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COMPUTATIONAL EXPERIENCE WITH A BRANCH-AND-BOUND PROCEDURE 

FOR THE RESOURCE-CONSTRAINED PROJECT SCHEDULING PROBLEM 

WITH GENERALIZED PRECEDENCE RELATIONS 

ABSTRACT 

Bert De Reyck • Willy Herroelen 

Department of Applied Economics, Katholieke Universiteit Leuven 

In a previous paper (De Reyck and Herroelen, 1996a), we presented an optimal procedure 

for the resource-constrained project scheduling problem (RCPSP) with generalized precedence 

relations (further denoted as RCPSP-GPR) with the objective of minimizing the project 

makespan. The RCPSP-GPR extends the RCPSP to arbitrary minimal and maximal time lags 

between the starting and completion times of activities. The procedure is a depth-first branch­

and-bound algorithm in which the nodes in the search tree represent the original project network 

extended with extra precedence relations, which resolve a resource conflict present in the project 

network of the parent node. Resource conflicts are resolved using the concept of minimal delaying 

alternatives, i.e. minimal sets of activities which, when delayed, release enough resources to 

resolve the conflict. Precedence- and resource-based lower bounds as well as dominance rules are 

used to fathom large portions of the search tree. In this paper we report new computational 

experience with the algorithm using a new RCPSP-GPR random problem generator developed by 

Schwindt (1995). A comparison with other computational results reported in the literature is 

included. 
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1. Introduction 

Assume a project represented in activity-on-node (AoN) notation by a directed graph G = 
{V, E} in which V is the set of vertices or activities, and E is the set of edges or generalized 

precedence relations (GPRs). The non-preemptable activities are numbered from 1 to n, where the 

dummy activities 1 and n mark the beginning and the end of the project. The duration of an 

activity is given by d i (l::; i::; n), its starting time by Si (1::; i::; n) and its finishing time by 

f; (1::; i ::; n). There are m renewable resource types, with rikx (1::; i ::; n, 1::; k ::; m, 1::; x ::; d) the 

resource requirements of activity i with respect to resource type k in the xth period it is in progress 

and akt (1::; k ::; m; 1::; t ::; T) the availability of resource type k in time period ]t-1, t] (T is an upper 

bound on the project length). If the resource requirements and availabilities are not time­

dependent, they are represented by rik (1::; i ::; n, 1::; k ::; m) and ak (1::; k::; m) respectively. The 

minimal and maximal time lags between two activities i and) have the form: 

The different types of GPRs can be represented in a standardized form by reducing them 

to just one type, e.g. the minimal start-start precedence relations, using the following 

transformation rules (Bartusch et aI., 1988): 

S· + SS!1?-in < s· , lJ - J ~ Si +lij ::;Sj with lij = SS[fin 
s· + SS!1?-ax > S . 

, lJ - J ~ s·+l··<s· J J' - t with l .. = _SS!1?-ax 
Jt LJ 

si + SF/tin ::; fj ~ si + lij ::; S j with l·· = SF.,?in - d· 
LJ lJ J 

s· + Sp,?ax > f· , lJ - J ~ s·+l··<s· J Jt - , with l .. = d . ....: Sp,?ax 
J' J lJ 

{,. + FS!1?-in < S . 
, lJ - J ~ si + lij ::; S j with [.. = d. + FS!1?-in 

lJ , lJ 

{,. + FS!1?-ax > S . , LJ - J ~ Sj+lji::;Si with lji = -di - FSijax 

f. + FP,?in < f· , lJ - J ~ si + lij ::; S j with l·· =d· -d. + Fpmin 
LJ t J lJ 

{,. + FP'?ax > f. , LJ - J ~ S j + lji ::; Si with l .. = d . - d. - Fpmax 
l' J , lJ 

Then, the resource-constrained project scheduling problem with generalized precedence 

relations (RCPSP-GPR) can be conceptually formulated as follows: 



Minimize Sn 

Subject to 

V(i,j) E E 

2>ik::;; akt k = 1,2, ... ,m 
iE8(t) 

sl =0 

i = 1,2, ... ,n 

t = 1,2, ... ,T 

[1] 

[2] 

[3] 

[4] 

[5] 
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where S(t) is the set of activities in progress in time period ]t-1, t] and T is an upper bound on the 

project duration, for instance T = L maX{di , ;max. {lij }}, Q(i) = {j I (i, j) E E} being the set of all 
iEV JEQ(~) 

immediate successors of activity i. Note that it is not always possible to derive a feasible solution 

for a RCPSP-GPR instance. The upper bound T indicates the maximal value for the project 

makespan if a feasible solution exists. The objective function given in Eq. 1 minimizes the project 

duration, given by the starting time (or finishing time, since d n = 0) of the dummy activity n. The 

precedence constraints are denoted in standardized form by Eqs. 2. Eqs. 3 represent the resource 

constraints. The resource requirements and availabilities are assumed to be constant over time, 

although this assumption can be relaxed using GPRs without having to change the solution 

procedures (Bartusch et aI., 1988). Eq. 4 forces the dummy start activity to begin at time zero and 

Eqs. 5 ensure that the activity starting times assume nonnegative integer values. Once started, 

activities run to completion (no preemption). 

The RCPSP-GPR is known to be strongly NP-hard, and even the decision problem of 

testing whether a RCPSP-GPR instance has a feasible solution is NP-complete (Bartusch et aI., 

1988). 

2. Solution procedures 

The first optimal solution procedure for the RCPSP-GPR presented in the literature is the 

procedure of Bartusch et aI. (1988). The procedure is a depth-first type branch-and-bound 

procedure which is based on the concept of a forbidden set, i.e. a set of activities which may never 

be scheduled in parallel because a violation of the resource constraints would result. Such a set is 

called minimal if no subset of that set constitutes a forbidden set in itself. Moreover, a minimal 

forbidden set is labelled a reduced forbidden set if the activities belonging to that set can be 

scheduled in parallel without violating the (generalized) precedence constraints between them. 

The procedure starts with the earliest start schedule and consequently adds new precedence 

relations between activities in order to eliminate reduced forbidden sets until no such set is 

scheduled in parallel. 
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In De Reyck and Herroelen (1996a), we presented a new depth-first branch-and-bound 

procedure for the RCPSP-GPR based on the concept of minimal delaying alternatives, i.e. sets of 

activities, which, when delayed release enough resources to resolve a resource conflict. Similar to 

Bartusch et al. (1988), we start with the earliest start schedule, in which we determine the first 

resource conflict, caused by a set of activities denoted as the conflict set. If no such conflict exists, 

then the earliest start schedule constitutes the optimal solution. If, however, such a conflict 

exists, we determine a set of minimal delaying alternatives and minimal delaying modes (a 

minimal delaying activity being delayed by another activity also belonging to the conflict set). 

Each minimal delaying mode then gives rise to a new earliest start schedule to which we can 

apply the same reasoning until a feasible solution is obtained. The procedure then backtracks to a 

previous level in the search tree until the root node is reached. The procedure also backtracks to a 

previoul;l level when no undominated nodes remain at a certain level. Several dominance rules 

and lower bounds are introduced which fathom large portions of the search tree. 

Apart from these optimal solution procedures for the RCPSP-GPR, several heuristics have 

been presented. Neumann and Zhan (1996) developed a priority-rule-based heuristic which allows 

to solve RCPSP-GPR instances using a parallel search scheme (see also Zhan, 1994). Brinkmann 

and Neumann (1994) developed a serial heuristic for the RCPSP-GPR (called DIRECT) and a 

heuristic based on the (serial) scheduling of cycle structures and the subsequent (serial) 

scheduling ofthe (acyclic) contracted project network (called CONTRACT). 

Franck and Neumann (1996) improved the approach of Neumann and Zhan (1996) and 

validated the performance of the heuristics described above. They conclude that the DIRECT 

method performs significantly better than the CONTRACT method, although the required 

computation time is higher due to the necessity of rescheduling steps caused by time­

infeasibilities. No conclusion could be made whether the serial or parallel scheme was more 

efficient for the DIRECT method. For the contract method, the most effective approach is to use 

the parallel scheme for scheduling the cycle structures and the serial scheme for scheduling the 

(acyclic) contracted project network. The best performing priority rules are the latest start time 

(LST) heuristic, in which priorities are assigned to schedulable (eligible) activities in the order of 

nondecreasing latest start times, and the worst case slack (WeS) heuristic, which assigns 

priorities in the order of nondecreasing worst case slack, where the wes of an activity i with 

respect to another activity j is defined as the difference between the latest start time of activity i 

and the earliest possible time instant at which activity i can be scheduled if another eligible 

activity j is scheduled instead. The wes of an eligible activity is then defined as the minimal 

value of all wes values with respect to all other eligible activities. 
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Schwindt and Neumann (1996) developed a branch-and-bound-based heuristic based on 

the optimal procedure for the RCPSP-GPR of De Reyck and Herroelen (1996a) 3.-1'ld the optimal 

procedure of Demeulemeester and Herroelen (1992, 1995) for the RCPSP. First, the cycle 

structures are scheduled using the procedure of De Reyck and Herroelen (1996a), after which 

they are contracted into single activities, which allows the use of a modified version (including 

variable resource requirements) of the procedure of Demeulemeester and Herroelen (1992, 1995) 

to schedule the contracted (acyclic) project network as an RCPSP instance. 

3. Benchmark problem sets 

In this paper, we will perform extensive tests to determine the effectiveness and efficiency 

of our procedure for the RCPSP-GPR (De Reyck and Herroelen, 1996a), in relation to several 

complexity measures which have been developed for the RCPSP-GPR and to other procedures 

described in the literature. 

The procedure has been programmed in Microsoft® Visual C++ 2.0 under Windows NT for 

use on a Digital Venturis Pentium-60 personal computer with 16Mb of internal memory. The code 

itself requires 109Kb of memory, whereas 10Mb are reserved for the storage of the search tree. In 

order to validate our branch-and-bound procedure, we generated 550 RCPSP-GPR instances 

based on the problem set for the RCPSP assembled by Patterson (1984). The results indicate the 

high efficiency of the branching scheme based on minimal delaying alternatives relative to a 

complete enumeration and show the significant speedup (up to a factor of 1410 for the problem 

instances with 20% maximal time lags) realized by adding dominance rules and lower bounds, 

and show the potential of the procedure to solve problems up to 30 activities within very small 

computation times. More information on this problem set and on the heuristic capabilities of a 

truncated version of our procedure can be found in De Reyck and Herroelen (1996a). 

Schwindt (1995) developed a random problem generator ProGenimax for the RCPSP-GPR 

based on the problem generator ProGen for the RCPSP developed by Kolisch et al. (1995). 

ProGenimax can generate RCPSP instances, multiple-mode RCPSP (MRCPSP) instances, 

RCPSP-GPR instances as well as MRCPSP-GPR (a combination of multiple modes and 

generalized precedence relations) instances. In addition, instances of the resource levelling 

problem with generalized precedence relations (RLP-GPR) and the resource availability cost 

problem with generalized precedence relations (RACP-GPR) can be generated. Two methods are 

proposed: DIRECT, which directly generates entire projects, and CONTRACT, which first 

generates cycle structures, upon which the (acyclic) contracted project network is generated. 

Several control parameters can be specified, as indicated in Table I. 
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Table I. The control parameters of ProGen/max (Schwindt, 1995) 

Problem size-based 

# activities (n) 

Resource-based 

# resource types (m) 

min. / max. number of 

resources used per activity 

resource factor (RF) 

(Pascoe, 1966) 

resource strength (RS) 

(Kolisch et al., 1995) 

Acyclic network-based 

# initial and terminal 

activities 

maximal # predecessors 

and successors 

order strength (OS)' 

(Mastor, 1970) 

Cyclic network-based 

% maximal time lags 

# cycle structures 

min. / max. # nodes 

per cycle structure 

coefficient of cycle structure 

density (Schwindt, 1995) 

cycle structure tightness 

(Schwindt, 1995) 

Two RCPSP-GPR problem sets have already been generated using ProGen/max. The first 

set (Schwindt, 1996) consists of 1080 instances, of which 540 are generated using the DIRECT 

method and 540 using the CONTRACT method. The second set (Franck and Neumann, 1996) 

consists of 1440 problem instances generated using the DIRECT method. We used the DIRECT 

method to generate a new set consistillg of 7200 problem instances, which allows for a more 

extensive testing of the· impact of several control parameters. We will use these three benchmark 

sets to test the effectiveness and efficiency of our branch-and-bound procedure, and validate it, 

where possible, with other results in the literature. 

4. The problem set of Schwindt (1996) - 1080 instances 

4.1. Description of the problem set 

The problem set of Schwindt (1996) has been generated using the parameter settings 

described in Table II. The indication [x,y] means that the value is randomly generated in the 

interval [x,y], whereas x; y; z means that three settings for that parameter were used in a full 

factorial experiment. For each combination of control parameter values, 10 problem instances 

have been generated. 

1 Schwindt (1996) uses an estimator for the restrictiveness (Thesen, 1977) as a network complexity measure. However, 
De Reyck (1995) has shown that this measure is identical to the order strength (Mastor, 1970), the flexibility ratio (Dar­
EI, 1973) and the density (Kao and Queyranne, 1982). We will use order strength when referring to this measure. 
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Table II. The parameter settings of the problem set of Schwindt (1996) 

Control parameter 

# activities 

activity durations 

# resource types 

minimal/maximal # resources used per activity 

activity resource demand 

RF 

RS 

# initial and terminal activities 

max. # initial/terminal activities for the cycle structures (only for CONTRACT method) 

max. # predecessors / successors 

max. # predecessors / successors for the cycle structures (only for CONTRACT method) 

as 
as for the cycle structures (only for CONTRACT method) 

% maximal time lags 

# cycle structures 

minimal/maximal # nodes per cycle structure 

coefficient of cycle structure density 

cycle structure tightness 

4.2. The results obtained by Franck and Neumann (1996) 

Value 

100 

[5,15] 

5 

1/5 

[1,3] 

0.50; 0.75; 1.00 

0.20; 0.50; 0.70 

[3,7] 

2/2 

5/5 

3/3 

0.35; 0.50; 0.65 

0.50 

[5%,15%] 

[2,5]; [6,9] 

2115 

0.3 

0.5 

Franck and Neumann (1996) have tested their improved versions of the serial and 

parallel heuristics for the DIRECT and CONTRACT approach on this problem set. The results 

given in Table III include the number of problems solved to optimality, the number of unsolved 

problems, the average deviation from a lower bound and the average and maximal deviation from 

the best known solution. A problem is considered to be unsolved when no feasible solution has 

been found. Two deviations with respect to a lower bound are given. The first lower bound (lb I ), 

used by Franck and Neumann (1996) to report deviations, is the maximum of a critical path­

based lower bound and a resource-based lower bound (based on dividing the activity duration-

resource requirement products by the resource availability). The second lower bound (lb 2) is the 

maximum of lb I and the lower bound lb3 for the RCPSP-GPR (developed by De Reyck and 

Herroelen, 1996a) computed in the root node of the search tree after preprocessing. The values for 
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lb1 as reported by Schwindt (1996) for this problem set contained some errors, so that we 

recalculatedlb1 (and the deviations reported by Schwindt, 1996). The best known solution 

referred to in Table III is the best solution obtained with various versions of our branch-and­

bound algorithm running for 1 hour per problem and the heuristic solutions, and can therefore be 

considered as near-optimal. Note that, when it is indicated that the heuristic finds an optimal 

solution, this means that the obtained solution is equal to the lower bound. 

The heuristics are coded in Smalltalk® for use on a personal computer (Franck and 

Neumann, 1996). The total computation time for the heuristics to produce the results given in 

Table III is not known exactly. Franck and Neumann (1996) report that about three seconds on a 

Pentium-90 PC are needed to solve one heuristic procedure based on the CONTRACT technique. 

Since in total 44 different CONTRACT-based heuristics are used, this accounts for about 132 

seconds. However, also 11 DIRECT-based heuristics are used, which consume much more 

computation time due to a possibly large number of rescheduling steps (Franck and Neumann, 

1996). Therefore, the total time needed to produce the results given in Table III is not known 

exactly, but runs in the hundreds of seconds. 

Table III. The results of Franck and Neumann (1996) 

DIRECT CONTRACT 

Problems solved to optimality 136 (>25%) 60 (>11%) 

Unsolved problems 8 (<2%) 13 «3%) 

Average deviation from lb l 14.65% 20.59% 

Average deviation from lb. 13.51% 20.53% 

Average deviation from best known solution 5.32% 8.37% 

Maximal deviation from best known solution 59.85% 91.70% 

Notice, on the one hand, the rather high average (and maximal) deviations from the near­

optimal solutions, but, on the other hand, the small number of unsolved problems. Remember 

that these problems may not have a feasible solution at all. A heuristic procedure is, however, not 

capable of determining whether an RCPSP-GPR instance is infeasible. 

4.3. Truncated branch-and-bound 

Solving all 100 activity-problem instances of the Schwindt (1995) problem set to 

optimality is probably beyond the capabilities of current branch-and-bound procedures. Even for 

the classic RCPSP, problem instances with 100 activities are not amenable to optimal solution 
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within acceptable computational effort. As an example, the RCPSP problem set of Kolisch et al. 

(1995), which consists of 480 instl'lnces with 30 activities has only recently been solved to 

optimality by Demeulemeester and Herroelen (1995). Therefore, given the higher complexity of 

the RCPSP-GPR, it is to be expected that a similar set consisting of 30-activity RCPSP-GPR 

instances will not be solved to optimality within acceptable computation times. Computational 

experience with a truncated branch-and-bound algorithm on 100-activity problem instances have 

not yet been reported in the literature, not even for the classic RCPSP case. 

Inspired by the excellent results obtained by Demeulemeester and Herroelen (1995) with 

a truncated branch-and-bound procedure for the RCPSP, we report in Table IV the results of our 

procedure, when truncated after some seconds of running time. As was the case for the results 

given in Table III, the deviations are calculated only for the problem instances for which a 

feasible solution has been found. This leads to a deflation of the reported deviations when a large 

number of instances have not yet reached feasibility. The procedure is truncated if the elapsed 

computation time exceeds the given limit. However, to avoid excessive time checking (a very time­

consuming procedure in itself), we only check the elapsed time when the procedure backtracks to 

a previous level. Although this reduces the number of time checks substantially, the procedure 

just barely runs over the given time limit for some problem instances. However, there are some 

exceptions. If a time limit of 1 or 2 seconds is set, it often happens that the procedure is still going 

down the search tree when the time limit is reached, and therefore, has not yet backtracked to a 

previous level in the search tree. Therefore, it sometimes happens that the given time limit is 

exceeded. This, of course, is due to the fact that a search time of 1 second (or 2) for such large 

problem instances is very small. For each class of results, we therefore also report an average 

computation time. This average time will generally be much smaller than the given time limit, 

except for the case where the time limit is 1 or 2 seconds, in which case the time limit can be 

exceeded, leading to a higher average computation time. In general, however, the computation 

times do not heavily exceed the time limit of 1 second (2 seconds) very much, as can be seen from 

the average computation times. 

For some problem instances, the procedure runs out of addressable memory, which results 

in a truncation of the algorithm even if the time limit is not exceeded. The fact that sometimes, 

the memory requirements exceed the available memory is due to the limits that we have set on 

the size of the search tree, in the form of a maximal number of levels in the search tree and a 

maximal number of delaying modes per level. Actually, when such a memory overflow occurs, it 

does not mean that more than 10Mb of storage have been used, but rather that one of these limits 

has been exceeded. 



Table IV. The results with a truncated version of our branch-and-bound procedure 

1 second 2 seconds 10 seconds 100 seconds 

DIRECT CONTRACT DIRECT CONTRACT DIRECT CONTRACT DIRECT CONTRACT 

Problems solved to optimality 260 (>48%) 283 (>52%) 287 (>53%) 290 (>53%) 293 (>54%) 298 (>55%) 303 (>56%) 303 (>56%) 

Unsolved problems 97 (<18%) 108 (20%) 56 (<11%) 81 (15%) 32 «6%) 55 (<11%) 26 «5%) 45 «9%) 

Average deviation from lb l 
5.66% 7.09% 7.92% 9.14% 9.48% 11.51% 9.57% 12.04% 

Average deviation from lb2 
5.23% 6.76% 7.17% 8.67% 8.60% 10.93% 8.56% 11.44% 

Average deviation from best 1.54% 2.29% 1.67% 2.48% 1.53% 2.86% 1.24% 2.66% 

known solution 

Maximum deviation from best 38.11% 48.67% 37.74% 48.67% 22.07% 72.02% 22.07% 72.02% 

known solution 

Average computation time 1.08 1.02 1.37 1.37 5.07 4.94 45.29 44.60 

(seconds) 
I ----- - --_ .. _--
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One remarkable conclusion we can draw from Table N is that, despite the problem size, 

more than 50% (543 out of 1080) of the problems can be solved to optLmality with an average of 

somewhat more than 1 second of computation time (16 problems are proven to be infeasible). It 

should be observed that this set does not contain any 'easy' instances in contrast to the RCPSP 

problem set with 480 instances of Kolisch et al. (1995), which contains 120 (25%) instances with a 

resource strength (RS) of 1, meaning that the problems are not resource-constrained and 

therefore can be solved by simply calculating the earliest start schedule. Solving such problem 

instances using our branch-and-bound procedure would require no branching at all. 

Therefore, we can conclude that it is often advantageous to try and solve such problems, 

despite their size and complexity, using truncated optimal solution procedures before resorting to 

other types of heuristic procedures. Note that Franck and Neumann report that about 18% (199) 

problems were solved to optimality using the set of heuristics (a solution equal to the lower 

bound), at the price, however, of very large computation times. 

The average deviations from the lower bounds and the best known solutions are very 

promising. For instance, the average deviation from the best solution known, which we can regard 

as being near-optimal since many different procedures and a lot of CPU time were used to obtain 

these solutions, varies between 1% and 2% for the DIRECT set and between 2% and 3% for the 

CONTRACT set. The heuristics resulted in an average deviation of 5.32% for the DIRECT set and 

8.37% for the CONTRACT set (see Table III). Note, however, that these deviations are only 

computed for the instances for which a feasible solution has been found. This explains the 

increased deviations when more CPU time is allotted. 

In conclusion, we can say that the number of problem instances solved to optimality and 

the deviations from the optimum are very promising. Less reassuring, however, is that, especially 

for small time limits, a relatively large number of problems remains unsolved. The set of 

heuristics does a better job on this issue. This inspired us to another approach (cf. infra) which is 

based on finding a feasible solution first, rather than going immediately for the optimal solution. 

This will allow us to find feasible solutions much more quickly at the expense of the quality of the 

solutions found when a certain time limit is imposed. 

4.4. Truncated branch-and-bound using the time window slack branching scheme 

In our branch-and-bound algorithm (De Reyck and Herroelen, 1996a), nodes are branched 

from in nondecreasing order of a critical path-based lower bound. The rationale behind this (often 

applied) branching criterion is that the nodes which entail a high chance of finding a very good 

solution are chosen first, in the hope that the other nodes will be dominated by the obtained upper 
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bound. However, when solving the RCPSP-GPR, two criteria, which may be in conflict, should be 

examined simultaneously, Each node in the search tree does not only contain information on the 

effect of added precedence constraints on the best solution that can ever be obtained by branching 

from that node (indicated by the lower bound), but also on the effect of added precedence 

constraints on the probability that a feasible solution can be obtained by branching from that 

node. The branching scheme described below also incorporates the latter information. 

In the branch-and-bound procedure of De Reyck and Herroelen (1996a), a node (with a 

corresponding delaying activity k and delaying alternative D d) is eliminated (because it does not 

contain a feasible solution) if :3l E Dd: k -d is infeasible, i.e. if dk > -d[l][k] for some 1 E Dd , 

where d[l][k] denotes the maximal distance between activities 1 and k. Thus, if dk +d[l][k]:=; 0 for 

each 1 E Dd (no positive cycle in the project network), the delaying mode is considered for further 

branching, and the selection of the delaying mode to branch from is derived from the lower bound. 

Consider two delaying modes Ml and M 2 , each with- one activity in the corresponding 

delaying alternative, with dk, +d[ld[kl] = -1 for Ml and dk.,+ d[l2][k2] = -20 for M2. Even if the 

lower bound of Ml is smaller than the lower bound of M2, branching from M2 may be the smartest 

thing to do since there is a high probability that branching from M 1 will not lead to any feasible 

solution. The fact that dk +d[l][k] = -1 means that activity k, which was delayed by activity I, 

only has 1 time unit of slack within its time window with respect to activity l. Thus, when activity 

k has to be delayed later on in the project, a: positive cycle will probably result, leading to time­

infeasibility ofthe corresponding project network. Therefore, if we want to find a feasible solution, 

it may be better to branch from the node for which the delayed activities have a relatively high 

'slack' in the time windows in which they can be scheduled. This leads to our new branching 

strategy, namely branching from the node with the highest 'slack' with respect to the maximal 

time lags, i.e. in which the cycles created by delaying activities, if any, are as negative as possible. 

This slack value will be referred to as time window slack (TWS). 

If multiple activities are delayed, the minimal TWS value over all the delayed activities is 

used as the 'slack' of the node, since this is probably the cycle that is going to create feasibility 

problems if additional activities are to be delayed. Suppose, for instance, that there are two 

possible delaying modes Ml and M2 to branch from. Ml consists of delaying activities 2 and 3 by 

activity 1, and M2 consists of delaying activities 1 and 3 by activity 2. If for Ml' d1 + d[1][2] =-4 



Table v. The results with the TWS version of our branch-and-bound procedure 

1 second 2 seconds 10 seconds 100 seconds 

DIRECT CONTRACT DIRECT CONTRACT DIRECT CONTRACT DIRECT CONTRACT 
_ .. 

Problems solved to optimality 261 (>48%) 276 (>51%) 289 (>53%) 294 (>54%) 294 (>54%) 303 (>56%) 302 (>55%) 306 (>56%) I 

Unsolved problems 12 «3%) 15 «3%) 8 «2%) 7 (<2%) 5(<1%) 5(<1%) 4 (<1%) 5 (<1%) 

Average deviation from lb l 
12.77% 17.51% 12.57% 18.18% 12.20% 17.35% 11.72% 16.83% 

Average deviation from lb2 
11.67% 16.77% 11.43% 16.77% 11.02% 16.60% 10.59% 16.09% 

Average deviation from best 3.26% 4.99% 2.82% 4.92% 2.49% 4.06% 2.11% 3.67% 

known solution 

Maximum deviation from best 38.11% 51.17% 37.84% 59.89% 26.99% 52.85% 26.99% 50.41% 

known solution 

Average computation time 1.16 1.24 1.38 1.38 5.02 4.86 44.99 43.42 

(seconds) 
-- -
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and d 1 + d[1][3] = -10 , and for M2, d2 + d[2][1] = -6 and d2 + d[2][3] = -12, the values 4 and 6 are 

chosen as the respective TWS values. Therefore, if we want to find a feasible solution, branching 

from M2 (with the highest time window slack) is preferred. 

We used this approach in a new version of our branch-and-bound algorithm (further 

denoted as the TWS-approach, in contrast to the LB-approach). When no feasible solution has 

been found yet, the procedure branches from the node with the highest TWS value with respect to 

the maximal time lags. Upon finding a feasible solution, the branching criterion switches to the 

lower bound criterion as before. The results with this approach are given in Table V. 

The number of unsolved problems decreases dramatically, even for small computation 

times. Even with a time limit of 2 seconds (1.38 seconds on average), less unsolved problems 

remain than found by Franck and Neumann (1996). However, as was to be expected, the 

deviations from the lower bounds and the best known solutions increase. Part of this increase in 

reported deviations, however, is due to the fact that now much less unsolved problem instances 

remain, which results in less deflation in the reported deviations. The deviations are still much 

smaller than when using the entire set of heuristic procedures, as is represented in Fig. 1. 
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Fig. 1. Average deviations from best known solutions: TWS-approach vs. heuristics 
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5. The problem set of Franck and Neumann (1996) • 1440 instances 

The problem set of Franck and Neumann (1996) has been generated using the DIRECT 

method of ProGenlmax using the parameter settings described in Table VI. For each combination 

of control parameter values, 10 problem instances have been generated. 

Table VI. The parameter settings of the problem set of Franck and Neumann (1996) 

Control parameter 

# activities 

activity durations 

# resource types 

minimal/maximal # resources used per activity 

activity resource demand 

RF 

RS 

# initial and terminal activities 

maximal # predecessors / successors 

OS 

% maximal time lags 

# cycle structures 

minimum / maximal # nodes per cycle structure 

coefficient of cycle structure density 

cycle structure tightness 

Value 

100 

[5,15] 

[5,8] 

118 

[1,3] 

0.25; 0.50; 0.75; 1.00 

0.20; 0.50; 0.75 

[3,7] 

5/5 

0.35; 0.50; 0.65 

[5%,15%]; [15%,25%] 

[2,7]; [8,13] 

2115 

0.3 

0.5 

Franck and Neumann (1996) report that, using the CONTRACT approach, a feasible 

solution was obtained for 1401 of the 1440 problem instances (1333 with the serial search scheme 

for the cycle structures and 1395 with the parallel search scheme for the cycle structures). The 

authors advise to use the serial search scheme for the (acyclic) contracted project network and the 

parallel scheme for the cycle structures (SP scheme). The best performing priority rule is the 

latest start time (LST) rule. The average deviation from lb i obtained with these rules equals 

16.6% (± 3 seconds of CPU time on a Pentium-90 PC). The average deviation from lb i obtained 

with a multiple-pass approach consisting of all 11 examined priority rules and all four search 

schemes (SS, PS, SP and PP) equals 14.3% (± 132 seconds of CPU time). The authors state that 

better results can be obtained with the DIRECT approach, however, at the expense of increased 



Table VII. The results with the truncated version of our branch-and-bound procedure 

1 second 2 seconds 10 seconds 100 seconds 

LB TWS LB TWS LB TWS LB TWS 

approach approach approach approach approach approach approach approach 

Problems solved to optimality 766 (>53%) 766 (>53%) 869 (>60%) 870 (>60%) 891 (>61%) 895 (>62%) 910 (>63%) 916 (>63%) 

Unsolved problems 267 (<19%) 39 «3%) 149 (<11%) 23 «2%) 66 «5%) 16 «2%) 43 «3%) 16 «2%) 

Average deviation from lb l 
5.12% 12.36% 7.70% 12.28% 9.94% 11.60% 10.04% 11.14% 

Average deviation from lb2 
4.61% 10.91% 6.83% 10.69% 8.52% 9.99% 8.50% 9.54% 

i 

Average deviation from best 0.93% 2.38% 1.07% 2.04% 0.82% 1.36% 0.51% 1.01% 

known solution 

Maximum deviation from best 24.09% 44.67% 26.55% 38.33% 20.00% 28.27% 14.44% 22.18% 

known solution 

Average computation time 1.02 1.10 1.29 1.31 4.35 4.32 37.64 37.45 

(seconds) 
- ------~-- -_ ...... _--
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computation times due to a possibly large amount of rescheduling steps needed to resolve time­

infeasibilities. Table VII indicates the results obtained with the truncated version of our brfuLch­

and-bound procedure, both for the LB-approach and the TWS-approach. The so-called best known 

solutions used to calculate the average and maximal deviations are obtained using the LB­

approach and the TWS-approach running for 1 hour each. 

Again, with a time limit of only 1 second (resulting in an average computation time of just 

over 1 second), more than 50% (766 out of 1440) of the problem instances can be solved to 

optimality. The deviations from lb l remain under 10% for the LB-approach and under 12.5% for 

the TWS-approach. Remember that the average deviations reported by Franck and Neumann 

(1996) were 16.6% for the best performing heuristic and 14.3% for the entire set of heuristics. 

With, on the average, only 1 second of computation time, the TWS-approach can solve as many 

problems (namely 1441; including the 12 problems proven to be infeasible) as do the entire set of 

heuristic procedures presented by Franck and Neumann (1996). Although the average deviations 

are significantly better for the LB-approach, the number of unsolved problems remains rather 

high (except for a time limit of 100 seconds). 

6. A new problem set - 7200 instances 

In order to examine the impact of several types of problem characteristics on the 

complexity of the RCPSP-GPR, we generated a new probl~m set consisting of 7200 instances 

using the DIRECT method of ProGen/max using the parameter settings described in Table VIII. 

For each combination of control parameter values, 10 problem instances have been generated. 

The results with the truncated version of our branch-and-bound procedure using the LB 

and TWS-approach are given in Table IX. The best known solutions used to calculate the average 

and maximal deviations are obtained using the LB-approach and the TWS-approach running for 

100 seconds. The effects of the various control parameters are represented in Fig. 2 through 23. 



Table VIII. The parameter settings of the new problem set 

Control parameter 

# activities 

activity durations 

# resource types 

minimal/maximal # resources used per activity 

activity resource demand 

RF 

RS 

# initial and terminal activities 

maximal # predecessors and successors 

OS 

% maximal time lags 

# cycle structures 

minimal/maximal # nodes per cycle structure 

coefficient of cycle structure density 

cycle structure tightness 

Value 

10;20;30;50; 100 

[2,10] 

[1,5] 

1/5 

[1,10] 

0.25; 0.50; 0.75; 1.00 

0.25; 0.50; 0.75 

[2,4] 

3 

0.25; 0.50; 0.75 

0%; 10%; 20%; 30% 

[0,10] 

2/100 

0.3 

0.5 
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From Table IX, we can observe that over 77% of the problems can be solved to optimality 

within 1 second of computation time. If 100 seconds of CPU time are allowed, this percentage 

increases to 86%. However, as Fig. 2 clearly displays, the number of problems solved to optimality 

heavily depends on the problem size. For 1 second of computation time, the percentage of 

problems solved to optimality decreases from 100% for the la-activity problem instances to 58% 

for the lOa-activity problem instances. Nevertheless, the relatively high number of problems 

solved to optimality (even for the lOa-activity set) seems very promising, and indicates that, even 

for large problem instances, the use of (truncated) branch-and-bound procedures should not be 

discarded. Using the LB-approach, a relatively high number of problem instances remains 

unsolved, especially for the problem instances with 100 activities, as can be seen from Fig. 3. The 

TWS-approach, however, can solve all but ten instances (see Fig. 4). 

Fig. 5 displays the average deviation from lb2 obtained with the LB-approach. The 

counterintuitive effect, namely a decreasing deviation from the lower bound when the problem 

size increases, is probably due to two main reasons. First, the quality of lb2 (measured by the 

average deviation from the optimal solution) increases when the problem size goes up. For 



Table IX. The results with the truncated version of our branch-and-bound procedure 

1 second 2 seconds 10 seconds 100 seconds 

LB TWS LB TWS LB TWS LB TWS 

approach approach approach approach approach approach approach approach 

Problems solved to optimality 5602 (>77%) 5575 (>77%) 5832 (81%) 5828 (>80%) 6017 (>83%) 6020 (>83%) 6210 (>86%) 6215 (>86%) 

Unsolved problems 141 «2%) 15 (<1%) 95 «2%) 12 (<1%) 66 (<1%) 11 (<1%) 55 (<1%) 10 (<1%) 

Average deviation from lb i 
8.08% 8.60% 8.06% 8.40% 7.95% 8.16% 7.77% 7.94% 

Average deviation from lb2 
4.69% 5.40% 4.67% 5.20% 4.57% 4.97% 4.39% 4.75% 

Average deviation from best 0.44% 0.79% 0.38% 0.61% 0.29% 0.39% 0.06% 0.20% 

known solution 

Maximum deviation from best 50.77% 46.21% 50.77% 42.66% 36.73% 40.27% 14.05% 31.06% 

known solution 

Average computation time 0.36 0.39 0.54 0.54 1.92 1.92 14.93 14.87 

(seconds) 
, .. _ .. _-_ .. _--_._----_._----_. 
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instance, for the la-activity set, the average deviation of the solutions obtained with our 

procedure from lb 2 is 9.13%, whereas all problems were solved to optimality (an actual average 

deviation from the optimum of 0%). Therefore, we can conclude that lb2 itself is, on average, 

9.13% from the optimum. When the problem size increases, the average deviation of lb2 from the 

optimum decreases, leading to the lower average deviations from lb2 obtained by our procedure. 

Second, with the LB-approach, the number of unsolved problems increases when the problem size 

goes up. Therefore, these problems cannot be included in the calculations, leading to a deflation in 

reported average deviations. This will not be the case for the TWS-approach, for which a similar 

graph is shown in Fig. 6. From Fig. 6 we can observe a similar effect when the problem size 

increases from 10 to 50 activities, beyond· which the average deviations increase again. 

Nevertheless, it is more interesting to look at the average deviations from the best known 

solutions instead of the deviations with respect to a lower bound, since then, no such 

counterintuitive effects will occur. However, because of the size of the problem set, we were not 

able to run several versions of our· procedure for 1 hour, as we did for the previous problem sets. 

Therefore, we took as the baseline the best results obtained with the LB-approach and the TWS­

approach with a time limit of 100 seconds each. The average deviations with respect to these (best 

known) solutions are given in Fig. 7. Clearly, the effect of the problem size on the average 

deviation from the best known solution is not counterintuitive. 

Fig. 8 through 11 represent the effect ofthe as on the RCPSP-GPR complexity. De Reyck 

(1995) has shown that as is a relatively good measure of network complexity for the RCPSP, in 

that it explains a lot of the variation in the required computation time of optimal branch-and­

bound procedures to solve RCPSP instances, next to problem size and resource-based complexity 

measures. More specifically, as has a negative impact on the computational complexity of the 

RCPSP, implying the higher as, the easier the corresponding RCPSP. Schwindt and Neumann 

(1996) use as as a network-based parameter for randomly generating (M)RCPSP(-GPR), 

(M)RLP(-GPR) or (M)RACP(-GPR) instances. In this respect, they differ from ProGen (Kolisch et 

aI., 1995) which generates (M)RCPSP instances using CNC (arcs / nodes) as a network complexity 

measure. De Reyck (1995) and De Reyck and Herroelen (1996b) have shown that CNC does not 

perform very well as a network complexity measure for the RCPSP. The complexity index CJ (De 

Reyck and Herroelen, 1996b) and the order strength as can explain a much higher portion of the 

variability in CPU times needed to solve RCPSP instances. Fig. 8 through 11 also indicate a 

negative impact of as on the computational complexity of the RCPSP-GPR. When as increases, 

the number of problems solved to optimality generally increases, the number of unsolved 

problems decreases and the average deviations from the best known solutions also decrease. 
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The effect of the percentage of maximal time lags (see Fig. 12 through Fig. 15) on the 

computational complexity of the RCPSP-GPR is not monotonously increasing or decreasing. On 

the contrary, a kind of bell-shaped curve seems to result. When maximal time lags are introduced, 

the number of problems solved to optimality increases (Fig. 12), up to a certain point, at which the 

number of problems solved to optimality again decreases. The initial rise in performance can 

easily be explained if we remember that, in the branch-and-bound procedure, several dominance 

rules and lower bounds are used which require the existence of maximal time lags in order to be 

applicable. This makes the procedure more effective and efficient when such time lags are 

introduced. However, when many maximal time lags are introduced, the increased problem 

complexity (there are less feasible solutions, making it harder to find good ones which can be used 

to dominate other nodes using lower bound arguments) leads to a decrease in efficiency and 

consequently, a decrease in the number of problems solved to optimality within the given time 

limit. The non-linear effect of the percentage of maximal time lags on the number of unsolved 

problems (Fig. 13 and 14) can be explained in a similar manner. The introduction of maximal 

time lags leads to more unsolved problems, since maximal time lags can heavily reduce the 

number of feasible solutions for certain problem instances (even to zero), hence making it more 

difficult to find one. However, at the same time, the inclusion of additional maximal time lags 

make it possible for the lower bounds and the dominance rules to kick in (especially the 

eading to less unsolved problems. Although the number of infeasible 

problems w' l generally increase as the number of maximal time lags increases, the number of 

unstrlved problems given a certain time limit may decrease again. The effect of the percentage of 

maximal time lags on the average deviation from the optimal solution (Fig. 15) seems to indicate 

that the inclusion of more maximal time lags makes the problem more difficult in that it is harder 

for truncated branch-and-bound procedures to obtain near-optimal s_olutions. 

The effect of RF, which can be seen from Fig. 16 through 19 is similar to the effect of RF 

on the computational complexity of the RCPSP as was reported by Kolisch et al. (1995). That is, 

the higher RF, the more difficult it is to solve the corresponding RCPSP(-GPR). The number of 

problems solved to optimality decreases significantly (Fig. 16), the number of unsolved problems 

increases substantially (Fig. 17 and 18), as does the average deviation from the best known 

solution, although a RF of 0.75 does not yield very different results from a RF of 1.0 (Fig. 19). An 

opposite effect can be observed for RS,as was also observed by Kolisch et al. (1995) and De Reyck 

and Herroelen (1996b). When RS increases, the number of problems solved to optimality increases 

dramatically (Fig. 20), the number of unsolved problems decreases even more dramatically (Fig. 

21 and 22) as does the average deviation from the near-optimal solution (Fig. 23). The strong 

effects of RF and RS, and even more pronounced for RS than for RF, lead us to believe that the 

effect of resource-based measures on the computational complexity of the RCPSP-GPR is much 
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larger than the effect of network-based measures. A similar observation for the RCPSP has been 

made by De Reyck and Herroelen (1996b). 
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7. Conclusions 

In this paper we present new computational experience with the branch-and-bound 

procedure presented in De Reyck and Herroelen (1996a). Results are reported on three problem 

sets consisting of 1080, 1440 and 7200 problem instances, the first two of which have been 

previously presented in the literature (Schwindt, 1996; Franck and Neumann, 1996). These 

problem sets have been generated with ProGenimax, the new random problem generator of 

Schwindt (1995) which can generate RCPSP-GPR instances as well as other types of generalized 

resource-constrained project scheduling problems. The results concern the effect of several types 

of problem characteristics on the complexity of the RCPSP-GPR and include a comparison with 

other computational results reported in the literature. 

Demeulemeester and Herroelen (1995) have shown that a truncated version of their 

optimal procedure for the RCPSP is capable of outperforming the best heuristic procedures 

available, based on the problem set of Patterson (1984) and the problem set of Kolisch et al. 

(1995). These problem sets contain up to 50 activities. However, it is also generally accepted that 

for larger problem instances, heuristic procedures will have competitive advantages. 

Nevertheless, using the problem sets described above, we have shown that even for large problem 

instances (100 activities is very large for the RCPSP-GPR) and even a more complex problem 

type, a truncated branch-and-bound procedure can outperform a combination of the best heuristic 

procedures available in less than, on the average, 2 seconds of computation time, whereas the 

heuristics themselves have much higher CPU time requirements. 
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Figure Captions 

Fig. 1. Average deviations from best known solutions: TWS-approach vs. heuristics 

Fig. 2. The effect of problem size on the number of problems solved to optimality CLB-approach) 

Fig. 3. The effect of problem size on the number of unsolved problems (LB-approach) 

Fig. 4. The effect of problem size on the number of unsolved problems (TWS-approach) 

Fig. 5. The effect of problem size on the average deviation fromlb 2 (LB-approach) 

Fig. 6. The effect of problem size on the average deviation fromlb 2 (TWS-approach) 

Fig. 7. The effect of problem size on the average deviation from the best known solution (TWS) 

Fig. 8. The effect of OS on the number of problems solved to optimality (LB-approach) 

Fig. 9. The effect of OS on the number of unsolved problems (LB-approach) 

Fig. 10. The effect of OS on the number of unsolved problems (TWS-approach) 
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Fig. 11. The effect of OS on the average deviation from the best known solution (TWS-approach) 

Fig. 12. The effect of % maximal time lags on the number of problems solved to optimality (LB) 

Fig. 13. The effect of% maximal time lags on the number of unsolved problems (LB-approach) 

Fig. 14. The effect of% maximal time lags on the number of unsolved problems (TWS-approach) 

Fig. 15. The effect of % maximal time lags on the avg. dev. from the best known solution (TWS) 

Fig. 16. The effect of RF on the number of problems solved to optimality (LB-approach) 

Fig. 17. The effect of RF on the number of unsolved problems (LB-approach) 

Fig. 18. The effect of RF on the number of unsolved problems (TWS-approach) 

Fig. 19. The effect of RF on the average deviation from the best known solution (TWS-approach) 

Fig. 20. The effect of RS on the number of problems solved to optimality (LB-approach) 

Fig. 21. The effect ofRS on the number of unsolved problems (LB-approach) 

Fig. 22. The effect of RS on the number of unsolved problems (TWS-approach) 

Fig. 23. The effect of RS on the average deviation from the best known solution (TWS-approach) 

Table Captions 

Table I. The control parameters of ProGenimax (Schwindt, 1995) 

Table II. The parameter settings of the problem set of Schwindt (1996) 

Table III. The results of Franck and Neumann (1996) 

Table IV. The results with a truncated version of our branch-and-bound procedure 

Table V. The results with the TWS version of our branch-and-bound procedure 

Table VI. The parameter settings of the problem set of Franck and Neumann (1996) 

Table VII. The results with a truncated version of our branch-and-bound procedure 

Table VIII. The parameter settings of the new problem set 

Table IX. The results with a truncated version of our branch-and-bound procedure 




