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Abstract

For a series of cash flows, its stochastically discounted or compounded value
is often a key quantity of interest in finance and actuarial science. Unfortu-
nately, even for most realistic rate of return models, it may be too difficult
to obtain analytic expressions for the risk measures involving this discounted
sum. Some recent research has demonstrated that in the case where the return
process follows a Brownian motion, the so-called comonotonic approximations
usually provide excellent and robust estimates of risk measures associated with
discounted sums of cash flows involving log-normal returns.
In this paper, we derive analytic approximations for risk measures in case one

considers the continuous counterpart of a discounted sum of log-normal returns.
Although one may consider the discrete sums as providing a more realistic sit-
uation than its continuous counterpart, considering in this case, the continuous
setting leads to more tractable explicit formulas and may therefore provide fur-
ther insight necessary to expand the theory and to exploit new ideas for later
developments.
Moreover, the closed-form approximations we derive in this continuous set-up

can then be compared more effectively with some exact results, thereby facilitat-
ing a discussion about the accuracy of the approximations. Indeed, in the discrete
setting, one always must compare approximations with results from simulation
procedures which always give rise to room of debate. Our numerical comparisons
reveal that the comonotonic ‘maximal variance’ lower bound approximation pro-
vides an excellent fit for several risk measures associated with integrals involving
log-normal returns. Similar results as we derive here for continuous annuities can
also be obtained in case of continuously compounding which therefore opens a
roadmap for deriving closed-form approximations for the prices of Asian options.
Future research will also focus on optimal portfolio slection problems.

∗Paper has been presented at the 3rd Actuarial and Financial Mathematics Day, Brussels, Bel-
gium, 4 February 2005. Comments are welcome. Please address them to: Steven Vanduffel,
Katholieke Universiteit Leuven, Belgium (e-mail: Steven.Vanduffel@econ.kuleuven.ac.be).
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1 Introduction

The stochastically discounted or compounded value of a series of cash flows is a ran-
dom variable (r.v.) of importance in finance and actuarial science. Such a discounted
or compounded sum is most often introduced as a r.v. S given by

S =
nX
i=1

αi e
Zi . (1)

Here, the αi are non-negative real numbers and (Z1, Z2, ..., Zn) is a random vector.
The accumulated value at time n of a series of future deterministic saving amounts

αi can be written in the form (1), where Zi denotes the random accumulation factor
over the period [i, n]. Also the present value of a series of future deterministic pay-
ments αi can be written in the form (1), where now Zi denotes the random discount
factor over the period [0, i]. The valuation of Asian or basket options, the setting of
provisions and required capitals in an insurance context boils down to the evaluation
of risk measures related to the distribution function of a random variable S as defined
in (1). We define a risk measure to be a mapping from the set of random variables,
usually representing the risks at hand, to the set of real number R. Risk measures are
a helpful tool for decision-making since they reduce the information available about
the random variable X into one single number ρ [X].

Common risk measures in actuarial science are premium principles, see for in-
stance Goovaerts, De Vijlder & Haezendonck (1984), or also Chapter 5 in Kaas,
Goovaerts, Dhaene & Denuit (2001). Other risk measures are used for determining
provisions and capital requirements of an insurer, in order to avoid insolvency. Then
risk measures are based on the upper tails of distribution functions. Such measures
of risk are considered in Artzner, Delbaen, Eber & Heath (1999), Wirch & Hardy
(2000), Panjer (2002), Dhaene, Goovaerts & Kaas (2003), Dhaene, J., Vanduffel, S.,
Tang, Q., Goovaerts, M.J., Kaas, R. & Vyncke, D. (2004) and Tsanakas & Desli
(2003), among others.

In this paper, we consider the p-quantile risk measure, often called the ‘VaR’
(Value-at-Risk) at level p in the financial and actuarial literature. For any p in (0, 1),
the p-quantile risk measure for a random variable X, which will be denoted by Qp[X],
is defined to be

Qp [X] = inf {x ∈ R | FX(x) ≥ p} , p ∈ (0, 1) , (2)

where FX(x) = Pr [X ≤ x]. Note that expression (2) can also be used to define Q0 [X]
and Q1 [X]. For the latter quantile, we take the convention inf ∅ = +∞. We then
find that Q0(X) = −∞. For a bounded random variable X, we have that Q1 [X]
= max (X). The quantile function Qp [X] is a non-decreasing and left-continuous
function of p. Finally, we also note that for all x ∈ R and p ∈ [0, 1] that

Qp [X] ≤ x⇔ p ≤ FX(x). (3)

Note that the equivalence relation (3) holds with equalities if FX is continuous at
this particular value of x.

Another very popular risk measure, which is also being considered in this paper,
is the Conditional Tail Expectation for which at level p, we denote it by CTEp [X].
It is defined as

CTEp [X] = E [X | X > Qp [X]] , p ∈ (0, 1) . (4)
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Loosely speaking, the conditional tail expectation at level p is equal to the mean of
the top (1−p)% losses. It can also be interpreted as the VaR at level p augmented by
the average exceeding of the claims X over that quantile, given that such exceeding
occurs. Conditional Tail Expectations have been considered in Panjer (2002) and
Landsman & Valdez (2003).

We also define the stop-loss premium with retention d of the random variable X
to be E[(X − d)+], with the notation (x − d)+ = max (x− d, 0). By using partial
integration, we obtain

E[(X − d)+] =

Z ∞

d
(1− FX(x)) dx, −∞ < d < +∞, (5)

from which we see that the stop-loss premium with retention d can be considered as
the weight of an upper tail of the c.d.f. (cumulative distribution function) of X: it is
the surface between the c.d.f. FX of X and the constant function 1, from d on. Also
useful is the observation that E[(X − d)+] is a decreasing continuous function of d,
with derivative FX(d)− 1 at d, which vanishes when d reaches infinity.

Yet even for the most known stochastic return model i.e. when (Z1, Z2, ..., Zn) is
a multivariate normal distributed random vector, it is difficult to obtain analytic ex-
pressions for most of the the risk measures involving these discounted or compounded
sum (1). This is because the dependency structure of the terms involved in the sum
is too cumbersome to work.

Unsurprisingly, in the literature, a variety of approximation techniques have been
suggested and in a series of papers so-called comonotonic approximations for the
c.d.f. and risk measures related to the random variable (r.v.) S have been proposed.
We refer to Dhaene, Denuit, Goovaerts, Kaas & Vyncke (2002a,b) for an extensive
overview on the theory of comonotonicity and its applications.

The accuracy of the comonotonic upper bound and lower bound approximations
has been demonstrated, amongst other results, by Huang, H., Milevsky, M. & Wang,
J. (2004) and Vanduffel, Hoedemakers & Dhaene (2004).

The discrete case (sums of random variables) has a continuous counterpart (inte-
grals of stochastic processes) and in this paper, we focus on some explicit results in
the case where the stochastic process under consideration is a geometric Brownian
motion which is a continuous equivalent of the Gaussian setting (1).

Hence, in line with Dhaene, Denuit, Goovaerts, Kaas & Vyncke (2002b), we here
consider the continuous equivalent of (1) which is the continuous temporary annuity
St defined by

St =

Z t

0
α(τ)e−δτ−σ B(τ)dτ, (6)

where {B(τ), τ ≥ 0} represents a standard Brownian motion, i.e. the process has
independent and stationary increments, B(0) = 0 and for any τ ≥ 0, the random
variable B(τ) is Normally distributed with mean 0 and variance τ . Furthermore,
the drift δ and the volatility σ are positive real numbers. Finally, the payments are
described by α(τ) which is a non-negative and continuous function of τ .

Recall also that the convex ordering, denoted by ≤cx, reflects the common prefer-
ences of all risk-averse decision takers when choosing between risks with equal mean.
This holds in both the classical utility theory from von Neuman & Morgenstern as in
Yaari’s dual utility theory, see Dhaene, J., Vanduffel, S., Tang, Q., Goovaerts, M.J.,
Kaas, R. & Vyncke, D. (2004) for more details.
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In this paper we show that, in case of a constant annuity the comonotonic upper
bound approximation gives rise to closed-form results for the quantiles, conditional
tail expectation and stop-loss premiums. We also demonstrate that, for some specific
choices of the conditioning random variable Λ, explicit results for these risk measures
can be obtained in case one uses the comonotonic lower bound approximation.

Note that we agree that this is of course a rather theoretical exercise because in
reality, one almost always deal with discrete sums and not with continuous integrals.
However, we observe that several research is done usually based on a continuous
setting for the particular problem of interest. This is because this often leads to
more tractable formulas and may therefore provide initial insights and as such pave
the way for developing the results in real-life discrete settings. In case of constant
perpetuities, for instance, it is known from Merton (1975) that in a continuous setting
the cumulative distribution function of S∞ can be calculated very easily since one
can prove that S−1∞ is indeed a Gamma distributed random variable with parameters
2δ
σ2
and σ2

2 . In this paper, we say that the random variable X is Gamma distributed
with parameters α and β when its probability density function (p.d.f.) is expressed
as

fX(x;α, β) =
1

βαΓ(α)
xα−1e−x/β, x > 0,

where α > 0, β > 0 and Γ(.) denotes the Gamma function:

Γ(α) =

Z ∞

0
uα−1e−udu (α > 0).

Its reciprocal Y = 1/X is said to be reciprocal Gamma distributed whose p.d.f. we
can write as

fY (y;α, β) = fX(1/y;α, β)/y
2, y > 0.

It is straightforward to prove that the quantiles and conditional tail expectations of
Y are given by

Qp [Y ] =
1

F−1X (1− p;α, β)
, p ∈ (0, 1) (7)

and

CTEp [Y ] =
FX(F

−1
X (1− p;α, β);α− 1, β)
(1− p)(α− 1)β , p ∈ (0, 1) , (8)

where FX(.;α, β) is the cumulative d.f. of the Gamma distribution with parameters α
and β. Since the Gamma distribution is readily available in many statistical software
packages, these risk measures can easily be determined.

With this insight it has been proposed by Huang, Milevsky and Wang (2004) to
use the reciprocal Gamma distribution function as a suitable choice for approximating
the risk measures of finite annuities. Therefore, a first reason to mention the explicit
results is that it might be useful for future research. As a second reason, we can
compare our approximations with available explicit results. In the discrete setting
we always need to compare with simulated results which always give rise to room of
debate. In the continuous setting, however, there exist explicit closed-form results
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for some interesting actuarial quantities and hence, these can be compared with the
results obtained by using the comonotonic approximations. Although the results we
mention here are only true in the discounting case, similar results can also be obtained
in case of continuously compounding. Obviously, this creates the framework for
deriving closed-form approximations for the prices of Asian options. Future research
will also focus on optimal portfolio slection problems.

For the remainder of this paper, it has been organized as follows. In Section 2,
as the analogue of the continuous case developed in this paper, we give the general
results and briefly describe the ’maximal variance’ lower bound for the discrete case
of the sum in (1). The main focus of this paper is developing the upper and lower
bound approximations of several risk measures for the sum in (6) so that in Section 3,
we derive explicit closed-form formulas for these risk measures related to continuous
annuities. In Section 4, we compare these upper and lower bound approximations
with explicit results in the case of constant continuous perpetuities. Section 5 provides
some concluding remarks.

2 Comonotonic approximations - the discrete case

2.1 General results

Let the random variable Sn be given by (1), where the αi are non-negative real num-
bers and the random vector (Z1, Z2, ..., Zn) has a multivariate Normal distribution.
Consider the conditioning random variable Λ, given by

Λ =
nX
i=1

γiZi. (9)

and also the random variables Sl and Sc defined by

Sl = E[S|Λ] =
nX
i=1

αi e
E[Zi]+

1
2(1−r2i )σ2Zi+riσZiΦ

−1(U) (10)

and

Sc =
nX
i=1

αi e
E[Zi]+σZiΦ

−1(U), (11)

respectively. Here U is a Uniform(0, 1) r.v. , Φ is the c.d.f. of the N(0, 1) distribution
and ri is the correlation between Zi and Λ.

As demonstrated in Kaas, Dhaene & Goovaerts (2000), it follows that for the
r.v.’s S, Sl and Sc, the following convex order relations hold:

Sl ≤cx S ≤cx Sc.

For example, in the case of lognormal distribution, we have the expressions for
the risk measures:

Qp [S
c] =

nX
i=1

αi e
E[Zi]+σZiΦ

−1(p), (12)

CTEp [Sc] =
nX
i=1

αi e
E[Zi]+

1
2
σ2Zi
Φ
¡
σZi −Φ−1(p)

¢
1− p

, p ∈ (0, 1) . (13)
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Now provided all coefficients ri are positive, we also find, still in the lognormal case,
that for p ∈ (0, 1) :

Qp

h
Sl
i
=

nX
i=1

αi e
E[Zi]+

1
2(1−r2i )σ2Zi+riσZiΦ

−1(p)
, (14)

CTEp
h
Sl
i
=

nX
i=1

αi e
E[Zi]+

1
2
σ2Zi
Φ
¡
ri σZi − Φ−1(p)

¢
1− p

.. (15)

Notice that the expected values of the random variables S, Scand Sl are all equal:

E(S) = E(Sl) = E(Sc) =
nX
i=1

αi e
E[Zi]+

1
2
σ2Zi , (16)

whereas their variances are given by

V ar(S) =
nX
i=1

nX
j=1

αiαj e
E[Zi]+E[Zj ]+

1
2
(σ2Zi

+σ2Zj)(ecov(Zi,Zj) − 1), (17)

V ar(Sl) =
nX
i=1

nX
j=1

αiαj e
E[Zi]+E[Zj ]+

1
2
(σ2Zi

+σ2Zj)(e
rirjσZiσZj − 1) (18)

and

V ar(Sc) =
nX
i=1

nX
j=1

αiαj e
E[Zi]+E[Zj ]+

1
2
(σ2Zi

+σ2Zj)(e
σZiσZj − 1), (19)

respectively.

2.2 The ‘maximal variance’ lower bound approach

Comparing variances is meaningful when comparing stop-loss premiums of convex
ordered random variables, see, e.g. Kaas, van Heerwaarden & Goovaerts (1994, p.
68). The following relation links variances and stop-loss premiums:

1

2
V ar[X] =

Z ∞

−∞
(E[(X − t)+]− (E[X]− t)+) dt. (20)

To prove this relation, writeZ ∞

−∞
(E[(X − t)+]− (E[X]− t)+) dt =

Z E[X]

−∞
E[(t−X)+] dt+

Z ∞

E[X]
E[(X−t)+] dt.

Interchanging the order of the integrations and using integration by parts, one findsZ E[X]

−∞
E[(t−X)+] dt =

Z E[X]

−∞

Z t

−∞
FX(x) dx dt =

1

2

Z E[X]

−∞
(x−E[X])2 dFX(x).

Similarly,Z ∞

E[X]
E[(X − t)+] dt =

1

2

Z ∞

E[X]
(x−E[X])2 dFX(x).
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This proves (20). We deduce from this that if X ≤cx Y ,Z ∞

−∞
(E[(Y − t)+]− (E[(X − t)+] dt =

1

2
{V ar[Y ]− V ar[X]} (21)

Thus, if X ≤cx Y , their stop-loss distance, i.e. the integrated absolute difference
of their respective stop-loss premiums, equals half the variance difference between
these two random variables. As the integrand in (21) is non-negative, we find that if
X ≤cx Y whilst V ar[X] = V ar[Y ], than this means that X and Y must have equal
stop-loss premiums and hence the same d.f. We also find that 12{V ar[Y ]−V ar[X]} can
be interpreted as a measure for the "average error" one makes when approximating
the stop-loss premiums of Y by those of the less convex X. This indicates that if we
want to replace S by the less convex Sl, the best approximations will be the ones
where the variance of Sl is ‘as close as possible’ to the variance of S. In other words,
we should try to choose the coefficients γi of the conditioning variable Λ defined in
(9) such that the variance of Sl is maximized.

Vanduffel, Hoedemakers & Dhaene (2004) proved that the first order approxima-
tion of the variance of Sl will be maximized for the following choice of the parameters
γi:

γi = αie
E[Zi]+

1
2
σ2Zi , i = 1, . . . , n. (22)

Indeed, from (19)we find that

V ar(Sl) ≈
nX
i=1

nX
j=1

αiαj e
E[Zi]+E[Zj ]+

1
2
(σ2Zi

+σ2Zj)(rirjσZiσZj )

=
nX
i=1

nX
j=1

αiαj e
E[Zi]+E[Zj ]+

1
2
(σ2Zi

+σ2Zj)
µ
Cov[Zi,Λ]Cov[Zj ,Λ]

V ar(Λ)

¶

=
(Cov(

Pn
i=1 αi e

E[Zi]+
1
2
σ2ZiZi,Λ))

2

V ar(Λ)

= (Corr(
nX
i=1

αi e
E[Zi]+

1
2
σ2ZiZi,Λ))

2 V ar(
nX
i=1

αi e
E[Zi]+

1
2
σ2ZiZi). (23)

Hence, the first order approximation of V ar(Sl) is maximized when Λ is given by

Λ =
nX
i=1

αi e
E[Zi]+

1
2
σ2ZiZi. (24)

Note that also in case the αi are not all positive, the choice (22) will optimize
the first order approximation of the variance of Sl. In the remainder of this chapter
and also further in the second part of this work, we will always assume that the
conditioning r.v. Λ is given by (24). Notice that this optimal choice for Λ is slightly
different from the choice that was made for this r.v. in Dhaene, Denuit, Kaas,
Goovaerts & Vyncke (2002b).

One can easily prove that the first order approximation for V ar(Sl) with Λ given
by (24) is equal to the first order approximation of V ar(S). This observation gives
an additional indication that this particular choice for Λ will provide a good fit. We
emphasize that the conditioning r.v. Λ defined in (24) does not necessarily maximize
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the variance of Sl, but has to be understood as an approximation for the optimal Λ.
Theoretically, one could use numerical procedures to determine the optimal Λ, but
this would outweigh one of the main features of the convex bounds, namely that the
quantiles and conditional tail expectations (and also other actuarial quantities such
as stop-loss premiums) can easily be determined analytically. Having a ready-to-use
approximation that can be implemented easily is important from a practical point of
view.

3 Closed-form comonotonic approximations for the con-
tinuous case

3.1 General results

Let Y (τ) = δτ + σB(τ) and X(τ) = exp{−Y (τ)}. Analogous to the discrete setting
discussed in Kaas, Dhaene & Goovaerts (2000), it can be shown that Sl

t ≤cx St ≤cx Sc
t ,

where the random variable Sc
t and Sl

t are defined by

Sc
t =

Z t

0
F−1α(τ)X(τ)(U) dτ =

Z t

0
α(τ)e−δτ+σ

√
τ Φ−1(U)dτ (25)

and

Sl
t = E[St | Λ] =

Z t

0
α(τ)e−δτ+

1
2
σ2τ(1−r2(τ))+r(τ)σ√τΦ−1(V )dτ, (26)

where U is a Uniform(0,1) random variable, the conditioning variable Λ follows a

Normal distribution and V = Φ
³
Λ−E[Λ]

σΛ

´
is standard uniformly distributed. Fur-

thermore, r(τ) is defined by

r(τ) =
cov[Y (τ),Λ]

σΛσ
√
τ

. (27)

Since B(τ) is a Brownian motion process, it follows that the conditional random
variable Y (τ) | Λ = λ is Normally distributed with mean

E[Y (τ)|Λ = λ] = δτ + r(τ)σ
√
τ
λ

σΛ

and variance

V ar[Y (τ)|Λ = λ] = σ2τ(1− r2(τ)).

We also define the quantity δ∗ :

δ∗ = (δ − 1
2
σ2). (28)

Throughout the remainder of this paper, we assume that δ∗ > 0.
Since α(τ) is assumed to be non-negative, Sc

t will be an integral of comonotonic
random variables. Hence, the quantiles, conditional tail expectations and stop-loss
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premiums of Sc
t follow from

Qp[S
c
t ] =

Z t

0
α(τ)e−δτ+σ

√
τ Φ−1(p) dτ, (29)

CTEp[Sc
t ] =

Z t

0
α(τ)e−δτ+σ

2τ/2Φ
£
σ
√
τ − Φ−1(p)¤
1− p

dτ, (30)

E[Sc
t − d]+ =

Z t

0
α(τ)e−δτ+σ

2τ/2Φ
£
σ
√
τ − Φ−1(p)¤ dτ − d(1− p),

(31)

with 0 < p < 1 and d > 0 determined as the unique root of Qp[S
c
t ] = d. The

expressions (29), (30) and (31) are the continuous counterparts of the formulas derived
in Vanduffel, Hoedemakers & Dhaene (2004).

Likewise, we find that Sl
t will be an integral of comonotonic random variables

in case the function f(τ) = cov[Y (τ),Λ] remains non-negative. Hence, we find the
following continuous analogues of similar expressions in Vanduffel, Hoedemakers &
Dhaene (2004):

Qp[S
l
t] =

Z t

0
α(τ)e−δτ+

1
2
σ2τ(1−r2(τ))+r(τ)σ√τΦ−1(p)dτ, (32)

CTEp[Sl
t] =

Z t

0
α(τ)e−δτ+σ

2τ/2Φ
£
r(τ)σ

√
τ − Φ−1(p)¤

1− p
dτ, (33)

E[Sc
t − d]+ =

Z t

0
α(τ)e−δτ+σ

2τ/2Φ
£
r(τ)σ

√
τ − Φ−1(p)¤ dτ − d(1− p),

(34)

with again 0 < p < 1 and d > 0 uniquely determined by Qp[S
l
t] = d. The formula’s

(28)-(34) can also be found in Dhaene, Denuit, Goovaerts, Kaas & Vyncke (2002b).

3.2 Upper bound approach

In the remainder of the paper we will assume that α(τ) = 1. Hence we have that Sc
t

is an integral of comonotonic random variables. The quantiles of Sc
t follow from (29):

Qp[S
c
t ] =

Z t

0
e−δτ+σ

√
τ Φ−1(p) dτ, (0 < p < 1). (35)

By substituting y =
√
τ and realizing that the resulting integral can be rewritten in

terms of the standard-normal c.d.f. we find the following analytical expression:

Qp[S
c
t ] =

1

δ

−1
δ
e−δt+σ

√
tΦ−1(p)

+
1

δ

√
2πae

a2

2 (Φ[
√
2δt− a]− Φ[−a]), (36)

with

a =
σΦ−1(p)√

2δ
, (0 < p < 1). (37)
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From (30) we have that the conditional tail expectations are given by

CTEp[Sc
t ] =

Z t

0
e−δτ+σ

2τ/2Φ
£
σ
√
τ − Φ−1(p)¤
1− p

dτ, (0 < p < 1). (38)

Using the same substitution y =
√
τ as in the case of the quantiles, we find after

some long computations the following closed-form expression for the conditional tail
expectations:

CTEp[Sc
t ] =

1

δ∗

− 1
δ∗
e−δ

∗tΦ
£
σ
√
t− Φ−1(p)¤
1− p

+
σ

δ∗
e
a2−(Φ−1(p))2

2

r
1

2δ

Φ[
√
2δt− a]− Φ[−a]

1− p
, (0 < p < 1).

(39)

Finally, we obtain that the stop-loss premiums with retentions d > 0 are given by

E[(Sc
t − d)+] =

1

δ∗
(1− p)

− 1
δ∗
e−δ

∗tΦ
h
σ
√
t− Φ−1(p)

i
+
σ

δ∗
e
a2−(Φ−1(p))2

2

r
1

2δ
(Φ[
√
2δt− a]− Φ[−a])

−d(1− p), (0 < p < 1),

(40)

where p can be obtained by solving Qp[S
c
t ] = d.We remark that the expressions (39)

and (40) are valid under the condition that δ∗ > 0.

3.3 Lower bound approaches

3.3.1 General results

In order to compute the risk measures of Sl
t, Dhaene, Denuit, Goovaerts, Kaas &

Vyncke (2002b) proposed to use the conditioning random variable Λ =
R t
0 e
−δτB(τ)dτ

because this can be seen as a linear transformation of a kind of first order approxima-
tion of St. However, in the same way as in the discrete case developed in the previous
section, one can prove that the alternative choice Λ =

R t
0 e
−δ∗τB(τ)dτ will maximize

the first order Taylor approximation for the variance of Sl
t. The latter choice for Λ

is therefore likely to provide better approximations for the risk measures of St. We
have in this case that Λ is Normally distributed with mean 0 and variance

σ2Λ = V ar[Λ] =

Z t

0

Z t

0
e−δ

∗(τ+ν)min(τ , ν)dτdν

=
1

2δ∗3
+
3 + 2δ∗t− 4eδ∗t

2δ∗3e2δ∗t
.

r(τ) is given by

r(τ) =
cov[Y (τ),Λ]

σΛσ
√
τ

=
1

σΛ
√
τ

·
1− e−δ

∗τ

δ∗2
− τe−δ

∗t

δ∗

¸
, τ ≤ t.
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Since the function f(τ) = cov[Y (τ),Λ] is a non-negative function, Sl
t will be an inte-

gral of comonotonic random variables. Unfortunately, in case of finite annuities, there
seems to be no closed-form solutions for the quantiles, conditional tail expectations
and stop-loss premiums of Sl

t, in case one uses any of the two discussed choices for
Λ. We now propose two other choices for Λ, so that explicit form approximations for
these risk measures can be obtained.

3.3.2 Λ =
R∞
0 e−δ

∗τB(τ)dτ

The quantiles of Sl
t (0 < p < 1) follow from

Qp[S
l
t] =

Z t

0
e−δτ+

1
2
σ2τ(1−r2(τ))+r(τ)σ√τΦ−1(p)dτ, (41)

with

r(τ) =

r
2

δ∗τ
(1− e−δ

∗τ ).

Expression (41) can be rewritten as

Qp[S
l
t] =

Z t

0
e−δ

∗τ− 1
2
c2(1−e−δ∗τ )2+cΦ−1(p)(1−e−δ∗τ )dτ, (42)

with

c = σ

r
2

δ∗
.

By making the substitution y = e−δ
∗τ one sees that the integral (42) can be rewrit-

ten in terms of the standard-normal c.d.f. Hence, we find the following analytical
expression for the quantiles of Sl

t :

Qp[S
l
t] =

1

cδ∗
√
2πe

(Φ−1(p))2
2 (Φ(kt)− 1 + p), (43)

with

kt = c(1− e−δ
∗t)− Φ−1(p).

The conditional tail expectations of Sl
t are now given by

CTEp[Sl
t] =

Z t

0
e−δ

∗τ Φ[c(1− e−δ
∗τ )−Φ−1(p)]
1− p

dτ,

After some tedious algebra we find that

CTEp[Sl
t] =

1

δ∗(1− p)
Φ(kt)(1− e−δ

∗t)

+
1

δ∗(1− p)
(
Φ−1(p)

c
)(1− p− Φ(kt))

− 1√
2πcδ∗(1− p)

(e−
1
2
[Φ−1(p)]2 − e−

1
2
k2t ),

11



Finally, the stop-loss premiums of Sl
t with retentions d > 0 are now given by

E[(Sl
t − d)+] =

1

δ∗
Φ(kt)(1− e−δ

∗t)

+
1

δ∗
(
Φ−1(p)

c
)(1− p− Φ(kt))

− 1√
2πcδ∗

(e−
1
2
[Φ−1(p)]2 − e−

1
2
k2t )

−d(1− p), (44)

where p is the unique root of Qp[S
l
t] = d.

We point out that this specific choice for Λ =
R∞
0 e−δ

∗τB(τ)dτ cannot be ex-
pected to perform very well for finite annuities. However, when t reaches infinity,
this choice for Λ leads to the continuous equivalent of the ‘maximal variance’ lower
bound approach that we was discussed in section 2. Hence, our specific choice for Λ
is likely to yield excellent results when t reaches infinity whilst allowing for finite t
an analytical expression for the selected risk measures of Sl

t too.

3.3.3 Λ = B(t)

The quantiles of Sl
t (0 < p < 1) are still given by

Qp[S
l
t] =

Z t

0
e−δτ+

1
2
σ2τ(1−r2(τ))+r(τ)σ√τΦ−1(p)dτ,

but now with r(τ) given by

r(τ) =

r
τ

t
.

It proves easily that one obtains the following closed-form expressions for the quantiles
of Sl

t :

Qp[S
l
t] =

√
2πt

σ
e
γ2

2 (Φ[σ
√
t− γ]− Φ[−γ]), (45)

with

γ = Φ−1(p)− δ∗
√
t

σ
.

The conditional tail expectations of Sl
t follow from

CTEp[Sl
t] =

Z t

0
e−δ

∗τ
Φ[στ√

t
− Φ−1(p)]
1− p

dτ . (46)

Again, after some computations we find that

CTEp[Sl
t] =

1

δ∗
− 1

δ∗(1− p)
e−δ

∗t(Φ[σ
√
t− Φ−1(p)])

+
1

δ∗(1− p)
e−(

δ∗√t
σ
)(γ+ δ∗√t

2σ
) ×

n
Φ[σ
√
t− γ]− Φ[−γ]

o
.

12



The stop-loss premiums of Sl
t with retentions d > 0 now follow from

E[(Sl
t − d)+] =

Z t

0
e−δ

∗τΦ[
στ√
t
− Φ−1(p)]dτ − d(1− p),

where p is the root of Qp[S
l
t] = d. We find that

E[(Sl
t − d)+] = +

1

δ∗
(1− p)− 1

δ∗
e−δ

∗t(Φ[σ
√
t− Φ−1(p)])

+
1

δ∗
e−(

δ∗√t
σ
)(γ+ δ∗√t

2σ
) ×

n
Φ[σ
√
t− γ]− Φ[−γ]

o
−d(1− p).

4 Application on perpetuities

Consider the perpetuity S∞ defined by

S∞ =

Z ∞

0
exp [−δτ − σ B(τ)] dτ. (47)

For this annuity, the cumulative distribution function of the perpetuity S∞, expressed
in (47) can be calculated very easily since one can prove that its reciprocal S−1∞ is
Gamma distributed with parameters 2δσ2 and

σ2

2 . This result can be found in Merton
(1975), see also Dufresne (1990) and Milevsky (1997) for various proofs of this result.
Hence, we can compare the cumulative distribution functions of the lower bound Sl∞
and the upper bound Sc∞ with the exact cumulative distribution function of S∞.
We propose to use the ‘maximal variance’ lower bound approach that we discussed
in Subsection 2.2, since this is likely to provide the best results in case of infinite
annuities.

From (7), (36) and (43) ,with t → ∞, we find for 0 < p < 1 the following
expressions for the quantiles of S∞, Sc∞ and Sl∞respectively.

Qp[S∞] =
1

F−1X (1− p; 2δ
σ2
, σ

2

2 )
,

Qp[S
c
∞] =

1

δ
(1 + a

√
2πe

a2

2 Φ[a]),

Qp[S
l
∞] =

1

cδ∗
√
2πe

(Φ−1(p))2
2 (Φ[c− Φ−1(p)]− 1 + p),

with FX the c.d.f. of the Gamma distribution and

a =
σΦ−1(p)√

2δ
,

c = σ

r
2

δ∗
.

From (7), (8), (40) and (44), one also obtains closed-form results for the stop-loss
premiums for S∞, Sc∞ and Sl∞ . This is left as an easy exercise for the interested
reader.

To put some numerical values to the results, Table 1 shows the quantiles of Sl∞,
Sc∞ and S∞ in the case where δ = 0.07 and σ = 0.1. These results can be compared
with the results reported in Dhaene, Denuit, Goovaerts, Kaas & Vyncke (2002). The
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p Qp[S
l∞] Qp[S∞] Qp[S

c∞]
0.95 23.62 23.63 25.90
0.975 26.09 26.13 29.34
0.99 29.37 29.49 34.08
0.995 31.90 32.10 37.86
0.999 38.00 38.49 47.38

Table 1: The table compares some selected exact quantiles of the constant perpetuity
with the ‘maximal variance’ lower bound and upper bound approximations (δ=0.07,
σ=0.1).

small differences we observe, can be explained as follows : Firstly, the authors com-
puted the quantiles of Sc∞ and Sl∞ by numerical evaluation of the expressions (29)
and (32) with t → ∞ and α(τ) = 1. Secondly, they used the conditioning vari-
able Λ =

R∞
0 e−δτB(τ)dτ whereas our explicit results rely on the ‘maximal variance’

lower bound approximation, involving Λ =
R∞
0 e−δ

∗τB(τ)dτ as conditioning random
variable.

In Table 2, we show quantiles of S∞, Sc∞ and Sl∞ but now for δ = 0.07 and
σ = 0.2. This example is interesting because it proves that for suitable choices of
Λ, the c.d.f.’s of Sl∞ and S∞ do not necessarily cross only once. In this respect it is
worthwile to mention that Vanduffel et al showed in a discrete setting that the cdf’s
of Sl

t and Sc
t can only cross in the region where their distribution functions take a

value that is contained in the interval [p−, p+] for some,p− and p+ > 0 leaving it
as an open question whether this crossing point is unique or not. Exactly the same
result can be drawn in the continuous setting, but despite the explicit expressions for
the quantiles, we are still unable to answer satisfactorily the question concerning the
uniqueness of the crossing point.

Finally, Table 3 compares the stop-loss premiums for different retention values d.
The same comments as for Table 1 can be made. Here we give the expressions for
the stop-loss premiums for the case of the perpetuities:

E[(Sc
∞ − d)+] =

µ
1

δ∗
− d

¶
(1− p) +

σ

δ∗
e
a2−(Φ−1(p))2

2

r
1

2δ
Φ[a]

and

E[(Sl
∞ − d)+] =

1

δ∗
Φ(c−Φ−1(p))

+
1

δ∗
(
Φ−1(p)

c
)(1− p− Φ(c− Φ−1(p))

− 1√
2πcδ∗

(e−
1
2
[Φ−1(p)]2 − e−

1
2
(c−Φ−1(p))2)

−d(1− p), (48)

Corresponding figures to Tables 1 through 3 are drawn as Figures 1 through 3,
respectively, to help visualize the resulting upper and lower bound approximations
to the true values of the quantiles as well as the stop-loss premiums. As visually seen
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p Qp[S
l∞] Qp[S∞] Qp[S

c∞]
0.25 11.13 11.07 9.34
0.50 15.74 15.76 14.29
0.75 23.51 23.50 23.11
0.95 46.30 46.14 51.84
0.99 79.64 80.71 100.45
0.995 98.35 101.09 130.77

Table 2: The table compares some selected exact quantiles of the constant perpetuity
with the ‘maximal variance’ lower bound and upper bound approximations (δ=0.07,
σ=0.2).

d E[Sl∞ − d]+ E[S∞ − d]+ E[Sc∞ − d]+

10 5.4430 5.4457 5.5554
15 1.8590 1.8626 2.2690
20 0.4917 0.4961 0.8337
25 0.1229 0.1270 0.3079
30 0.0316 0.0344 0.1192

Table 3: The table compares some selected exact stop-loss premiums of the constant
perpetuity with the ‘maximal variance’ lower bound and upper bound approximations
(δ=0.07, σ=0.1).

from these figures, the comonotonic ’maximal variance’ lower bound approximations
do indeed come very close to the true values.
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lower bound

Figure 1: This figure reproduces Table 1 which compares the lower and upper bound
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approximations with the exact quantiles (δ=0.07, σ=0.1).
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Figure 2: This figure reproduces Table 2 which compares the lower and upper bound
approximations with the exact quantiles (δ=0.07, σ=0.2).
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Figure 3: This figure reproduces Table 3 which compares the lower and upper bound
approximations with the exact stop loss premiums (δ=0.07, σ=0.1).
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5 Concluding remarks

The stochastically discounted or compounded value of a series of cash flows is often
a key quantity of importance in finance and actuarial science. Yet even for most
realistic stochastic return models, it is often difficult to obtain analytic expressions
for the risk measures involving these discounted sums. Following the works of Dhaene,
et al. (2002a, 2002b), Dhaene, et al. (2004), and Vanduffel, et al. (2004), we show
in this paper how to derive explicit comonotonic approximations for risk measures
for constant continuous annuities, in the case where discounting is done using a
Brownian motion process. We compared these approximations with available explicit
results in case of perpetuities. Our numerical comparisons support the conclusions
made in Vanduffel, et al. (2004), namely that especially the ’maximal variance’
comonotonic lower bound approximation provides an excellent fit for several risk
measures associated with integrals or sums that involve lognormal returns. The
results we mention here correspond to the disounting case but can be generalised
to the compounding case too. The authors are currently studying opimal portfolio
selection problems and closed-form approximations for the prices of Asian options.
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