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In this paper, we study the resource-constrained project scheduling problem (RCPSP) with 

discounted cash flows and generalized precedence relations (further denoted as RCPSPDC-GPR). 

The RCPSPDC-GPR extends the RCPSP to (a) arbitrary minimal and maximal time lags between 

the starting and completion times of activities and (b) the non-regular objective function of 

maximizing the net present value of the project with positive and/or negative cash flows 

associated with the activities. ). To the best of our knowledge, the literature on the RCPSPDC­

GPR is completely void. We present a depth-first branch-and-bound algorithm in which the nodes 

in the search tree represent the original project network extended with extra precedence relations 

which resolve a number of resource conflicts. These conflicts are resolved using the concept of a 

minimal delaying mode (De Reyck and Herroelen, 1996b). An upper bound on the project net 

present value as well as several dominance rules are used to fathom large portions of the search 

tree. Extensive computational experience on a randomly generated benchmark problem set is 

obtained. 
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1. Introduction 

CPM (Critical Path Method; Kelley and Walker, 1959) and PERT (Program Evaluation and 

Review Technique; Malcolm et aI., 1959) are devoted to minimizing the project makespan under 

the assumption that required resources are available in sufficient amounts, and that the 

technological precedence relations between any pair of activities i andj imply that activity i must 

be completed before activity j can be initiated. Over the years, the assumption of sufficiently 

available resources has been relaxed and many research efforts have been directed towards 

project scheduling with explicit consideration of resource requirements and constraints. More 

recent research has been directed at relaxing the strict precedence assumption of CPMlPERT. In 

accordance with Elmaghraby and Kamburowski (1992), we will refer to the resulting types of 

precedence relations as generalized precedence relations (GPRs). We distinguish between four 

types of GPRs: start-start (SS), start-finish (SF), finish-start (FS) and finish-finish (FF). 

GPRs can specify a minimal or a maximal time lag between a pair of activities. A minimal 

time lag specifies that an activity can only start (finish) when the predecessor activity has already 

started (finished) for a certain time period. A maximal time lag specifies that an activity should 

be started (finished) at the latest a certain number of time periods beyond the start (finish) of 

another activity. GPRs can be used to model a wide variety of specific problem characteristics, 

including (Bartusch et al., 1988; De Reyck, 1995b; Neumann and Schwindt, 1995) activity ready 

times and deadlines, activities that have to start (terminate) simultaneously, non-delay execution 

of activities, (total or strong/weak partial) activity overlaps, fixed activity starting times, time­

varying resource requirements and availabilities, time-windows for resources, inventory 

restrictions, setup times, overlapping production activities (process batches, transfer batches) and 

assembly line zoning constraints. The first treatment of GPRs is due to Kerbosch and Schell 

(1975), based on the pioneering work of Roy (1962). Other studies include Crandall (1973), 

Elmaghraby (1977), Wiest (1981), Moder et al. (1983), Bartusch et al. (1988), Elmaghraby and 

Kamburowski (1992), Brinkmann and Neumann (1994), Zhan (1994), De Reyck (1995a, 1995b), 

Neumann and Schwindt (1995) and Schwindt (1995), Neumann and Zhan (1995), De Reyck and 

Herroelen (1996b, 1996c, 1996d), Schwi..'ldt and Neumann (1996) and Franck and Neumann 

(1996). 

Recently, a number of publications have dealt with various types of project scheduling 

problems in which cash flows are associated with the activities, and in which the objective is to 

schedule the activities in such a way that the net present value (npv) of the project is maximized. 

Generally, a series of cash flows may occur over the course of a project in two forms. Cash 

outflows include expenditures for labor, equipment, materials, etc .. Cash inflows correspond to 

progress payments for completed work. For a recent review and categorization of the various 

research efforts, we refer the reader to Herroelen et al. (1996a). We distinguish between 

procedures for the unconstrained max-npv project scheduling problem, which occurs when no 

constraints on the resource usage are imposed such that the activities are only subject to 
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precedence constraints, and procedures for the resource-constrained project scheduling problem 

with max-npv objective, also referred to as the resource-constrained project scheduling problem 

with discounted cash flows (RCPSPDC). Algorithms for the deterministic resource-unconstrained 

case have been presented by Russell (1970), Grinold (1972), Elmaghraby and Herroelen (1990), 

Herroelen and Gallens (1993), Kazaz and Sepil (1996) and Herroelen et al. (1996b), among which 

the latter seems to be the most efficient. Optimal algorithms for the resource-constrained case 

have been presented by Doersch and Patterson (1977), Smith-Daniels and Smith-Daniels (1987), 

Patterson et al. (1990a,1990b), Yang et al. (1992), Icmeli and Erengiic;: (1996) and Baroum and 

Patterson (1996). Heuristic approaches have been presented by Russell (1986), Smith-Daniels and 

Aquilano (1987), Padman et al. (1990), Padman and Smith-Daniels (1993), Zhu and Padman 

(1993), Icmeli and Erengiic; (1994), Ozdamar et al. (1994), Yang et al. (1995), Ulusoy and 

Ozdamar (1995) and Sepil and Ortac; (1995). 

In this paper, we present an optimal solution procedure for the resource-constrained project 

scheduling problem with discounted cash flows and generalized precedence relations (further 

denoted as RCPSPDC-GPR), thereby extending both the procedures presented in the literature 

for the resource-constrained project scheduling problem with generalized precedence relations 

(further denoted as RCPSP-GPR) as well as those for the resource-constrained project scheduling 

problem with discounted cash flows (further denoted as RCPSPDC). To the best of our knowledge, 

the literature on the RCPSPDC-GPR is completely void. In fact, all optimal and heuristic 

procedures for the RCPSP with GPRs have so far concentrated on minimizing the project 

makespan or optimizing other regular measures of performance (Brinkmann and Neumann, 

1994; Zhan, 1994; Neumann and Zhan, 1995; De Reyck and Herroelen, 1996b, 1996c; Schwindt 

and Neumann, 1996; Franck and Neumann, 1996). 

The remainder of this paper is organized as follows. Section 2 clarifies the terminology and 

the project representation used. In section 3, the temporal analysis of project networks with 

generalized precedence relations is briefly reviewed. Section 4 continues with a conceptual 

formulation of the RCPSP-GPR. In section 5 we review the optimal algorithm of De Reyck and 

Herroelen (1996d) for the (resource-) unconstrained max-npv project scheduling problem with 

GPRs, which will be used for the computation of upper and lower bounds on the project npv in the 

branch-and-bound procedure for the RCPSPDC-GPR, which will be described in section 6. 

Computational results are given in section 7. Section 8 is reserved for our overall conclusions. 

2. Terminology and representation 

Assume a project represented in activity-on-node (AoN) notation by a directed graph G = 
{V, E) in which V is the set of vertices or activities, and E is the set of edges or generalized 

precedence relations (GPRs). The project is subject to a deadline D. The non-preemptable 

activities are numbered from 1 to n, where the dummy activities 1 and n mark the beginning and 

the end of the project. The duration of an activity is denoted by di (1::; i ::; n), its starting time by 
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si(l:S;i:S;n) and its finishing time by !i(l:S;i:S;n). The terminal cash flow value ci (positive or 

negative) of activity i is obtained by compounding all the cash flows occurring during the 

d, 

execution of activity i to its completion time: ci = I. fit eu(d,-t) , where 1;t (positive or negative) 
t=1 

denotes the cash flow occurring during the tth period activity i is in progress and a represents the 

discount rate. There are m renewable resource types, with rikx (l:s; i :s; n, 1:S; k :s; m, 1:S; x :s; d i ) the 

resource requirements of activity i with respect to resource type k in the xth period it is in progress 

and akt(l:S; k:S; m; 1:S; t:s; T) the availability of resource type k in time period ]t-1, t] (T is an upper 

bound on the project length). If the resource requirements and availabilities are not time­

dependent, they are represented by rik (1:S; i :s; n, 1:S; k:s; m) and ak (1:S; k:s; m) respectively. The 

minimal and maximal time lags between two activities i andj have the form: 

si + SFijin :s; fj :s; si + SFijax 

fi + FFijin :s; fj :s; fi + FFijax 

and can be represented in a standardized form by reducing them to just one type, e.g. the 

minimal start-start precedence relations, using the following transformation rules (Bartusch et 

aI., 1988): 

s· +SS~in <s· 
! !J - J ~ si + lij :s; s j with l .. =SS~in 

!J !J 

si +SSijax :2:s j ~ s j + l ji :s; si with l ji = -SSljax 

s· + Sprp.in < f· 
! !J - J ~ s·+l··<s· t tj - J with l .. = Sprp.in - d . 

!J !J J 

si + SF/tax :2: f j ~ s·+l .. <s· J J! - ! 
with lji = d j - SFijax 

f,. + Fs~in < S . 
! !J - J ~ Si + lij :s; s j with lij =di +FSr 

f,. + Fs~ax > s . 
! !J - J ~ Sj + lji :s; si with l .. = -d· - FS~ax 

J! ! !J 

f,. + FPrp.in < f· 
! !J - J ~ s· +l .. <So 

! !J - J 
with l .. = d· - d . + FPrp.in 

!J ! J !J 

f,. + FPrp.ax > f· 
! !J - J ~ s j + lji :s; si with lji =dj -di _FFijax 

To ensure that the dummy start and finish activities correspond to the beginning and the 

completion of the project, we assume that there exists at least one path with nonnegative length 

from node 1 to every other node i and at least one path from every node i to node n which is equal 

to or larger than d i. If there are no such paths, we can insert arcs (l,i) or (i,n) with weight zero 

and d i respectively. P(i) = {j I (j,i) E E} is the set of all immediate predecessors of node i, 

Q(i) = {j I (i,j) E E} is the set of all its immediate successors. Ifthere exists a path from i toj, then 

we call i a (not necessarily immediate) predecessor of j and j a successor of i. If the length of the 

longest path from i to j is positive or all arcs of a longest path are associated with a lag of zero, 

node i is called a real (immediate) predecessor of node j, and j is called a real (immediate) 

successor of i. Otherwise it is a fictitious one. 



6 

3. Temporal analysis in project networks with generalized precedence relations 

A schedule S = {sp s2' ... , snl is called time-feasible, if the starting times satisfy all GPRs. 

The minimum starting times representing a time-feasible schedule form the early start schedule 

ESS = {esl' es2, .'" esnl. The calculation of an ESS can be related to the test for existence of a time­

feasible schedule. The earliest start of an activity i can be calculated by finding the longest path 

from node 1 to node i. We also know that there exists a time-feasible schedule for G iff G has no 

cycle of positive length (Bartusch et aI., 1988). Therefore, if we calculate the distance matrix D = 

[d i), where dij denotes the maximal distance (path length) from node i to nodej, a positive path 

length from node i to itself indicates the existence of a cycle of positive length and, consequently, 

the non-existence of a time-feasible schedule. The calculation of the distance matrix D can be done 

by standard graph algorithms for longest paths in (cyclic) networks, for instance by the Floyd-

Warshall algorithm (for details, see Lawler, 1976), which takes O(n 3 ) time. 

4. The RCPSP-GPR 

4.1. Definition 

The resource-constrained project scheduling problem with generalized precedence relations 

(RCPSP-GPR) can be conceptually formulated as follows: 

Minimize sn 

Subject to 

si +lij -::'Sj V(i,j)EE 

~>ik -::, akt k = 1,2, ... ,m 
iE8Ct) 

s1 =0 

si EN i = 1,2, ... ,n 

t = 1,2, ... ,T 

[1] 

[2] 

[3] 

[4] 
[5] 

where N denotes the set of natural numbers, S(t) is the set of activities in progress in time period 

]t-1, t] and T is an upper bound on the project duration, for instance T = L.. max{di , ;max. {lij }} . 
iEV JEQ(l) 

Note that it is not always possible to derive a feasible solution. The upper bound T indicates the 

maximal value for the project makespan if a feasible solution exists. The objective function given 

in Eq. 1 minimizes the project duration, given by the starting time (or fmishing time, since dn = 0) 

of the dummy activity n. The precedence constraints are denoted in standardized form by Eqs. 2. 

Eqs. 3 represent the resource constraints. The resource requirements and availabilities are 

assumed to be constant over time, although this assumption can be relaxed using GPRs without 

having to change the solution procedures. Time-varying resource requirements can be modelled 
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by splitting up the activities in a number of sub activities with a different constant resource 

requirement for each of the resource types. The sub activities should then be connected with 

minimal and maximal zero-lag finish-start precedence relations, which ensure a non-delay 

execution of all the sub activities of each activity. Time-varying resource availabilities can be 

handled by creating dummy activities which absorb a certain amount of each resource type for 

which a constant availability (equal to the maximum availability over time of that resource type) 

can then be assumed. These dummy activities should then be assigned a fixed starting time using 

a minimal and maximal time lag between the dummy activity representing the start of the project 

and the dummy activity in question (which corresponds to a ready time and a deadline which are 

equal). Eq. 4 forces the dummy start activity to begin at time zero and Eqs. 5 ensure that the 

activity starting times assume nonnegative integer values. Once started, activities run to 

completion (no preemption). 

The RCPSP-GPR is known to be strongly NP-hard, and even the decision problem of testing 

whether a RCPSP-GPR instance has a feasible solution is NP-complete (Bartusch et aI., 1988). 

Optimal procedures for the RCPSP-GPR have been presented by Bartusch et al. (1988) and De 

Reyck and Herroelen (1996b). Heuristic procedures have been presented by Zhan (1994), 

Brinkmann and Neumann (1994), Neumann and Zhan (1995), Franck and Neumann (1996) and 

Schwindt and Neumann (1996). 

5. The unconstrained max-npv project scheduling problem with GPRs 

The unconstrained max-npv project scheduling problem with GPRs involves the scheduling 

of project activities subject to GPRs in order to maximize the net present value (npv) of the 

project, under the assumption that no constraints on the usage of resources are imposed. Each 

activity has a terminal cash flow ci' which can be positive or negative. A conceptual formulation of 

the unconstrained max-npv project scheduling problem can b~ formulated as follows: 

n-1 
Maximize L ci e -a(si+di) 

Subject to 

s· + Z·· < s . L LJ - ] 

sl =0 

sn ::;D 

si EN 

i=2 

V(i,j) E E 

i = 1,2, ... ,n 

[6] 

[7] 
[8] 
[9] 

[10] 

The objective function in Eq. 6 maximizes the npv ofthe project. The constraint set given in Eq. 7 

maintains the GPRs among the activities. Eq. 8 forces the dummy start activity to begin at time 

zero and Eq. 9 limits the project duration to a negotiated deadline. Eqs. 10 ensure that the 

activity starting times assume nonnegative integer values. 
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We will briefly review the optimal procedure developed by De Reyck and Herroelen (1996d), 

which will be used for the computation of upper and lower bounds on the project npv in the 

branch-and-bound procedure for the RCPSPDC-GPR, to be described in the next section. A 

detailed description of the procedure is given in Appendix 1. More detailed information and 

extensive computational experience can be found in De Reyck and Herroelen (1996d). 

We start in STEP 1 by computing the constraint digraph using the transformation rules 

discussed in section 2 (time complexity O(IEI». The distance matrix is computed using the Floyd-

Warshall algorithm (time complexity O(n3 ». Ifthe project is not time-feasible, i.e. ifthere is an 

activity i for which d ii > 0, the algorithm stops. Otherwise, in STEP 2, the early tree, which spans 

all activities (nodes) scheduled at their earliest start time, is computed as follows (O(n 2 ». For 

every activity i, a predecessor j is determined for which d 1j + d ji = d 1i , upon which activities j 

and i are linked. For every activity i, there always exists a predecessor activity j satisfying 

d 1j + d ji = d 1i , since dummy activity 1 will always satisfy this constraint for any given activity i. 

In other words, if we would link activity 1 to every other activity, we would get a valid early tree. 

However, this early tree contains very little information about the activities in the project and 

their precedence relations (e.g. critical paths) and would lead to a large number of 'unnecessary' 

recursion steps later on in the procedure. Therefore, 'we link every activity i to the highest 

numbered predecessor j (j<i) for which d 1j + d ji = d1i holds (using a reverse search scheme). 

The current tree is calculated in STEP 3 of the algorithm (O(n 2 ) ) by delaying, in reverse 

order, all activities i with a negative cash flow and no successor in the early tree as much as 

possible within the early tree, i.e. without affecting the start times of the successor activities in 

the constraint digraph. Each such activity i is then linked to its successor j restricting a further 

delay of activity i, except for the case where activity j is itself a predecessor of activity i in the 

current tree (which is possible because activity networks with GPRs can contain cycles), which 

would lead to the creation of a cycle in the current tree. In that case, activities i and j remain 

fixed at their current starting times because only a simultaneous delay of both activities would 

ensure that the time-feasibility of the project network is not violated. Simultaneous delays will be 

examined in STEP 4. 

If any activity i has been delayed while calculating the current tree, STEP 3 has to be 

repeated, since it is possible that delaying activity i will allow for an additional delay of another 

activity j (j>i). Searching in reverse order makes sure that no other activity j<i will be delayed, 

but the delay of activities j>i cannot always be avoided. 

Mter STEP 3 has been repeated a sufficient number of times (worst-case scenario: n times, 

making the time complexity of STEP 3, including its repetitions, O(n 3 ) ), the procedure will enter 

a recursive search, in which partial trees PT (with a negative npv) will be identified that may be 

shifted forwards in time in order to increase the npv of the project. When such a partial tree is 



9 

found, the algorithm computes the maximal shift of the partial tree by identifying the maximal 

possible increase in the starting times of the activities belonging to the partial tree without 

violating any of the precedence constraints, keeping all activities not belonging to PT at their 

current starting times. Therefore, we look for a new arc with minimal displacement, i.e. an arc 

(k,l) (k E PT, l e; PT) with minimal value for d ll - d 1k - d kl . We disconnect the partial tree from 

the remainder of the current tree and we add the arc (k,l) to the current tree, thereby relinking 

the forward-shifted partial tree to the current tree. The completion times of the activities in the 

partial tree are updated as follows: V j E PT: d 1j = d 1j + min {dll - d 1k - d kl }. If a shift has 
kEPT 
le;PT 

been found and implemented, the recursive procedure is restarted until no further shift can be 

accomplished. Then, the optimal schedule with its corresponding npv is reported. 

6. The RCPSPDC-GPR 

6.1. Definition 

The resource-constrained project scheduling problem with discounted cash flows and 

generalized precedence relations (RCPSPDC-GPR) can be conceptually formulated as follows: 

n-1 
M . . ~ -a.(s·+d·) 

axJ.mlze L.J ci e " 
i=2 

Subject to 

s·+l··<s· 1 !J - J 

Lrik ::; akt 
iE8(t) 

Sl =0 

sn ::;D 

si EN 

V(i,j) E E 

k = 1,2, ... ,m t = 1,2, ... ,T 

i = 1,2, ... ,n 

[11] 

[12] 

[13] 

[14] 

[15] 

[16] 

The objective function in Eq. 11 maximizes the npv of the project. The constraint set given in Eq. 

12 maintains the GPRs among the activities. Eqs. 13 represent the resource constraints. Eq. 14 

forces the dummy start activity to begin at time zero and Eq. 15 limits the project duration to a 

negotiated deadline. Eqs. 16 ensure that the activity starting times assume nonnegative integer 

values. As an extension of the RCPSP-GPR or the RCPSPDC, the RCPSPDC-GPR is clearly NP­

hard in the strong sense. If, for instance, only a positive cash flow is associated with the dummy 

end activity, the problem reduces to the RCPSP-GPR since the objective then is to minimize the 

completion time of the dummy end activity, i.e. minimizing the project makespan. If all 

precedence relations are of the zero-lag fmish-start type, the problem reduces to the RCPSPDC. 

Also the corresponding feasibility problem (the decision problem of testing whether a RCPSPDC­

GPR instance has a feasible solution) is NP-complete. 



10 

To the best of our knowledge, an algorithm for project scheduling with resource constraints, 

discounted cash flows as well as GPRs has not yet been presented in the literature. Algorithms for 

the RCPSPDC with zero-lag finish-start precedence constraints only do exist, the most efficient of 

which seems to be the branch-and-bound procedure ofIcmeli and Erengi.i~ (1996). Their algorithm 

extends the procedure of Demeulemeester and Herroelen (1992, 1996) originally developed for the 

RCPSP, by adapting the branching strategy to cope with the max-npv criterion. The authors use 

the procedure of Grinold (1972) for the unconstrained max-npv project scheduling problem to 

compute upper and lower bounds on the project npv. In the next section, we will present a branch­

and-bound procedure for the RCPSPDC-GPR based on the concepts developed in De Reyck and 

Herroelen (1996b) for the RCPSP-GPR and on the procedure for the unconstrained max-npv 

project scheduling problem with GPRs of De Reyck and Herroelen (1996d). 

6.2. A branch-and-bound procedure 

6.2.1. The search tree 

The nodes in the search tree represent the initial project network, described by a distance 

matrix D = [dij]' extended with extra (zero-lag finish-start) precedence relations to resolve a 

number of resource conflicts, which results in an extended distance matrix. Nodes which 

represent time-feasible (no violated maximal time lags) but resource-infeasible project networks 

and which are not fathomed by any node fathoming rules described below lead to a new 

branching. Therefore each (undominated) node represents a time-feasible, but not necessarily 

resource-feasible project network. Resource conflicts are resolved using the concept of minimal 

delaying alternatives, i.e. minimal sets of activities which, when delayed, release enough 

resources to resolve the resource conflict (and which do not contain any other delaying alternative 

as a subset). Each ofthese minimal delaying alternatives is then delayed (enforced by extra zero­

lag fmish-start precedence relations i -< j, implying Si + d i ::; S j) by each of the activities also 

belonging to the conflict set S(t*), the set of activities in progress in period ]t*-l, t*] (the period of 

the first resource conflict), but not belonging to the delaying alternative. Therefore, each minimal 

delaying alternative can give rise to several minimal delaying modes. 

A similar delaying strategy was used by Demeulemeester and Herroelen (1992) for the 

RCPSP. As the RCPSP can be solved using semi-active timetabling to construct the partial 

schedules, activities belonging to the minimal delaying alternative can be delayed by the activity 

in S(t*) which terminates at the earliest time instant beyond the current decision point (further 

denoted as the delaying activity). In the RCPSP-GPR, this delaying strategy cannot be used 

because of the maximal time lags, which make semi-active timetabling inappropriate. These time 

lags make it impossible to determine which activity in S(t*) should be used as the delaying 

activity, because we cannot predict in advance which activity in S(t*) will terminate the earliest 
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in the feasible schedules that will be obtained by branching from the current project network. 

Therefore, in the RCPSP-GPR, we have to consider several possible delaying modes for each 

delaying alternative. 

In general, the delaying set D, i.e. the set of aU minimal delaying alternatives, is equal to 

D = {Dd Dd c S(t*) and 'i/ resource type k: I.rik - I,rik ~ ak and 'i/ Dd, ED: Dd, cr. Dd}' The 
iES(t*) iED" 

set M of minimal delaying modes equals: M = {Mml Mm = {k -< Dd }, k E S(t*) \ Dd, Dd ED}. 

Activityk is called the delaying activity: k -< Dd implies that k -< l for aUl E Dd . 

THEOREM 1. The delaying strategy which consists of delaying all minimal delaying alternatives 

Dd by each activity k E S(t*) \ Dd will lead to the optimal solution of the RCPSPDC-GPR in a 

finite number of steps. 

PROOF. See De Reyck and Herroelen (1996b). 

6.2.2. Branching strategy 

Each time-feasible minimal delaying mode with an upper bound ub (computed using the 

procedure for the unconstrained max-npv project scheduling problem with GPRs of De Reyck and 

Herroelen, 1996d) higher than an already obtained lower bound lb on the project npv is 

considered for further branching. If the node represents a project network in which a resource 

conflict occurs, a new branching occurs. If it represents a feasible schedule, the lower bound lb is 

updated and the procedure backtracks to the previous level in the search tree. Therefore, we have 

a depth-first search procedure, in which branching occurs until at a certain level in the tree, there 

are no delaying modes left to branch from. Then, the procedure backtracks to the previous level in 

the search tree and reconsiders the other delaying modes pending at that level. The procedure 

stops when it backtracks to level O. 

The computation of the upper bound ub on the project npv is not made upon creation of a 

node, but is deferred until a decision has been made to actually branch from it. The rationale 

behind this is that computing ub implies calculating the entire distance matrix, which is a time­

and memory-consuming procedure. Supported by extensive computational tests, we defer the 

calculation of ub and the distance matrix until the node is actually selected for branching. As a 

result, another criterion will have to be used in order to select the node to branch from at a 

certain level. A node should be selected for branching when it entails a high chance of finding a 

feasible solution with a high npv. Therefore, delaying activities which carry negative cash flows is 

to be preferred to delaying activities with positive cash flows since the latter will negatively affect 

the npv of the project. In general, the higher (more positive) the cash flows of the delayed 

activities, the more likely the project npv will decrease. Therefore, we have chosen as a branching 

criterion the sum of the cash flows associated with the activities that have to be delayed, the 
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smallest sum being chosen first. Extensive experiments have revealed that a more sophisticated 

way of estimating the effect of the delay of activities on the project npv does not yield better 

results than choosing the node with the smallest sum of activity cash flows of the delayed 

activities. 

6.2.3. Node fathoming rules 

Nodes are fathomed when they represent a time-infeasible project network or when their 

ub does not exceed an already obtained lower bound lb. Nodes which are not fathomed and still 

represent an infeasible project network are considered for further branching. Three additional 

node fathoming rules (Theorems 2, 3 and 4) and a procedure which reduces the solution space and 

which can be executed as a preprocessing rule (Theorem 5) are added. These node fathoming rules 

are similar to the ones developed in De Reyck and Herroelen (1996b) for the RCPSP-GPR. 

Therefore, they will only be stated here without further explanation or proof. 

THEOREM 2. If there exists a minimal delaying alternative D d with activity i E D d but its real 

successor j ~ D d (dij ~ 0), we can extend D d with activity j. If the resulting delaying alternative 

becomes non-minimal as a result of this operation, it may be eliminated from further 

consideration. 

THEOREM 3. When a minimal delaying alternative D d gives rise to two delaying modes M m, and 

M m with delaying activities i and j respectively, mode M m is dominated by mode M m iff 
2 2, 

THEOREM 4. If the set of added precedence constraints which leads to the project network (in the 

form of an extended distance matrix) in node x contains as a subset another set of precedence 

constraints leading to the project network (extended distance matrix) in a previously examined 

node y in another branch of the search tree, node x can be fathomed. 

THEOREM 5. If 3 i,j E V and resource type k for which rik + rjk > ak and -dj < dij < di, we can set 

lij = di without changing the optimal solution of the RCPSPDC-GPR. 

The detailed algorithmic steps of the branch-and-bound procedure are given in Appendix 2. 
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7. Computational experience 

7.1. Benchmark problem set 

Schwindt (1995) developed a problem generator ProGenimax which can randomly generate 

instances of various types of generalized resource-constrained project scheduling problems, based 

on the problem generator ProGen for the RCPSP developed by Kolisch et al. (1995). Two methods 

are proposed: DIRECT, which directly generates entire projects, and CONTRACT, which first 

generates cycle structures, upon which the (acyclic) contracted project network is generated. 

Several control parameters can be specified, as indicated in Table I. 

Table I. The control parameters of ProGenimax (Schwindt, 1995) 

Problem size-based 

# activities (n) 

Resource-based 

# resource types (m) 

min. / max. number of 

resources used per activity 

resource factor (RF) 

(Pascoe, 1966) 

resource strength (RS) 

(Kolisch et aI., 1995) 

Acyclic network-based 

# initial and terminal 

activities 

maximal # predecessors 

and successors 

order strength (OS)' 

(Mastor, 1970) 

Cyclic network-based 

% maximal time lags 

# cycle structures 

min. / max. # nodes 

per cycle structure 

coefficient of cycle structure 

density (Schwindt, 1995) 

cycle structure tightness 

(Schwindt, 1995) 

We generated 5760 problem instances using the DIRECT method using the control 

parameters given in Table II. For each combination of control parameter values, 120 problem 

instances have been generated. The indication [x,y] means that the value is randomly generated 

in the interval [x,y], whereas x; y; z means that three settings for that parameter were used in a 

full factorial experiment. The parameters used in the full factorial experiment are the number of 

activities as a problem size-based measure, the order strength (OS) as an acyclic network-based 

1 Schwindt (1996) uses an estimator for the restrictiveness (The sen, 1977) as a network complexity measure. However, 
De Reyck (1995c) has shown that this measure is identical to the order strength (Mastor, 1970), the flexibility ratio (Dar­
El, 1973) and the density (Kao and Queyranne, 1982). We will use order strength when referring to this measure. 



14 

measure and the percentage of maximal time lags as a cyclic network-based measure. The cash 

flows for each of the activities are generated randomly from the interval [-500, + 500] . 

Table II. The parameter settings ofthe benchmark problem set 

Control parameter Value 

# activities 10; 20; 30; 50 

activity durations [2,10] 

# initial and terminal activities [2,4] 

maximal # predecessors and successors 3 

as 0.25; 0.50; 0.75 

% maximal time lags 0%; 10%; 20%; 30% 

# cycle structures [0,10] 

minimal/maximal # nodes per cycle structure 2 / 100 

coefficient of cycle structure density . 0.3 

cycle structure tightness 0.5 

7.2. The RCPSPDC-GPR results 

The procedure has been programmed in Microsoft® Visual C++ 2.0 under Windows NT for 

use on a Digital Venturis Pentium-60 personal computer. The code itself requires 109Kb of 

memory, whereas 10Mb are reserved for the storage of the search tree. Solving all problem 

instances of the problem set to optimality (especially the 50-activity problem instances) is 

probably beyond the capabilities of current branch-and-bound procedures. Even for the classic 

RCPSP, the RCPSPDC or the RCPSP-GPR, problem instances with 50 activities are not amenable 

to optimal solution within acceptable computational effort. As an example, the RCPSP problem 

set of Kolisch et al. (1995), which consists of 480 instances with 30 activities has only recently 

been solved to optimality by Demeulemeester and 'Herroelen (1996). Therefore, given the higher 

complexity of the RCPSPDC-GPR, it is to be expected that a similar set consisting of 30-activity 

RCPSPDC-GPR instances will not be solved to optimality within acceptable computation times. 

7.2.1. Basic results 

We report in Table III the results of our procedure, when truncated after some seconds of 

running time. The reported values include the number of problems solved to optimality (for which 

the optimum was found and verified, including the problems proven to be infeasible), the number 

of unsolved problems (for which a feasible solution was not obtained within the given time limit) 

and the average CPU-time. Fig. 1 displays the significant effect ofthe problem size on the number 

of problems solved to optimality. 
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Table III. The results with the truncated version ofthe branch-and-bound procedure 

Time limit 1 second 10 seconds 100 seconds 

Problems solved to optimality 4155 (±72%) 4836 (±84%) 5244 (±91%) 

Unsolved problems 24 (±OA%) 13 (±0.2%) 7 (±0.1%) 

Average CPU-time (in seconds) 0040 2.10 12.08 
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Fig. 1. The effect of problem size on the number of problems solved to optimality 

7.2.2. The impact of as 

Fig. 2 displays the impact of as on the RCPSPDC-GPR complexity. It was already 

established that, for the RCPSP-GPR, as has a negative correlation with the problem hardness, 

that is, the higher as, the easier the corresponding RCPSP-GPR instance (De Reyck and 

Herroelen, 1996c). However, for the unconstrained max-npv project scheduling problem, an 

opposite effect was observed (De Reyck and Herroelen, 1996d). Therefore, it would be interesting 

to see how these two effects interact to determine the effect of as on the computational 

complexity of the RCPSPDC-GPR. In accordance with the results for the RCPSP-GPR, it is to be 

expected that as will have a negative correlation with the number of nodes in the search tree. 

However, the time spent per node will increase when as increases, due to the increased time 

needed to solve the unconstrained max-npv project scheduling problem. Fig. 2 clearly indicates 

that as has no significant impact on the required CPU-time to solve the RCPSPDC-GPR 

instances. This means that, probably, both opposite effects of as neutralize each other. 
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Fig. 2. The effect ofOB on the number of problems solved to optimality 
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Fig. 3. The effect of % maximal time lags on the number of problems solved to optimality 

7.2.3. The impact of the percentage of maximal time lags 

The effect of the percentage of maximal time lags (Fig. 3) on the computational complexity 

ofthe RCPSPDC-GPR is neither monotonously increasing nor decreasing. On the contrary, a kind 

of bell-shaped curve seems to result. When maximal time lags are introduced, the number of 

problems solved to optimality increases up to a certain point, beyond which it decreases again. 
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The initial rise in performance can be understood if we remember that, in the branch-and-bound 

procedure, several dominance rules and lower bounds are used which require the existence of 

maximal time lags in order to be applicable. This makes the procedure more effective and efficient 

when such time lags are introduced. However, when there are many maximal time lags, the 

increased problem complexity (there are less feasible solutions, making it harder to find good ones 

which can be used to dominate other nodes using lower bound arguments) leads to a decrease in 

efficiency and consequently, a decrease in the number of problems solved to optimality. A similar 

effect was found to exist for the RCPSP-GPR (De Reyck and Herroelen, 1996c). 

7.2.4. The impact of RF and RS 

The effect of RF (Fig. 4) is similar to the results reported by Kolisch et al. (1995) and De 

Reyck and Herroelen (1996a) for the RCPSP and to the findings of De Reyck and Herroelen 

(1996c) for the RCPSP-GPR. The higher RF, the more difficult the corresponding RCPSP(-GPR). 

An opposite effect can be observed for RS (Fig. 5), as was also observed by Kolisch et al. (1995) for 

the RCPSP and by De Reyck and Herroelen (1996c) for the RCPSP-GPR. The strong effects of RF 

and RS, and even more pronounced for RS than for RF, lead us to believe that the effect of 

resource-based measures on the computational complexity of the RCPSP-GPR is larger than the 

effect of network~based measures. A similar observation for the RCPSP has been made by De 

Reyck and Herroelen (1996a). 
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Fig. 4. The effect of RF on the number of problems solved to optimality 
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Fig. 5. The effect of RS on the number of problems solved to optimality 

7.2.5. The impact of the cash flow distribution 

In the experiment described above, the cash flows for each of the activities were randomly 

generated from the interval [-500,+ 500]. This means that, on the average, 50% of the activities 

will have a negative cash flow associated with it. In practice, the distribution of the cash flows 

may take very different forms, depending on the contract and payment structure of the project. In 

some projects, there may be few activities, if any, with a negative cash flow, whereas in other 

projects, all the activities except for the last activity of the project carry negative cash flows (for a 

clarifying review of the different types of contracts and payment structures, we refer the reader to 

Herroelen et aI., 1996a). In order to examine the impact of different cash flow distributions on the 

complexity of the RCPSPDC-GPR, we randomly generated the cash flows of each of the activities 

from the interval [0, + 500] , and assigned a negative cash flow to some activities by reversing the 

sign of the associated cash flow. The number of such activities was varied from 0% to 100% in 

steps of 10%. 

De Reyck and Herroelen (1996d) examined the impact of the percentage of activities with a 

negative cash flow on the computational effort to solve the unconstrained max-npv project 

scheduling problem with GPRs. It was shown that projects with either few or many activities with 

negative cash flows constitute the easier instances, whereas problems with a mixture of activities 

with positive and negative cash flows constitute the most difficult ones. Fig. 6 shows the effect of 

the percentage of activities with a negative cash flow on the computational effort to solve a 

representative RCPSPDC-GPR instance (similar results are obtained for other instances). A 

different curve is shown for different values for the project deadline D (ranging from 21 to 35). 
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Fig. 6. The effect ofthe percentage of negative cash flow activities on the problem complexity 

Clearly, the effect of the percentage of negative cash flow activities is U-shaped, meaning 

that, contrary to the unconstrained max-npv project scheduling problem, projects with few or 

many activities with a negative cash flow are the most difficult instances. This result is quite 

logical, since when activities with negative and positive cash flows are mixed, the optimal 

schedule may "disconnect" in the sense that some activities are scheduled as close as possible to 

time zero, whereas others are scheduled as close as possible to the project deadline, such that the 

problem decomposes into two less complex problems. This only occurs, however, when the project 

deadline is set high enough such that the optimal schedule can indeed split up into two separate 

parts. When the deadline is set close to the makespan of the optimal solution for the RCPSP-GPR, 

no such U-curve will result. Notice that instances with all negative cash flows are more difficult to 

solve than instances with all positive cash flows. An explanation for this can be found if we 

remember that, when solving the unconstrained max-npv project scheduling problem, we took the 

EBB (early tree) as a starting point, which is less efficient when many activities have a negative 

terminal cash flow. 

7.2.6. The impact of the project deadline 

Another conclusion we can draw from Fig. 6 is that when the project deadline increases, the 

solution space expands and the problem becomes inherently more difficult, which was already 

observed by Icmeli and Erengiic; (1996) for the RCPSPDC. Fig. 7 shows the effect of the project 

deadline on the computational complexity of the RCPSPDC-GPR instance when it is increased 
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from 19 (the critical path length) to 37. Several curves are shown, each corresponding to a 

different percentage of activities with a negative cash flow. Using a deadline of 19 or 20, however, 

no (resource-)feasible solution can be obtained. 
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Fig. 7. The effect ofthe project deadline on the problem complexity 

For some settings of the percentage of negative cash flow activities, a continuous increase 

in CPU-time (Fig. 8) can be observed, which levels out after the deadline reaches a certain value. 

For other settings of the percentage of negative cash flow activities, the required CPU-time 

decreases again beyond some critical value of the deadline (Fig. 9). The reason for these different 

results can be revealed if we look at the percentage of negative cash flows associated with each 

curve. When this percentage is either low or high (for the example: less or equal than 40% or 

higher or equal than 90%; representing the most difficult problem instances as can be seen in Fig. 

6), this implies that the schedule will probably not disconnect into two separate parts, leading to a 

more complex problem which does not become easier to solve when the deadline is increased. An 

increased deadline extends the solution space, leading to a higher complexity, until the deadline 

reaches a value beyond which no expansion of the solution space is observed. The required CPU­

time then levels off. When more or less 50% (for the example: 50% to 80%; representing the 

easiest problem instances) of the activities have a negative t~rminal cash flow, chances are that 

the optimal schedule disconnects into two separate parts, thereby reducing the problem 

complexity since less resource conflicts (and less severe ones) will result, provided that the project 

deadline is high enough to allow such a disconnected schedule. Therefore, when the deadline 
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reaches a critical value, the optimal schedule disconnects and the problem complexity decreases. 

This effect can be observed in Fig. 9. 
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Fig. 8. The effect of the deadline on the complexity (hardest problem instances) 

3 

2,5 

2 

j 
~ 1,5 

80% 
u 

50% 

0 
60% 70% 

'" 0 .... '" '" 
..,. 

'" <D t- oo '" 0 .... '" '" 
..,. 

'" <D t- oo '" 0 .... '" '" '" '" '" '" '" '" '" '" '" '" '" '" '" '" '" '" '" '" 
..,. 

" II II II II II II II II " II II II II II " " II " II II II 
t:l t:l q t:l t:l t:l t:l t:l q t:l t:l t:l t:l t:l t:l t:l t:l Q t:l Q Q Q 

deadline 

Fig. 9. The effect of the deadline on the complexity (easiest problem instances) 



22 

7.5. Conclusions 

In this paper we present a branch-and-bound procedure for the RCPSPDC-GPR, the 

resource-constrained project scheduling problem with discounted cash flows and generalized 

precedence relations. The RCPSPDC-GPR extends the RCPSP to (a) arbitrary minimal and 

maximal time lags between the starting and completion times of activities and (b) the non-regular 

objective function which maximizes the net present value of a project with positive and/or 

negative cash flows associated with the activities. The procedure is a depth-first branch-and­

bound algorithm in which the nodes in the search tree represent the original project network 

extended with extra precedence relations which resolve a number of resource conflicts. Resource 

conflicts are resolved using the concept of minimal delaying modes. Several dominance rules are 

used to fathom large portions of the search tree. Each project network in each node of the search 

tree is evaluated using a new optimal procedure for the (resource-) unconstrained project 

scheduling problem with generalized precedence relations, which can be used to calculate upper 

and lower bounds on the project net present value. 

Extensive computational results are reported using a problem set consisting of 5760 

instances with up to 50 activities, generated using ProGenimax, a new problem generator which 

can generate several types of generalized resource allocation problems (Schwindt, 1995). Solving 

all randomly generated problem instances (especially the 50-activity problem instances) to 

optimality is probably beyond the capabilities of current branch-and-bound procedures. The 

computational results obtained using a truncated version of the proposed branch-and-bound 

procedure indicate, however, that the algorithm is capable of solving many of the randomly 

generated problem instances to optimality. Moreover, the performance of the procedure is not 

significantly inferior to the procedure for the RCPSP-GPR of De Reyck and Herroelen (1996b), 

which is only suited for minimizing the project makespan or other regular measures of 

performance. This pleads for the validation of the truncated branch-and-bound procedure as a 

candidate for solving relatively large instances of the RCPSPDC-GPR against other suboptimal 

procedures such as priority-rule-based heuristics or local search. 



Appendix 1 

A procedure for the unconstrained max-npv project scheduling problem with GPRs 

STEP 1. DISTANCE MATRIX CALCULATION 

Compute the constraint digraph cd (O(IEI) ). 

Compute the distance matrix ( O(n 3 ) ) 

Ifthe project is not time-feasible (i.e. ::3 i E V:di,i > 0), STOP. 

STEP 2. EARLY TREE CALCULATION 
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Compute the early tree as follows ( O(n 2 ) ): For each activity i E V \ {I}, search for an activity 

} E VI} < i for which dl,j + d j,i = dl,i. In case several such activities} exist, choose the one 

with the highest number smaller than i (search in reverse order starting from activity i-I). 
Link activities} and i in the early tree. Make the early tree the current tree. 

STEP 3. CURRENT TREE CALCULATION 

Compute a new current tree (O(n 2 ) ) by delaying, in reverse order, each activity i with a 

negative cash flow and no successor in the current tree as much as possible (by increasing 
dl,i), thereby linking it to the activity} preventing a furth,er delay. Remove the link to any 

predecessor in the current tree. The delay of activity i is computed as 

}EV~{i}{dl,j -dl,i -di,j}. If, however, activity} preventing a further delay of activity i is 

itself a predecessor of activity i in the current tree, activity i can neither be delayed nor linked 
to activity}. Rather, activities i and} are fixed at their current starting times. Make the so 

obtained tree the current tree. 
If any activity has been delayed in this step, repeat STEP 3. 

STEP 4. 

A=0. 
Do RECURSION(1) ~ PT, DC' (parameters returned by the recursive function) 

Report the optimal schedule {dl,l>d1,2, ... ,dl,n} and net present value DC'. STOP. 

RECURSION (NEWNODE) 

Initialize PT = {newnode}, DC = Cnewnode, A = A u {newnode}. 

Do for each successor activity i ~ A of newnode (in the current tree): 
RECURSION (i) ~ PT, DC' 
If DC'~O 

Eise 

set PT = PT u PT' and DC = DC + DC'. 

Delete arc (newnode, i) from the current tree. 
Find a new arc with minimal displacement, i.e. arc (k,l) (k E PT, 1 ~ PT) with 

minimal value for d1,l - d1,k - dk,l . 

Add arc (k,l) to the current tree. 

Update the completion times of the activities in PT as follows: 

\if } E PT: d 1 J. = dl,J· + min {d ll - dlk - dk l} . 
, kEPT'" 

l~PT 

Go to STEP 4. 
Do for each predecessor activity i ~ A of newnode (in the current tree): 

RECURSION (i) ~ PT, DC' 
PT=PTuPT' and DC=DC+DC'. 

Return. 



Appendix 2 

A branch-and-bound procedure for the RCPSPDC-GPR 

STEP 1. INITIALISATION 

Let lb = -9999 be a lower bound on the project npv. 
Set the level of the branch-and-bound treep = o. 
Compute the constraint digraph cd ( O(IEI) . 

Compute d[ 0] , the distance matrix at level 0 using the Floyd-Warshall algorithm ( O(n 3 ) ). 

If the project is not time-feasible (i.e. ::liE V: d[O][i][i] > 0), STOP. 

Preprocessing: reduce the solution space by adjusting d[ 0] ( O(n 2 m) ): 

V(i, j) I i, j E V and ::I resource type k : rik + rjk > ak and 

case 1: -dj < d[O][i](j] < di , set lij = di 

case 2: -di < d[O](j][i] < d j , set lji = dj 

Recompute d[ 0] using the Floyd-Warshall algorithm ( O(n 3 ) ). 

Compute an upper bound on the project npv using the algorithm for the unconstrained max­
npv project scheduling problem described in Appendix 1 and go to STEP 3. 

STEP 2. TEMPORAL ANALYSIS 

Compute d[p], the extended distance matrix at level p as follows ( O(n 21D d I) ): 
Vi,j E V: d[p ][i](j] = d[p - l][i][j]. Vi,j E V , l E Dd: d[p ][i][j] = 

max{d[p ][i](j], d[p -l][i][k] + dk + d[p -l][l](j]}, k being the delaying activity. 
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If lb > -9999, compute an upper bound ub on the project npv using the algorithm for the 
unconstrained max-npv project scheduling problem with GPRs described in section 5 and 

go to STEP 3. 
If ub::; lb , erase the delaying mode and go to STEP 6. 

STEP 3. RESOURCE ANALYSIS 

Determine the first period in which a resource conflict occurs, i.e. the first period ]t*-l, t*] for 

which I.rik > ak for some resource type k. S(t*), the set of activities in progress in period 
iES(t*) 

]t*-l, t*], is called the conflict set. 
Ifthere is no conflict, letlb = max{lb, ub}, erase the delaying mode and go to STEP 6. 

Store the distance matrix. 

STEP 4. DETERMINE MINIMAL DELAYING ALTERNATIVES AND MINIMAL DELAYING MODES 

Increase the branch level of the search tree: p = p + 1. 
Determine the minimal delaying set, i.e. the set of minimal delaying alternatives: 

D = {Dd Dd c S(t*) and V resource type k: I/ik -Lri~ ::; ak and V Dd, ED: Dd, cr. Dd} 
iES(t*) iED,/ 

Extend all minimal delaying alternatives using Theorem 2 and eliminate all non-minimal 
delaying alternatives. Determine the set of minimal delaying modes: 

M={Mml Mm ={k-<Dd},kES(t*)\Dd,Dd ED}. 

Eliminate all delaying modes satisfying Theorem 3. 

Arbitrarily select a delaying mode M m with corresponding delaying alternative D d. 



STEP 5. EVALUATE DELAYING MODES 

For all delaying modes Mm, 
{ 

If the precedence constraints cannot be added, i.e. 3l E Dd: k -< l is infeasible, i.e. 

dk > -d[p][l][k] (k being the delaying activity), continue with the next delaying mode Mm. 

Compute a penalty value as follows: n = L cl 

lEDd 
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If the set of added precedence constraints of a previously examined node saved earlier is a 
subset of the set of added precedence constraints of the current node, continue with 

the next delaying mode Mm. 

Temporarily store the delaying mode and its penalty value n . 

STEP 6. BRANCHING 

Ifno delaying modes are left to branch from at levelp, go to STEP 7. 

Select the delaying mode Mm with the smallest penalty value n (arbitrary tie-break). 

Go to STEP 2. 

STEP 7. BACKTRACKING 

Decrease the branch level ofthe search tree: p = p - l. 
If p$;O, STOP with the optimal solution with an npv equal to lb 

(if lb = -9999, then there exists no feasible solution). 
Delete from the stack the information which has been previously saved on level p+ 1 for 

dominance testing. 
Save the necessary information for node dominance testing on the stack, i.e. the list of added 

precedence constraints of the node reached upon backtracking. 
Erase the distance matrix and the lower bound of this node and go to STEP 6. 
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