it is im-
possible to find an addition exercise with one of the triplets, there is no use looking for a one 
that will work with subtraction. Nevertheless, the student reports that he or she did attempt to 
perform other operations, regardless of the fact that the operations presented in the beginning 
of the answer are sufficient to arrive at the correct conclusion. One can state that the student 
possesses some general understanding of natural numbers and the operations on them, includ-
ing, for example, the relation between subtraction and addition, but he or she still prefers to 
check it "to be on the safe side".  

In order to emphasize the importance of reference to a student's profile of answers, I shall 
quote the answer of a student who is at the fourth level: "It is possible only if one of the num-
bers appear more that once, e.g. 42 – 4 = 12, or 24 + 4 = 12." One may suppose that this stu-
dent knows the general meaning of "the solution to a problem": finds all the possible answers 
or prove that there is none. He or she has checked the essential operations and found out that 
there is no way that these operations will suffice to provide an example with the given num-
bers, but kept trying to look for less obvious and less routine solutions. This indicates flexibil-
ity of thinking; presence of number sense; ability to see through the logical structure of the 
task and ability to perform a deep analysis of possible solutions. Students on these higher lev-
els did not try to write down exercises.  

Example 2.  

Refer to the following addition exercise: 1116 + 704 + 258 + 884 +  296 .  
The best order of computation is (choose the answer that is correct, in your opinion): 
a. 258) + 704+884) + (1116+296( ;                 b. 258) + 296+704) + (1116+884(   ;  

            c. 258) + 296+884) + (1116+704( ;                  d. 296) + 258+884) + (1116+704( ;  
            e. )704+884) + (1116+296+258( . 

 
Explain your answer. 
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The majority of the students succeeded in this task, which is actually a comparison between 
various ways of adding. The essential variations were in their ways of reasoning, e.g:  

• "The best thing to do is to follow the order of the summands: if we add up the first two 
and then another two, the sum will be shorter and thus easier, in my opinion" (a first-
level student).  

• "In e there are three addition operations and in other sums there are four"(a first-level 
student).  

The first argument points to the search for a "safe" order of addition. The second one indicates 
that a student asserts that if there are three summands in the parenthesis, then one is cancelled 
(i.e. one can perform three operations instead of four), hence this way is preferable. One may 
assert that this student does not actually understand the meaning of addition as a binary opera-
tion. The common feature of these two answers is the emphasis on the procedural aspect, with 
no reference to efficiency or to laws of addition etc.      

Some other students found the most efficient way to add (which is c), but in their reasoning, 
they confined themselves to the description of the procedure, for example:  

 

 
This is actually a fully performed written solution, whereas the purpose of the task was to test 
the student’s ability to use arithmetical laws to arrive at the most efficient way to add, which 
in this case could be purely mental. 

Another type of second level students' reasoning was short operational-type answer, with no 
"extra" words, e.g.: 

• "Add up to tens"; 
Word-saving phrasing in this case brings about non-sufficient accuracy, since in this case one 
should actually obtain full thousands; otherwise, tens alone can equally lead to the answer b, 
which is less efficient than c, since the next step would involve addition with two borrowings. 
From all the examples of reasoning of students at the second level, one can see that they pre-
fer verbal descriptions of operations that they performed.  

Some students argued that "the numbers in the parentheses add up to tens, and thus it is easier 
to proceed, for example: 1000296704 =+ , 20001116884 =+ ". One can observe that such a 
student discerns the relation between numbers where addition is concerned, and is able to find 
efficient ways to find their sums. This is a typical argument of the T3 type. 

 

4  Discussion and conclusions 
The theory of levels of arithmetical thinking enables us to discern students who are essentially 
different from each other as far as arithmetical thinking goes. These differences are first of all 
in mathematical language and its usage, in their ways of reasoning and justifying assertions 
and in the choice of tools they use for judgment and decision making. One of the most impor-
tant tools to determine one's level of mathematical thinking is the profile of his or her answers 
to arithmetical tasks. It is important to emphasize that the specific level is not appointed by 
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means of the student’s ability to solve a specific problem; it is appointed by means of the pro-
file of the student’s answers.  
The level of thinking is a complex concept, which includes, among other things, the ability to 
achieve the level of abstraction with respect to the matter being learned; the level of argumen-
tation and justification; experience with principles and new concepts, etc. Ascending in levels 
involves the expansion and enrichment of mathematical language. This is one of the reasons 
why two people at different levels may not understand each other: they actually speak differ-
ent languages. The teacher who is to teach arithmetic needs a simple and efficient tool, which 
would help him or her easily determine what is the level of a specific student and how one 
must proceed in teaching this student. What is outlined in the present paper may provide a 
tool for this purpose to be used by mathematics teachers.   
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Appendix: Comparison between the levels of Thinking: in Geometry vs. in Arithmetic 

 Geometrical Thinking 
Descriptions of the levels were ob-
tained from the writings of Van 
Hiele (1986, 1999): 

Arithmetical Thinking 

Level 1 The visual level. At the visual level 
of thinking, figures are judged by 
their appearance. A figure is per-
ceived as a whole, recognizable by 
its visible form, but properties of a 
figure are not perceived. 

Students at this level can recognize different kinds of 
numbers and know how to accomplish arithmetical 
operations with these numbers. These students do 
not recognize yet the properties of numbers and 
properties of the arithmetical operations. They are 
characterized by an inability to calculate effectively; 
in general, their calculation ability is low. Their ex-
planations are poor; their mathematical language is 
very weak. These students are characterized as stu-
dents that rely on instrumental understanding of 
arithmetic. 

Level 2 The descriptive level. On this level 
figures are the bearers of their prop-
erties. A figure is no longer judged 
because "it looks like one" but rather 
because it has certain properties. 
However, at the descriptive level, 
properties are not yet logically or-
dered, so a triangle with equal sides 
is not necessarily one with equal 
angles.  

Students at this level are learning the systems for 
writing different kinds of numbers. They can com-
pare numbers from the same group and from differ-
ent groups, all this – when specific numbers are 
given. Students on this level recognize the properties 
of numbers and the properties of the arithmetical 
operations, but they do not know how to connect 
between operations and their properties. These stu-
dents are characterized by a superficial understand-
ing of arithmetical operations as a result of a lack of 
ability to connect between the different properties of 
the operations. They can explain their claims (or 
given claims) by means of specific examples. The 
arithmetical terminology of these students is partial 
and deficient; they have a partial ability to arrive at 
generalization. 

Level 3 The informal deduction level. On 
this level properties are logically 
ordered. They are deduced from one 
another; one property precedes or 
follows from another property. 

Students at this level understand the existence of 
reciprocity between arithmetical operations. They 
can connect the properties of numbers with proper-
ties of arithmetical operations, but they will do it 
only if asked. These students are able to reason in-
formally using general examples, partial algebraic 
tools and so forth. Furthermore, students at this level 
are able to follow deductive reasoning and even do a 
little deductive reasoning themselves.  

Level 4 The formal deduction level. At this 
level, deduction is meaningful. The 
student can construct proofs, under-
stand the role of axioms and defini-
tions, and know the meaning of nec-
essary and sufficient conditions. 

The students at this level understand the logic re-
quired to establish their mathematical conclusions. 
They can analyze an arithmetical claim, identify 
what is given and for which domain of numbers this 
claim is correct. These students are able to recognize 
the logical connections between data and they can 
present the formal proof (sometimes this proof inte-
grates part of a general example and part of a deduc-
tive proof; sometimes it is not complete). At this 
level, the students begin to use central concepts in 
the building of mathematical theory: claim, theorem 
others. However, the meaning of these concepts is 
not entirely obvious to these students. 
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Elementary mathematics education often focuses one-sidedly on the technically 
correct and fluent execution of basic operations like addition, multiplication, 
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1  “Adders” in proportional situations 
From the seventies on math education researchers started to study pupils’ “misconceptions” 
about and primitive strategies for solving proportional tasks (Hart, 1981; Karplus, Pulos, & 
Stage, 1983; Lin, 1991). These researchers not only identified several faulty applications of 
“correct strategies” (e.g. incorrect uses of the rule of three), but also strategies that are com-
pletely inappropriate for solving proportional problems. The best-known example is the con-
stant difference or additive strategy. In this strategy, the relationship within ratios is computed 
by subtracting one term from another, and then the difference is applied to the second ratio. 
An example is the Mr. Short paperclip task (Karplus, Karplus, Formisano, & Paulsen, 1975), 
adapted by Lin (1991): “Given a picture to show Mr. Short’s height is 6 paperclips. When we 
measure Mr. Short and Mr. Tall with matchsticks: Mr. Short’s height is 4 matchsticks and Mr. 
Tall’s height is 6 matchsticks. How many paperclips are needed for Mr. Tall’s height?” In a 
large-scale comparative study with 2257 English and 1599 Taiwan 13–15-year old students, 
the erroneous “additive” answer (8 paperclips) for this task was given by, respectively, 47% 
and 24% of the students (Lin, 1991).  

Additive errors have been widely observed, from childhood through adulthood, in pupils with 
different cultural backgrounds and for different types of problems. Often, it is observed that 
this erroneous strategy is used as a fall-back strategy by less skilled proportional reasoners 
when confronted with non-integer ratios: a child may use a correct strategy on integer ratios 
and then the constant difference strategy on non-integer ratios. Although, 25 Taiwan “adders” 
out of a group of 33 students that was individually interviewed while solving a geometrical 
enlargement problem (in which two similar figures were given and the interviewer asked for 
an unknown length in one of these figures) tended to use an additive apart from the complex-
ity of the number structure of the problem (Lin, 1991), which suggests that these students 
really believed that this type of problem is an additive one. One of the interview protocols 
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seems to confirm this assumption: “…Same shape just means the length of a bigger diagram 
is increased, so I add…” (p. 7). 

 

2  “Multipliers” in additive situations 
As a part of an introduction to teaching ratio and proportion ideas, Cramer, Post, and Currier 
(1993) confronted 33 preservice elementary school teachers with the following additive problem: 
“Sue and Julie were running equally fast around a track. Sue started first. When she had run 9 
laps, Julie had run 3 laps. When Julie completed 15 laps, how many laps had Sue run?” Thirty-
two student teachers solved this problem by setting up and solving a proportion: 9/3 = x/15; 3x = 
135; x = 45 instead of using the additive structure in the problem (i.e., Sue always has run six 
rounds more than Julie). The authors argued “we cannot define a proportional reasoner simply as 
one who knows how to set up and solve a proportion” (p. 160) and diagnosed that textbooks do 
not sufficiently emphasize the ability to discriminate linear and non-linear situations. Undoubt-
edly, the students in this study possessed all necessary mathematical tools to solve this problem 
correctly, but were misled because the problem is stated in a missing-value format. There is as 
such nothing wrong with this formulation, but it strongly cues proportional schemes and proce-
dures because most proportional reasoning tasks students encounter in their school careers are 
stated in a missing-value format (whereas additive problems are rarely, if ever, stated in a miss-
ing-value format) (De Bock, Verschaffel, & Janssens, 2002). 

In a recent study on the overgeneralization of the linear model in students’ solving of arithme-
tic word problems, Van Dooren, De Bock, Hessels, Janssens, and Verschaffel (2005), used (a 
slightly adapted version of) the ‘runners’ problem in a paper-and-pencil test and analysed a 
large numbers of 3rd to 6th graders’ solutions of that problem. They found that the number of 
incorrect proportional answers on this additive problem increased by grade (resp. 5%, 17%, 
36%, and 50% in grades 3, 4, 5, and 6). The data suggest that 3rd graders (who were until then 
most frequently confronted with additive situations) more easily noticed the additive model 
underlying this situation than the 5th and 6th graders (who had been more often confronted 
with multiplicative/proportional situations in the recent past). The tendency to overrely on 
proportional methods appears to develop in parallel with the ability to solve proportional 
word problems. 

 

3 “Proportional reasoners” in a non-proportional geometrical 
 context 
An extensively investigated case of students’ misuse of proportionality relates to the effect of an 
enlargement or reduction of a geometrical figure on its area or volume (for an overview of this 
research, see De Bock, Van Dooren, Janssens, & Verschaffel, 2007; a specific study in this do-
main is reported in this volume by Van Dooren, De Bock, Evers, & Verschaffel). While an 
enlargement or reduction of any geometrical figure by a linear factor k, multiplies lengths by k, 
areas by k2, and volumes by k3, pupils strongly tend to see the relations between length and area or 
between length and volume as linear and thus apply the factor k to determine enlarged or reduced 
areas and volumes. De Bock et al. (2007) gave tests with proportional and non-proportional prob-
lems about the lengths, perimeters, areas, and volumes of different types of figures to 12–16-year 
old students. An example of a non-proportional problem is: “Farmer Carl needs approximately 8 
hours to fertilize a square pasture with a side of 200 m. How many hours would he need to fertil-
ize a square pasture with a side of 600 m?” More than 90% of the 12-year olds and more than 
80% of the 16-year olds gave a proportional answer (here: “24 hours”) to this type of non-
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proportional problems. Even with considerable support (e.g., the request to make a drawing or the 
provision of a ready-made drawing on plain or squared paper), very few students made the shift to 
correct, non-proportional responses. The only experimental manipulation that had significant im-
pact was rephrasing the missing-value problems within a so-called comparison format (e.g., for 
the earlier mentioned item: “Today, farmer Carl fertilized a square pasture. Tomorrow, he has to 
fertilize a square pasture with a side being three times as big. How much more time would he 
approximately need to fertilize this pasture?”). In this case, the number of correct answers in-
creased from 23% for missing-value problems to 41% for comparison problems.  

A subsequent interview study pointed at three underlying causes. A first cause is that students 
selected and used a proportional method in an intuitive way (in the sense of Fischbein, 1987). 
Students opted immediately for it, were strongly convinced about its correctness, but found it very 
difficult to justify their choice. A second cause are particular deficiencies in students’ geometrical 
knowledge (e.g., the misconception that the concept of area only applies to regular figures, or that 
a similarly enlarged figure is not necessarily enlarged to the same extent in all dimensions), which 
often prohibited them from discovering the incorrectness of their proportional errors. A third 
cause lies in students’ inadequate beliefs and attitudes towards solving mathematical school word 
problems (e.g., the belief that the first solution is always the best), and their low self-monitoring 
while problem-solving. 

In a last empirical study on geometry problems, non-linear problems were offered as meaningful, 
authentic performance tasks with concrete materials instead of a traditional, school-like word 
problem. The study showed that this manipulation was very beneficial, as linear reasoning almost 
disappeared, but the correct solution of this kind of task did not affect students’ performances on 
school-like word problems afterwards.  

Peter Bryant (2007) provided an interesting comment on this type of research results: “Quite 
often students apply an inappropriate solution to a mathematical problem, i.e. a solution that 
is not right for this problem but would be for another one. There are two possible explanations 
for this kind of mistake. One is that the student is incapable of producing the right solution 
because the solution is too difficult for the student. This is how Piaget and many others (Kar-
plus, Noelting, Wilkening) explained the fact that many students wrongly apply additive solu-
tions to proportional problems. They attribute this mistake to the relative difficulty of multi-
plicative reasoning. This is a one-way account. The second possible explanation for inappro-
priate solutions is that the student could in principle provide the right solution, but can’t al-
ways work out what is the appropriate solution for the problem at hand. This would be true if 
students also applied proportional reasoning to additive problems, i.e. if the confusion goes 
both ways. This would be a two-way confusion. The confusion between additive and propor-
tional reasoning goes both ways. Therefore, it is not just a matter of multiplicative reasoning 
being more difficult and developing later than additive reasoning, as Piaget and others 
claimed. It is also a matter of children not understanding (or not trying to understand) addi-
tive and multiplicative problems well enough to know which problem.” 

 

4  A minimal response 
Students’ inappropriate application of as such “correct” operations and strategies, as evi-
denced by many research in our field (cf. supra), is a major problem and calls for some modi-
fications of current instructional practice. In our view, already at the elementary level, it is an 
important goal to improve the quality of problems and the way teachers handle these prob-
lems, as that have been suggested already over many years and that include the following (see 
Verschaffel, Greer, & De Corte, 2002, p. 270–271):  
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• Break up the expectation that any word problem can be solved by adding, subtracting, 
multiplying, or dividing, or by a simple combination thereof.  

• Eliminate the flaws in textbooks that allow superficial solution strategies to be 
undeservedly successful. If a specific context or presentational structure (e.g. the 
“missing-value” format) tends to elicit a specific problem-solving routine, this 
behaviour  can be questioned by confronting students with mathematically different 
problems within  the same context and/or presentational structure, and with 
mathematically identical  problems presented in a different context and/or 
presentational structure. This kind of  “discrimination training using counter-
examples” (Greer, 2006) is especially  recommendable for the context or 
presentational structure in which students encountered a  certain mathematical model 
for the first time.    

• Vary problems so that it cannot be assumed that all data included in the problem, and 
only those data, are required for solution. As in real-life, students must learn to select 
the data that are needed to solve a problem, and eventually look for ‘missing’ data. In 
this respect, one could think about project-like tasks embedded in a rich context in 
which several data  are given or can be calculated, measured or estimated for 
different problem-solving  purposes.  

• Weed out word problems in which the situation, the numbers, and/or the question do 
not correspond to real life or for which the mathematical model that students are 
expected to  find and apply does not fit (well) with the situation evoked by the 
problem statement.  Students implicitly learn from such tasks to put reality between 
brackets in the mathematics classroom! 

• Legitimize forms of answer other than exact numerical answers, e.g. estimations, 
 commentaries, drawings, graphs, etc. This recommendation fits with the plea of many 
 math educators to emphasise the process rather than the result of a problem-solving 
 activity. It can also stimulate students to increase their repertoire of problem-solving 
 strategies and approaches. 

• Include alternative forms of tasks such as classification tasks and ‘problem posing’ 
tasks. Alternative tasks can move the attention from individually calculating numerical 
answers towards classroom discussions on the link between problem situations and 
arithmetical  operations. 

 
5  A more comprehensive approach 
Although many of the above-mentioned recommendations can be realised by users of current 
curricula and textbooks, they actually fit within a more general reform approach, namely to 
teach mathematics from a genuine modelling perspective. A genuine modelling perspective 
implies that all phases of the modelling process are considered equally important and receive 
ample attention. Many authors have proposed descriptions of this process, but, essentially, 
they all involve the following stages (see Verschaffel, Greer, De Corte, 2000): 

1. understanding the phenomenon under investigation, leading to a model of the relevant ele-
ments, relations and conditions that are embedded in the situation (situation model),  

2. constructing a mathematical model of the relevant elements, relations and conditions avail-
able in the situation model,  
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3. working through the mathematical model using disciplinary methods in order to derive 
some mathematical results,  

4. interpreting the outcome of the computational work to arrive at a solution to the real-world 
problem situation that gave rise to the mathematical model,  

5. evaluating the model by checking if the interpreted mathematical outcome is appropriate 
and reasonable for the original problem situation and  

6. communicating the solution of the original real-world problem. 

Already while teaching basic concepts like addition, subtraction, multiplication, division, and 
direct and inverse proportionality, immediate stress should be laid on these concepts’ capacity 
of modelling some situations (at some level of precision) and their inadequacy of modelling 
others (Usiskin in this volume). In fact, although mathematical modelling is generally associ-
ated with courses at the tertiary or, to an increasing extent, secondary level of instruction, an 
early exposure to essential modelling ideas by re-conceptualysing the basic arithmetic opera-
tions and other primary school content as modelling exercises, can provide a solid base for 
competently applying mathematics at the primary school level and for further extensions of 
these mathematical tools found in algebra, geometry, calculus, and statistics at the secondary 
and tertiary level.  Prototypically clean situations can be used to develop students’ ability to 
easily recognize mathematical models and to fluently apply related procedures (or strategies), 
but at regular times, they should be alternated with exercises in relating more authentic real-
world situations to these mathematical models and in reflecting on this relation as a corrective 
to an oversimplistic view of the world that many supposed applications of mathematics tend 
to establish. According to Mukhopadhyay and Greer (2001), it is important and also feasible 
to start applying the modelling perspective successfully in mathematics education of all stu-
dents already from a (very) young age on and with a diversity of learners. 
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1  Introduction 
This year we attend the 11th quadrennial International Congress in Mathematics Education 
(ICME-11). This congress is probably the largest and most prestigious international mathe-
matics education conference and it gathers several thousands participants from all over the 
world. ICME is held under the auspices of the International Commission on Mathematical 
Instruction (ICMI) established at the International Congress of Mathematicians in 1908 but it 
is planned and organised by separate committees working independently of ICMI. The aim of 
ICME is to present the current states and trends in mathematics education research and in the 
practice of mathematics teaching at all levels (ICME-11 website).  

Different parts of the programme have been delegated out to various organising teams invited 
by the International Programme Committee (IPC) for ICME-11. One such part is the Topic 
Study Groups (TSG) whose purpose is to gather participants interested in a specific area. Our 
group is TSG-10 and our specific topic is Research and development in the teaching and 
learning of number systems and arithmetic, including operations in the number systems, ratio 
and proportion, rational numbers. We therefore sent out a call for papers stating that any cur-
rent issue related to this theme may be considered in discussion. We wanted from an interna-
tional perspective to study and discuss advances in research and practice, new trends, and the 
state-of-the-art. As the congress participants, or reader, might have noticed, we have ten pa-
pers from all over the world reporting various research, and we also have two more general 
state-of-the-art papers written by invitation. Then the question is, did we succeed in the en-
deavour set out by us and ICME? 
 

2  How far are we by now? 
We know from Niss (1999, p. 1) that the field of mathematics education research is around 
four decades old. So how much do we now know about the teaching and learning of number 
systems and arithmetic? In an ICMI Study from 1998 entitled: Mathematics Education as a 
Research Domain: A Search for Identity, Adda referred to a speech by Freudenthal at ICME-4 
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in 1980 where he presented the major problems of mathematics education at that time. She 
writes: “Looking at Freudenthal’s list of thirteen problems, the thing that strikes one the most 
is that not only are none of them solved yet today, but they are still of major interest and, in 
addition, that they have produced important new problems. The first problem was: Why can 
Jennifer not do arithmetic?” (Adda, 1998, p. 49). Hence, teaching and learning arithmetic was 
a major problem in 1980 and it was not yet solved in 1998 – but is it solved today?  

How does knowledge of mathematics education in fact grow? I discussed this in more details 
in Dahl (2006) as well as pointed at some problems with adding to the body of knowledge in 
our field. I wrote that we “need a series of ‘State of the Art’ articles pulling together present 
research in an attempt to create/discover a meta theory” (p. 68). I also quoted Mewborn: 
“Moving toward predictive frameworks is not going to come from doing more studies alone; 
it will come from thoughtful analysis of a large collection of existing studies” (2005, p. 5). 
This was inter alia discussed based on work done at ICME-10 in 2004 at a Discussion Group 
(DG-10) entitled: Different perspectives, positions, and approaches in mathematics education 
research. The DG-10 report states that it is difficult to accumulate knowledge in mathematics 
education research due to various research approaches which sometimes appear as fashion 
waves. The diversity might be useful, if it provides a more complete picture but it also results 
in fragmentation. There is not a common knowledge base on which to refute the claims made 
(English & Sierpinska 2004). This might to some extent explain the state of research in 
mathematics education. Does our TSG also suffer from this? Turning to Prediger’s paper (this 
volume) we read: “two so far competing theoretical approaches of conceptual change and 
mental models [that she] … integrated into a multi-level model for knowledge of operations” 
(2008, p. 30). This is an example of such creation/discovery of a meta theory mentioned 
above.  It indicates that we are moving forward – and we need to do a lot more like this. 

 

3  Dimensions of mathematics education research in TSG-10 
Niss (1999, pp. 5-6) states that the field of educational research in mathematics has a dual 
nature. One dimension is descriptive/explanatory the other is normative focusing on ‘what 
ought to be the case?’ and why. Niss argues that the normative dimension “is unavoidable in 
the same way as it is unavoidable to operate with the notion of ‘good health’ and ‘sound 
treatment’ in much medical research” (1999, p. 6). In the case of TSG-10, the nominative di-
mension would be answers to questions such as ‘how does good teaching and learning of 
number systems and arithmetic look’? But are both dimensions present in TSG-10? In Sec-
tions 3.1 and 3.2, all references are to papers in this volume, hence they do not appear in the 
References unless they are also referred to elsewhere.  

 

3.1  The descriptive/explanatory dimension 
This is clearly the most common dimension in the ten papers since six papers belongs to this 
category. The first example is Prediger (2008) who refers to different theoretical frameworks 
to explain pupils’ difficulties in competencies and conceptions in fractions and decimals. She 
reports a study of 269 pupils to show what mental models grades 7 and 9 pupils activate. Val-
demoros (2008) reports a case study of a fifth grade teacher who joined a master’s degree 
programme. The study explores the difficulties she encounters planning original design for 
teaching fraction and it describes her development. Dooren et al. (2008) describe primary 
school pupils’ over-relying on proportional methods while solving non-proportional missing-
value word problems. This particularly occurs when word problems form integer rations, but 
the effect diminishes from grade 4 to 6. Mendes & Ferreira (2008) describe the development 
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of numbers in children aged 5-11, particularly the implementation in a grade 2 class of a task 
chain related to multiplication. Badarudin & Khalid (2008) assess student’ knowledge and 
understanding of integers before and after an intervention using the ‘jar model’. Their analysis 
showed that the jar model created better understanding compared to the rules and analogies 
the teachers usually used. Baggett & Ehrenfeucht (2008) describe a study showing that a 
modern version of the old ‘dot algorithm’ for column addition of whole numbers and deci-
mals is at least as efficient as the standard algorithm usually taught in school. It is easier to 
use and not mechanical – users can develop their own strategies.  

 

3.2  Mixed descriptive/explanatory and normative dimensions 
None of the papers were completely normative, but four of them had normative elements 
based on results from a description/explanatory study. One of such papers is that by Carbone 
& Eaton (2008) who refer to research suggesting that prospective teachers must revisit the 
mathematics they have previously learnt to be able to teach effectively – for instance is their 
knowledge on rational numbers essential in preparing middle school mathematics teachers. A 
study on some US and Northern Ireland prospective elementary teachers’ understanding of 
addition and division of fractions, lead to some normative recommendations for teacher 
preparation. Another example is Leung et al. (2008) who investigate how the Partition of 
Quotient (POQ) method of learning the concept of division enhances the effectiveness of 
learning the concept of rate in science. They conclude: “We do not want to say that we should 
revise the curriculum of teaching the concept of rate and ratio via the new long division algo-
rithm. Rather, introducing the concept of partition of quotient is so helpful that it can play a 
complementary role in enhancing students’ learning effectiveness in this topic” (p. 80). 
Slavicková (2008) reports a study comparing three grade 6 classes being taught integers using 
a specific computer programme. It did not show any significant differences but nevertheless 
showed that pupils who had used the education software had better results on context tasks 
than the others. We see that the author aims at suggesting normative claims in the following 
quote: “We think that it takes time to find the optimal way on how to use computer in the 
lower secondary school” (p. 111). Finally, Guberman (2008) proposes a framework to charac-
terize the development of arithmetical thinking. The framework is inter alia based on Van 
Hiele’s model of geometrical thinking. The conclusion states: “The teacher who is to teach 
arithmetic needs a simple and efficient tool, which would help him or her easily determine 
what is the level of a specific student and how one must proceed in teaching this student. 
What is outlined in the present paper may provide a tool for this purpose to be used by 
mathematics teachers” (p. 119). 

 

3.3  Why so few normative statements? 
The title is in no way to indicate that the descriptive/explanatory dimension is of lesser value! 
However, if Niss is right, and we need both dimensions, we do need to ask ourselves how, 
and if, we do it yet. One could therefore ask why not more papers use a mixed dimension such 
as the papers in Section 3.2? One answer could be lack of space, since we were very strict on 
page limit, but overall, could some of the papers support a normative element? In case of the 
papers in the proceeding I will leave it to the readers to decide and instead add some thoughts 
about when we can infer a normative statement from a descriptive/explanatory study. 

The space here is short, but obviously first of all, the study must have internal validity to even 
have a sound description/ analysis. But, secondly, do the research results also need to have 
external validity (generalisability)? I believe so. If a description/explanation does not have 
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any explanatory power beyond the researched case itself; how can one make a normative 
statement based on this? Unless of course the normative statement is solely aimed at the al-
ready studied case, in which it become rather uninteresting. Usually researchers agree that 
quantitative research can produce general statements, but what about qualitative studies? 
Generalisability in the sense of producing laws that apply universally is in fact not a useful 
standard for qualitative research (Guba & Lincoln, 1989, p. 61). Instead Schofield suggests to 
replace the notion of generalisability by ‘fittingness’: “the degree to which the situation 
matches other situations in which we are interested” (1990, p. 207). Hence, also qualitative 
studies can produce generalisable results to similar settings if studies are detailed enough de-
scribed in order for others to see if it “fits” their situation.  

A third factor needs to be taken into consideration. Balacheff et al. argues: “Any result is rela-
tive to a problematique, to a theoretical framework on which it is directly or indirectly based, 
and to the methodology through which it was obtained” (1998, p. 7). Hence, also the theoreti-
cal framework and methodology need to be discussed. Niss writes: “For normative issues to 
be subject of research it is necessary to reveal and explain the values implicated as honestly 
and clearly as possible, and to make them subject to scrutiny; and to undertake an analysis, as 
objective and neutral as possible, of the logical, philosophical, and material relations between 
the elements involved” (1999, p. 6). This however implies that we have shared views of how 
to do such an analysis and how to be neutral and objective. As seen above, such consensus 
does not seem to exist in our field. This is perhaps even more so due to postmodernism where 
there is “no ‘meta-narrative’ of rationality to which we can appeal and which will bring a cer-
tain unity to this diversity” (Pring, 2000, p. 110). In order to make valid normative statements, 
we need to move beyond postmodernism and we need to reveal, explain and discuss our val-
ues. It is not going to be easy, which the following example might illustrate. 

 

3.4  Standard algorithms in Danish primary education – an example 
In Denmark schooling of grades 1-9 (10) takes place in a compulsory system. The Ministry of 
Education lays down the official guidelines stated in the document Common Goals (Danish 
Ministry of Education, 2003). These consists of binding national end-goals after completing 
compulsory education as well as step-goals for grades 1-3, 4-6, and 7-9, respectively. Hence, 
these documents contain normative claims about how teaching (and learning) should take 
place. For grades 1-3 in mathematics, it is stated that the pupils’ intuitive understanding of 
mathematics should gradually be developed to mathematical concepts. Particularly regarding 
numbers and algebra, it is stated that the pupil must have the opportunity to, on the basis of 
his own understanding, develop methods to do addition and subtraction.3 For grades 4-6, it is 
stated that while working with the natural numbers, the pupils still develop their own calcula-
tion methods. Algorithms are introduced if it makes it simpler for the pupil.4 

Some Danish student teachers find it difficult to implement the idea of pupils developing their 
own algorithms while withholding the standard algorithm - and what is learn in education 
programmes is quickly de-learnt once confronted with reality (personal communications). It 
seems that Kilpatrick’s question can still be posed: “Why is it that so many intelligent, well-
trained, well-intentioned teachers put such a premium on developing students’ skill in the 
routines of arithmetic and algebra despite decades of advice to the contrary from so-called 
experts? What is it that teachers know that others do not?” (1988). 
                                                 
3 Author translation from Danish: ” Den enkelte elev skal have mulighed for på baggrund af egen forståelse at udvikle 
metoder til antalsbestemmelse ved addition og subtraktion.” 
4 Author translation from Danish: ”I arbejdet med de naturlige tal udvikler eleverne fortsat beregningsmetoder. 
Regneopstillinger indføres, hvis det for eleven er en forenkling af arbejdet.” 
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Do some of our papers have something to add to this dilemma? Indeed – many of them writes 
about algorithms. E.g. Baggett & Ehrenfeucht write that “learning the standard algorithm is 
one of the focal points in NCTM5’s ‘Curricular Focal Points’ (2006) for the second grade” 
(2008, p. 97). The NCTM-document itself writes: “develop fluency with efficient procedures, 
including standard algorithms, for adding and subtracting whole numbers, understand why the 
procedures work (on the basis of place value and properties of operations), and use them to 
solve problems (NCTM, 2006, p. 14)”. This is grade 2, but the same phrase is also used re-
garding multiplying, grade 4 (p. 16) and dividing, grade 5 (p. 17). Hence, the standard algo-
rithm certainly has a place in NCTM’s recommendations. This is different from the Danish 
Common Goals which explicitly states that these should only be introduced if it is a help.  

In the Netherlands, Treffers et al. (2001, p. 147) distinguish between ‘algorithm calculations’ 
(traditional algorithms) and ‘column calculation’ using a ‘splitting strategy’ where interim 
results are calculated. They write that since 1985 due to realistic mathematics education and 
the wider use of calculators there is less emphasis on algorithm calculations and instead more 
on “mental arithmetic, estimation, and the appropriate use of the calculator; this is an interna-
tional trend. It is also clear that the position of algorithm calculation has not yet been clearly 
defined” (2001, p. 149). They have a balanced view of the pros and cons of the two types of 
calculations: “the previously ascertained developments in the Netherlands can lead to a more 
subtle distinction than simply for or against. A few facts: Learning the calculation algorithm 
requires at least one hundred class hours. … an early introduction to algorithm calculation and 
an extensive sequel form a major obstacle to the development of mental arithmetic with 
handy, varied calculations; it also hampers estimation. … Column calculation promotes men-
tal arithmetic and estimation partly due to the calculation structure from large to small … 
Column calculation links up naturally with the informal approaches used by children … Chil-
dren can learn the algorithm-based addition procedure … in about five lessons after they have 
become familiar with column addition. This algorithm calculation skill can also be used with 
column multiplication. The same applied to algorithm-based calculation in subtraction and 
column division” (p. 149). What can we conclude? It is certainly more complex that the Dan-
ish Common Goals seems to suggest, and Kilpatrick’s teachers’ might be more inclined to 
agree that perhaps that it is not the usual standard algorithm that should be taught in primary 
school; but other algorithms. But all of these decisions rest on a variety of values about what 
it means to learn arithmetic – and what the purpose of schooling is.  

 

4  Conclusions 
Balacheff et al. (1998, p. 8) suggest that a category of results in mathematics education is 
“demolishers of illusions” which are results that undermine the beliefs and assumptions. 
There are many such beliefs in teachers, politicians, and researchers, and perhaps research can 
demolish some of them. But to do this, we first need to agree about what constitutes good 
research and develop a common knowledge base. Naturally we cannot hope with ten papers 
and two invited keynote presentations to have completed the task or covered the whole range 
of research and development in the area of TSG-10. I asked above, if the problem of teaching 
and learning arithmetic has been solved now? The answer is no, but hopefully this TSG, and 
this proceeding is a step forward – a brick in the wall.  

                                                 
5 NCTM: National Council of Teachers of Mathematics, USA 
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The models are present in several of the contributions from the TSG10, who are con-
cerned about the difficulties presented in teaching and learning fractions. Some of the 
difficulties are related to the generalisation of multiplying and dividing operations. In 
this study, the alternative historical approaches to tackle this generalisation are ana-
lysed. In one of them, connections are sought between models of operations with natural 
numbers and those with fractions, in order to facilitate the conceptual change, and in 
the other this conceptual change is avoided. 
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1  Important issues in TSG10 
1.1  The main lines 

In any discipline, the concept that researchers have of their discipline as well as their profes-
sional interest and work is what determines the scope of their study. In TSG-10 and in 
Mathematical Education in general, this scope of study may include three main lines of inves-
tigation, which involve a wide variety of problems related to different topics. These lines are:  

1. The study of the theoretical foundations of the teaching and learning of mathematics. 

2. The study, development, implementation and evaluation of the knowledge involved in 
mathematics classroom practice. 

3. The analysis and concretion of knowledge and practice that supports plans for profession-
ally qualifying and improving mathematics teachers.  

 
1.2  The main topics 
In the TSG-10, these three main lines involve the following key mathematical topics: number 
systems and arithmetic, including operations in the number systems, ratio and proportion, and 
rational numbers. Although this is not the time nor place to focus the debate on what “arith-
metic” really includes or should include, it is worth pointing out that the relation of key topics 
is given by the internal logic of mathematics, as opposed to what one see in the Handbook of 
the NCTM that have recently appeared (Lester, 2007), where the research logic aimed at 
building and understanding mathematical concepts is adopted. Namely: Whole number con-
cepts (Single-digit computation, multi-digit computation, estimation and number sense, word 

                                                 
6 This work was supported in part by a grant from the Spanish MEC.. Ref.: SEJ2005-06697/EDUC. 
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problems, the structure of the whole-number system, and rational number concepts (fractions 
and decimals, ratio and proportions) (see Lester, 2007). 

The reason for pointing this out is to highlight two ideas. One is that the fundamental nucleus 
of the research effort of the TSG-10, ICME 11, is the mathematical content with respect to 
objects that must be taught and learnt.7 And the other is the direction taken by the reflection 
that follows. 

 
1.3  The main problems 
Almost thirty years ago, in a Plenary Meeting of the ICME 4, Freudenthal, one of those who 
helped to re-launch the International Congress on Mathematical Education in 1969, stated 
what in his opinion were the main problems in mathematics education. 

Allow me to start with the most down to earth problem I can think of. Among the major ones it 
is the most urgent. There is even the problem of how to formulate it correctly and unmistaka-
bly. Let us try a pre-formulation. It runs (thus): Why can Johnny not do arithmetic? 

Freudenthal (1981, p, 134) was referring to how to approach the question as to why many 
children do not learn arithmetic as they are expected to. Since then, the research carried out 
has shown that the problem is so complex that the solution to general problems of teaching 
and learning mathematics is a long way off. This has led the concerns of a good many re-
searchers to still be focussed on understanding and approaching didactic problems, and on 
developing trustworthy criteria to evaluate their eventual advances and relevance, etc. It is 
difficult for there to be plenty of results directly applicable to the classroom (Hitt, 2001, p. 
166). 

 

1.4  Issues in TSG-10 
The different papers submitted by participants, reviewed and accepted by the TSG-10 organ-
izational team, consider the three lines of research and the key topics that have been indicated 
in the previous points. For the oral presentation of these, they have been divided into two ses-
sions; one of these includes issues, which could refer to the wide domain of research known 
as the conceptual multiplicative field; in this way a variety of key topics can be tied in, from 
the multiplication of natural numbers to fractions (thanks to the proportional nature of rational 
numbers). 

The papers provide information about aspects of individual performance on, and understand-
ing of, these key topics from different angles (discontinuities of models, linearity, number 
sense, posing problems) and different perspectives (children’s, prospective teachers, and in-
service teachers). In several of these, models and modelling are implicitly or explicitly pre-
sent, related to the limited competence and conceptions in the domain of fractions 

 
2  Models and the division of fractions 
2.1  Models and modeling 
                                                 
7 Seeking to identify and characterise the learning problems they bring with them and the mathematical discourse that 
is best adapted to the students in each educational circumstance. 
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Although the different meanings of the terms ‘models” and “modelling” have been widely 
dealt with in the literature (for example, Gravemeijer, Lehrer, & Vereschaffel, 2002), in what 
follows the term “model” is used in the sense that is compatible with what is called ‘mathe-
matical modelling”. And mathematical modelling is used to refer to the process of building 
mathematical objects that symbolically reproduce essential characteristics of a phenomenon 
or situation from the real world that one intends to study. The purpose of these mathematical 
models of reality is to explain, deduce or predict results, draw conclusions, or answer ques-
tions about the real phenomenon or situation that they model. This is what is done, for exam-
ple, with the derivative, when it is taken as a mathematical model of instantaneous velocity. 

 

2.2  The reversible nature of modelling in elemental arithmetic. Two sides 
of a coin. 
In the teaching of elemental arithmetic, the modelling process can be seen as the reverse of 
what usually appears in mathematics in general. What is first provided is a physical phe-
nomenon situation that acts as a model for studying the mathematical object, such that instead 
of modelling the phenomenon or situation by means of the mathematical object, the mathe-
matical object is modelled by means of the phenomenon or situation8. Thus, for example, 
temperature is taken as a phenomenon to model integers, a pizza or a cake is taken as a situa-
tion to model fractions, and certain word problems are taken as models of elemental mathe-
matics operations. When the teacher considers that the child, aided by the physical model, has 
built up a “good enough” conception of the mathematical object, he or she then inverts the 
terms again and proposes different questions that can be modelled by this mathematical ob-
ject, thus showing that it has «applications» that «are useful for solving real problems». As 
the phenomena or situations are closer to the child’s daily experience, they produce signifi-
cant interpretations about the arithmetic notions that one wants to teach. However, the limita-
tions of teaching means that only one or several of the modelling phenomena or situations are 
chosen, not all the possible ones. As a consequence, a restriction is produced in the semantic 
field and a conceptual limitation. 

 

2.3  Difficulties with the multiplication and division of fractions  
Traditional teaching in the multiplication and division of fractions emphasizes drill and prac-
tice with the focus on algorithms, on numerical examples, not on word problems (Only one 
side of a coin). When teachers propose resolving different word problems, the children’s ac-
tivity is reduced to the selection and execution of the operation to be modelled. But, to date, 
several studies have shown children’s difficulty in the selection of an operation for solving a 
big variety of fraction, multiplication and division problems. The efforts aimed at understand-
ing how children attempt to solve multiplicative word problems have shown that children’s 
ability to solve these problems is influenced by a large variety of factors interacting in multi-
ple ways. Among these factors it is worth noting the following:   

a) The presence of certain key words in the problem text, the association between the situation 
described in the problem and some of the primitive models of operations, the type, size and 
structure of numbers embedded in the problem text and their relation with the result of this 
calculation. 

                                                 
8 We learn applications in order to learn multiplication (Usiskin, this issue). 
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b) The way in which teachers conceive and treat problems in the classroom. Their very poor 
preparation to plan their fraction lessons; limitations of the models which they use to repre-
sent the concept of division, and their “remarkable dependence on the official teaching books, 
which reduced her educational creativity and autonomy” (Valdemoros, this issues) 

In the different theoretical approaches that exist for explaining difficulties in students’ compe-
tences and conceptions in the domain of fractions, one common aspect of several approaches 
is the emphasis on discontinuities between natural and fractional numbers. To explain stu-
dents’ difficulties with these discontinuities, one theoretical approach is the conceptual 
change approach and another is the theoretical approach which emphasizes the importance of 
underlying mental models (Prediger, in this issue). With multiplication and division opera-
tions, on changing the numeric field the operations are no longer the same, though their name 
does not change. Using the terminology of “levels” used by Predinger, it may be said that on 
the formal level the definition changes, on the algorithmic level the rules change, and on the 
intuitive level the meanings change. Predinger, attempts to reconcile (or integrate) both theo-
retical focuses by relating conceptual change with the change in some mental models of mul-
tiplication. 

not all mental models for multiplication have to be changed in the transition from natural to 
fractional numbers. The interpretation as an area of a rectangle or as scaling up can be con-
tinued for fractions as well as the multiplicative comparison. In contrast, the basic ‘repeated 
addition’ model is not sustainable for fractions, nor the combinatorial interpretation. Vice 
versa: the basic model of the multiplication of a fraction, the part-of-interpretation, has no 
direct correspondence for natural numbers (Predinger, this issue). 

The same could be said of the division of fractions, where it does not work in the partition 
model, whereas the measurement model works well enough in both directions: writing a 
mathematical expression for a problem and problem posing for a mathematical expression 
(see Carbone & Eaton, this issue, related to a prospective teacher posing problems that shows 

the meaning of 
2
1

2
12 ÷ ). 

 
2.4  The historical approach in old textbooks 
How should children learn? Or, how do people learn? 
This is the question with which Freudenthal (ob. cit. p, 137) drew up his second major prob-
lem. To which he answered that 

The way to answer it would be: by observing learning processes, analysing them and report-
ing paradigms.    
And that, amongst the learners,  

the biggest one, mankind, is also a learner. Observing its learning process is what we call 
history 

To observe history one must turn to textbooks of the past. There, one may track the process of 
generalizing the division of whole numbers to the division of fractions.  

1. In the first arithmetic texts printed, which followed Arabic traditions, the definition of mul-
tiplication and division operations were introduced through the proportional model.  

Multiplication  
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To multiply one number by itself or by another is to find from two given numbers a third num-
ber which contains one of these numbers as many times as there are units in the other (Tre-
viso Arithmetic, 1478/1989, p. 67).  

Division, with two options: 
1
c

d
D
÷   (1) and 

1
d

c
D
÷  (2) 

 1.  I say that division is the operation of finding, from two given numbers, a third number 
which is contained as many times in the greater number as unity is contained in the lesser 
number (Treviso Arithmetic, 1989, p. 85).  

2. Dividing one number by another means looking for another third number which is to be 
found with unity in such a proportion as the number that we divide with the divisor (Pérez de 
Moya, 1562/1998, p. 197).  

Influential authors like Lacroix (1825, p. 47) accompanied these definitions with commentar-
ies aimed at explaining the conceptual change, in terms that intended to extend “to all cases” 
the definition that they had previously adopted of multiplying or dividing (repeated addition 
or partition). In these commentaries the authors began to show the discontinuity of the model, 
beyond natural numbers, and later they made an effort to create connections between the pre-
vious definition and the new one, making us see that the first one is a specific case of the sec-
ond one. 

Multiplication 

The doctrine of fractions enables us to generalize the definition of multiplication given in ar-
ticle 21. When the multiplicand is a whole number, it shows how many times the multiplicand 
is to be repeated; but the term multiplication, extended to fractional expressions, does not 
always imply augmentation, as in the case of whole numbers. To comprehend in one state-
ment every possible case, it may be said that to multiply one number by another is to form a 
number by means of the first, in the same manner as the second is formed, by means of unity. 
In reality, when it is necessary to multiply by 2, by 3, etc. the product consists of twice, three 
times, etc. the multiplicand, in the same way as the multiplier consists of two, three, etc. units; 
and to multiply any number by a fraction, 1/5 for example, is to take the fifth part of it, be-
cause the multiplier 1/5 being the fifth part of unity, shows that product ought to be the fifth 
part of the multiplicand. Also, to multiply any number by 4/5 is to take out of this number or 
the multiplicand a part which shall be four fifths of it, or equal to four times one fifth. 
Division 

The word ‘contain’, in its strict sense, is not more proper in the different cases presented by 
division, than the word ‘repeat’ in those presented by multiplication; for it cannot be said that 
the dividend contains the divisor, when it is less than the latter; the expressions is generally 
used, but only by analogy and extension. 

To generalize division, the dividend must be considered as having the same relation to the 
quotient, that the divisor has to unity, because the divisor and quotient are the two factors of 
the dividend. This consideration is applicable to every case that division can present. When, 
for instance, the divisor is 5, the dividend is equal to 5 times the quotient, and consequently, 
the latter is the fifth part of the dividend. If the divisor is a fraction, ½ for instance, the divi-
dend cannot be but half of the quotient, or the latter must be double that of the former. 

2. In more recent textbooks, some authors like Rey Pastor and Puig Adam (1935, p. 210), 
introduced a conception of the operations of multiplying and dividing fractions that did not 
implement the conceptual change. 
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The multiplication of fractions was presented, on the basis of an interpretation of fractions as 
an operator, as a double operation of multiplying and dividing by a natural number:  

The so-called problems of multiplication of fractions are, strictly speaking, problems of com-
bined multiplication and division. 

The division of fractions was presented as an inverse multiplication operation. 

Showing the operation
7
3

9
2
÷ means: Is there a fraction which when multiplied by

7
3   gives

9
2 ?  

 
2.5  Key implications for teaching and learning  
In the process of generalizing the division of whole numbers to the division of fractions, ac-
cording to the textbooks there are two options; in one, attention is paid to the conceptual 
change, in the other it is ignored. 

1. When opting for conceptual change, in which the multiplication and division of fractions is 
conceived through the proportional model, the quaternary relationship is made to appear (de-
scribed by Vergnaud 1983) which allows direct operations of multiplying or dividing to be 
identified as “missing-value proportional problems (in which three numbers are given, one of 
them is unity, and a fourth is asked for). 

In this way, word problems of direct operations that involve fractions can be solved using a 
general method: the rule of three, which implicitly involves the idea of linearity9. However, 
the rule of three is often learnt routinely, giving priority to procedural knowledge (the rules 
that prescribe how to organise and operate the data), above conceptual knowledge, which is 
what is needed to exercise control of “linearity” and to limit pupils’ tendency to over–use the 
proportional model. This is a tendency that increases the more pupils acquire linear reasoning 
skills through practising and solving typical linear problems (Van Dooren, De Bock & Ver-
schaffel, 2006, p. 120) and which is stimulated by various factors, among them the numerical 
structure of the data involved in the problem (Van Dooren, De Bock. Evers & Verschaffel 
(this issue). 

2. When choosing to drop the conceptual change, the focus is on the approach based on inter-
pretations associated with fractions, and models with natural numbers. 

If we look at textbooks we can see that the application of this approach to problem-solving is 
based on ‘analytical’ methods (reducing a problem to a simpler case that one already knows 
how to solve) that are based on a change of unity, through unitary fractions or through reduc-
tion to a common denominator. This can be seen, for example, in the way of solving the fol-
lowing problems taken from the text by Rey Pastor & Puig Adam (ob. cit., pgs. 209-211):  

Example. 1. Each metre of cloth costs 3/5 euros. How much do 7/4 m cost?  

Example 2. 
7
3  of pizza weighs 

9
2  kilos. How much does the pizza weigh?  

                                                 
9 This idea can be treated from different perspectives: through proportionality, through first-degree equations, and 
through linear function. Equations and functions are not formally a part of arithmetic. De Bork (this issue) uses the 
term linearity through the perspective of arithmetic, so he refers it to the ‘proportional model’. 
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Example 3. If each pizza weighs 
7
3  kg, what portion of pizza will I have with 

9
2  kg? 

These three problems are direct operation problems, but in this operation it is not easily rec-
ognisable. 

To explain that they correspond to the multiplication 
4
7

5
3
⋅  and the division 

7
3

9
2
÷ , the author 

of the text resorts to ‘analysis’ of the problem statement to reduce the problem to a “recognis-
able” form. 

Example 1 

We will indicate the operation thus: 
4
7

5
3
⋅ ; and we will say: If each m costs 

5
3  euros, a fourth 

of a m, that is to say 
4
1  m, will cost 

45
34

5
3

⋅
=÷  euros, and  

4
7  will cost seven times more, 

that is to say 
20
21

45
73
=

⋅
⋅  euros. 

Here, the author connects with the interpretation of fractions as "operators". 

Example 2  

If 3 sevenths of pizza weigh 
9
2  kilos, 

1 seventh of pizza will weigh 3
9
2
÷  = 

39
2
⋅

 

and the whole pizza = 7 sevenths of pizza, will weigh 
39
727

39
2

⋅
⋅

=×
⋅

 

One notices in this last paragraph that on taking “the sevenths” as a new unity, the problem 
has been reduced to a known multiplication model with natural numbers: “if 1 unity weighs x, 
how much will 7 units cost?”.  

Example 3 

Reducing the weights to the same proportional part of kgs, we are posing the question in this 

different way:  If each pizza weighs 
97
93
⋅
⋅  kilograms, how much will I have for

79
72
⋅
⋅ ? 

Hence, taking 
97

1
⋅

 kg for a new unit, the pizza weights 3⋅9 units, so with 2⋅7 units I will have 

a portion of pizza equal to 
73
72
⋅
⋅  

This abstract quotient has the same expression as before; but now it represents a fraction of 
cake, whereas before it was of a kilo. 
Just as before, taking the common denominator as a new unity, the problem is reduced to a 
known division (measurement) problem with natural numbers. 
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3  Conclusions  
Research has suggested that teachers and textbook authors should revise the notions of multi-
plication and division of fractions. With respect to this matter, the immediate question is how 
to approach the process of generalising the multiplication and division of natural numbers to 
fractions: 

a) To help students through the approach of models, it will be necessary to help them create 
the connections hidden among the natural number models and fraction models.   

b) However, if multiplication and division of fractions are notions resistant to models, as hap-
pens with multiplying negative numbers, then it will be necessary to drop the model approach 
or else resort to an ‘analysis’ of the problem in order to reduce it to a simpler one that the stu-
dent already knows how to solve. Otherwise, there is a third way which would direct the con-
ceptual change towards a more formal mathematical conception. 

In any case, in order to answer the proposed question with a sound base, it seems there is still 
the need for much more research to be done. 
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The concept of place value and addition are presented in several of the contributions in 
TSG10, and the learning difficulties and possible concepts formation in learning addi-
tion are addressed. Many researches showed that children’s learning experience in ad-
dition is not as easy is we thought. Most of the time, we teach addition according to 
textbook material and many textbooks are algorithm-teaching based. Algorithm teach-
ing resulted in systematic error and lack of focus on the development of place value, 
which hindered children to understand algorithm in multi-digits addition. Also, the rep-
resentation used in carrying in addition does not relate to the concept of place value or 
addition. In this paper, the process of addition learning and formation of place value is 
analysed. 

 
Key words: Addition, Counting, Place Value, Number operation 

 
 
1  Issues in TSG 10 and learning of addition 
The focus of TSG 10 is on relating the theoretical framework of learning arithmetic and the 
research results from practical teaching. The concept acquisition of addition and arithmetic is 
a long researched area. Piaget (1965) proposed that educators should not be too concerned 
with investigating how the child learns addition and subtraction tables as this kind of learning 
are frequently verbal. Carpenter and Moser (1983) summarised the results of word problem 
with addition and subtraction into six categories: (1) Join (addition), (2) Separate (subtrac-
tion), (3) Combine (subtraction), (4) Combine (addition), (5) Compare (subtraction) and (6) 
Join missing addend (subtraction). Similarly, Fuson (1992) concluded that the ability of addi-
tion come from the following stages, (1) count all from 1, (2) count on from arbitrary number, 
(3) count on from larger number, (4) count on from either number, (5) regrouping. 

Nunes and Bryant (1996) proposed that context and situation is important for learning addi-
tion. Nunes regarded the context as (1) “change situation”, (2) “part-whole situation” and (3) 
“comparison”. The following are three most common contexts in addition. 

 

 Context explanation 

3 � 2 � 5 in three different context: 

 Context 1: 

A has three candies. 

B has two candies.  

They have 5 candies. 

 Context 2: 

A has three candies, he got 
two more. 

He finally has 5 candies. 

Context 3: 

A has three candies; B 
has two candies more 
than A.  B has 5 candies. 
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 part-part-whole 

(Carpenter & Moser, 1983 

Union (Brown, 1991) 

 Joining  

(Carpenter and Moser, 1983

Adding On, (Brown, 1991) 

Compare 

(Carpenter and Moser, 
1983) 

 

2  Developing Concept of Place Value and Representation 
Concept of place values is the ability to count with different base and represent a number with 
different base. For example, 25 can be expressed as two “10” and one “5” or five “5”. Though 
student may be able to decompose 25 into “20 + 5”, a process to build up the concept of place 
value, the result does not guarantee that student can have concept of place value.  

Brown (1981) found that students could not answer question such as “The meter of a car 
showed that it has run 6299 miles, after running another mile, what number will appear on the 
meter?” Only 24% of the children can answer the question, knowing that 1 after 6299 is 6300. 

Kamii (1985, 1994) maintained that given a suitable environment; children can re-invent the 
algorithm of addition and subtraction through regrouping and combine. This is also how chil-
dren learn the concept of place value through their exploration. Children need not taught to 
combine and group into 10, they can perform such knowledge when they calculate 165 + 99 
and obtain the answer 165 + 99 = (160 + 90) + (9 + 1) + 4 = 274 as they use a lot of their own 
regrouping.  

To sum up, the development of place value depends very much on the following abilities (1) 
count on from any number, (2) regrouping of numbers and (3) using arbitrary unit (especially 
base 10) as base.  

 

(1)  Repeated Counting on (serial of addition) of single digit number  

Children understand place value when they add up the numbers through count on. 

For example, the following sequence provide children the chance to sum over 10, 20, and 30: 
“4 + 7 + 6 + 8 + 9 = 11 + 6 + 8 + 9 = 17 + 8 + 9 = 25 + 9 = 34”. 
 

(2)  Base and place value 
Formation of place value needs experience in operation of different base value. The following 
two contexts helps to build up the concept of place value. Adding with different base (dollar 
coin and 10c coins, hours and minutes) 

  Dollars 10c  Hours Minutes 
  4 8   19 50 

 + 8 7  + 1 15 

  12 15  20 65 

3 

2 

5 3 5 
+2 

3 5 
+2 
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  13 5  21 05 
 

(3)  Regrouping, splitting number into sum of different base 
Regrouping is an important concept in addition (Nunes et al., 1993, Carroll, 1996). 

    Example: Splitting a four digits number   

    2345 = 1000 + 1345.   2345 = 1000 +1000 + 345.   

 

3  Teaching of addition and procedural learning 
Liping Ma (1999) found that many teachers teach according to textbook and representation in 
addition did not reflect children’s thinking process. Many mathematics textbooks add from 
the right digits. In fact, many children use both directions for adding up numbers. Adding 
from the left even reflect more of the children thinking (which is 14 + 3), a thinking process 
similar to count on with from large number, while adding start from the right did not corre-
spondence to this thinking process. 

     1 4      1 4          

    +  3     +  3          

     1 7      1 7          

 From left  ⎯→      ←⎯  From right     

   (analogy: Count on)  (procedure)         

 

The following representation seems to be universal in many mathematics textbooks, where 
the carrying is marked with a small 1 (denote “10”). This is an example of procedural learning 
and the hidden process of operation of the 10. However, the algorithm teaching did not reflect 
the process of operation in place value.  

 

  Universal representation 1 

(Addition) 

Universal representation 2 

(Addition) 

           1    

   2  5       2 5    

  + 3 1 7      + 3 7    

   6  2       6 2    

               
 

 

 

4  Learning of addition and place value  
The process and representation of addition should reflect the thinking process of children. The 
following four possible processes reflect the understanding of place value, using count on or 
regrouping. 
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128 175168

+7

+40 

 

 Representation 1 Representation 2 Representation 3 Representation 4 

   2 5    2 5    2 5    2 5  

  + 3 7   + 3 7   + 3 7   + 3 7  

   1 2    5 0    5 5    3 2  

  + 5 0    1 2     7    3 0  

   6 2    6 2    6 2    6 2  

                     

 Adding “1” and 
“10” as unit 

Adding “1” and 
“10” as unit 

Count on from 25 
and separate 37 

into 30+7 

Count on from 32 
and separate 25 

into 20+5 

 All process above need the concept of place value  

 

The above process reflects the correspondence between the addition process and the grouping 
of numbers, and most importantly, the thinking process. Hence representation of the process 
of addition is important for conceptual learning. 

In order that learning is meaningful, different version of representation reflecting operation 
reflecting can help understanding of the concept of addition.  

 

(1)  Using the 10-grids table for count on process ( 13 + 19 = 13 + 10 + 9 = 32). 

 31 32 33 34 35 36 37 38 39 40            

 21 22 23 24 25 26 27 28 29 30   13 + 10 = 23, 23 + 9 = 32  

 11 12 13 14 15 16 17 18 19 20            

 1 2 3 4 5 6 7 8 9 10            

 

(2) Using count on with number line (128 + 47 = 128 + 40 + 7) 
Start from 128 and add 40, then add 7 (or add 7, then add 40) 

      1 2 8  

     +  4 7  

      1 6 8  

        7  

 

 

     1 7 5  

 

(3)  Using count on, 47 + 36 = 47 + 30 + 6, 294 + 148 = 294+100 + 40 + 8. 

     4 7      2 9 4    
    + 3 6     + 1 4 8    
     7 7      3 9 4    
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    +  6     +  4 0    
     8 3      4 3 4    
           +   8    
            4 4 2    
 

(4)  Using combination and regrouping of 10 (or 100) to indicate place value 

    4 7      2 9 4  
   + 3 6     + 1 4 8  
    7 7      3 0 0 200 + 100 = 300  
   +  6      1 3 0 90 + 40 = 130  
    8 3       1 2 4 + 8 = 12  
           4 4 2 300 + 130 + 12 = 442 
 

(5)  Using variation of representation to indicate place value 
The above example of 294 + 148 can correspond to the following representation, other than a 
vertical representation.  

   2 0 0 +  9 0 +  4     

   1 0 0 +  4 0 +  8     

   3 0 0 + 1 3 0 + 1 2 = 4 4 2  
 

5  Conclusions  
The teaching of addition by algorithm teaching require memory of procedure, which  in-
creases the cognitive load and memory load of children in their learning. Algorithm teaching 
has little connection for further exploration of concepts and investigation of addition. The 
teaching of addition should base on contextual situation and the representation of the calcula-
tion process should reflect the thinking process of the children. That is, having a correspon-
dence to the operation of objects.  

In most cases, failure in performing addition is due to the lack of concepts in place value. The 
count on activities contributes to the development of concepts in place value and the sense of 
numbers when adding the sum. From research literature on how children re-invent arithmetic, 
we know that repeated count on activities, regrouping with arbitrary unit are important steps 
for place value development and successful acquisition of concepts in addition. We need the 
extension of concept, not extension of algorithm teaching. 
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