
KATHOLIEKE
UNIVERSITEIT

LEUVEN

.DEPARTEMENT TOEGEPASTE
ECONOMISCHE WETENSCHAPPEN

RESEARCH REPORT 0034

CHARACTERISING AGGREGATIONS WITH
EXISTENCE DEPENDENCY

by
M. SNOECK
G.DEDENE

D/2000/2376/34

Characterising Aggregations with Existence
Dependency

Monique Snoeck, Guido Dedene

K.U.Leuven - Management Information Systems Group
Naamsestraat 69
3000 Leuven
Belgium

Email: Monique.Snoeck.Guido.Dedene@econ.kuleuven.ac.be

ABSTRACT: The concept of aggregation is considered as one of the basic prin­

ciples in objec(-oriented analysis. There is however no standard definition of

this concept and each object-oriented analysis method has its own definition

of aggregation. The aim of this paper is not to discuss the different types of

aggregation that exist. However, having assessed the complexity of the con­

cept, we will illustrate how a basic set of formal concepts is sufficient to define

of the structural and behavioural aspects of different existing flavours of ag­

gregation. If a development method wants to offer a rich concept such as ag­

gregation, it can define the semantics of the desired flavour of the aggregation

using these core formal concepts. Analysts then have the choice to use the ag­

gregation defined by the method or to fall back on the core concepts if a dif­

ferent flavour of aggregation is needed to model the situation at hand.

KEYWORDS; object-oriented analysis, aggregation, composition, conceptual

modelling

An earlier and abbreviated version of this paper has been accepted for publication in L'objet,

under the title "Core Modelling concepts to Define Aggregations".

1

1. INTRODUCTION

The aggregation concept is considered as one of the basic principles of the

object-oriented approach. Yet at the same time, it is the subject of a lot of

(heated) discussions. The reason for these discussions are the loosely de­

scribed characteristics of the concept. One of the latest paper on the subject

[HEN 99a] [HEN 99b] identifies not less than 9 x 29 different flavours of ag­

gregation. The use of such loosely defined concepts is not enhancing the qual­

ity of specifications. It is a well-known fact that the correctness of a software

system is directly related to the correctness of its specifications. Correct speci­

fications require the use of precisely, completely and explicitly. defined mod­

elling concepts.

The goal of this paper is not to continue the debate on the characterisation

of aggregation. Rather, having assessed the complexity of the concept, we

have developed a toolbox that allows defining many flavours of aggregation in

a precise and formal way. In this toolbox, we put a few simple and formally

defined concepts that are the result of several years of experience with a

minimalistic approach to object-oriented conceptual modelling. In such mini­

malistic approach, modelling techniques offer a limited set of very well­

defined and simple concepts. Analysts have to unravel the problems to a level

where these simple concepts suffice to describe the problem at hand. The dis­

advantage of such approaches is that the models they generate tend to contain

much more elements compared to models using semantic rich concepts. Using

a layered approach can however alleviate this problem: a particular pattern of

simple lower level concepts can be used to represent a single high level con­

cept. In the diagrams, the patterns of lower level concepts are replaced by a

single "high level" icon to make models more readable. The advantage is that

the high level concept is defined in terms of the lower level concepts. Because

of their simplicity, the lower level concepts are much easier to define formally.

The high-level concept benefits from this formal definition: its own formal

definition can be inferred froni the formal definition of its constituent lower

level concepts.

2

In this paper we will attempt to define various existing kinds of aggregation

in terms of the concept of existence dependency. Existence dependency has

been defined in [SNO 98]. That paper demonstrates that this concept can be

used to model any kind of association. Hence, existence dependency is a core

concept for associations. In this paper we demonstrate that the same core con­

cept can be used to characterise many different flavours of aggregation.

In addition to the structural aspects of aggregation, we also have to consider

the behavioural aspects. Indeed, the concept of aggregation is strongly linked

to the concept of propagation of behaviour (from the whole to its parts). The

exact details of this propagation (when and how) are however different from

case to case. For example, when an order is deleted, the order-lines are deleted

as well. However, when a department ceases to exist (due to re-organisations),

it is not sure whether all its sub-departments cease to exist as well. There are

so many options on how and when to propagate behaviour, that any attempt to

model all behavioural aspects of the aggregation using a structural concept

only, will be very difficult. In the approach proposed in this paper, the behav­

ioural aspects are modelled using the concepts of atomic and consistent events.

The concepts of existence dependency and of atomic and consistent events

are called core concepts. By the term core we fIrst mean that they are simple,

unambiguous concepts, defIned in a formal way [SNO 98, SNO 99]. In addi­

tion, being a core concept means that it can be used to describe more complex

concepts. If a development method wants to offer a rich concept such as ag­

gregation, it can defIne the semantics of the particular flavour of the aggrega­

tion using existence dependency and events. The analysts then have the choice

to use the aggregation defIned by the method or to fall back on the core con­

cepts if a different flavour of aggregation is needed to model the situation at

hand. This layered approach can also be followed on a project by project basis

by defining high-level concepts only applicable in the context of one particular

project.

The rest of the paper is organised as follows. Section 2 briefly presents the

structural aspects of existence dependency. Section 3 presents a structural

characterisation of aggregation, using only the existence dependency relation­

ship and the notions of separability and shareability of parts. Section 4 elabo-

3

rates on the behavioural aspects of existence dependency and introduces the

notion of atomic and consistent event. Section 5 then explains how the be­

havioural aspects of aggregation can be further characterised using the con­

cepts of atomic and consistent events. Finally, section 6 discusses how other

characteristics such as homeomerousity, encapSUlation, transitivity, ... etc. can

be expressed with the proposed core concepts.

2. STRUCTURAL CHARACTERISTICS OF EXISTENCE DEPENDENCY

Existence dependency is defined as follows:

The concept of existence dependency (ED) is based on the notion of the

"life" of an object. The life of an object is the span between the point in

time of its creation and the point in time of its end. Existence dependency is

defined at two levels: at the level of object types or classes and at the level

of object occurrences. The existence dependency relation is a partial or­

dering on objects and object types which is defined as follows:

Definition

Let P and Q be object types. P is existence dependent on Q if and only if

the life of each Occurrence p of type P is embedded in the life of one par­

ticular and always the same occurrence q of type Q. p is. called the depend­

ent object, (P is the dependent object type) and is existence dependent on q,

called the master object (Q is the master object type).

A more informal way of defining existence dependency is as follows:

If each object of a class P always is associated with minimum one, maxi­

mum one and always the same occurrence of class Q, then P is existence

dependent on Q.

The result is that the life of the existence dependent object can not start be­

fore the life of its master. Similarly, the life of an existence dependent object

ends at the latest at the same time that the life of its master ends. This is illus­

trated in Figure 1.

4

Time

O~----·.

0----·_
9f-----W­

o~------. 9f--------·

Life span of
a master

Possibilities for life
span of an existence
dependent object

o = Start of life _ = End of life

Figure 1. Life span of master and dependent object

As an example, let us consider the relationships between an object type

LOAN and an object type COPY in a library. The life span of a loan of a copy is

always embedded in the life span of the copy that is on loan. Indeed, we can­

not have a loan for a copy if the copy doesn't exist. And the lifecyc1e of the

copy cannot end as long as the lifecyc1e of the loan is not ended. In addition, a

loan always refers to one and the same copy for the whole time of its exis­

tence. Hence the object type LOAN is existence dependent on the object type

COpy.

Notice that a total or mandatory relationship implies some kind of existence

dependency: if a relationship relates PROJECT to EMPLOYEE and is total on the

side of EMPLOYEE, then an occurrence of EMPLOYEE can only be created if. at

the same time it is related to some PROJECT-occurrence. The other way round,

the deletion of an entity occurrence of PROJECT results in the deletion of all

occurrences of EMPLOYEE that were only related to that occurrence of PROJECT.

In this sense, one could say that EMPLOYEE is existence dependent of PROJECT.

As pointed out in [DOG 90], [pUT 88], ap. important difference between a

mandatory and an existence dependency relationship lies in the updating rules.

Indeed in the example of the project and the employee, an employee can be

linked to different projects in the course of tiine. In other words, the reference

from employee to project can be updated. In the definition of existence de~

pendency given above it is required that the existence dependent object refers

to one and always the same master object: the reference from the dependent to

5

the master object is immutable. According to this definition, an .employee is

not existence dependent on a project. We simply say that the relationship be­

tween the two objects is mandatory for employee. Similarly a relationship

between a composite and its components can be mandatory without being ex­

istence dependent: if an order requires at least one order line to exist, the rela­

tionship is said to be mandatory but not existence dependent because in this

case it needs not to be always the same order line.

Existence dependency can be augmented with the notion of cardinality. The

cardinality of the existence dependency relationship defines how many occur­

rences of the dependent object type can be dependent on one master object at

one point in time]. For example, in the library, at one point in time it copy can

be involved in at most one loan, while a member can have several loans going

on simultaneously. To avoid confusion with classic associations, the existence

dependency relationship has its own particular graphical representation given

in Figure 2. Since the existence dependency associations are always manda­

tory for the existence dependent object type and since the cardinality is always

one on that side, optionality and cardinality are only indicated for the master

object type. A white dot indicates that the participation to the relationship is

optional (a master can have dependents) while a black dot indicates that par­

ticipation is mandatory (each master has at least one dependent at any point in

time). The arrow indicates a cardinality of Many (a master can have mUltiple

dependents at anyone time) while a straight line without an arrow denotes a

cardinality of one (each master has at most one dependent at any point in

time).

Let us remark that in the last case it might appear as if the lifecycle of A

equals the lifecycle of B. However, since the relationship expresses existence

dependency on the side of B only, an occurrence of A can still be associated

with many occurrences of B ~onsecutively. For example, assume that A

stands for the entity type REALESTA1E and B for OWNERSHIP. Then an owner­

ship always refers to the same real estate once and for all. But since real es-

6

tates can be traded, a real estate can be involved in one to many ownerships

consecutively. For this reason it is important to keep the representation of a

one to one relationship asymmetric. If not, it is impossible to discern the exis­

tence dependent object type from the master object type.

Master A is associated with zero,
one or many dependent B at any
point in time.

Master A is associated with one
or many dependent B at any
paint in time.

Master A is associated with zero
or one dependent B at any point
in time.

~_ r-;-l Master A is associated .wit.h ~ne
~ dependent B at any POInt In tIme.

In each of these four cases, dependent B is associated with
exactly one and always the same master A.

Figure 2. Graphical notation for existence dependency

For the library example the existence dependency graph is given in Figure

3: a copy has zero or one loans at one point in time, a' member has z~ro to

many loans at one point in time, and a loan refers to exactly one and always

the same copy and member at any time.

COpy ~f-----il' LOAN I ~t---4 MEMBER I
Figure 3. Existence dependency relations for the library

1. Notice that the clause "at one point in time" is essential in the definition of the
cardinalities. Over time, most objects of a certain type can have many existence de­
pendent objects of another type.

7

Most object-oriented analysis methods have an Entity-Relationship like

technique for modelling static aspects. In the conceptual model of MERODE

[SNO 99][SNO 98], it is the existence dependency graph that fulfils this pur­

pose: all object types have to be related according to existence dependency. At

first sight it seems not so obvious that organising object types according to

existence dependency is always possible. However, in [SNO 98] we have

demonstrated by means of a few examples that this is in fact pretty straight­

forward. The general idea is that associations between object types either rep­

resent an existence dependency or not. In the first case, the association stays as

it is. In the second case, the association is transformed into an object type

which is existence dependent of all the object types involved in the associa­

tion. A similar reasoning applies to composition (or aggregation): either the

components are existence dependent of the composition or they are not. In the

latter case, as many "contract" object types are introduced as there are compo­

nents in the composition. Each such contract object type relates and is exis­

tence dependent of both the composition and the component. It represents the

period of time that the component is part of the composition. For example,

wheels are part of a car but are not existence dependent of a car since they can

be mounted on different cars in the course of their life. Similarly, a car is not

existence dependent on a (set of) wheel(s), because the life of a car is not em­

bedded in the life of a particular (set of) wheel(s). As a result, we need a

MOUNTING object that represents the period of time that a particular wheel is

moun~ed on a car. This paper elaborates this basic idea of modelling non­

existence dependent relationships by means of a "contract" object for the spe­

cific case of part-of relationships. This contract object specifies the conditions

under which a part and a whole agree to be bound.

3. STRUCTURAL CHARACTERISATION OF AGGREGATION

In this section, we try to characterise structural aspects of the whole-part

relationship. We will do so by considering two characteristics. The first is ex­

istence dependency of parts on the whole, which will imply some features re-

8

· lated to lifetime binding and separability2. The second characteristic is the

shareability of parts. To simplify the discussion, we will always assume that

the whole can have many parts. The cases where the whole can have at most

one part can however be described in a completely analogous way. As exis­

tence dependency implies inseparability the cases to discuss can be resumed as

in Table 1.

Existence Separability Shareability Discussed in para-
Dependency graph
no yes yes 3.1.1.

no 3.1,2
yes no no 3.2:1

yes 3.2.2
no no yes 3.3

no 3.3
yes yes - impossible

Table 1. Cases to discuss

In the remainder of this paper we assume that all relationships are whole­

part relationships. We also assume that the whole and the part can have emer­

gent properties, which are modelled as attributes or functions (i.e. procedures

that return a value) in· the class definitions. The whole can also have resultant

properties, which are defined as functions in terms of the properties of its

parts. The other· primary characteristics (irreflexivity, anti-symmetry, and

asymmetry) and the remaining secondary characteristics identified in

[HEN 99a] are discussed iIi section 6.

3.1. Separable parts

Separability means that during its lifetime, a part can be detached from the

whole and bound to a different whole. As a result, a part can have several

bindings with different wholes during its lifetime and by definition the part is

not existence dependent on the whole. In case of non-shareable parts, the

2 We do not consider the case of a whole being existence dependent on a part: ac­
cording to the given definition of existence dependency this would imply that the
whole can only exist in the context of one particular part.

9

bindings must be consecutive. When parts are also shareable, the parts can

have overlapping bindings. These types of aggregation can be modelled with

existence dependency by modelling the period that a part is bound to the

whole as an object type in itself. The model of the aggregation thus contains

three object types: the whole, the part and the binding, the latter being exis­

tence dependent on the first two. Indeed, the lifetime of a binding always falls

within the lifetimes of both the part and the whole and it refers to the same

part and whole for the whole duration of its existence. The binding object type

refers to the fact that in an aggregation structure, the lifetime of a part always

overlaps the lifetime of the whole [SAK 98]. In addition the binding object is a

kind of contract that specifies the conditions under which a part and a whole

agree to be bound.

3.1.1. Shareable parts

Let us consider CLUB as an aggregation of MEMBERs (member-bunch com­

position as in [ODE 94], [HEN 97]). For example, a club can have many

members and can initially have no members at all. Members are "shareable"

because they can be members of several clubs. A person can also exist without

being member of a club and is therefore not existence dependent of club. The

BINDING object type is in this example the registration of a person as member

ofa club.

Shareable parts3 can be bound to more than one whole at one point in time.

Hence PART has a one-to-many relationship with BINDING: one part can have

several bindings at one point in time. The four variants for this type of aggre­

gation are shown in Figure 4. In case (a) the whole has zero to many shareable

parts. Parts can exist without being part of a whole. In case (b) the whole has

zero to many shareable parts. Parts must be attached to at least one whole to

exist. In case (c) the whole has at least one, and possibly more shareable parts.

Parts can exist without being part of a whole. Finally, in case (d), the whole

3 The cases only discuss homogenous sharing. Heterogeneous sharing, where parts can be shared across

wholes of different types, are modelled with several whole-part relationships which can each be charac­

terised independently according to the cases discussed here.

10

has at least one, and possibly more shareable parts. Parts must be attached to at

least one whole to exist. The same aggregations can be represented in a more

concise manner by "minimising" the icon representing the binding (Figure 5).

Cases (b) and (d) are examples of constrained sharing, which means that a part

must be associated with a whole at any time [SAK 98]. Case (c) models for

example clubs that need at least one member to exist while people can be

members of several clubs and can exist without being part of a club.

(a) (b)

(c) (d)

Figure 4. Separable and shareable parts

(a) (b) (c) (d)

Figure 5. Iconised representation of separable and shareable parts

11

3.1.2. Unshareable parts

Let us consider stock management in a pharmacy. When a product is

(nearly) out of stock, an order line is created for this product. Afterwards, or­

der lines are grouped into orders and send to the appropriate supplier. If how­

ever the supplier is not able to respond soon enough (e.g. within two hours)

the order line is moved to an order for another supplier. As a result, an order is

still an aggregation of order lines. In this case however, the order lines can

exist independently of the order and be moved from one order ·to another.

They are unshareable because each order line belongs to only one order at one

point in time.

(e) (t) (g) (h)

Figure 6. Iconised representation of unshareable parts

Because parts are unshareable, they can be bound to at most one whole .at

one point in time. As a result, the existence dependency relationship from

PART to BINDING has a cardinality of one: a part is involved in at most one

binding at a time. The four variants of this type of aggregation are represented

in Figure 6. In case (e) the whole has zero to many unshareable parts and parts

can exist without being part of a whole. In case (f) the whole has zero to many

unshareable parts and parts cannot exist without being part of a whole. In case

(g) the whole has one to many unshareable parts and parts can exist without

being part of a whole. Finally, in case (h) the whole has one to many unshare­

able parts and parts cannot exist without being part of a w:hole. The order and

order line example given at the beginning of this paragraph would be an ex-

12

ample for case (h): each order needs.at least one order line to exist and order

lines cannot exist without being part of one order.

3.2. Existence dependent parts

When parts are existence dependent on the whole, their lifetime will always

be part of the lifetime of the whole. In addition, as a consequence of the given

definition of existence dependency, the parts will also be inseparable from the

whole.

3.2.1. Unshareable parts

The simplest situation is when existence dependent parts are in addition not

shareable. Parts live and die in the context of the whole. A classic example is

an order that is composed of existence dependent order lines. A generic model

for this type. of aggregation' is given in Figure 7. In case (i) the whole can have

zero to many parts. In case (j) the whole has at least one constituent part, for

example, an order which must contain at least one order line to exist.

(i)

Figure 7. Unshareable existence dependent parts

3.2.2. Shareable parts

In this case, parts are existence dependent of a whole, but can at the same

time be shared by other wholes of the same type (homogeneous sharing). Let

us for example consider organisational units. On the one hand, we can have a

hierarchical relationship, where units are existence dependent of master units.

13

On the other hand it might be desirable to define temporary units as aggrega­

tions of existing units (for example in the context of projects).

A single existence dependency relationships between the PART class and the

WHOLE class means that each part is existence dependent on exactly one mas­

ter whole object. When parts can be shared, they can be referred to by other

objects than this "master" whole. Hence, the relationship with the sharing

whole must be modelled as an additional relationship between the whole and

the part. If this additional relationship is not an existence dependent one (such

as in the example given above), this is modelled by an object type BINDINa"

that captures the period that a part is shared by a whole different from the

master whole. Four variants of this type of aggregation are shown in Figure 8.

Depending on the cardinalities of the different existence dependencies, this

type of aggregation has many other variants.

(k)

sharing
aggregation

(I) (m)

Figure 8. Shareable existence dependent parts

(n)

In fact this situation combines two types of aggregation in one schema: one

aggregation relationship expressing existence dependency and another aggre­

gation relationship which is non-existence dependent. This type of aggregation

will not be considered any further as it can be decomposed in two relation­

ships that can be considered separately.

Notice that apart from its relationship (of any kind) to the whole, a part can

at any time be involved in a relationship (meronymic or not) with otherob­

jects. For example, order lines are components of an order, but are at the same

time existence dependent on the product they refer to.

14

3.3. Non-existence dependent but inseparable parts

Being inseparable does not necessarily means that the parts are existence

dependent as well. Imagine for example the case of a paper and a journal issue

(example adapted from [KOL 97]). A paper is not existence dependent on a

journal issue nor the other way round. However, once a paper has been ac­

cepted and published in a journal issue, it has become a part of this issue and

is in addition inseparable from t~e issue and cannot be shared by other issues.

Pictures are an example of non-existence dependent parts that are inseparable

from the magazine or newspaper in which they have been published, but that

can be shared. These kinds of aggregation are represented as non-existence

dependent inseparable aggregations (see Figure 9). The inseparability must be

enforced by defining the behavioural aspects in the proper way. This aspect of

aggregation is "aIled changeability in [KIL 94]. No changeability means that

aggregations can be "frozen": once parts are associated with a whole, this as­

sociation cannot be changed any more.

JOURNAL
ISSUE

PAPER

NEWSPAPER

PICTURE

Figure 9. Examples of non-existence dependent inseparable parts

15

4. BEHAVIOURAL ASPECTS OF EXISTENCE DEPENDENCY

4.1. Modelling behaviour with events

Events are a fundamental part of the structure of experience [COO 94].

Events are atomic units of action: they represent things that happen in the

world. Without events nothing would happen: they are the way information

and objects come into existence (creating events), the way information and

objects are modified (modifying events) and disappear from our universe of

discourse (ending events). Events are not attached to a single object class. One

event can affect more than one object. In the library for example, returning a

book is modelled with an event retum that affects both a loan (which will be

ended by this event) and a copy (which state will be modified by this event).

As a result, the behavioural part of the object model can be modelled by

means of an object-event table. In the object-event table, there is one column

for each object type and one row for each identified event type. A row-column

intersection is marked with a 'C' when the event creates the object, with an 'M'

when it modifies the state of the object and with an 'E' when it ends the life of

the object. A marked entry in a column means that the object class has to be

equipped with a method to implement the effect of the event on the object. A

possible object-event table for the library example is given in Table 2.

COpy MEMBER LOAN

borrow M M C
renew M M M
return M M E
acquire C
sell E
lose E M E
enter C
leave E

Table 2~ Object-event table for the library

In this way the object-event table identifies the methods that have to be in­

cluded in the class definition of object types. According to the object-event

table in Table 2, the class COpy will have methods for borrow, renew, return,

16

acquire, sell and lose; the class MEMBER will have methods for borrow, renew,

return, lose, enter and leave; and the class LOAN will have a method for bor­

row, renew, return and for lose.

Obviously, existence dependency has a number of implications on the life­

times of object types. In [SNO 98, SNO 99] the implications of existence de­

pendency on the object-event table are studied in detail. The result are a

number of modelling constraints that apply on the object-event table in order

to be consistent with the existence dependency relationships that are defined

between the object types in the object-relationship diagram. For modelling ag­

gregation, two of these rules have to be known.

The first rule is that a master object type is always directly or indirectly af­

fected by all event types that affect one of its dependent object types. This can

be explained by the fact that the state of a master object is among other factors

also determined by the state of its dependent objects. Events that affect de­

pendent objects and hereby change the state of that dependent object thus also

change the state of the master object, at least indirectly. Hence, when an exis­

tence dependent object is involved in an event, its master objects are automati­

cally involved in this event as well. For example, a state change of a loan, e.g.

because of the return of the copy, automatically implies a state change of the

related copy and member: the copy is back on shelf and the member has one

copy less in loan. By applying this rule, all possible places for information

gathering and constraint definition are identified. For example, the borrow

method of the class MEMBER is the right place to update the number of copies a

member has in loan and to check a rule such as 'a member can have at most 5

copies in loan at the same time'. The borrow method of the class COpy is the

right place to count the number of times a copy has been borrowed. Notice

that this is a rule that applies to analysis or conceptual models only. At imple­

mentation time, methods that are empty because no relevant business rule was

identified, can be removed to increase efficiency. This rule is called the

propagation rule and states that if an existence dependent object type is in­

volved in an event type, which is marked by a C, M or E entry in the object­

event table, the master object type is involved in this event type as well, which

should be marked by a C, MorE in the object-event table. As a result, the set

17

of events that affect· an existence dependent object type is a subset of the set of

events that affect the master object type. In the given example, because LOAN

is existence dependent of COpy and MEMBER (Figure 3), the set of events that

affect LOAN is a subset of the set of events that affect COpy and of the set of

events that affect MEMBER (Table 2).

The next consideration is that the life cycle of a dependent object and its

master object are strongly interrelated. Indeed, a dependent object type cannot

be created before its master exists nor can it exist after its master has been

ended. Creating an existence dependent o'bject means that either the master is

created at the same time (e.g. creating the first order line creates the order) or

that the . master object type already exists (e.g. opening an account for an ex­

isting customer). In the latter case, the creation of a dependent object type

modifies the state of the master. Since the set of events that affect the depend­

ent object type is a subset of the set of events that affect the master object

type, this means that the set of creating event types of the dependent object

type is a subset of the creating and modifying event types of the master. Modi­

fying a dependent object type always modifies the state of the master. Finally,

ending a dependent object type also modifies the state of the master. If the last

dependent object type is ended, then the master can be ended at the same time

or later. We call these constraints the type of involvement nde.

Type of involvement rule

If in the column of an existence dependent object type a row contruns a 'c'
then on the same row ~'C',or 'M' must appear in the column of each of its

master object types.

If in the column of an existence dependent object type a row contains an

'M' then on the same rowan 'M' must appear in the column of each of its

master object types.

If in the column of an existence dependent object type a row contains an

'E' then on the same rowan 'E' or 'M' must appear in the column of each

of its master object types.

18

Notice that the type of involvement rule subsumes the propagation rule. A

more thorough argumentation for these two rules and the role they play in

checking the coherence between the structural and behavioural part of a con­

ceptual model can be found in [SNO 99] [SNO 98].

The events that are included in the object-event table have to be atomic

units of actions that occur at one point in time and that are not decomposable.

They do however not have to keep the set of objects in a consistent state.

Some constraints in the structural and behavioural model of objects imply the

grouping of these atomic events into units of consistency. These groups of

events are called consistent events. In contrast with atomic events, they do

keep the set of objects in a consistent state: before and after the occurrence of

a consistent event all specified rules are satisfied. Consistent events for aggre­

gations will be discussed in the next section.

4.2. Object Interaction

A major advantage of the object-event table is that it does not assign the

responsibility for an event to a particular object. The object-event table as­

sumes that objects participate simultaneously to an event. This can be·

achieved by assuming a broadcasting mechanism that notifies the participating

objects of the occurrence of an event.

This means that when an event occurs and is broadcast, all corresponding

methods in the involved objects will be executed siniultaneously.provided

each involved object is in a state where this event is acceptable. If one of the

objects is in a state where the event cannot be accepted, the event is rejected

by the system This way of communication is similar to communication as de­

fined in the process algebras CSP [ROA 85] and ACP [BAE 86] and has been

formalised in [DED 95], [SNO 99]. Message passing is more similar to the

CCS process algebra [MIL 80]. There exist various mechanisms for the im­

plementation of such synchronous execution of methods. For the purpose of

analysing the behaviour of aggregations, we will assume t~at there is an event.

handling mechanism that filters the incoming events by checking all the con­

straints this event must satisfy. If all constraints are satisfied, the event is

19

broadcasted to the participating objects; if not it is rejected. In either case the

invoking class is ~otified accordingly of the rejection, acceptation, and suc­

cessful or unsuccessful execution of the event. This concept is exemplified in

Figure 10 for the event types borrow, renew and return for the library example

of Table 2. For each type of business event, the event handling layer contains

one class that is responsible for handling events of that type. This class will

frrst check the validity of the event and, if appropriate, broadcast the event to

all involved objects by means ofthe method 'broadcast'.

invoking class. invoking class invoking class

borrow renew return

I I I
borrow renew return BUSINESS EVENT

HANDLING LA YER
checlcvalidity check_validity check_ validHy
broadcast broadcast broadcast

~ I I ------, I I •
COPY MEMBER LOAN DOMAIN OBJECTS

acquire enter borrow LAYER
borrow borrow renew
renew renew return
return return lose
lose leave
sell

Figure 10. Event handling

In a conventional object-oriented approach, object interaction is achieved

by having objects send messages to each other. This is documented by means

of collaboration diagrams. Because of the absence of the broadcasting para­

digm, events must be routed through the system in such a way that all con­

cerned objects are notified of the event. As there js no generally accepted

schema, the routing schema must be designed for each type of event individu­

ally. An additio~al problem is the identification of the object where the rout­

ing will start. In most examples given in object-oriented analysis textbooks,

the business events ·are initially triggered by some information system event.

20

For example, in a library system, the renew business event is triggered by the

counter application for the library clerk. Such interactions can be represented

by including information system objects such as user interface objects in the

collaboration diagram. From a conceptual modelling perspective, we would

prefer object interaction to be independent from information system services.

For example, the business event renew can also be triggered by other informa­

tion system services such as a web interface for library members.

Notice that the concept of the object-event table allows to model interaction

at a much higher level of abstraction than is the case with message passing.

Moreover, the interaction pattern is independent of the number of objects in­

volved in an event. At conceptual modelling level, we should not burden our­

selves with event notification schemas. How exactly objects are notified of the

occurrence of an event is a matter of implementation. When using object­

oriented technology this will be done with messages, but when using other

technologies, both traditional and modem (e.g. distributed component tech­

nologies), (remote) procedure calls can do as well.

5. BEHAVIOURAL ASPECTS OF AGGREGATION RELATIONSHIPS

In the previous section, events were described as being atomic, non­

decomposable units of action. This definition does not require that the object

base remains in a consistent state after the occurrence of an atomic event: an

atomic event is a unit of action, but not always a unit of consistency. Indeed,

some constraints imply the grouping of events in order to keep the set of ex­

isting objects in a consistent state. For example, if the relationship between a

whole and its existence dependent parts is mandatory for the whole, this

means that when an occurrence of the whole is created an occurrence of the

part must be created at the same time. These groups of events (for example, a

cr_whole event combined with a cr""part event) are called consistent events.

They are composed of atomic events. In contrast with the latter, they always

keep the set of existing objects in a consistent state: before and after the occur­

rence of a consistent event, all specified rules are satisfied. The consistent

21

events are the only events that are visible to the classes that invoke services

from the aggregation classes. They are put in a separate layer on top of the

layer with the atomic events. In this section, we describe such consistent

groups of events that are required by the structural constraints of the aggrega­

tion or that are required to model the propagation of behaviour from the whole

to the parts.

Only consistent events are visible outside the scope of the aggregation.

Methods for the atomic events are kept local to the aggregation classes. The

names of the consistent events will be preceded by 'C_' to discern them from

the atomic events. The definition of some consistent events can be inferred

from the cardinality constraints. Propagation of behaviour and deletion from

the whole to the' parts are defmed as additional characteristics of the aggrega­

tion by defming the appropriate consistent events.

For conceptual modelling purposes, the event handling schema is the best

suited to document the consistent events since it avoids the design of a mes­

sage passing schema. Each consistent event will be documented by a collabo­

ration diagram that shows the different elements in the different layers. To

illustrate that it is also possible to have events handled directly by the domain

objects rather than by an event handling layer, each consistent event will also

be accompanied by an interaction diagram that gives a possible message

passing scenario. In these interaction schemas the invoking class for the con­

sistent events will be omitted since they can be invoked by any class. Notice

that ~e given message passing scenario is only one out of many more possi­

bilities.

5.1. Separable parts

The atomic events for this type of aggregation are shown in the generic

object-event table in Table 3. The table is the same for shareable and unshare­

able parts.

Due to the propagation of event-participation from the existence dependent

object type to the master object types, WHOlE and PART acquire the methods

cr _binding, mod_binding and end_binding. The cr _binding event models what

22

happens when a part is added to the whole. Apart from creating a binding, this

event can change some resultant properties in the whole (to be specified in the

whole.cr_binding method) and some properties of the part (to be specified in

the part.ccbinding method). Similarly, the mod_binding and end_binding

events can have an effect on resultant properties of the whole (to be specified

in the whole. mod_binding end whole. end_binding methods) and some proper­

ties of the part (to be specified in the part.mod_binding and part. end_binding

methods). The mod_whole and mod-fJart event types are the defaults for the

modification of the emergent properties of the whole and the part.

WHOLE PART BINDING

cr_whole C
mod whole M
end whole E
cr _part C
mod_part M
end _part E
cr binding M M C
mod binding M M M
end binding M M E

Table 3. OET for non-existence dependent parts

5.1.1. Deletion

The concept of existence dependency implies some general constraints on

deletion: a master object type cannot be deleted as long as there exist existence

dependent objects for this master. As a result, in this type of aggregation, the

whole cannot be deleted as long as there are parts attached to. this whole.

Similarly, a part cannot be deleted as long as it is attached to a whole. These

constraints can be implemented as a restriction to the ending events by means.

of preconditions or they can be implemented as cascading deletes. The choice

between these two optio.ns must be determined by the analyst. For example,

one could choose to implement the ending of a part with a cascading delete.

This means that the C_end-fJart event will trigger the end_binding event for

each of the bindings of the concerned part. Finally the end-fJart event is trig-

23

I

I
I
I

I
I
I
I
I

I
!

I

I
I
I

I
I
I

C_switch_to_
anothec whole CONSISTENT

EVENTS
end_binding
cr_bindinQ

r +
ccbinding end_binding A TOMle EVENTS

check_ validHy check_validity
broadcast broadcast

II I L-....,

..- ..- ..- ..-
PART WHOLE BINDING DOMAIN OBJECTS

cepan cewhole cr_olndlng
mod_part mod_whole mod_binding
end-part end_whole end_binding
cr_binding cr_binding
mod_binding mod_binding
end_binding end_bindin g

Figure 14. Switching a separable unshareable part
from one whole to another

I PART I I b l :BINDING I IWI:WHOLEllw2:WHOLEI

C_switch_to_another_ whole

end_binding I
~

end_binding

end_binding

.-:;:;::>
14-"

cr_binding }~:BINDING I
cr_binding

...
cr_binding

. ,...::::::::::.
~

Figure 15. Interaction schema for switching a separable unshareable part
from one whole to another.

5.1.2 . Modification

The propagation of modifying events of the whole towards the parts (Figure

16 and Figure 17) follows apattem similar to the cascading deletion of the

whole.

26

C_mod_whole CONSISTENT

I EVENTS
• mod_binding
• mod"'part
mod_part ,

* i
mod-part mad_binding mod_whole ATOMIC EVENTS

check_validity check_validity check_validity
broadcast broadcast broadcast

I I I J I .. • .. • 'Y

PART WHOLE BINDING DOMAIN OBJECTS
cr"'pan cr_wnole cr_Dlnatng
mod"'part mod_whole mOd_binding
end"'part end_whole end_binding
cr_binding cr_binding
mod_binding mod_binding
end_binding end_binding

Figure 16. Propagating modifications from the whole to its parts

Figure 17. Interaction schema for propagating modifications from the
whole to its parts

5.1.3. Creation

When the relationship from the whole to the part is mandatory, this means

that when a whole is created, it must immediately be bound to an existing part

or, in case no suitable part exists, a part must be created for this whole. This

event handling scenario is shown in Figure 18 and a possible interaction

schema is given in Figure 19. The dashed arrows mean that the event is called

under certain conditions only.

27

Similarly, when a part must be attached to a whole at any time, the creation

. of a part must be accompanied by the creation of the appropriate binding with

an existing whole. If the whole does not exist, creation of the part must be ei­

ther prohibited of the whole must be created at that moment. The latter event

handling scenario is also represented in Figure 18. An example of a message

passing schema is given in Figure 20.

--------_._ .. - • ·0 •••• _.

C3cpart C3r_whole

CONSISTENT
cr_part cr_whole EVENTS
If no_whole then cr _whole If no_part then cr_part
cr_binding cr_binding

I I. I ----------------- I I

~I I--;-----~:-:::--f-:·.:-::~~ +
cr_part cOinding cr_whole A TOMIC EVENTS

check_validity check_validity check_validity
broadcast broadcast broadcast

I I ~ I
i "

I
PART WHOLE BINDING DOMAIN OBJECTS

cr_pan cr_whole cr_binding
mod_part mod_whole mod_binding

i end_part end_whole end_binding I
I cr_binding cr_binding

I mod_binding mad_binding

I
end_binding end_binding

Figure 18. Creation of a whole with its mandatory part; Creation of a
part mandatorily part of a whole

ccbinding

Figure 19. Interaction schema for the creation of a
whole with its mandatory part

28

C_cr_part J PART I ...
ccpart

~
~

no suitable whole
existslcr_ whole JWHOLEI
cr_binding .I BINDING I
ccbinding

~
Figure 20. Interaction schema for the creation of a

part mandatorily part of a whole

5.2. Existence dependent parts

In case of existence dependent parts, the generic object-event table for the

aggregation is as in Table 4.

WHOLE PART

cr whole C
mod whole M
end whole E
cr -part M C
mod _part M M
endJlart M E

Table 4. OET for existence dependent parts

5.2.1. Deletion

Again, the deletion of the whole can be implemented as a restricted delete,

whereby deletion is prohibited as long as parts exist, or as a cascading the de­

lete. The sequence chart for the cascading delete is given in Figure 21.

Parts can be deleted any time, except when the relationship is mandatory.

In that case, when the last part is deleted, the whole must disappear as well

(Figure 21, Figure 22, and Figure 23).

29

I C~end_part C3nd_whole CONSISTENT
I end_part

EVENTS

I

If last part and man- • end-part
datory aggregation end_whole
then end_whole I I ,------ ---~

I
~ * ~

end--part end_whole A TOMle EVENTS

I check_validity check_validity

I
broadcast broadcast

I L I I
I

I T • T I
I PART WHOLE DOMAJN OBJECTS

I cr-pal1 cr_wnole

I mod-part mod_whole
I end_part end_whole
I

I cr-part
I mod_part
I end_part I
Figure 21. Cascading end_whole and cascading end_part

.1 WHOLE 1

nd whole

Figure 22. Interactio.n schema for a cascading end_ whol~

PART I WHOLE I
.. ..

last part and man-l
datory aggregation!
end_whole .

~

end part

Figure 23. Interaction schema for a cascading end_part

30

5.2.2. Modification

The propagation of modifications from the whole to its parts is similar to

the implementation of a cascading delete (Figure 24 and Figure 25).

i
C_mod_whole CONSISTENT

EVENTS
* mod_part
mod_whole

I

_L _"--J
mod_part mod_whole ATOMIC

check_validity check_validity
broadcast broadcast

I I .. y ..
PART WHOLE DOI\!i/ilN OBJECTS

cr_pan cr_wnole
mod_part mod_whole
end_part end_whole

ccpart
mod_part
end_part

Figure 24. Propagation of modifications to the existence dependent parts

I WHOLE I
.. .. * mod_part

mod_whole

I"",,-_-~-
~

Figure 25. Interaction schema for the propagation of
modifications to the existence dependent parts

5.2.3. Creation

The creation of a whole will also create a part if having at least one part is

mandatory for the whole. This is represented in Figure 26 and Figure 27. The

creation of an existence dependent part is always consisterit.

31

i C_crwhole C_ccpart CONSISTENT , cr_whole
EVENTS

i cr_part If part is mandatory

\

then ccpart

,
r I -- --- ~i i .,
i
I cr_part cr_whole Ii TOMle EVENTS
I ,

check_validity check_validity ,
i
i broadcast broadcast
i
i I
IF - • .. .-
I

PART WHOLE DOMAIN OBJECTS i
i ccpan ccwhOJe
i mod-part mod_whole
i end-part end_whole
! cr_part

I mod_part

I
end_part

----_. J

Figure 26. Creation of a whole with mandatory existence dependent part

madatory
aggregation!
CT_part

Figure 27. Interaction schema for the creation of a whole
with mandatory existence dependent part

5.3. Non-existence dependent but inseparable parts

The object-event table for this kind of aggregations is the same as for sepa­

rable part (see Table 3). Most creation, updating end deletion rules remain the

same. The main difference is that in this case the end_binding event cannot be

32

invoked outside the scope of a C_end-fJart or C_end_whole event. Indeed,

since the part is inseparable from the whole, the termination of the whole-part

relationship between a part and its whole can only occur in the context of the

termination of the part and/or of the whole. As a result, there is no

C_end_binding event and the atomic end_binding event is always invoked by

the C_end-fJart or the C_end_whole events.

6. CONCLUSIONS

The discussion of the structural aspects of the whole-part relationship in

section 3 has only concentrated on three characteristics: separability, existence

dependency and shareability. There are of course many more possible charac­

teristics of aggregation.

6.1. Primary Characteristics.

Both in [HEN 99a] and [SAl{ 98], emergent properties, resultant properties,

irreflexivity and anti-symmetry are proposed as primary characteristics of ag­

gregation. In the approach proposed in this paper, the whole can have both

emergent and resultant properties. Irreflexivity and acyclicity are part of the

formal definition of existence dependency [SNO 98]: in an existence depend­

ency graph an object type is never existence dependent of itself and an exis­

tence dependency graph must be acyclic4 Hence, when parts are existence

4 I a) The life span of an object is always embedded in itself. As a result, one could say that an object is

existence dependent of itself. However, in the context of object-oriented analysis, it is the relation be­

tween different objects that is of interest. In this sense, saying that an object is existence dependent of

itself does not provide us with additional information.

Ib) Assume that'an object type P would be existence dependent of itself, whereby each occurrence of

class P depends on the existence of another occurrence of the same class P. It would then be impossible

to create occurrences of class P. Indeed, as the life of the existence dependent object cannot start before

the life of its parent, creating the existence dependent object requires the existence of a parent object'. But

this parent is in turn existence dependent of another object of the same class, which should already exist

before the parent is created. As a result, allowing an object type to be existence dependent of itself cre­

ates a problem of circular prerequisites. Hence we define that an object type cannot be existence depend­

ent on itself.

33

dependent on the whole, the aggregation relationship is irreflexive and anti­

symmetric. When parts are not existence dependent on the whole, the binding

establishes a whole-part relation between objects from two different classes

and in a particular direction. As a result irreflexivity and anti-symmetry are

respected. Transitivity is not necessarily true.

When the whole and its parts belong to the same object class, we have a

homeomerous (and recursive) aggregation. Because an object type cannot be

existence dependent on itself, this type of whole-part relationship is always

modelled using a binding object type. In this case, irreflexivity and anti­

symmetry must be enforced by setting pre-conditions for the cr _binding event

as shown in Figure 28.

WHOLEn
,--_P_!_T_-,,6-J

Class WHOLE&PART

bindin~as_whole: set(BINDING)
bindin~as_part: set(BINDING)

end class WHOLE&PART

Class BINDING
whole: WHOLE&PART

part: WHOLE&PART

ccbinding (whole, part: WHOLE&PART) is
precondition:

irrefexivity : whole", part
anti-symmetry: not exists b in part.binding_as_whole

where b.part = whole

end class BINDING

Figure 28. Specification of a homeomerous aggregation
with shareable parts

6.2. Secondary characteristics

Encapsulation can be enforced by defining the proper consistent events. Life­

time binding is implied by the (non)-existence dependent nature of the whole

part relationship. For existence dependent parts only the lifetime bindings

given in Figure 1 are possible. The choice between these possibilities is further

2) Similarly, allowing cycles in the existence dependency graph leads to circular prerequisites as well.

H~nce we require the existence dependency graph to be acyclic.

34

determined by the consistent events. For non-existence dependent parts, all we

can say is that the existence of a binding between a part and a whole implies

that there is some overlap between their lifetime. As the existence dependency

relation is transitive the existence dependent nature of parts is transitive as

well. This does however not mean that the transitive interpretation of the ag­

gregation is meaningful. When parts are not existence dependent on the whole,

transitivity is not necessarily true. The configurational nature of an aggrega­

tion cannot be specified in terms of existence dependency: it must be specified

by means of attributes, methods, pre- and post- conditions, and invariants.

Immutability is a characteristic from the whole that says that parts cannot be

removed nor been replaced by an equivalent one without d~stroying the whole.

Existence dependency is a characteristic of the parts that implies that parts are

inseparable from the whole. Existence dependency does not necessarily also

imply immutability. Even when a part is existence dependent and mandatory,

in a mutable aggregation it can be exchanged for an equivalent object (that is,

from the same class). The original part will die because it cannot be separated

from the whole and is immediately replaced by a new existence dependent

part. Immutability must be enforced by a suitable definition of the behavioural

aspects of the aggregation, that is, by limiting the consistent events to those

that leave the aggregation unchanged (in a similar way as discussed in para­

graph 5.3).

This discussion of secondary characteristics of aggregation is not complete.

However, it largely demonstrates that the proposed concepts can be used to

characterIse many flavours of whole-part relationships. The simplicity of the

concepts used to characterise aggregation, namely existence dependency, and

atomic and consistent events, makes them easy to use and easy to define in a'

precise and formal way. The concept of existence dependency is formalised in

[SNO 98] where it is used as core concept to define arbitrary associations be­

tween objects. The' concepts of atomic and consistent events are defined in

detail in [DED 95, SNO 99], together with a eSP-like process algebra that

formalises the concepts of object life cycle and object interaction. More irn-

35

portantly, the concept of existence dependency also allows checking semantic

integrity between the structural and behavioural aspects of object types.

When analysts model systems, they have to capture the relevant aspects of

the real world into information systems models. The difficulty of capturing

sometimes very complex reality with only a few modelling concepts has lead

to the definition of new modelling concepts with richer semantics. Unfortu­

nately, although their definition seems intuitively clear, they are often very

poorly defined. As a consequence, their interpretation varies from person to

person. Hence, conceptual models that use such concepts are ambiguous and

unprecise. In this paper we have used a set of very simple concepts to define

the complex principle of aggregation. We believe that it is possible to model

everything, using only these concepts and the concept of generalisa­

tion/specialisation. By representing groups of elements with a single icon, it is

possible to hide the increased size of the resulting information models. The

main advantage of this approach is that the semantics of the richer concepts,

aggregation in this paper, are better defined because they can now be inferred

from the formal definition of the core concepts.

In [BRU 98] Brunet argues that aggregation is an unnecessary concept be­

cause it can be expressed with more fundamental concepts such as composi­

tion and inheritance (the used notion of composition is very similar to the

notion of existence dependent parts). In this paper we have proven that many

flavours of aggregation can indeed be expressed with existence dependency

only. Without saying that aggregation is an unnecessary concept, we would at

least like to say that it is not a primary concept. It rather is a higher level con­

cept the semantics of which can be specified by means of core (or primary)

concepts such as existence dependency.

7. REFERENCES

[BAE 86] BAE1EN, J.C.M., Procesalgebra: een formalisme voor parallelle, commu­
nicerende processen. Kluwer programmatuurkunde, Kluwer Deventer, 1986

[BRU 98] BRUNET J., "An Enhanced Definition of Composition and its use for Abs­

traction", in C. Rolland, G. Grosz (eds.), OOIS'98, Springer Verlag London,
pp.11-19

36

[COO 94] COOKS., DANIELS 1., Designing object systems: object-oriented modelling

with Syntropy, Prentice Hall, 1994 .
[DED 95] DEDENE G., SNOECK M., "Formal deadlock elimination in an object orien­

ted conceptual schema", Data and Knowledge Engineering, 15 (1-30), 1995.
[DOG 90] DOGAC A., OZKARAHAN E., CHEN P., An integrity system for a relational

database architecture, in F. H Lochovsky,Entity Relationship Approach to

Database Design and Querying, Proc. of the Eight International Conference
on Entity-Relationship Approach, Toronto, Canada, 18-20 October,
1989,North-Holland, 1990, pp. 287 - 301

[HEN 97] HENDERSON-SELLERS B., "OPEN relationships - compositions and con­
tainments", JOOP/ROAD, 10(7), pp. 51-55,72

[HEN 99a] HENDERSON-SELLERS B., BARBIER F., "What Is This Thing Called Ag­
gregation ?", Proceedings of the 29th International Conference on Technolo­
gy of Object-Oriented Language-Europe, 7-10 June, Nancy, France.

[HEN 99b] HENDERSON-SELLERS B., BARBIER F., "A Survey of th UML's Aggrega­
tion imd Composition Relationships", L'objet, 5(3-4), 1999, pp.339-366.

[HOA 85] HOARE, C. A. R., Communicating Sequential Processes. Prentice-Hall,

1985
[KIL 94] KILOV H., Ross J., Information Modeling, An Object-Oriented Approach,

Prentice Hall, Englewood Cliffs, New Jersey, 1994
[KOL 97] Kolp M., Pirotte, A, "An Aggregation Model and its C++ Implementa­

tion", In M.E. Orlowska and R. Zicari, editors, Proc. of the 4th Int. Conf. on
Object-Oriented Information Systems, OOIS'97, pages 211-224, Brisbane,

Australia, November 1997
[MIL 80] MILNER R., A calculus of communicating systems. Springer Berlin, Lecture

Notes in Computer Science, 1980
[ODE 94] ODELL 1., "Six different kinds of composition", lOOP 6(8), 1994, pp.lO-

15
[pUT 88] PUT F., "Introducing dynamic and temporal aspects in a conceptual (data­

base) schema", doctoral dissertation, Faculteit der Economische en Toege­

paste Econornische Wetenschappen, K.U.Leuven, 1988,415 pp.
[SAK 98] SAKSENA M., FRANCE R., LARONDO-PETRIE M., "A characterisation of

aggregation", in C. 'Rolhind, G. Grosz (eds.), 00IS'98, Springer Verlag Lon­

don, pp. 11-19
[SNO 98] SNOECK M., DEDENE G., "Existence Dependency: The key to semantic

integrity between structural and behavioural aspects of object types", IEEE

Transactions on Software Engineering, Vol. 24, No. 24, April 1998, pp.233-

251
[SNO 99] SNOECK M., DEDENE G., VERHELST M., DEPUYDT A.-M., Object-oriented

Enterprise Modelling with MER ODE, Leuven University Press, 1999

37

